<<

e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769 AndreaAdami ∗ From real to virtual : new technologies for digital cartographic representation Keywords :cartographicsphere;virtualglobe;Coronelli;3drepresentation.

Summary Thisworkstartsfromtheobservationthattodaycartographic,presentinalmosteverymuseumand artcollection,aredeprivedofpartoftheirvalue.Theyareactuallyconsideredasartobjects,meanttodeco ratethehallsofhistoricalbuildingsandnowrelegatedinmuseums,withoutrecognizingthecartographic valuethattheydeserve.Fromthisconsiderationwewanttoinvestigatethedifferentaspectsofthesecarto graphicspheres.Weintendtoimprovetheknowledgeoftheircartographicvalueunderthedoubleaspectof thematerialsupportandthedepicted(orapplied). Introduction Studyingtheglobes,thesignificanceofthedisciplinesthatstudytheshapeandrepresentationofthe becomesapparentfromthemethodicalpointofviewaswellasfortheapplicationofnewdigitaltechnologies. Indeed,insomesectionsofthisworkitwillbecomeclearthat,asaconsequenceofthenecessaryapproxima tionanddifferences,therepresentationandstudysystemsrecallthoseusedfortheEarth.Someaspects andproblemstypicalofGeodesywillalsobehighlighted,suchasthoserelatedtocoordinatesystemsandref erencesurfaces,evenifappliedtocartographicglobes.Furthermore,theglobesrepresenttheexemplification oftheproblemknownsinceancienttimesofunrollingadoublecurvaturesurfaceonaplan.Otherthanstudy ingtheirshape,itwillalsobeimportanttorecognizetheircartographiccontent. Weintendtoimprovetheknowledgeoftheircartographicvalueunderthedoubleaspectofthematerialsup portandthedepicted(orapplied)cartography.Asforgeometry,weintendtoverifyifthewoodensupportwas builtaccordingtoanidealsphericalshapeorifsomeadjustmentswereplannedtoresembletheactualshape, evenifitisclearlyimpossibletoconsiderthemasphysicalmodelsofthegeoid.Thecentralfocusbecomes thereforethetransitionfromthesphereasanartobjecttotheglobe,intendedascartographytoallintentsand purposes.Alltheseanalysesallowdefiningavirtualspheremadeoftwodifferentaspects:thegeometryofthe woodensupportandthecartographyextracteddirectlyfromtheglobe.Testsandanalyseshavebeencon ductedondifferentglobes,bothoriginals(datingbacktotheendofXVIIcentury)andcurrentreproductions. Inparticular,theprintedglobesofCoronellihavebeenstudiedunderthecartographic,projectiveandsemantic aspects,astheyareeasilyaccessibleattheCorrerMuseumandtheBibliotecaNazionaleMarcianaofVenice, butmainlybecausetheyrepresentthemostcommonanddocumentedcartographicglobes,ofwhichwehave wholeexamplesandthecartographicmaterialsusedintheirassembly.ThemethodtestedonCoronelliGlobe isgoingtobeappliedonthecartographicglobeofSanudo. Theresearchworkhasbeengroupedindifferentsteps: • surveyofthegeometricalshapeofthewoodensphere; • surveyofthecartographicsurfacefromtheglobe; • projectivecontentanalysis. The survey of the geometrical shape Thefirstpartoftheworkconsistsinthesurveyofthesphere,typicallyawoodenstructurecoveredwithfab ric,stuccoandothermaterials,representingthephysicalsupportforthecartographicsurface.Theknowledge ∗Phdcandidate,PolitecnicoofMilan,Italy[ [email protected] ] [144] e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769 ofthethreedimensionalshapeisundoubtedlyresearchtopicofhighinterestand,consequently,itisstudiedin differentfields,fromindustry(inwhichreverseengineeringemerges)toculturalheritage.Firstof all, the knowledgeoftheshapeisnecessarytounderstandiftherewasaprojectheldunderthegenerictermofsphere. Infact,itwillbeinterestingtounderstandiftheglobehasapreciselyroundshapeornot,andpossiblyto study,byrepresentingdeformations,thedifferencesfromtheidealshape,tryingtoattributeittotheprojector totheeffectsofusageandtime.Amongcurrentanalyses,manyaimatevaluating,processinganddeveloping dimensionalsurveytechniquesand3Drebuildingofobjectsandsurfaces,withspecialattentiontothemetro logicalaspectsoftheproblem,byusingcurrentimprovementsincomputerscience,optoelectronicsandopti caltechniquestostudyCulturalHeritage.Theproblemsaboutsurveyingtheshapeofawoodensphererequire anaccurateselectionofthemeasuringmethod,inordertoaddresstheproblemsduetotheworkingenviron mentandtheobjectunderstudyitself.Theselectionofthesurveymethodshouldalsoconsidertheexpected resultitself,fromaqualitativeandquantitativepointofview.Thepointcloud,whichseemstobethesurvey goal,canbeobtainedindifferentwaysandhavedifferentcharacteristics.Itisimportanttoestablishthenum berofpoints(intermsofaccuracyontheobject),butmostofalltheprecisionintermsofXYZcoordinatesof eachpoint,inordertoobtainanaccurateestimateofthefinalsphere. Differentmethodsandinstrumentscanbeusedfortheseanalysesandeachoneofthemallowsachievingdif ferentresults.Fromourteststhemostsuitableinstrumentsarethescanner3d(orrangecamera)basedonthe triangulation principle. Generally, these instrumentsconsistinaknownlightsourceandasensor,closely linkedtogether.Thelightsource,ofdifferentkindsdependingontheinstrumentused,emitsalaserstripere cordedbyasensor,forexampleadigitalcamera.Withthismethodsourcecentre,projectioncentreonthesen sorandlaserdotprojectedontheobjectformatriangle,withsomeknownelements(distancebetweenlight source,sensorandtheangleofthelaseremitter)andothersthatcanbecalculated(positionofthereflected point).

Figure1.AcquisitionsetatMuseoCorrerandacquisitionplanof3drangecamera Triangulationacquisitionsystemshavebasicallytwoadvantages.Intheseactivemeasurementssystemsthe instrumentacquiresthestudiedsurfaceautomatically,providedthatthereisenoughlight,thusreducingacqui sitiontimeandtheoperatingproceduresrequired.Theotheradvantageisthemeasurementquality.Thereso lution(i.e.thepointdensityonthesurface)andprecisionlevelarestrictlyrelatedtotheinstrumentused;we caneasilyreachresolutionsof1/10mmandtheinstrumentaluncertaintydownto25ηm.Thesevaluesdirectly affecttheresultingmodelandthereforethedescriptionofthethreedimensionalshaperecorded.Moreover rangecamerasdonotrequireneithertheapplicationofpositioningtargetsonthesurveyedobject,northema terializationofareferencesystemandallowthesimultaneousacquisitionofgeometricandradiometricinfor mation.Theacquisitionphasesarenotsignificantlydifferentfromotherapplications,forwhichanextended literatureisavailable.

[145] e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769 InthecaseofthecartographicglobeofCoronelli,atCorrerMuseum,weusedtheVivid910laserscanner,by Minolta. The choice was made by experimental tests,whichshowedabetteroperatingmodecomparedto otherinstruments.Thedifferenceisduetotheparticularfinishingoftheglobe'ssurface,whichimpliesahigh reflectivityofthesphere.Infact,thevarnishishighlyreflectiveofthelightemittedbytheprojectorsofpat terninstruments,butdidnotcreateanyproblemwiththethinlightbeamemittedbyVivid910. TheglobewasacquiredusingaWidelensatadistanceofca.70cmfromtheglobe'ssurface.Eventhoughit wouldhavebeenpossibletoincreasethisdistancetoobtainalargeracquisitionarea,wechosea70cmoper atingdistancetoguaranteetheobjectresolutionrequiredtoreadthesemanticcontentofthecartography.

Figure2.Surfaceobtainedtriangulatingthepointcloud.Physicaldiscontinuitiesareevident(red)aswellasthosecausedbyabruptluminos itytransitionsontheglobesurface(blue).BehaimGlobe. ThebiggersphereandtheuseoftheWidelensatadistanceof70cmledtoanincreaseinthenumberofac quisitionbelts.Weacquired6longitudinalstripesaswellandthetwoPolaricecapsforatotalof62scans. Inthestepofdataprocessingbyobservingthetriangulatedmeshofasinglecloud,wewillnoticethatthesur faceisnotsmooth,buthasfeatures,i.e.discontinuitiescausedbyvariousfactors.Inparticular,scannersde tectedsomediscontinuitiesinoverlappingareasoftwogores,andthereisactuallyavariationcomparedtothe generalcurvature.However,allscanshighlightotherdiscontinuitiesthatarenotactuallyvisibleontheobject. Afteraccurateobservation,itappearsclearthatthesediscontinuitiescorrespondtocartographiczoneswhere thetransitionfrombrighttodarkelementsisabrupt.Inthisexample,itresultsclearthatthecoastlineisa threedimensional element, because of the transition from brightland to dark water. In the middle of the ,wecanalsonoticeislandsinreliefand,inthefigure,thecorrugationeffectisclearlyduetothepres enceofbrightwritingsonadarkbackground.Thisfindingallowsononehandanapproximatereadingofthe cartographicsurfacestartingfromthescan,evenbeforewestartusingthetexturesacquired.However,discon tinuities,bothphysicalandreal,aresignificant,becausetheycharacterizeunivocallypartoftheglobe,i.e.the scannedsphericalcap,thatwouldotherwisehavebeendifficulttorecord. Afterthisobservation,globedataprocessingkeepsonwiththeknownpipelinewhichschedulestheregistra tionofallrangeinasinglereferencesystem.Betweendifferentstrategiesofregistration,forglobeswe usedthecloudoncloudregistrationmethodbytheICP(IterativeClosestPoint)algorithm.Thisapproachhas beenpreferredthankstothepresenceofdiscontinuitiesontheacquiredsurfaceandtheRGBvalueof the range. Attheendofdataprocessingthefinalresultisa3dmodeloftheglobewithhighaccuracy.Fromthemodel wecanextracthorizontalandverticalprofilestoverifythedimensionsofthewoodensphere.However,the mostinterestingaspectisthepossibilityofstudyingtheshapeoftheglobeanditspossibledeformations.This analysiscanbeconductedstartingfromthedeformationsofthemodelgeneratedbythelaserscannercom paredtothebestinterpolatingsphere.Thefirststepconsistsindeterminingthebestfittingsphere,achievable

[146] e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769 withreverseengineeringsoftwareasRapidform,Geomagicandothers,whichcanprovideinformationonthe sphereandalsoshowtheglobedeformations,usingaradiometricscale.

Figure3.RegistrationofrangemapsinasingleReferenceSystem.Eachrangemapisrepresentedinadifferentcolour. Figure4.FinalmodelofCoronelliglobe,shadedrepresentation,withsomeevidentphysicalfeaturessuchasmeridians,Equa tor… Forthesamekindofanalysissoftwarewasdeveloped,onpurpose,thatcalculatestheinterpolatingsphereas wellasproducingaplanerepresentationofdeformationspresentonthesphere.Thechoiceofwritingan ad hoc programwasduetothenecessityofverifyingtheresultsachievableusingthemostcommoncommercial software.Moreover,bywritingthisandthefollowingsoftware,weobtainedanapplicationspecifictocarto graphicglobes,capableofhighlightingsignificantaspectsofthesphereunderstudysuchascenter,radius, curvature,deformations,residuals,etc. Inthesoftware“Sphereparameters”tocalculatetheinterpolatingsphereweusedtheCartesianequationofthe sphericalsurface: x2+y2+z 2+ax+by+cz+d=0 wherea,b,c,darerealnumbers,sothata²+b²+c²4d>0becauseitisalreadylinearcomparedtotheunknown elementsoftheproblem,suchasa,b,c,d. Givenageometricreferencesystem,thespheresolutioncomesfrom:

Thesoftwarecalculatestheleastsquaressolutiontoobtainanestimateofthebestinterpolatingsphere. Nowwecandeterminetheglobe’sdeformationcomparedtotheidealsphere,accordingtotheclassicalcarto graphicproblemofrepresentingtheequipotentialsurfaceofageoidcomparedtothereferencesurfaceofthe ellipsoid.Inthiscase,thereferencesurfaceisfurthersimplifiedandcorrespondstotheinterpolatingsphere previouslycalculated.

[147] e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769

Figure5.Representationofmodel’sdeformationscomparedtothebestfittingsphere:theglobeofCoronelli.maximumdeformations[mm] arelocatedinthepolarzoneandnearthe. Specifically,inthesoftware“Points”,writtenforthisapplication,deformationisexpressedbymeansofanm xnmatrix,withm=longitudeen=latitude,wherethevalueineachsinglecellderivesfromthedifference betweentherayoftheinterpolatingsphereandtheraycalculatedforthatpoint.Toobtainthematrix we choose,inordertosimplifycalculations,toperformatranslationsothatthesphere’scentrehascoordinates (0,0,0).Subsequently,eachpointofthemodelhasbeentransformedfromCartesiantosphericalcoordinates usingtheformulas:

Thenwegeneratethematrixwithvaluesλandφasrowandcolumnindexes,whileweenterinthecellthe differencebetweentheradiusRxyz(distancebetweenthecentreofthebestfitsphereandthepointPofcoor dinates x, y, z) and Rsph radius of the best fit sphere. The matrix is finally interpolated in Surfer with Kriging’s algorithm and then represented according to anequirectangular projection. Therefore, weobtain falsecolourrepresentations,orcontourlinerepresentations,thatwecansuperimposeontheglobe'scartogra phytodistinguishwhichpartsofthecartographyshowthebiggestdeformation,duetothemodificationsin thewoodensupport. Therepresentationofthedeformationobtainedwiththismethodprovidesinformationaboutthepositionof themaindeformationsregardingboththemodule(differencebetweenthecalculatedradiusandR0)andthe direction of the deformation, outwards or toward the centre of the sphere itself. However, the three dimensionalvisualizationofthiseffectislimitedbytheunfoldingontheplaneofthecalculateddeformations. Toallowabetterunderstandingofthedeformations,wewroteanotherapplicationwhichgeneratesathree dimensionalrepresentationofthedeformedsphere,followingtheexampleoftheclassicalrepresentationsof thegeoid.Inthiscase,thecoordinatesofeachpointofthesurveyedsurfacerepresentthestartingpoint.By applyingtheformulaspreviouslyseen,eachpointhasbeentransformedintosphericalcoordinatesλandφand

[148] e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769 theradiusRxyzwhereradiusisthedistancebetweenthecentreofthebestfitsphereandthepointPofcoor dinatesx,y,z.

Figure6.DeformationsoftheCoronelliglobe.Representationbyfalsecolourinaequirectangularprojection.

Figure7.Overlappingcartographywiththemapofdeformation.

ThenwecalculatethedifferencebetweenR xyz andtheradiusR sph ofthebestfitspheretofoundr.

Rxyz R sph =r ThenthevaluerisamplifiedforascalefactorS,so:

Rpotato =Rsph+rnew soeachpointPisrepresentedbyλφrnew andtheitistransformedinP xyzpotato. Thenewpointcloud,realizedbythesoftware,canbeimportedinGeomagicorRapidformtohavethepossi bilityofvisualizeandexploration.Inthisway,weobtaintheequivalentoftheclassicalcartographicrepresen tations,wheretheZvalueisenhancedbyaknownfactor.Incartographythesearethesocalledtwoanda halfdimensionalrepresentations,whilethedeformedmodelobtainedisdefinitelythreedimensional.Itcanbe viewedinthe3Dspaceandwecanuseallspatialnavigationoperationstypicalofthreedimensionalmodels.

[149] e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769

Figure8.3Drepresentationoftheglobewiththeexaggerationofdeformation(exaggerationfactor10x) Figure9.SliceinplaneXYfromthemodelwiththeexaggerationofdeformation(exaggerationfactor10x),topview.Theblackcircleis referredtothebestfitsphereoforiginalsurveyeddata,theredlinerepresentsthesliceoftheexaggerated. Moreoverit’spossibletoattributeacolourtoeachpointfunctionoftherealRGBvalueofthepoint (fromthecartographicsurface)orofthedimensionofrnew.Thereisalsothepossibilitytoobtainsome slicestorepresentthepunctualvalueofdeformation.Thisoperationcannotbedoneontherealsphere becausedeformationshavealittlevalueanditisnotpossibletoapplytheexaggerationonlytothevalue ofdeformation.Insteaditispossibletoapplythescalefactortosphericalcoordinatesbecausewecan amplifyonlytheradiusvalue. ThewoodensphereofCoronelliGlobe,aswesawinthepreviousrepresentations,showsmanydeformations withamaximumdifferencefromthebestfittingsphereof7mm.Thedeformationsofthisspherecanbedi videdinto2groups.InthefirstgroupwefoundtheonessitedinspecificpartofthespheresuchasthePoles andtheEquator,whileintheothergroupthepositionisrandom.Forthesecondkindofdeformation,wecan saythattheyareconnectedwithincidentsoftheglobeandwiththeattemptofrestoration.InsteadnearPoles andEquator,thereasonsofdeformationarestructuralandtheyarestrictlyconnectedwiththebuildingmeth odsofthewoodensupport. The survey of the cartographic surface Oncewedeterminedtheshapeofthewoodensphere,thenextstepisthesurveyofthecartographicsurface. Ourgoalistoobtainanexhaustiveknowledgeofthecartographicglobe,byassigningacartographiccontent tothewoodensupport.Thefirststepoftheprocedure,asshownintheflowchart,isphotographicacquisition. Thisoperation,apparentlyfreeofissues,encounteredmanydifficultiesduetothespecificcharacteristicsof theobject.First,obstaclesareduetotheshapeofthesphericalobjectandtotheoperatingmechanism.Often theequatorialareasandthepolesaredifficulttoacquireasaconsequenceofthepresenceofthewoodensup portstructureaswellastheaxisaroundwhichthegloberotates.Moreover,thepoorconservationstatusmay preventtheglobe’srotation,whilekeepingthecamerasteadyonthetripod.Wehavetoresorttoinconvenient shootingpositions,mademoreawkwardbythelongacquisitiontimerequiredinlowlightconditions. Another problem encountered during photographic acquisition was related to the reflective surface of the globeitself.Thesurfaceisofteninbadconditionsandthecoveringvarnishactsasamirror,causingannoying reflectionsinthephotographs,whichmakethemuselessforthemapextractionprocess.Moreover,thereflec tivesurfacemakestheuseofphotographiclightingequipmentmorecomplexduetoglaresinthepicturesoit isnecessarytousemoresophisticatedacquiringsystem(polarizedlight:lampsandfilter).

[150] e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769

Figure10.Photographicacquisitionoftheglobewithcolorimetricscale. Figure11.Photographicsetfortheglobe. TheCoronelliglobetosurveyhasbeenchosentominimizeallproblemsduetotheexternalwoodenstructure, becausethecentralaxisoftheglobeisfixedtoametalstand. ForthephotographicacquisitionweusedaNikonD700with35mmlensandaRollei6008withadigital backof39Megapixelandwith80mmlens.Toreducetheglares,theimageshavebeenacquiredwithpolar izedfiltersonthelensandonthelamps.Theformatofthepicturesisjpgandraw,toallowtheirradiometric processingforthewhitebalancecorrectionandtoobtainhomogeneousresults. Proceedingwiththeproposalprocess,thenextstepistheorientationoffilmframes.Thegoalofthisphaseis topositionfilmframeswheretheywerethepicturewastaken.WeusedthesoftwareNM3digitbasedon D.L.T. (Direct Linear Transformation) realized by the Photogrammetry laboratory of CIRCE IUAV some yearsago.Thismethodpresentsthegreatadvantageofsolvingtheinternalandexternalorientation,asseen above,ofimagesacquiredwithnonmetricdigitalcameras.Itishowevernecessarytofollowsomeindications relatedtothenumberofcontrolpointsacquiredandtotheirplacement.Infact,forthealgorithmtogenerate anaccurateconvergence,itisnecessarytoacquiremorethreedimensionalpointsinordertoestimatethepa rameters(figure12).Weshouldalsorememberthatthealgorithmissensibletothespatialdistributionofthe points,soitisessentialthatthepointsarecorrectlydistributedaroundtheobjectandthattheylieondifferent planes.WhenapplyingtheD.L.T.tothesurveyoftheglobes'surface,wewanttoidentifythecoordinatesof thecameracenter,neededinthefollowingphasesoftheanalysis.Toorientthefilmframes,thecontrolpoints havebeenacquireddirectlyfromtherangemapsetsorientedinasinglereferencesystem,byrecognizingthe pointontheimagethroughtheRGBcolourvaluesofeachsinglepoint.Itisimportanttochoosethosepoints whichallowtohaveastrongly3ddistribution. [151] e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769

Figure12.Imagetobeoriented,withindicationofthecontrolpointsusedandtheDLTparameterscalculatedusingNM3digitsoftware Inthelastphaseofthisprocess,wemovefromthesphericalsurfacetoaknownprojection,considering thewellknowncartographicproblemoftheprojectionofadoublecurvesurface.LikefortheEarth'ssur face,thelinkbetweenapointonthesurfaceandoneonthemapisnotimmediate,butitissolvedbymeans ofareferencesurfaceofknownandsimplifiedgeometry.WhenweconsidertheEarth,thesurfaceusedisthe rotationalellipsoid,whilewhenweconsidercartographicglobesthegeometricalshapeusedisthesphere. Thisapproximationisintroducedtobypassthedeformationofthewoodensphereduringthereprojectionof thecartographicsphere.Thesuggestedmethodaimstoobtainadigitalpicturepositionedinagivencarto graphic projection. By writing the software, weobtainedacustomproductthatcanbeusedonthecarto graphicglobes.Atthesametime,weimplementedandtestedanalgorithmspecificforthesphere.Combined withtheapplicationdescribedabove,wecreatedasoftwarepackageusefultotheexaminationoftheglobes understudy.Forthisapplicationwewrotecustomsoftwaretoassociatethesphericalcoordinates,describ ingthesphere'spoints,tothepixelsoftheorienteddigitalimage.Thealgorithmcreatesanemptyimage (matrix),whereitscoordinates(φ,λ),arethesphericalcoordinatesofthemodel.Asshowninthescheme, forabetterunderstandingthesoftwarecanbesubdividedinsmallermodules.Inthefirstmodule,wecreate thereferencesurface.Byusingtheclassicsphereformulaanddeterminingtheangularstepinlatitudeand longitude,itispossibletoreconstructasphereofknowncenterandradius,accordingtotheformulasthatal lowtransformingsphericalcoordinatesintoCartesiancoordinates: x cos λ     y= R cosφ  sin λ  z tan φ  whereφ=verticalangle(Latitude)andλ=horizontalangle(Longitude).Inthesecondmodule,wecalculate thecorrespondence betweeneach point of the referencesystemandthepixelsoftheorientedimage.The equationsarethoseusedbytheD.L.T.algorithm,which,oncegiventheparameterscalculatedintheprevious phaseandobjectcoordinatesofthepoint,allowtheidentificationofthecorrespondingpixel.

Onceweidentifiedthepixel,itispossibletoextractitsRGBvalue.However,asshowninthediagram,each pixeloftheimagecancorrespondtotwodistinctspatialpoints,becausethesphereisaroundshapedobject. Toavoidthiseffect,wesearchedforanempiricalmethodtoplacethecolorextractedfromthepixelontothe precisecorrespondingpoint.ThesolutionconsistsinintroducingapointPbetweenCandO,definingthedis tanceCP.TheconstraintimposedisthedistanceCP,whichhastobealwayslessorequaltothedistanceOC, whereOCisthesegmentthatlinksthecameracentertothespherecenter.

[152] e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769

Figure:13Schematicrepresentationofthepointcorrespondenceproblem.Foreachimagepointtheremaybeuptotwomatchingpointson thesphere. Figure:14Functioningschemeoftheempiricalconstraintimposedbysoftware.Theyellowareacorrespondstotheareaselectedusingthe CPvalue. Byapplyingthisconstraint,thesurfaceimpliedinthepicturecorrespondstoasphericalcapatthemost. First,thesoftwarecalculatestheCPvalueand,subsequently,itallowsmodifyingit.Infact,toavoidthe stretchingeffectofpixelscorrespondingtothesphere'soutermostareas(whereCPisclosertoCO),we candecreasetheCPvaluewiththissoftware.Finally,inthethirdmodule,webuildthefinalmatrix.Ona gridcharacterizedbytheangularstepsetinthefirstpartoftheprocedure,weinserttheRGBcolorvalues extractedfromthepixelscorrespondingtothesurfacepoints.Ifduringthecomputationthereisnocorre spondencebetweenanimagepointandaglobepoint,thecorrespondingcellinthematrixisfilledwitha constantvalue(black).Thissituationhappensregularlyintheareasoftheimagewherewedonotseethe globe,butthesurroundingenvironment.TheresultingmatrixcanbeimportedinMatlabandthereforere projected, choosing each time the cartographic projectionmostsuitableforourrepresentationrequire ments.Atthesametime,thesoftwarecreatesanimageinaknownprojection,theequirectangularone, wherethelongitudinaldegreeisequaltothelatitudinaldegreeforeachpoint. Ofcourse,therowsandcol umnssizeofthematrixcorrespondstothedimensionsofthedigitalimageandisdeterminedbytheangular stepchosen.Forexample,ifwechooseaangularstepequalto0.1°,thematrixandthefinaleimagewillhave thefollowingsizes:3600pixel(360°/0.1°)inwidthlongitudeand1800(180°/0.1°)inheightlatitude.Toob tainthefinalcartography,thelastphaseisimagecomposition.Iftheimagesarerealizedwiththesameangu larstep,thereisnonecessityofmosaickingbecausetheyhavethesamedimension,andsothesamereference system.Simplyit'snecessarycutimagesandtrealizearadiometriccorrection.

Figure15:Singlereprojectedimage,withoutanycorrection. Figure16:Singlereprojectedimagewithlimitofcomputing.

Theimagesshowsomestepoftheworkflow.Firstofallapreviewoftheresult(figure15)whereit'sevident thedeformationofthesphericalshapeprojectedinequirectangularprojection.Thesecondstepisaselection oftheareatocompute.Wecanselecttheareadefiningawindowbyλφcoordinate. Even if we choose to compute a little part of the initial image, the dimensions of the final one don't changebecausetheyaresetbytheangularstep.Inthiswaythepixelisalwaysreferencedinthesame referencesystemoftheimagewhichcorrespondstothegeographicalone.Theotherimagesrepresentdif ferentstepofthecompositioninonlyoneimage.

[153] e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769

Figure17:fusionofdifferentreprojectedimages.

Figure18:Detailofareprojectedphoto:angularstep0.05degreeinlongitudeandlatitude.

Thefinalmapshowsonlysomeproblemsinthepolararewheremeridiansarenotexactlyparallel,but convergent.Wehavealsotonoticethattheequirectangularprojectionisnotsuitabletorepresentthepo lararea.Thefinalmapobtainedfromthegloberepresentsaveryinterestdocumentbecauseitcontainsallcar tographiccontentssemantic,projective,metric...,buttherearealsomanyinformationconnectedwiththe storyoftheglobeasamaterialobject.Thisdocumentbecomesreallyimportantwhenwedon'thaveanyother sourceforthestudyofglobes(suchasprintedgoreslikeCoronellibookofGores).Thehighresolution(figure [154] e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769 18)wecanreachinthereprojectionstepallowsustoanalyzenotonlythemainfeature,butalsothedetails, writingsandotherthemes.Moreovertheavailabilityofaflatmapofthesphericalsurfaceallowsmanyother studiesandcomparisonwithdifferentmaps.Atthesametime,thiskindofmapisadocumentofhistoryfor theglobewithallthedefectsandincidents.Wehavetopayattentiontothedeteriorationofthesurface whichinvolvesadegradationofthefinalmap.Someexamplesarereferredtotheeffectoflightontheink pigmentbutalsotheeffectsofwoodwormswhichdestroythewoodensupport. Analysis of the projective content Thestudyoftheprojectivecontentofthehistoriccartography,whichformsthesubjectofthischapter,canbe analyzedfromseveralpointsofviewanditisstrictlyrelatedtothehistoricalperiodwhentheobject was made.InthesecondhalfoftheXVIIcentury,Coronellididnotuseanencodedandknownprojectivesys teminhiswork.Forthisreason,theanalysisoftheprojectivecontenthasbeensplitintwoaspects.First, wereferredtohiswritings,boththeoreticalandpractical,andtothedocumentationheleft,andthenwe analyzedthegoresformingtheglobe.Coronelli's“CosmographicEpitome”,publishedin1693anddedi catedtothe"AcademyoftheArgonauts",thefirstgeographicinstitutioninthe,containsasum maryof:astronomyandcelestialcartographyinthefirstbook;Earthandinthesecondbook; andinthethirdbook,"theDescriptionofthedifferentglobes,thathavebeenbuiltsofar""andtheprac tice"oftheglobemanufacture.Wecanalsorefertothe"BookoftheGlobes",ondisplayattheMarciana NationalLibraryofVeniceandeditedin1706.TheVenetianmonk,consideringthepopularityofhisprinted globes,publishedallthegoresnecessarytocoverthewoodenspheresinacollection.Inthisway,itwaspos sibletoshiptotheclientnotthewholecartographicsphere,butsimplythecartographytoapplytothesphere andtheinstructionstoassembleit.Inthebook,theglobewitha3.5footdiameter(about108cm)isdivided into48sheetsforthegores,plustwosheetsforthePolaricecaps.Eachgore,30°longitudeand140°latitude( 70°to+70°),isdividedinto4partsalongtheequatorialandtropicallines. AccordingtoCoronelli'swritings,thegeometricconstructiondoesnottakeintoaccountcartographicprojec tions,astheyareunderstoodnowadays,butfollowsageometricscheme.AccordingtoCoronelli'swritings, thegeometricconstructiondoesnottakeintoaccountcartographicprojections,astheyareunderstoodnowa days,butfollowsageometricscheme.Themapmakermentionstheuseofamodifiedgeometricconstruction expoundedbyHenricusGlareanusin1527intheXIXchapterentitled"Deinducendapapiroinglobo"ofhis "D.EnriciGlareanipoetae16aureatedeGeographialiberunus".Themethodconsistsofdrawingalineequal totwoandahalftimestheequator,dividingthelinein25partsandusingthe12centralpartstobuildthe gores.Theproblemsinbuildingthegoresrelatetotheidentificationoftheexternallines,representingtheout ermostsemimeridiansofthegore.BothGlareanusandCoronellisolvetheproblembychoosingtheshapeof thecirculararcandpositioningthecenterontheprolongationofthesmallestdiameters.Inparticular,thecir cumferenceusedhasaradiusequalto10gores,correspondingto300°inlongitude. Accordingtothisgeometricconstruction,asobservedbyFioriniin1894,itisclearthatthelenticular (al mond)shapedoesnotcorrespondtothegore.Inpractice,toobtainanadequatecoverageoftheglobe,the gore'spapersheetwasdampenedwithglueandstretchedtocoverthesemimeridian,thereforeproducingfur therdeformationsinthecartography.If,asseenabove,itisnotpossibletoidentifyaknownprojectioninthe author'swritings,atleastitispossibletounderstandtheprojectivegenesisofthemap.AccordingtoTobler's [1966]approach,theproblemistheinvestigationofaprojectivesystemthatwasprobablyinplace,butisnot oneofthesystemsweknow.Apossiblesolutionisthecomparisonbetweenthemapunderstudyandother knownreferencemodels,accordingtotheworkpresentedbyBoutoura[2006]andBalletti[2000]forportolan maps.Forglobesinparticular,thecomparisontakesplacebetweenthetransformsofthegoredrawnbyCoro nelliandthoseofthecartographicprojectionchosen.InthespecificcaseofCoronelli'sgores,theprocedureis simplifiedbythepossibilitytousethegeographicgridofthemap,insteadofitscontent,toperformthecom parisons.Thecomparisonbetweenthegoresectorandthereferencegridiscarriedoutbycalculatingthedif ferencesbetweentheobservedandcalculatedcoordinatesofmatchingpoints. [155] e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769 Thesearchforsimilarityconsistsinapplyingaglobalgeometrictransformationtothegoresectorandthepro jectedgrid,testinginsequencethegrid's"adaptation"(bestfitting)tothemapunderprojectivestudy.

Figure19.ScreenshotofMapAnalystsoftware.Wenoticethehistoricalgore(left)andtheknownprojection(right)withthelinkedgrid points. Thebestfittingisassessedbasedontheresidualvaluescalculatedafterthedeformationsinducedbythe appliedmodel.Dependingontheresults,wecandefinetheprojectivesystemthatbettermatchesthehis toricalmap.Toavoidsystematicerrors,itisnecessarytochoosethereticulateprojectionmodelscarefully andthentoidentifyasufficientnumberofpointswithahomogeneousdistribution.Theanalysisofthe cartographicgridiscarriedoutbygeneratingachart,whichallowsaclearviewoftheresultsobtained. Wecanalsoavoidanyproblemsrelatedtothechoiceofthereferencesystems.Thesameanalysis,con ducted analytically, of comparing the coordinates of different cartographic projections, implies the knowledgeofthesourceofthereferencesystem.ThecomparisonhasbeenperformedusingMapAnalyst software,whichallowsustocompareamodernmaptoanhistoricalmap.Thissoftwareallowsustolinkthe homologuepointsofthetwomapsandtoperformaglobalgeometrictransformationinordertocalculatethe bestfittingsurface.ThegeometrictransformationweusedisHelmerttransformation(rototranslation with changeofscale),whichisconformalanddoesnotdeformthemap. Wecanviewthedifferencesbetweenthe twomapsinseveralmodes,buttheonethatbetterrepresentsthesimilaritybetweenthemistheoneused byTobler[1986],whichshowsthedeformationvectorsofthegoregridcomparedtotheknownsystem. Obviously,biggerdeformationscorrespondtovectorswithagreatermodule. ThecartographicprojectionsselectedforthecomparisonwithCoronelli'sgoreare: • TransverseApianusprojection; • Mollweideprojection; • Cassiniprojection; • TransverseMercatorprojection. Thefirsttwoarepseudocylindrical(or"falsecylindrical"),whilethethirdandthefortharecylindrical projections.Theanalyzedgorecorrespondstoanareaof30°inlongitudeandabout50°inlatitude(from 20°Nto70°N),centeredonitscentralmeridian.ThereferencegridshavebeendevelopedwithMatlab software, in order to generate for eachprojectiona gore with the same geographic extension ofCoro nelli'sgore.Onceallcomparisonshavebeenperformed,itappearsclearthatthecylindricaltransverseprojec tionsarethemostsimilartotheprojectivesystemusedbytheauthor.

[156] e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769

Figure20_a:ComparisonwithtransverseApianusprojection.Vectorsaredrawn3x Figure20_b:ComparisonwithMollweideprojection.Vectorsaredrawn3x

Figure20_c:ComparisonwithCassiniprojection.Vectorsaredrawn3x. Figure20_d:ComparisonwithTransverseMercartorprojection.Vectorsaredrawn3x.

[157] e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769

Figure21.Synopticcomparisonofthedisplacementvectorsofthegorerepresentationsanalyzed.Fromtheleft:Apianus,Mollweide,Cas sini,TransverseMercator. Evenifitisnotpossibletofullydefinetheprojectioncharacteristics,consideringthetranslationvectors fromthehistoricmaptothereferencegrid,wecanstatethatCoronellichosetorepresentthegoresbyus ingamapthatwasverysimilartoaTransverseMercatorprojection.Afterdefiningthemostcorrespon dentprojectivesystemofCoronelligoresitispossibleanewcomparisonbetweentheoriginalsheetof Coronelli,thereprojectedimagesfromcartographicsurfaceofglobeandpresentsituation. Intheimage22_aisrepresentedthesheet50oftheBookofGlobeofVincenzoCoronelli.Particularlyit ispartofagorewithadimensionof30°inlongitude and 23°27 in latitude, corresponding with the Tropic. Thefollowingimageofgore,22_b,isobtainedusingthematrixproducedbythesoftwareinthereprojection stepofanimage.Thegoreisrepresentedintheprojection which best approximatesthe original gores as showedinthepreviousparagraphs(transverseMercator).Thethirdrepresentationisanactualgorein the sameprojection.Thecomparisonshows,firstofall,thedifferencebetweenthesourceofglobe(printedgores) andtherealglobe.Itisevidentthatthesurfaceofrealglobeisdamagedandthisaspectdoesnotallowaneasy readingofthemap.Itisalsointerestingtocomparethedifferentcoordinatesofthesameareabetweenthefirst andsecondgorewiththethirdoneasitcanbestudiedbyadigitalanalysis.Butthiscomparisonismoresig nificantbecauseitrepresentslikeaclosureinthecircleofsurveyofthesphereandstudyofmap.Westarted fromgoresassourcesoftheglobe.Attheendwearrivedtothesamegoresinadigitalformbyanotherway: thesurveyofthewoodensphere,theacquisitionofsurfaceandthereprojectionofimages. Conclusions Thisworkaimstopresentcartographicglobesnotonlyasanartobject,butalsotogivethemtheirroleas acartographicinstrument.Inthedifferentstepsoftheresearchtheonlycommonaspectisthedigitalap proachtodata,both3dcoordinates,projectiveandsemanticcontent. ThiscommondenominatorallowskeepingontheanalysisnotonlyonCoronelliGlobe,butalsoonother differentspheresinordertorealizeastandardprocedurefortheirsurvey.Thedigitalapproach,moreover, leadtoabetteraccesstohistoricalglobe,notonlyinthematerialshape,butalsoasavirtualcopy,to spreadonthenetandtobeavailabletoscholars,cartographyandmapexperts,andtothecuriosityofthe generalpublic.Thenextsteptopromotetheknowledgeoftheglobeswillbetheironlinepublication,to allowwideraccess,freefromphysicconstraints.Wecoulddefinethisopportunityassortofavirtual "globelibrary", which would allow accessing a database containing the of the globes mappedonasphericalsurfacefor3Dnavigation.

[158] e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769

Figure22_b:GoreobtainedinMatlabfromthematrixofimagereprojected.TransverseMercatorprojection.

Figure22_b:GoreobtainedinMatlabfromthematrixofimagereprojected.TransverseMercatorprojection.

Figure22_c:Goreofactualworldmap.TransverseMercatorprojection. [159] e-Perimetron ,Vol.4,No.3,2009[144160] www.eperimetron.org| ISSN17903769 Bibliography

AdamiA.,GuerraF,2008.Coronelli'sVirtualGlobe, e-Perimetron,Vol.3,No.4,243250. AdamiA.,FregoneseL.,GuerraF.,LivieratosE.,TsioukasV.,2007.“Digitalrepresentationsandanalysisof deformationsinducedinmapsupportingmaterials”. InProceedingsofCIPAconference2007,Athens. BallettiC.,2000.“Metodianaliticiequantitativiperlostudiodelcontenutogeometricodellecartestoriche”, TesididottoratoinScienzegeodeticheetopografiche”, XIIIciclo,PolitecnicodiMilano,Milano.; BallettiC.,GuerraF.,1998.“NM3digit:theDLTalgorithminadigitalphotogrammetricalsoftwareforthe surveyteaching”. TheInternationalArchivesofPhotogrammetryandRemoteSensing,VolumeXXXII,Part 6W4,ISPRSWGVI/3InternationalCooperationandTechnologyTransfer,Perugia. BeraldinJ.P.,GuidiG.,2004. Acquisizione 3D e modellazione poligonale .Polidesign:Milano. Bitelli,G.,2002.“ModernetecnicheestrumentazioniperilrilievodeiBeniCulturali”. InProceedingsof6° ConferenzaNazionaleASITA,Vol.1,IXXXIV,Perugia; BoutouraC.2006.Assigningmapprojectionstoportolanmaps, e-Perimetron, Vol.1,No.1,4050. BoutouraC.,LivieratosE.,2006.Somefundamentalsforthestudyofthegeometryofearlymapsbycompara tivemethods , e-Perimetron ,Vol.1,No.1,6070. FioriniM.,1881. Le Projezioni delle Carte Geograftche, Zanichelli:Bologna. FotouA.,LivieratosE.,LombardiniG:,ParaschakisI.,1991.Domerepresentationusingphotogrammetrically deriveddataandbestfittingtechniques. ISPRS J.Photogramm. remote Sensing ,46. GuerraF.,1999.“Trasformazionigeometrichelocali:trasformazioneversuscorrispondenza”,Tesididottorato inScienzegeodeticheetopografiche”, XIIciclo,tutorprof.C.Monti,PolitecnicodiMilano,Milano. HrubyF.,PlankI.,RiedlA.,2006.Cartographicheritageassharedexperienceinvirtualspace:Adigitalrep resentationoftheearthglobeofGerardMercator(1541) , e-Perimetron ,Vol.1,No.2,8898. HrubyF.,RiedlA.,TombergerH.,2008.Virtualrepresentationsofantiqueglobesnewwaysoftouchingthe untouchable , International Journal of ,Vol.1,Issue1. JennyB.,2006.MapAnalystAdigitaltoolfortheanalysisoftheplanimetricaccuracyofhistoricmaps . e- Perimetron, Vol.1,No.3,239245. LivieratosE.,2008.OnthecartographyofRigasCharta , e-Perimetron ,Vol.3,No.3,120145. MilanesiM.,SchmidtR.,2007. Sfere del Cielo. Sfere della Terra. Electa:Milano. RiedlA.,2005.“DigitalGlobesfromVirtualtoReal”, In:Proceedings,22.ICACartographicConference, Coruna,Spain; SnyderJ.P.,1997. Flattening the Earth: two thousand years of map projections. UniversityofChicagoPress: Chicago. ToblerW.R.,1964.Computation of the correspondence of the geographical patterns. 1964 Papers, Regional ScienceAssociation,15(1965). ToblerW.R.,1966.Medievaldistortions:Theprojectionsofancientmaps, Annals of the AAG ,Vol.56,n.2. ToblerW.R.1986.MeasuringtheSimilarityofMapProjections, The American Cartographer ,Vol.13,2.

[160]