<<

______

Factors to be considered in design of ______

H2S Abatement Unit in LNG Project ______

______

______

SURYA ARMANSYAH ______Sr. Downstream Business Analyst [email protected]

SulfurUnit.com Seminar, 13-16 September 2010 ______Calgary - Alberta, Canada

______

OUTLINE ______

1. INTRODUCTION (PERTAMINA Profile) ______2. BACKGROUND (Indonesia LNG Plants) ______3. H2S DESIGN FACTORS 4. EVALUATION ______5. CONCLUSION ______

______

Page 2

______

I. INTRODUCTION ______

______

PERTAMINA PROFILE ______

______

______

______

Page 3 ______

______

______

______

Upstream Downstream ______(, Gas, Geothermal) (, Non Fuel, )

•Exploration Activities : Refining, Petrochemicals Plant, Distribution, Shipping, • Development Transportation, Terminal. • Production Fuel Non Fuel Petrochemicals ______• Gasoline •LSWR • Lube Oil • Paraxylene • Kerosene • Naphtha •Solvent • Benzene • Gasoil • Asphalt •PTA •Avtur • Lube Base • Propylene •LPG •Wax • Polypropylene ______

Page 4

PERTAMINA REFINERIES & ______PETROCHEMICAL PLANTS PROFILE (2007)

______

P. BRANDAN ______

UP VII - KASIM - SORONG 10 MBSD DUMAI S. PAKNING ______B.ALIKPAPAN SORONG PLAJU/SEI GERONG UP I - P. BRANDAN 5 MBSD ______BALONGAN UP II - DUMAI / S PAKNING 170 MBSD CILACAP ______

UP III - PLAJU / SEI GERONG UP VI - BALONGAN UP IV - CILACAP UP V - 133.7 MBSD 125 MBSD 348 MBSD 260 MBSD POLYPROPYLENE PROPYLENE PARAXYLENE ______& PTA

Page 5

______

II. BACKGROUND ______

______

INDONESIA LNG PLANTS ______

______

______

______

Page 6 ______INDONESIA LNG PLANTS

______

P. BRANDAN ______

TANGGUH LNAG PLANT DUMAI S. PAKNING 7 MTPA ______B.ALIKPAPAN SORONG PLAJU/SEI GERONG ARUN LNG PLANT ______10 MTPA BALONGAN

CILACAP ______

Donggi BONTANG LNG Plant LNG PLANT

2 MTPA (in progress) 22.5 MTPA ______

Page 7

______BONTANG PLANT WITH TRAIN I LOCATION ______

______Dock-2 Dock-3 LPG Tanks Dock-1 ______5 4 6 A 2 3 1 B C D H ______F G E J Lay-down Area ______TRAIN-I PROJECT ______

Page 8

______

III. DESIGN FACTORS ______

______

______H2S ABATEMENT UNIT

______

______

______

Page 9 ______FACTORS TO BE CONSIDERED IN DESIGNING H2S ABATEMENT UNIT ______Feed Gas Composition to

CO2 Absorber

Base Case ______C02 : 6,5% Acid Off- Gas Composition to H S Alt Case C0 : 4% 2 2 Abatement Unit ______H2S To be Process Catalyst Type Adsorbed Screening ______Process Flow Optimum Alternatives Design

(Capex, Opex, Note : Life Cycle Cost) ______-H2S adsorbed = H2S inlet Abatement Unit – H2S Environment spec -H2S Environmental specification is max. 35 ppm Catalyst change out frequency ______

Page 10

______

______IV. EVALUATION OF DESIGN FACTORS

______

LNG PROCESSING ______

______

______

______

Page 11

______LNG Process Flow Diagram

______

______

______

______

______

______

Page 12 ______CO2 & H2S ABSORPTION PROCESS H S 2 ______H2S Abatement Unit SWEET GAS RICH SOLVENT TO LNG UNIT C 2 O ______ Case -1: CO2 Content in feed gas = 6.5% and 4.5 % mole as ______Case -2  H2S in feed gas about FEED 4.44 kg/hr . ______GAS  H2S in Acid Off-gas about 3.47 kg/hr REGENERATOR ABSORBER ______

LEAN SOLVENT ______

Page 13

______1. Feed Gas Composition to Absorber Unit (dry-mol %)

ACID SWEET OFFGAS ______GAS TO LNG RICH UNIT SOLVENT < Base Feed Gas Case: CO2 6.5 mol% > ______

______

FEED GAS ______REGENERATOR ABSORBER

______LEAN SOLVENT ______

Page 14

______Feed Gas Composition to Absorber Unit (kg/hr) ______ACID SWEET OFFGAS GAS < Base Feed Gas Case: CO2 6.5 mol% > TO LNG RICH ______UNIT SOLVENT

______

FEED ______GAS REGENERATOR ABSORBER ______

LEAN SOLVENT ______

Page 15 ______Feed Gas Composition to Absorber Unit (dry-mol %) ______ACID SWEET OFFGAS GAS RICH < Base Feed Gas Case: CO 4.0 mol% > TO LNG ______2 UNIT SOLVENT

______

FEED ______GAS REGENERATOR ABSORBER ______

LEAN SOLVENT ______

Page 16

______2. Acid Off-Gas Composition

(H2S Removal Unit Design Condition) ______

TREATED ACID Treated Treated Overall Acid Acid Acid Acid OFF GAS ______Off-gas Off-gas Off-gas Off-gas (35 PPMY) (4 PPMY) (35 PPMY)

______

______ACID OFF GAS ______S Removal Unit S Removal 2 H ______

Page 17

______3. H2S to be Removed (2 kg/hr or 48 kg/day)

Treated Treated Overall ______Acid Acid Acid Acid Off-gas Off-gas Off-gas Off-gas TREATED ACID (35 PPMY) (4 PPMY) (35 PPMY) OFF GAS ______

______

ACID ______OFF GAS ______S Removal Unit S Removal 2 H ______

Page 18 ______4. PROCESS SCREENING ______

NO H S TO BE REMOVED PROCESS TYPE 2 ______

01. 10-30 TON SULFUR /DAY REGENERABLES SOLVENT SOLVENT/CLAUS PROCESS ______02. LOWER SULFUR RATES REDOX PROCESS

03. VERY LOW SULFUR SIMPLER NON ______REGENERATIVES PROCESS ______

______

Page 19

______Summary on Non Regenerable H2S Scavenging Technologies ______

______

______

______

______

______

Page 20

______Sulfur Recovery Process Selection 1000000 ______5 Amine + Claus 0 ton (+ SCOT) Su lfur 100000 / D ay 5 ______ton Su lfur / D 10000 ay

Shell-Paques ______

1000 5 0 k g S SulFerox S Concentration (ppmV) ul 2 fu r / H D ay ______100

Non-Regenerable Amine + SulFerox/ Solids & Liquids Shell-Paques ______10 0.01 0.1 1 10

6 3 Gas Flow (10 Nm /day) ______Source : Shell, 2009 Page 21 ______5. Conceptual Flow Scheme for H2S Abatement Unit (Case – 1: Full Flow; Case – 2: Bypass Flow to H2S Removal Vessel) ______

______

______

______

______

______

Page 22

______6. CHANGE OUT FREQUENCY ______

Case Case-1 Case-2 ______Feed Gas Full Flow Bypass Flow

Catalyst A B A B ______

Time to Change out 0.5 1 0.5 1 0.5 1 0.5 1 (Year) ______

______

______

Page 23

______TYPICAL OF H2S VESSEL CONFIGURATION ______

______

Adsorbent ______

______

______

______

Page 24 ______7. Total H2S adsorbed, Catalyst Required and Equipment Sizing, Case-1: Full Flow and 0.5 years Catalyst Change out (or 0.5 year continuous operation) ______

Catalyst - A Catalyst-B ______

______

A B ______

______

______

Page 25

______7a. Cost Required (estimated) for Point 7 Catalyst-A Catalyst-B ______

______

______

______

______

______

Page 26

8.Total H2S adsorbed, Catalyst Required and Equipment Sizing, ______Case-1: Full Flow and 1 years Change out (or 1 year continuous operation) ______Equipment Summary Catalyst -A Catalyst -B

______

______

A B ______

______

______

Page 27 ______8.a. Cost Required (estimated) for Point 8 Catalyst-A Catalyst-B ______

______

______

______

______

______

Page 28

______9. Total H2S Adsorbed, Catalyst Required and Equipment Sizing, Case-2: Bypass Flow and 0.5 years Catalyst Change out (or 0.5 year continuous operation)

Catalyst-A Catalyst-B ______

______

______A B

______

______

______

Page 29

______9.a. Cost Required for Point 9 ______Catalyst-A Catalyst-B

______

______

______

______

______

Page 30 ______10. Total H2S adsorbed, Catalyst required and Equipment Sizing, Case-2: Bypass Flow and 1 years Catalyst Change out (or 1 year continuous operation) ______

Catalyst-A Catalyst-B ______

______

A B ______

______

______

Page 31

______11. Cost Required for point 10 Catalyst-A Catalyst-B ______

______

______

______

______

______

Page 32

______12. CHANGE OUT / DISPOSAL PROCEDURES ______

Catalyst-A Catalyst-B Description ______

______

______

______Catalyst A requires the use of more land area than Catalyst B.

______

Page 33 ______13. PLANT LAY OUT ______

______NOT A BIG DIFFERENCE FOR PLANT LAY OUT OF CATALYST A AND B. ______

______

______

______

Page 34

______13. Study Summary for H2S Abatement Unit ______

A B A B ______

______

______

______

______

Page 35

______14. Life Cycle Cost Estimation H2S Abatement Unit (Case 1) A B A B ______

______

______A B A B

______

Life Cycle Cost for Catalyst A lower than Catalyst B ______

______

Page 36 ______15. Life Cycle Cost Estimation H2S Abatement Unit (Case 2) A B A B ______

______

______A B A B

______Life Cycle Cost for Catalyst A lower than Catalyst B ______

______

Page 37

______16. Life Cycle Cost for H2S Abatement Unit (Case 1) ______

A (Year) B (1 Year) A (5 Year) B (0.5 Year ______

______

______

______

______Catalyst A has a lower life cycle cost than Catalyst B Page 38

______17. Life Cycle Cost for H2S Abatement Unit (Case 2) ______A (Year) B (1 Year) A (5 Year) B (0.5 Year ______

______

______

______

______Life Cycle Cost for Catalyst A is lower than Catalyst B Page 39 ______CONCLUSION From this study, it could be concluded that the following factors need to be ______considered in designing the H2S Abatement Unit: 1) feed gas composition to Absorber Unit

2) acid off-gas composition to H2S Abatement Unit ______3) catalyst type 4) change out of catalyst frequency 5) process flow alternatives ______6) cost analysis of Capex and Opex 7) life cycle cost of the system 8) the plant lay out factors and change out/disposal procedure ______

Catalyst type A is recommendable from the aspect of ______overall life cycle cost along with consideration of factors such as Capex, Opex. ______

Page 40