<<

3-D Fabrication for High Density

Vyshnavi Suntharalingam

Brian Aull, Robert Berger, Jim Burns, Chenson Chen, Jeff Knecht, Chuck Stevenson, Brian Tyrrell, Keith Warner, Bruce Wheeler, Donna Yost, Craig Keast

12th Workshop on Electronics for LHC and Future Experiments 15th International Workshop on Vertex Detectors 25-29 September 2006

*This work was sponsored by the Defense Advanced Research Projects Agency under Air Force contract #FA8721-05-C0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government . MIT Lincoln Laboratory

LECC-Vertex-2006-1 VS 9/25/06 Motivation for 3-D Circuit Technology

• 3-D Circuit = Multi-layer (multi-tier) Technology stacked circuit Optimized by Tier

High Density Vertical • Advantages Bump/Optical Interconnections – Reduced interconnect length Connection Sites – Reduced chip size – Reduced parasitics – Reduced power – Fabrication process optimized by tier function

• Applications Mixed Material – High System Integration – Mixed material system integration – Advanced focal planes Local computation and/or memory 100% fill-factor

MIT Lincoln Laboratory LECC-Vertex-2006-2 VS 9/25/06 Pad-Level “3D Integration” Stacking

Stacked-Die Bonding Stacked Chip-Scale Packages

1 mm

ChipPAC, Inc. Tessera, Inc.

MIT Lincoln Laboratory LECC-Vertex-2006-3 VS 9/25/06 In Production! Pixel-Level 3-D Integration Cross Sections Through Two-Tier Imager

SOI-CMOS (Tier 2)

SEM cross section (Tier 1) 8 μm decorated

Transistor

CMOS Vias 3D-Via Bond Interface

Diode 8 μm 5 μm Pixel MIT Lincoln Laboratory LECC-Vertex-2006-4 VS 9/25/06 Outline

• Advantages of Vertical Integration for Focal Planes – MIT-LL Demonstration of Three-tier ring oscillators • Fabrication Sequence

• MIT Lincoln Laboratory Demonstrations – Two-tier backside-illuminated visible imager – Three-tier focal plane – Three-tier 3-D IC Multiproject Run – Two-tier bonding and interconnection to InP material • Summary

MIT Lincoln Laboratory LECC-Vertex-2006-5 VS 9/25/06 Limitations – Standard Bulk CMOS APS Monolithic APS –

• Fill factor compromised Pixel Layout – and pixel share same area photodiode

• Low photoresponsivity OUT – Shallow junctions – High RST

– Limited depletion depth VDD ROW

V • High leakage DD – LOCOS/STI, salicide ROW OUT – short channel effects RST n+ Field Oxide p+ p-well n-Well • bounce and transient p-epi coupling effects p+ Substrate

MIT Lincoln Laboratory LECC-Vertex-2006-6 VS 9/25/06 Advantages of Vertical Integration

Conventional Monolithic APS 3-D Pixel PD pixel 3T PD pixel ROIC Addressing

Processor Addressing A/D, CDS, … • 100% fill factor detector • Pixel electronics and Fabrication optimized by detectors share area • layer function • Fill factor loss • Local image processing • Co-optimized fabrication – Power and • Control and support management electronics placed • Scalable to large-area focal outside of imaging area planes MIT Lincoln Laboratory LECC-Vertex-2006-7 VS 9/25/06 Approaches to 3D Integration (Photos Shown to Scale)

Tier-1

3D-Vias Tier-3 3D-Vias Tier-2

10 μm Tier-1

Tier-2 10 μm μ Photo Courtesy of RTI 10 m Bump Bond used to Two-layer stack with Three-layer circuit using flip-chip interconnect insulated vias through Lincoln’s SOI-based vias two circuit layers thinned bulk Si

MIT Lincoln Laboratory LECC-Vertex-2006-8 VS 9/25/06 3-Tier, 3D-Integrated Ring Oscillator (DARPA 3DL1 Multiproject Run)

• Functional 3-tier, 3D-integrated 3D Ring Oscillator Cross-Sectional SEM ring oscillator 3D Tier-3: FDSOI CMOS Layer Via – Uses all three active transistor Stacked layers, 10 levels of metal and 3D Via experimental stacked 3D-vias 3D Tier-2: FDSOI CMOS Layer Via

– Demonstrates viability of 3D Transistors integration process

700 Tier-1: FDSOI CMOS Layer 5 μm 600

500

400

300

200

Stage Delay (ps) 100 0 99-Stage Ring Oscillator @1.5V 0.5 0.75 1 1.25 1.5 1.75 Power Supply (V) MIT Lincoln Laboratory LECC-Vertex-2006-9 VS 9/25/06 Outline

• Advantages of Vertical Integration for Focal Planes • Fabrication Sequence and Five Key Elements – Low dark current on (SOI) circuits – Low-temperature, -scale oxide-to-oxide bond – Precision overlay – High-density vertical interconnection

• MIT Lincoln Laboratory Demonstrations – Three-tier ring oscillators – Two-tier backside-illuminated visible imager – Three-tier laser radar focal plane – Three-tier 3-D IC Multiproject Run – Two-tier bonding and interconnection to InP detector material • Summary

MIT Lincoln Laboratory LECC-Vertex-2006-10 VS 9/25/06 3-D Circuit Integration Flow-1

• Fabricate circuits on SOI wafers – SOI wafers greatly simplify 3D integration • 3-D circuits of two or more active silicon layers can be assembled

Wafer-1 can be either Bulk, SOI, Buried Oxide or Compound Wafer-1 Handle Silicon

Buried Oxide Wafer-2 Handle Silicon

Buried Oxide Wafer-3 Handle Silicon

MIT Lincoln Laboratory LECC-Vertex-2006-11 VS 9/25/06 1. Low Dark Current Photodiodes

• Photodiode independent of CMOS

• High-resistivity substrates 90,000 parallel diodes

• Back-illumination process

• Photodiode leakage 2 10,000 diodes <0.2nA/cm @ 25ºC (same area)

Single tier test structure w/guard ring • Similar results after Full thickness wafer 3D-stacking

MIT Lincoln Laboratory LECC-Vertex-2006-12 VS 9/25/06 2. Silicon-On-Insulator Circuits

• 3.3-V, 350-nm gate length, 50 nm Si fully depleted SOI CMOS Buried Oxide

Silicon Handle Wafer • Buried oxide – isolation – Reduced parasitic capacitances silicided poly gate – Enhanced radiation contact performance silicon channel

– Essential wafer-thinning etch Buried Oxide stop Handle Wafer

MIT Lincoln Laboratory LECC-Vertex-2006-13 VS 9/25/06 3-D Circuit Stacking

• Invert, align, and bond Tier 2 to Tier 1

Oxide-Oxide Wafer Bond

SOI Handle Wafer

CMOS

High-Resistivity Bulk Wafer PD

MIT Lincoln Laboratory LECC-Vertex-2006-14 VS 9/25/06 3-D Circuit Stacking

• Remove handle silicon from Tier-2

CMOS

High-Resistivity Bulk Wafer PD

MIT Lincoln Laboratory LECC-Vertex-2006-15 VS 9/25/06 3. Low Temperature Oxide Layer-to-Layer Bonding

IR Image • Deeply scaled 3-D interconnect (low-temperature oxide-bonded wafer pair) technology requires robust wafer- to- technology • MIT-LL low temperature oxide bonding process provides – Thin and controllable bondline

– Enables use of standard IC high 150 mm aspect ratio contact etch and plug fill Bonded Wafer-Pair Cross Section ~475oC process Tier-2 metal – Allows for 3-D interconnect to be

sintered oxide bond interface – Standard, high reliability semiconductor material Tier-1 metal 5 μm MIT Lincoln Laboratory LECC-Vertex-2006-16 VS 9/25/06 4. Precision wafer-to-wafer overlay

Provide a wafer-to-wafer • Mapping alignment accuracy compatible with a submicron 3D Via Low mag. microscope • based on modern IC wafer technology NIR μ • 0.5 m 3-sigma overlay Bottom wafer chuck demonstrated

Top wafer chuck Control Interface 150-mm dia. wafer

Low mag. video

6-axis PZT stage

Control Pre-align Laser interferometer controlled XY stage Mapping video MIT Lincoln Laboratory LECC-Vertex-2006-17 VS 9/25/06 Repeatability Data MIT-LL Precision Aligner

40 x X Offset Data x Y Offset Data x x x xx 30 x x 150-mm wafer-pair 20 (measurement locations)

+/- 0.25 μm 10 Total Percent of Die Measured (%)Total Percent of Die Measured 0 -1.0 -0.5 0.0 0.5 1.0 Deviation (μm)

•Data from five repeated alignments of same wafer pair •Nine die measured per alignment MIT Lincoln Laboratory LECC-Vertex-2006-18 VS 9/25/06 3D Via Layout Comparison (Based on MIT-LL 180nm FDSOI CMOS rules)

Previous capability With recently developed precision alignment system and via technology

CMOS

3D via 2.0 μm

3D via landing pad 2.0 μm 3D via ~1.0 μm 3D via landing pad 5.5 μm Inter-metal via 0.4 μm MIT Lincoln Laboratory LECC-Vertex-2006-19 VS 9/25/06 Bonded Two Wafer Imager Stack

150-mm Diameter Wafer Pair

MIT Lincoln Laboratory LECC-Vertex-2006-20 VS 9/25/06 Inter-Tier Via Connections

• Pattern, etch, and fill 3-D vias • (Additional circuit tiers could be added)

Concentric 3-D Via

CMOS

High-Resistivity Bulk Wafer PD

MIT Lincoln Laboratory LECC-Vertex-2006-21 VS 9/25/06 5. High Density, High Yield, Compact 3D-Via

3D Via Cross-sections • Leverages standard high-yield IC process technology for 3D interconnection Tier-2 Metal – High density plasma oxide etch of via CVD-W Bond Interface Plug – Chemical vapor deposition of Tier-1 plug Metal – Chemical mechanical planarization (CMP) to form damascene plug

Circuit Tier-2

M1 W 3D-Via

M2

M3 “Donut” Metal Decorated Bond Oxide Bond Interface

Tier-1 Landing Pad Circuit Tier-1 Silicon

MIT Lincoln Laboratory LECC-Vertex-2006-22 VS 9/25/06 Thermal Cycle Effects on 3D-Via Chains Thermal Cycle: 300 K/ 77 K/ 300 K

3D-Via Chain Resistance vs # of 3D Vias and Thermal Cycles 10000

9000

) 8000 # of cycles Ω 7000 1 Cycle 2 Cycles 6000 3 Cycles 4 Cycles 5000 5 Cycles 6 Cycles 4000 7 Cycles 8 Cycles

Total Resistance ( 9 Cycles 3000 10 Cycles 2000

1000

0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 # of 3D Vias in Series

MIT Lincoln Laboratory LECC-Vertex-2006-23 VS 9/25/06 Back Metal-1 and Back Metal-2

• Deposit and pattern Back Metal-1 • Deposit and CMP ILD • Deposit and pattern Back Metal-2 • Sinter

CMOS

High-Resistivity Bulk Wafer PD

MIT Lincoln Laboratory LECC-Vertex-2006-24 VS 9/25/06 Completed Back-Illuminated CMOS Imager

• Thin photodiode substrate to 50μm • bond to quartz

CMOS

PD

Transparent Substrate

Light MIT Lincoln Laboratory LECC-Vertex-2006-25 VS 9/25/06 Outline

• Advantages of Vertical Integration for Focal Planes • Fabrication Sequence

• MIT Lincoln Laboratory Demonstrations – Three-tier ring oscillators – Two-tier backside-illuminated visible imager – Three-tier laser radar focal plane – Three-tier 3-D IC Multiproject Run – Two-tier bonding and interconnection to InP detector material

• Summary

MIT Lincoln Laboratory LECC-Vertex-2006-26 VS 9/25/06 Four-Side Abuttable Goal

• 3-D CMOS imagers tiled for large-area focal planes • Foundry fabricated daughter chip bump bonded to non-imaging side

pixel

Foundry Chip

Tile with 8 mm Daughter Chip

mechanical mockup Tiled Array MIT Lincoln Laboratory LECC-Vertex-2006-27 VS 9/25/06 Four-Side Abuttable Vertically Integrated Imager • Silicon photodetector layer (Tier-1) Light – Four-side abuttable 1024 x 1024 array of 8μm x 8μm pixels • Address and readout layer (Tier-2) – 3.3 volt FDSOI CMOS layer • Timing, control, and analog-to- (Tier-3) – MOSIS fabricated chip bump bonded to detector array • Active-pixel for radiation tolerance 3D-Integrated Tier-1/Tier-2 wafer pair

> 1 million 3D interconnects per imager 4 x 4 Tiled Array (mock-up) 150 mm MIT Lincoln Laboratory LECC-Vertex-2006-28 VS 9/25/06 Goals

• Four-side abuttable Active Pixel

• 1024 x 1024 array of 8μm x 8μm pixels

• 3-D interconnections per pixel

• 3.3-V operating voltage

• Full digital control and readout at 10 fps

MIT Lincoln Laboratory LECC-Vertex-2006-29 VS 9/25/06 Completed 3D-Stacked Imager Wafer and Die Layout

150-mm wafer

1024 x 1024 1024 x 1024 p-reset + cap n-reset

p-reset p-reset + cap

n-reset p-reset, cap, SOI

Process Monitoring Devices and Circuits

8μm 22 mm

MIT Lincoln Laboratory LECC-Vertex-2006-30 VS 9/25/06 3T Pixel Schematic and Layout

+PDBIAS 8μm

VDDA 3D-Via 3-D Via

15fF RST ROW RSTLVL VPIX

• Design Variations – pFET Reset with 15fF VSS – nFET Reset with no capacitor MIT Lincoln Laboratory LECC-Vertex-2006-31 VS 9/25/06 1024 x 1024 Imager Array Architecture o eet ShiftRegister Row Select

1 1 1 1 Integration

Column Select From 256 Four Outputs

MIT Lincoln Laboratory LECC-Vertex-2006-32 VS 9/25/06 Preliminary Tier-1-2 3D Imager Test Results

• Electrical probe station preliminary imager test result 1024 x 1024 Image from FIRST 3D-Integrated Wafer Pair* using frontside illumination – Final processing steps will result in unobstructed backside illuminated device

SOI-CMOS circuit tier (Tier 2)

Photodetector tier (Tier 1) High-resistivity bulk silicon

*35-mm slide image projected through CMOS-circuit-side of 3D-integrated imager on chip test station Image acquired at 10 frames/sec (Background Subtracted, Pixel Yield > 99.9%, 3.8M transistors) MIT Lincoln Laboratory LECC-Vertex-2006-33 VS 9/25/06 Presented at 2005 ISSCC Sample Dark Background

• Raw image without fixed pattern noise suppression • Dominant yield detractor is row/column drop-outs

Four Analog Outputs Panel 1 Panel 2 Panel 3 Panel 4

Open 3D-Vias

MIT Lincoln Laboratory LECC-Vertex-2006-34 VS 9/25/06 Four-Side Abuttable Vertically Integrated Imaging Tile

• Wafer-Scale 3D circuit stacking technology – Silicon photodetector tier – SOI-CMOS address and readout tier Per-pixel 3D interconnections – 1024 x 1024 array of 8 μm x 8 μm pixels – 100% fill factor – >1 million vertical interconnections per imager

Front Illuminated Back Illuminated

MIT Lincoln Laboratory LECC-Vertex-2006-35 VS 9/25/06 Presented at 2005 ISSCC Outline

• Advantages of Vertical Integration for Focal Planes • Fabrication Sequence

• MIT Lincoln Laboratory Demonstrations – Three-tier ring oscillators – Two-tier backside-illuminated visible imager – Three-tier laser radar focal plane – Three-tier 3-D IC Multiproject Run – Two-tier bonding and interconnection to InP detector material

• Summary

MIT Lincoln Laboratory LECC-Vertex-2006-36 VS 9/25/06 Three-Tier Laser Radar Focal Plane

• Based on single--sensitive VISA 3D Stack Cross Section Geiger-mode avalanche photodiodes Tier-3: 1.5V FDSOI CMOS – 64 x 64 demonstration circuit (scalable to large imager formats) – Pixel size reduction from 100 μm to 30 μm Tier-2: 3.5V FDSOI CMOS – Timing resolution reduction from 1 ns to 0.1 ns APD APD Tier-1: 30V Avalanche Photodiode – 100x reduction in voxel volume VISA APD Pixel Circuit (~250 transistors/pixel)

Pseudorandom circuit

Completed Backside-illuminated 3-tier, 3D Laser Radar wafer

APD drive/sense circuit

Avalanche PD 150 mm MIT Lincoln Laboratory LECC-Vertex-2006-37 VS 9/25/06 Functional 3D-Integrated, 3-Tier Avalanche Photodiode Focal Plane

Completed Pixel Cross-Sectional SEM 3D • VISA laser radar focal plane Via Tier-3: 1.5V SOI CMOS Layer based on single-photon- Transistors sensitive Geiger-mode 3D avalanche photodiodes Via – 64 x 64 format Tier-2: 3.5V SOI CMOS Layer – 50-μm pixel size

Tier-1: 30V Back Illuminated APD Layer μ 10 m 10 μm To-Scale Pixel Layout of Completed 3-tier Laser Radar Focal Plane

Tier-3 High-Speed Counter

Tier-2 APD Drive/Sense Circuitry

Tier-1 Avalanche Photodiode ~250 transistors/pixel (APD) (50 μm x 50 μm) MIT Lincoln Laboratory LECC-Vertex-2006-38 VS 9/25/06 Presented at 2006 ISSCC 64x64 LADAR Focal Plane First Demonstration of 3-Tier Focal Plane

• Rudimentary ladar image of 28” long cone with 8-in timing resolution – Timing circuit limited to only 9-bits of its full 12-bit range Pixels

1 mm

Complete 3-tier, back-illuminated 64 x 64 APD Laser Radar

Orientation of cone Grayscale range image with False color range image image on focal plane superimposed contours MIT Lincoln Laboratory LECC-Vertex-2006-39 VS 9/25/06 Outline

• Advantages of Vertical Integration for Focal Planes • Fabrication Sequence

• MIT Lincoln Laboratory Demonstrations – Three-tier ring oscillators – Two-tier backside-illuminated visible imager – Three-tier laser radar focal plane – Three-tier 3-D IC Multiproject Run – Two-tier bonding and interconnection to InP detector material

• Summary

MIT Lincoln Laboratory LECC-Vertex-2006-40 VS 9/25/06 3-D IC Multiproject Run Completed (Three 180-nm, 1.5 volt FDSOI CMOS Tiers) Wafer photo of completed tier-1 • MIT-LL 3D circuit integration technology

• Preliminary 3D design kits developed - Mentor Graphics – MIT-LL, Cadence – NCSU, Thermal Models – CFRDC • Design guide release 11/04, fab start 6/05, 3D-integration complete 3/06

Concepts being explored in run: 3D FPGAs, digital, and digital/mixed-signal/RF ASICs exploiting parallelism of 3D-interconnects 150-mm-diameter wafer 3D analog continuous-time 3D-integrated S-band digital beam former (Industry, Universities, Laboratories) Stacked memory (SRAM, Flash, and ) 3DL1 Participants Self-powered CMOS logic (scavenging) BAE Lincoln Laboratory Purdue Integrated 3D Nano- and RF tags Cornell Maryland RPI Intelligent 3D-interconnect evaluation circuits Delaware Minnesota Stanford DC and RF-coupled interconnect devices HRL MIT Tennessee Low Power Multi-gigabit 3D data links Idaho North Carolina UCLA Noise coupling/cross-talk test structures and circuits Johns Hopkins NRL Washington Thermal 3D test structures and circuits LPS Pennsylvania Yale MIT Lincoln Laboratory LECC-Vertex-2006-41 VS 9/25/06 Cross-Section of 3-Tier 3D-integrated Circuit (DARPA 3DL1 Multiproject Run) 3 FDSOI CMOS Transistor Layers, 10-levels of Metal

Tier-3: Transistor Layer Back Metal Tier-3: 180-nm, 1.5V FDSOI CMOS

Stacked 3D-Via Vias

Metal Fill

Oxide Bond Tier-2: Transistor Layer Interface

3D-Via Tier-2: 180-nm 3D-Via 1.5V FDSOI CMOS

3-Level Metal Oxide Bond Interface

Tier-1: Transistor Layer

Tier-1: 180-nm, 1.5V FDSOI CMOS 10 μm MIT Lincoln Laboratory LECC-Vertex-2006-42 VS 9/25/06 3D Technology Improvements (DARPA 3DL1 Multiproject Run) • 3D technology enhancements High-Yield on >5000-link Scaled 3D-via Chains successfully demonstrated in 3DL1 Run – Stacked 3D-vias for electrical and thermal interconnect – 2X reduction in 3D-via size – Improved tier-to-tier overlay 5 μm 5 μm Scaled Conventional

Stack 3D-vias ~0.5 μm 3σ Tier-to-Tier Registration demonstrated

>95% yield on 4800 link chains

Stacked 3D-via resistance ~1Ω

Can be used as 99-Stage Ring Oscillator @1.5V thermal vias Vector Scale 5 μm 1 μm MIT Lincoln Laboratory LECC-Vertex-2006-43 VS 9/25/06 Silicon to InP Wafer Bonding

• Successful demonstration of 3D-bonding of SOI CMOS circuit layer to InP handle wafer • Enables extension of 3D- integration technology to higher density, longer wavelength focal plane detectors – Tight pixel-pitch IR focal planes and APD arrays – InGaAsP (1.06-μm), InGaAs (1.55-μm)

Oxide-bonded circuit layer transferred from silicon wafer

150-mm-diameter InP Wafer MIT Lincoln Laboratory LECC-Vertex-2006-44 VS 9/25/06 Summary

• MIT Lincoln Laboratory-developed 3D circuit integration technology has been applied to advanced focal planes and three-tier computational circuits

• Successful demonstrations: – Two-tier visible imager: 1024x1024 array of 8μm x 8μm pixels integrated to 100% fill factor photodiodes, backside illuminated – Three-tier ring oscillators in 180-nm gate length technology – Three-tier laser radar focal plane: 64x64 array of Geiger-mode avalanche photodiodes with per-pixel timing and bias circuitry – Three-tier 3-D IC Multiproject Run in 180-nm gate length technology – Two-tier bonding and interconnection to SWIR-sensitive detector materials (InP)

MIT Lincoln Laboratory LECC-Vertex-2006-45 VS 9/25/06