Unit 09: Models of the Earth

Total Page:16

File Type:pdf, Size:1020Kb

Unit 09: Models of the Earth 8/4/2020 CG SCI Science 180 - GradeBook Unit 09: Models of the Earth Text: PDF File MODELS OF THE EARTH Unit Overview This unit will look into the many tools developed by scientists to study our Earth. These tools in turn, have brought about new discoveries and areas of research in Earth science. Many technologies such as satellite global positioning systems and topographic maps are used by everyday people to make their lives comfortable and safe. How Do Scientists Know What's Inside the Earth? Unit Directions Read the following text on Earth models, study the illustrations, complete all activities, and then answer the test questions. Key terms will be in bold type. https://gb.metasolutions.net/Quiz/Question/Summary?quizId=1035GLOSSARY OF KEY TERMS 1/20 8/4/2020 CG SCI Science 180 - GradeBook GLOSSARY OF KEY TERMS contour lines: imaginary lines that connect equal areas of elevation on a topographic map globe: a map of the world or a celestial map on a sphere, allowing for a more accurate representation of the Earth's surface than can be shown on a flat map map: a flat, graphic representation of the Earth model: a simplified description of a complex entity or process oblate spheroid: a spherical shape that is a slightly distorted sphere. The distortion occurs in the middle of the sphere where there is a bulge pure science: the study of the natural world through observation, identification, description, experimental investigation, and theoretical explanations relief maps: maps having shading or color to represent points of different elevation technology: the application of scientific advances to benefit humanity thermodynamics: the study of the processes that involve the transformation of heat from hotter bodies to cooler bodies topographic maps: maps that show natural and man-made features of an area using contour lines (lines of equal elevation) to portray the size, shape, and elevation of the features satellite: any object, man-made or natural that orbits another object What shape is our planet? That sounds like a pretty simple question, right? Most of us would quickly say, “Round.” But the Earth is not perfectly round! It has an oblong shape like all the other planets. This is caused by the spinning of the planets that forces the matter to compress in the middle of the sphere-shaped planetary bodies and a distortion in https://gb.metasolutions.net/Quiz/Question/Summary?quizId=1035 2/20 8/4/2020 CG SCI Science 180 - GradeBook compress in the middle of the sphere shaped planetary bodies, and a distortion in their shape is created. Our Earth is almost a sphere, but not quite, so its shape is an oblate spheroid. Oblate describes the oblong shape and spheroid tells us that the Earth is a nearly sphere-shaped planet. The first picture shows an oblate spheroid from the side. You can see that it is narrower at the top and bottom and wider in the middle. The picture on the right shows a top view of the oblate spheroid. In this view, the shape looks perfectly round. How did scientists prove the oblate spheroid shape? Scientists can not make a statement about the Earth’s shape without evidence. So what is the evidence that supports the oblate spheroid shape? · Pictures from outer space: Astronauts and satellites have provided beautiful photographs that help support the shape theory. It is, however, very hard to detect by looking at photographs because the shape is so close to a perfect sphere. · Measurements: Accurate measurements are kept of the movement of the stars and Sun. The movements of these heavenly bodies would appear differently if the Earth were a perfect sphere. Another set of measurements come from right here on Earth. Scientists collect calculations on gravity’s affect on different objects. As an object moves away from the Earth’s core, its weight changes. If the Earth were perfectly round, the weight of the object would be the same all around the Earth as long as it was measured at the same elevation. On Earth, objects weigh a little more at the poles and a little less at the equator due to the oblate spheroid shape. What types of models are used to represent Earth? https://gb.metasolutions.net/Quiz/Question/Summary?quizId=1035 3/20 8/4/2020 What types of models CGare SCI Scienceused 180 - toGradeBook represent Earth? · A model is a visual representation, a mathematical equation, or a set of rules that let us study an object or concept that is not easily observed. Many times a model is used when an object is too large or too small to study and the model aids in our understanding. For instance, we can not see a single skin cell with the naked eye, so a scientist will use a poster or plaster model of the cell to study its parts and structure. The Earth is too big for us to take in by just looking outside, so we invent physical models to make observations much easier. The globe is a familiar model used by many to look at the complete structure of the Earth. · People use globes for a variety of reasons. We can study the continents of the world, the many bodies of water, latitudinal and longitudinal lines, and political boundaries. A person can study the Earth as a whole using a globe. The globe increases visual accuracy and allows a viewer to create a mental map and see the relationship between continents, oceans, and climatic differences. Size, shape, distance and directions are accurately shown on a globe. Globes do not distort the major features of our Earth. Maps · A map is a flat, graphic representation of the Earth. Maps are drawn for a variety of reasons. Most people are familiar with maps that are used to look up directions for traveling from one place to another. https://gb.metasolutions.net/Quiz/Question/Summary?quizId=1035 4/20 8/4/2020 CG SCI Science 180 - GradeBook · The map above shows the area around Steubenville, Ohio. It displays major roads and the names of towns. The Ohio River is the blue winding line in the middle of the map. Other maps will give us different information. To find rivers in other states, click on the following link: http://www.factmonster.com/ipka/A0001800.html https://gb.metasolutions.net/Quiz/Question/Summary?quizId=1035 5/20 8/4/2020 CG SCI Science 180 - GradeBook · World maps show the entire world at a glance. But because a map is flat, there is distortion in the size, shape and distance of features such as countries and continents. The map above shows the continents and oceans. Other world maps can show political boundaries (countries), seismic activity, and weather patterns. Weather maps detail information that explains weather conditions across a specific area. These maps often come with keys or special symbols that represent the various weather conditions. How are TV Weather Maps Created and Used? (01:23) ACTIVITY: What are the differences between a map and a globe? Materials: You will need a world map, a globe, and a measuring device (preferably a metric ruler). Directions: It is best if you have a world map on which you can draw. Have a pencil and paper ready to write down your observations. Remember that observations include size, shape, texture, and color among other things. https://gb.metasolutions.net/Quiz/Question/Summary?quizId=1035 6/20 8/4/2020 obse vat o s c ude s e, s apeCG, te SCIt uSciencee, a 180d c- GradeBooko o a o g ot e t gs. 1. Find Africa on the globe and then on the world map. Do they look similar? Compare and contrast your observations of Africa. 2. Now complete step #1 again with Antarctica that you completed with Africa. 3. Using the world map circle Greenland and circle the country of Sudan in Africa. Which do you believe is the largest? Now find the same two countries on the globe. Do you still agree with your previous answer on the largest country? Use the internet to find the measurement of the area of Sudan and then Greenland. Which country is actually larger? Did either the globe or the map give you the correct answer on which is largest? 4. Now let’s get you thinking global! Take a few minutes to really study the globe and the location of features. Below is a list of locations on the globe. Can you guess what is on the opposite side of the globe? Write down your guesses and then check your answers at the end of the unit. 1. Antarctica 2. North America (Chicago, IL, USA) 3. Perth, Australia 4. Buenos Aires, Argentina 5. Paris, France 6. Kabul, Afghanistan 7. Kinshasa, Zaire 5. Look at your map again and find Chicago, Illinois and Bombay, India. Draw a line between the two that represents the shortest route to get from Chicago to Bombay. Now check your globe. Would you still travel the same route? Why or why not? 6. Next circle, Buenos Aires, Argentina, and Sydney, Australia on the world map. Repeat the steps in #5 and answer the questions again. · Relief Maps are maps having shading or color to represent points of different elevation. This type of map usually contains an explanation or key to help a user read the map. The map below is a relief map of Arizona. https://gb.metasolutions.net/Quiz/Question/Summary?quizId=1035 7/20 8/4/2020 CG SCI Science 180 - GradeBook The colors indicate elevation above sea level · Orange and red areas in SW AZ are lowest · Blue and purple are higher · Green and brown areas in N and E AZ are even higher · The isolated pink color mountain areas are the highest.
Recommended publications
  • Apparent Size of Celestial Objects
    NATURE [April 7, 1870 daher wie schon fri.jher die Vor!esungen Uber die Warme, so of rectifying, we assume. :J'o me the Moon at an altit11de of auch jetzt die vorliegenden Vortrage Uber d~n Sc:hall unter 1~rer 45° is about (> i!lches in diameter ; when near the horizon, she is besonderen Aufsicht iibersetzen lasse~, und die :On1ckbogen e1µer about a foot. If I look through a telescope of small ruag11ifyjng genauen Durchsicht unterzogen, dam1t auch die deutsche J3ear­ power (say IO or 12 diameters), sQ as to leave a fair margin in beitung den englischen Werken ihres Freundes Tyndall nach the field, the Moon is still 6 inches in diameter, though her Form und Inhalt moglichst entsprache.-H. :fIEL!>iHOLTZ, G. visible area has really increased a hundred:fold. WIEDEMANN." . Can we go further than to say, as has often been said, that aH Prof. Tyndall's work, his account of Helmhqltz's Theory of magnitudi; is relative, and that nothing is great or small except Dissonance included, having passed through the hands of Helm­ by comparison? · · W. R. GROVE, holtz himself, not only without protest or correction, bnt with u5, Harley Street, April 4 the foregoing expression of opinion, it does not seem lihly that any serious dimag'e has been done.] · An After Pirm~. Jl;xperim1mt SUPPOSE in the experiment of an ellipsoid or spheroid, referred Apparent Size of Celestial Qpjecti:; to in my last letter, rolling between two parallel liorizontal ABOUT fifteen years ago I was looking at Venus through a planes, we were to scratch on the rolling body the two equal 40-inch telescope, Venus then being very near the Moon and similar and opposite closed curves (the polhods so-called), traced of a crescent form, the line across the middle or widest part upon it by the successive axes of instantaneou~ solutioll ; and of the crescent being about one-tenth of the planet's diameter.
    [Show full text]
  • Analyze a World Map
    Analyze a World Map Materials: Map of the World: Political or use link this website Map of the World Worksheet You could start the discussion by saying that the social studies part of the GED test assumes that everyone has a basic knowledge of world geography. The test will contain maps that you have to analyze and the answers are not always directly on the map. This is one area of the test where they expect you to just know the approximate locations of countries and oceans. So we thought we would use this world map to familiarize everyone with some world geography. Hand out the maps. The first thing you need to do with a map is read the title so that you know what you are looking at. Ask, “What is the title of this map?” ‘Map of the World: Political”. So this map should give us information about the location of countries. Then look to see if there is a legend or a list of symbols that explains the information shown on the map. Ask, “Is there a legend for this map/” Yes, it shows the scale of the map. You can discuss that the scale shows the relationship between distances on the map to the actual distance on the ground. Look to see if there is anything on the map showing directions, most maps have a compass that shows east, west, north, and south. Ask, “Does this map have any symbols indicating direction?” Yes, this map has a direction compass that shows points north. Ask if students know where south, east, and west are on the map.
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Countries and Continents of the World: a Visual Model
    Countries and Continents of the World http://geology.com/world/world-map-clickable.gif By STF Members at The Crossroads School Africa Second largest continent on earth (30,065,000 Sq. Km) Most countries of any other continent Home to The Sahara, the largest desert in the world and The Nile, the longest river in the world The Sahara: covers 4,619,260 km2 The Nile: 6695 kilometers long There are over 1000 languages spoken in Africa http://www.ecdc-cari.org/countries/Africa_Map.gif North America Third largest continent on earth (24,256,000 Sq. Km) Composed of 23 countries Most North Americans speak French, Spanish, and English Only continent that has every kind of climate http://www.freeusandworldmaps.com/html/WorldRegions/WorldRegions.html Asia Largest continent in size and population (44,579,000 Sq. Km) Contains 47 countries Contains the world’s largest country, Russia, and the most populous country, China The Great Wall of China is the only man made structure that can be seen from space Home to Mt. Everest (on the border of Tibet and Nepal), the highest point on earth Mt. Everest is 29,028 ft. (8,848 m) tall http://craigwsmall.wordpress.com/2008/11/10/asia/ Europe Second smallest continent in the world (9,938,000 Sq. Km) Home to the smallest country (Vatican City State) There are no deserts in Europe Contains mineral resources: coal, petroleum, natural gas, copper, lead, and tin http://www.knowledgerush.com/wiki_image/b/bf/Europe-large.png Oceania/Australia Smallest continent on earth (7,687,000 Sq.
    [Show full text]
  • Geography Notes.Pdf
    THE GLOBE What is a globe? a small model of the Earth Parts of a globe: equator - the line on the globe halfway between the North Pole and the South Pole poles - the northern-most and southern-most points on the Earth 1. North Pole 2. South Pole hemispheres - half of the earth, divided by the equator (North & South) and the prime meridian (East and West) 1. Northern Hemisphere 2. Southern Hemisphere 3. Eastern Hemisphere 4. Western Hemisphere continents - the largest land areas on Earth 1. North America 2. South America 3. Europe 4. Asia 5. Africa 6. Australia 7. Antarctica oceans - the largest water areas on Earth 1. Atlantic Ocean 2. Pacific Ocean 3. Indian Ocean 4. Arctic Ocean 5. Antarctic Ocean WORLD MAP ** NOTE: Our textbooks call the “Southern Ocean” the “Antarctic Ocean” ** North America The three major countries of North America are: 1. Canada 2. United States 3. Mexico Where Do We Live? We live in the Western & Northern Hemispheres. We live on the continent of North America. The other 2 large countries on this continent are Canada and Mexico. The name of our country is the United States. There are 50 states in it, but when it first became a country, there were only 13 states. The name of our state is New York. Its capital city is Albany. GEOGRAPHY STUDY GUIDE You will need to know: VOCABULARY: equator globe hemisphere continent ocean compass WORLD MAP - be able to label 7 continents and 5 oceans 3 Large Countries of North America 1. United States 2. Canada 3.
    [Show full text]
  • Was This World Map Made Ten Centuries Ago?
    HAWAIIAN GAZETTE, FRIDAY, JANUARY n, 1907 SEMI-WEEKL- Y Was This World Map Made Ten Centuries Ago? gg "J" ISOME DETAILS OF GREAT Vf? rr9rv-vr- i 'vir)('JK.rr KXW XXXjtXXmXmKiXXXiXXX XvyXXXrXXX ffKftXr1 STORM Politically Inclined policemen nro not wanted by tho new Sheriff, who will MAUI, shortly Issue nn order to the effect that January i. The holiday sea- son 2 i I nlj employes of tho police department on Maul has not been a tlmo of quiet 5 j ft must chooso between their Jobs on tho enjoyment ns far as weather is 5 a force and their oITlces In any of tho concerned. Dame Nnturo has echoed A.- -. a. w three political party committees. This anything but the Christmas sentiment rule Is to bo strictly enforced, the em of "peace on earth and good-wi- lt ployes of tho public being supposed, bo mn." far as tho police are concernod at least, Before recovery could bo made from to give their time and energy to th tho effects of the recent north storm public and not for the advancement with Its 20 Inches of moisture In local- politically or otherwlso of any one sec- ities, on Saturday tho wind changed Ifr tion of tho public to the southucst and nn kona Tho Sheriff Is making plain storm came Into being. It contin- If It that ued to blow fiercely ho means ho says all tho night what when he tabued through, accompanied by nn Incessant i - i politics around tho police station. In piny of lightning and the heavy roll of this he has come In for moro or less thunder.
    [Show full text]
  • Earth's Structure and Processes 8-3 the Student Will Demonstrate An
    Earth’s Structure and Processes 8-3 The student will demonstrate an understanding of materials that determine the structure of Earth and the processes that have altered this structure. (Earth Science) 8-3.1 Summarize the three layers of Earth – crust, mantle, and core – on the basis of relative position, density, and composition. Taxonomy level: 2.4-B Understand Conceptual Knowledge Previous/future knowledge: Students in 3rd grade (3-3.5, 3-3.6) focused on Earth’s surface features, water, and land. In 5th grade (5-3.2), students illustrated Earth’s ocean floor. The physical property of density was introduced in 7th grade (7-5.9). Students have not been introduced to areas of Earth below the surface. Further study into Earth’s internal structure based on internal heat and gravitational energy is part of the content of high school Earth Science (ES-3.2). It is essential for students to know that Earth has layers that have specific conditions and composition. Layer Relative Position Density Composition Crust Outermost layer; thinnest Least dense layer overall; Solid rock – mostly under the ocean, thickest Oceanic crust (basalt) is silicon and oxygen under continents; crust & more dense than Oceanic crust - basalt; top of mantle called the continental crust (granite) Continental crust - granite lithosphere Mantle Middle layer, thickest Density increases with Hot softened rock; layer; top portion called depth because of contains iron and the asthenosphere increasing pressure magnesium Core Inner layer; consists of Heaviest material; most Mostly iron and nickel; two parts – outer core and dense layer outer core – slow flowing inner core liquid, inner core - solid It is not essential for students to know specific depths or temperatures of the layers.
    [Show full text]
  • Geodetic Position Computations
    GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem.
    [Show full text]
  • Models for Earth and Maps
    Earth Models and Maps James R. Clynch, Naval Postgraduate School, 2002 I. Earth Models Maps are just a model of the world, or a small part of it. This is true if the model is a globe of the entire world, a paper chart of a harbor or a digital database of streets in San Francisco. A model of the earth is needed to convert measurements made on the curved earth to maps or databases. Each model has advantages and disadvantages. Each is usually in error at some level of accuracy. Some of these error are due to the nature of the model, not the measurements used to make the model. Three are three common models of the earth, the spherical (or globe) model, the ellipsoidal model, and the real earth model. The spherical model is the form encountered in elementary discussions. It is quite good for some approximations. The world is approximately a sphere. The sphere is the shape that minimizes the potential energy of the gravitational attraction of all the little mass elements for each other. The direction of gravity is toward the center of the earth. This is how we define down. It is the direction that a string takes when a weight is at one end - that is a plumb bob. A spirit level will define the horizontal which is perpendicular to up-down. The ellipsoidal model is a better representation of the earth because the earth rotates. This generates other forces on the mass elements and distorts the shape. The minimum energy form is now an ellipse rotated about the polar axis.
    [Show full text]
  • World Map of Al-‘Umari #226.1
    World Map of al-‘Umari #226.1 TITLE: The Mamunic World Map DATE: 1340 AUTHOR: Ahmad ibn Yahya ibn Fadlallah al-‘Umari DESCRIPTION: The geographic work Masalik al-aNar fi mainalik al-amsar [Ways of Perception Concerning the Most Populous [Civilized] Provinces] was written by Ahmad Ibn Fadlalldh al-Umari (died 1349), a distinguished administrator and author who was active in Cairo and Damascus under Mamluk rule. He claims that the map is a copy of the world map made for Caliph al-Ma’mun (reigned 813-833); also mentioned by al-Mas’udi (#212) earlier. The world map shown here is reproduced in this manuscript of the work of al- ‘Umari. The same manuscript also has maps of the first three climates. Although the climates are not divided into sections, the general impression is that the maps are derived from those of al-Idrisi (#219). However, from its appearance it seems to have been compiled from the text of the Kitab bast al-ard fi tuliha wa-al-‘ard [Exposition of the earth in length and breadth] by Ibn Sa‘id (#221). Al-‘Umari’s text does mention a map and gives a few examples of longitude and latitude, but on the whole they do not correspond with positions given on the map. Most of the Istanbul manuscripts of Ibn Fadlallah al-‘Umari’s work are undated. However, the earliest one to be dated is 1585, suggesting that this and most other copies were prepared for the libraries of the Ottoman sultans of that period. By that time the idea of a graticule was well known from European sources and could have been added to bring the map up to date.
    [Show full text]
  • Comparison of Spherical Cube Map Projections Used in Planet-Sized Terrain Rendering
    FACTA UNIVERSITATIS (NIS)ˇ Ser. Math. Inform. Vol. 31, No 2 (2016), 259–297 COMPARISON OF SPHERICAL CUBE MAP PROJECTIONS USED IN PLANET-SIZED TERRAIN RENDERING Aleksandar M. Dimitrijevi´c, Martin Lambers and Dejan D. Ranˇci´c Abstract. A wide variety of projections from a planet surface to a two-dimensional map are known, and the correct choice of a particular projection for a given application area depends on many factors. In the computer graphics domain, in particular in the field of planet rendering systems, the importance of that choice has been neglected so far and inadequate criteria have been used to select a projection. In this paper, we derive evaluation criteria, based on texture distortion, suitable for this application domain, and apply them to a comprehensive list of spherical cube map projections to demonstrate their properties. Keywords: Map projection, spherical cube, distortion, texturing, graphics 1. Introduction Map projections have been used for centuries to represent the curved surface of the Earth with a two-dimensional map. A wide variety of map projections have been proposed, each with different properties. Of particular interest are scale variations and angular distortions introduced by map projections – since the spheroidal surface is not developable, a projection onto a plane cannot be both conformal (angle- preserving) and equal-area (constant-scale) at the same time. These two properties are usually analyzed using Tissot’s indicatrix. An overview of map projections and an introduction to Tissot’s indicatrix are given by Snyder [24]. In computer graphics, a map projection is a central part of systems that render planets or similar celestial bodies: the surface properties (photos, digital elevation models, radar imagery, thermal measurements, etc.) are stored in a map hierarchy in different resolutions.
    [Show full text]
  • From the Old Ages to Mercator
    14 The World Image in Maps – From the Old Ages to Mercator Mirjanka Lechthaler Institute of Geoinformation and Cartography Vienna University of Technology, Austria Abstract Studying the Australian aborigines’ ‘dreamtime’ maps or engravings from Dutch cartographers of the 16 th century, one can lose oneself in their beauty. Casually, cartography is a kind of art. Visualization techniques, precision and compliance with reality are of main interest. The centuries of great expeditions led to today’s view and mapping of the world. This chapter gives an overview on the milestones in the history of cartography, from the old ages to Mercator’s map collections. Each map presented is a work of art, which acts as a substitute for its era, allowing us to re-live the circumstances at that time. 14.1 Introduction Long before people were able to write, maps have been used to visualise reality or fantasy. Their content in \ uenced how people saw the world. From studying maps conclusions can be drawn about how visualized regions are experienced, imagined, or meant to be perceived. Often this is in \ uenced by social and political objectives. Cartography is an essential instrument in mapping and therefore preserving cultural heritage. Map contents are expressed by means of graphical language. Only techniques changed – from cuneiform writing to modern digital techniques. From the begin- nings of cartography until now, this language remained similar: clearly perceptible graphics that represented real world objects. The chapter features the brief and concise history of the appearance and develop- ment of topographic representations from Mercator’s time (1512–1594), which was an important period for the development of cartography.
    [Show full text]