Quick viewing(Text Mode)

Photomultiplier Tubes PHOTOMULTIPLIER TUBES and RELATED PRODUCTS Opening the Future with Photonics

Photomultiplier Tubes PHOTOMULTIPLIER TUBES and RELATED PRODUCTS Opening the Future with Photonics

Photomultiplier Tubes PHOTOMULTIPLIER TUBES AND RELATED PRODUCTS Opening The Future with Photonics

Human beings obtain more than 70 percent of the information visually by using their eyes. However, there are vast sums of information and unknown possibilities hidden within not visible to the naked eye. This kind of light includes , , X-ray and ultra-low level light impossible for human eyes to detect. Since its founding over 50 years ago, Hamamatsu Photonics has been investigating not only light seen by the human eye but also light that far exceeds this level. As a leading manufacturer specializing in the field of photonics, Hamamatsu Photonics has marketed dozens of photosensitive devices, light sources and related products. Through these state-of-the-art products, Hamamatsu Photonics has committed itself to pioneering industrial and academic research work in still unexplored areas in many fields. Hamamatsu Photonics will continue to deliver innovative breakthroughs in a diverse range of fields, always striving to make human life fuller and richer by "researching the many ways to use light". CONTENTS

Index by Type Number ...... 2 About Construction and Operating Characteristics ...... 4 Connections to External Circuits ...... 14 Selection Guide by Applications ...... 16 Side-on Type Photomultiplier Tubes 13 mm Dia. Types ...... 22 28 mm Dia. Types with UV to Visible Sensitivity ...... 24 28 mm Dia. Types with UV to Near IR Sensitivity ...... 26 13 mm Dia. Types, 28 mm Dia. Types with Solar Blind Response ...... 28 Head-on Type Photomultiplier Tubes 10 mm Dia. Types, 13 mm Dia. Types ...... 30 19 mm Dia. Types ...... 32 25 mm Dia. Types ...... 34 28 mm Dia. Types ...... 36 38 mm Dia. Types ...... 38 51 mm Dia. Types with Base ...... 40 51 mm Dia. Types with Glass Base ...... 42 76 mm Dia. Types, 127 mm Dia. Types ...... 46 Special Purpose Photomultiplier Tubes Hemispherical Envelope Type ...... 48 Special Envelope Types ...... 48 Metal Package Photomultiplier Tubes ...... 50 For High Magnetic Environments ...... 54 Position Sensitive Types ...... 56 Microchannel Plate-Photomultiplier Tubes (MCP-PMTs) ...... 58 Gain Characteristics 60

Voltage Distribution Ratio 62

Replacement Information 63

Photomultiplier Tube Assemblies 64 Accessories for Photomultiplier Tubes Socket Assemblies ...... 72 Units ...... 94 High Power Supplies ...... 96 Thermoelectric Coolers ...... 101 Magnetic Shield Cases ...... 106 Housings, Power and Signal Cables, Connector Adapters...... 107 Related Products for Counting ...... 108 Multipliers 110

Cautions and Warranty 112

Typical Spectral Response 113

Typical Photocathode Spectral Response 114 Index by Type Number

Type No. Product Page Type No. Product Page R105 ...... Side-on PMT ...... 24 R2949 ...... Side-on PMT ...... 26 R212 ...... Side-on PMT ...... 24 E2979 Series ...... Socket Assembly ...... 79 R329-02 ...... Head-on PMT ...... 42 H3164-10 ...... PMT Assembly ...... 64 R331-05 ...... Head-on PMT ...... 42 H3165-10 ...... PMT Assembly ...... 64 R374 ...... Head-on PMT ...... 36 H3178-51 ...... PMT Assembly ...... 64 R375 ...... Head-on PMT ...... 44 R3234-01 ...... Head-on PMT ...... 40 R464 ...... Head-on PMT ...... 42 R3292-02 ...... Position-Sensitive PMT ...... 56 R474 ...... ...... 110 R3310-02 ...... Head-on PMT ...... 44 R515 ...... Electron Multiplier ...... 110 R3478 ...... Head-on PMT ...... 32 R550 ...... Head-on PMT ...... 40 R3550A ...... Head-on PMT ...... 34 R580 ...... Head-on PMT ...... 38 H3695-10 ...... PMT Assembly ...... 64 R595 ...... Electron Multiplier ...... 110 R3788 ...... Side-on PMT ...... 24 R596 ...... Electron Multiplier ...... 110 R3809U Series ...... MCP-PMT ...... 58 R636-10 ...... Side-on PMT ...... 26 R3810 ...... Side-on PMT ...... 22 R647...... Head-on PMT ...... 30 R3811 ...... Side-on PMT ...... 22 R649 ...... Head-on PMT ...... 42 C3830 Series ...... ...... 99 R669 ...... Head-on PMT ...... 44 R3886 ...... Head-on PMT ...... 38 E717 Series ...... Socket Assembly ...... 78 R3896 ...... Side-on PMT ...... 26 R759 ...... Head-on PMT ...... 30 R3991A ...... Head-on PMT ...... 32 R821 ...... Head-on PMT ...... 32 R3998-02 ...... Head-on PMT ...... 36 E849 Series ...... Socket Assembly ...... 78 R4124 ...... Head-on PMT ...... 30 E850 Series ...... Socket Assembly ...... 78 R4143 ...... Head-on PMT ...... 46 R877 ...... Head-on PMT ...... 46 R4177-01 ...... Head-on PMT ...... 30 R928 ...... Side-on PMT ...... 26 A4184 Series ...... Connector Adapter ...... 107 R943-02 ...... Head-on PMT ...... 44 R4220 ...... Side-on PMT ...... 24 R955 ...... Side-on PMT ...... 26 R4607-01 ...... Head-on PMT ...... 42 R972 ...... Head-on PMT ...... 32 R4632 ...... Side-on PMT ...... 26 E974 Series ...... Socket Assembly ...... 78 C4710 Series ...... Power Supply ...... 98 R980 ...... Head-on PMT ...... 38 C4720 Series ...... Power Supply ...... 99 E989 Series ...... Magnetic Shield Case ...... 106 C4840 ...... Power Supply ...... 100 E990 Series ...... Socket Assembly ...... 78 C4877 ...... Thermoelectric Cooler ...... 102 R1080 ...... Head-on PMT ...... 30 C4878 ...... Thermoelectric Cooler ...... 102 R1081 ...... Head-on PMT ...... 30 C4900 Series ...... Power Supply ...... 97 R1166 ...... Head-on PMT ...... 32 R4998 ...... Head-on PMT ...... 34 E1168 Series ...... Power and Signal Cable ...... 107 A5026 Series ...... Signal Cable ...... 107 E1198 Series ...... Socket Assembly ...... 79 R5070A...... Head-on PMT ...... 34 R1250 ...... Head-on PMT ...... 46 A5074 ...... Adapter ...... 107 R1288A ...... Head-on PMT ...... 34 R5108 ...... Side-on PMT ...... 26 R1306 ...... Head-on PMT ...... 40 R5150-10 ...... Electron Multiplier ...... 110 R1307 ...... Head-on PMT ...... 46 R5505-70 ...... Head-on PMT for Highly ...... 54 E1341-01 ...... Housing ...... 107 C5594 ...... Amplifier Unit ...... 94 R1387 ...... Head-on PMT ...... 38 R5610A ...... Head-on PMT ...... 32 E1435-02 ...... Socket Assembly ...... 79 R5611A-01 ...... Head-on PMT ...... 32 R1450 ...... Head-on PMT ...... 32 E5780...... Socket Assembly ...... 79 R1463 ...... Head-on PMT ...... 30 E5859 Series ...... Socket Assembly ...... 79 R1513 ...... Head-on PMT ...... 46 R5900U-00-L16 ...... Metal Package PMT ...... 52 R1527 ...... Side-on PMT ...... 24 R5900U-01 ...... Metal Package PMT ...... 52 R1548-07 ...... Rectangular Dual PMT ...... 48 R5900U-01-M4 ...... Metal Package PMT ...... 52 R1584 ...... Head-on PMT ...... 46 R5900U-01-L16 ...... Metal Package PMT ...... 52 R1617 ...... Head-on PMT ...... 32 R5900U-20 ...... Metal Package PMT ...... 52 R1635 ...... Head-on PMT ...... 30 R5900U-20-M4 ...... Metal Package PMT ...... 52 R1705 ...... Head-on PMT ...... 38 R5900U-20-L16 ...... Metal Package PMT ...... 52 E1761 Series ...... Socket Assembly ...... 78 R5912 ...... Hemispherical PMT ...... 48 R1828-01 ...... Head-on PMT ...... 40 R5916U Series...... MCP-PMT ...... 58 R1878 ...... Head-on PMT ...... 32 R5924-70 ...... Head-on PMT for Highly Magnetic Field ...... 54 R1893 ...... Head-on PMT ...... 30 R5929 ...... Head-on PMT ...... 36 R1894 ...... Head-on PMT ...... 30 R5983 ...... Side-on PMT ...... 24 R1924A ...... Head-on PMT ...... 34 R5984 ...... Side-on PMT ...... 26 R1925A ...... Head-on PMT ...... 34 E5996 ...... Socket Assembly ...... 79 H1949-51 ...... PMT Assembly ...... 64 R6091 ...... Head-on PMT ...... 46 R2066 ...... Head-on PMT ...... 38 R6094 ...... Head-on PMT ...... 36 R2078 ...... Head-on PMT ...... 34 R6095 ...... Head-on PMT ...... 36 R2083 ...... Head-on PMT ...... 42 E6133-04 ...... Socket Assembly ...... 79 R2154-02 ...... Head-on PMT ...... 40 H6152-70 ...... PMT Assembly ...... 64 E2183 Series ...... Socket Assembly ...... 78 H6156-50 ...... PMT Assembly ...... 64 R2228 ...... Head-on PMT ...... 36 R6231 ...... Head-on PMT ...... 40 R2248 ...... Rectangular PMT ...... 48 R6233 ...... Head-on PMT ...... 46 E2253 Series ...... Socket Assembly ...... 78 R6234 ...... Hexagonal PMT ...... 48 R2257 ...... Head-on PMT ...... 44 R6235 ...... Hexagonal PMT ...... 48 R2362 ...... Electron Multiplier ...... 110 R6236 ...... Rectangular PMT ...... 48 R2368 ...... Side-on PMT ...... 26 R6237 ...... Rectangular PMT ...... 48 H2431-50 ...... PMT Assembly ...... 64 C6270 ...... Socket Assembly ...... 92 R2486-02 ...... Position-Sensitive PMT ...... 56 C6271 ...... Socket Assembly ...... 92 R2496 ...... Head-on PMT ...... 30 E6316 Series ...... Socket Assembly ...... 79 R2557 ...... Head-on PMT ...... 30 R6350 ...... Side-on PMT ...... 22 E2624 Series ...... Socket Assembly ...... 78 R6351 ...... Side-on PMT ...... 22 R2658 ...... Side-on PMT ...... 26 R6352 ...... Side-on PMT ...... 22 R2693 ...... Side-on PMT ...... 24 R6353 ...... Side-on PMT ...... 22 E2924 Series ...... Socket Assembly ...... 78 R6354 ...... Side-on PMT ...... 28 2 Type numbers shown in "Notes" Type No. Product Page Type No. Product Page R6355 ...... Side-on PMT ...... 22 R331 ...... Head-on PMT ...... 43 R6356-06 ...... Side-on PMT ...... 22 R585 ...... Head-on PMT ...... 43 R6357 ...... Side-on PMT ...... 22 R647P...... Head-on PMT ...... 31 R6358 ...... Side-on PMT ...... 22 R750 ...... Head-on PMT ...... 33 H6410 ...... PMT Assembly ...... 64 R758-10 ...... Side-on PMT ...... 27 R6427 ...... Head-on PMT ...... 36 R760 ...... Head-on PMT ...... 31 C6438 ...... Amplifier Unit ...... 94 R877-01 ...... Head-on PMT ...... 47 R6504-70 ...... Head-on PMT for Highly Magnetic Field ...... 54 R960 ...... Head-on PMT ...... 31 H6520 ...... PMT Assembly ...... 64 R976 ...... Head-on PMT ...... 33 H6524 ...... PMT Assembly ...... 64 R1080P ...... Head-on PMT ...... 31 H6527 ...... PMT Assembly ...... 64 R1104 ...... Head-on PMT ...... 37 H6528 ...... PMT Assembly ...... 64 R1166P ...... Head-on PMT ...... 33 H6533 ...... PMT Assembly ...... 64 H6559 ...... PMT Assembly ...... 64 R1288A-01 ...... Head-on PMT ...... 35 H6612 ...... PMT Assembly ...... 64 R1450-13 ...... Head-on PMT ...... 33 H6614-70 ...... PMT Assembly ...... 64 R1463P ...... Head-on PMT ...... 31 E6736 ...... Socket Assembly ...... 79 R1464 ...... Head-on PMT ...... 33 R6834 ...... Head-on PMT ...... 36 R1508 ...... Head-on PMT ...... 39 R6835 ...... Head-on PMT ...... 36 R1509 ...... Head-on PMT ...... 39 R6836 ...... Head-on PMT ...... 36 R1527P ...... Side-on PMT ...... 25 R6925 ...... Side-on PMT ...... 24 R1635P ...... Head-on PMT ...... 31 E7083 ...... Socket Assembly ...... 79 R1924P ...... Head-on PMT ...... 35 R7111 ...... Head-on PMT ...... 36 R1926A ...... Head-on PMT ...... 35 R7154 ...... Side-on PMT ...... 28 R2027 ...... Head-on PMT ...... 33 H7195 ...... PMT Assembly ...... 64 R2059 ...... Head-on PMT ...... 41 R7205-01 ...... Head-on PMT ...... 36 R2076 ...... Head-on PMT ...... 33 R7206-01 ...... Head-on PMT ...... 36 R2256-02 ...... Head-on PMT ...... 43 C7246 Series ...... Socket Assembly ...... 90 R2295 ...... Head-on PMT ...... 33 C7247 Series ...... Socket Assembly ...... 90 H2431-50 ...... PMT Assembly ...... 43 H7260-20 ...... PMT Assembly ...... 64 R2557P ...... Head-on PMT...... 31 R7311 ...... Side-on PMT ...... 28 R2658P ...... Side-on PMT ...... 27 C7319 ...... Amplifier Unit ...... 94 R2693P ...... Side-on PMT ...... 25 R7400U ...... Metal Package PMT ...... 50 R3235-01 ...... Head-on PMT ...... 41 R7400U-01 ...... Metal Package PMT ...... 50 R3256 ...... Head-on PMT ...... 41 R7400U-02 ...... Metal Package PMT ...... 50 H3378-50 ...... PMT Assembly ...... 43 R7400U-03 ...... Metal Package PMT ...... 50 R7400U-04 ...... Metal Package PMT ...... 50 R3479 ...... Head-on PMT ...... 33 R7400U-06 ...... Metal Package PMT ...... 50 R3550P ...... Head-on PMT ...... 35 R7400U-09 ...... Metal Package PMT ...... 50 R3810P ...... Side-on PMT ...... 23 R7400U-20 ...... Metal Package PMT ...... 50 R3878 ...... Head-on PMT ...... 31 R7401 ...... Metal Package PMT ...... 50 R4141 ...... Head-on PMT ...... 31 R7402 ...... Metal Package PMT ...... 50 R4220P ...... Side-on PMT ...... 25 H7415 ...... PMT Assembly ...... 64 R4332 ...... Side-on PMT ...... 25 R7447 ...... Side-on PMT ...... 24 R5113-02 ...... Head-on PMT ...... 43 R7511 ...... Side-on PMT ...... 28 R5320 ...... Head-on PMT ...... 35 E7514 ...... Socket Assembly ...... 79 R5610P...... Head-on PMT ...... 33 R7518 ...... Side-on PMT ...... 24 R5611 ...... Head-on PMT ...... 33 H7546B ...... PMT Assembly ...... 64 R5900U-03-L16 ...... Metal Package PMT ...... 53 R7600U...... Metal Package PMT ...... 52 R5900U-04 ...... Metal Package PMT ...... 53 R7600U-00-M4 ...... Metal Package PMT ...... 52 R5900U-04-M4 ...... Metal Package PMT ...... 53 R7639 ...... Side-on PMT ...... 28 R5900U-04-L16 ...... Metal Package PMT ...... 53 E7693 ...... Socket Assembly ...... 79 R5900U-06-L16 ...... Metal Package PMT ...... 53 E7694 Series ...... Socket Assembly ...... 79 R5900U-07-L16 ...... Metal Package PMT ...... 53 R7761-70 ...... Head-on PMT for Highly Magnetic Field ...... 54 R5983P ...... Side-on PMT ...... 25 R7899 ...... Head-on PMT ...... 34 R6095P ...... Head-on PMT ...... 37 A7992 ...... Relay Adapter ...... 107 H6152-70 ...... PMT Assembly ...... 55 H8318-70 ...... PMT Assembly ...... 64 R6350P ...... Side-on PMT ...... 23 H8409-70 ...... PMT Assembly ...... 64 R6353P ...... Side-on PMT ...... 23 R8486 ...... Side-on PMT ...... 28 R6358-10 ...... Side-on PMT ...... 23 R8487 ...... Side-on PMT ...... 28 H8500 ...... Flatpanel PMT Assembly ...... 64 H6533 ...... PMT Assembly ...... 35 R8520U-00-C12...... Metal Package PMT ...... 52 H6614-70 ...... PMT Assembly ...... 55 H8711 ...... PMT Assembly ...... 64 R7056 ...... Head-on PMT ...... 37 C8855 ...... Counting Unit ...... 109 R7207-01 ...... Head-on PMT ...... 37 C8991 ...... Socket Assembly ...... 92 R7400P ...... Metal Package PMT ...... 51 M9003 ...... Counting Board ...... 109 R7402-02 ...... Metal Package PMT ...... 51 R9110 ...... Side-on PMT ...... 26 R7402-20 ...... Metal Package PMT ...... 51 C9143 ...... Thermoelectric Cooler ...... 104 R7446 ...... Side-on PMT ...... 25 C9144 ...... Thermoelectric Cooler ...... 104 R7449 ...... Head-on PMT ...... 37 R9220 ...... Side-on PMT ...... 26 R7459 ...... Head-on PMT ...... 37 H9500 ...... Flatpanel PMT Assembly ...... 64 R7518P...... Side-on PMT ...... 25 H9530-20 ...... PMT Assembly ...... 64 R7600U-03 ...... Metal Package PMT ...... 53 C9663 ...... Amplifier Unit ...... 94 R7600U-03-M4 ...... Metal Package PMT ...... 53 C9744 ...... Photon Counting Unit ...... 108 R7899-01 ...... Head-on PMT ...... 35 1P21 ...... Side-on PMT ...... 24 H8318-70 ...... PMT Assembly ...... 55 1P28 ...... Side-on PMT ...... 24 H8409-70 ...... PMT Assembly ...... 55 931A ...... Side-on PMT ...... 24 931B ...... Side-on PMT ...... 24

3 Construction and Operating Characteristics

INTRODUCTION Figure 3: Types of Photocathode Among photosensitive devices in use today, the photomultiplier a) Reflection Mode tube (or PMT) is a versatile device providing ultra-fast response and extremely high sensitivity. A typical photomultiplier tube con- REFLECTION MODE sists of a photoemissive (photocathode) followed by fo- PHOTOCATHODE cusing , an electron multiplier and an electron collec- tor () in a tube, as shown in Figure 1. DIRECTION OF LIGHT When light enters the photocathode, the photocathode emits photoelectrons into the vacuum. These photoelectrons are then PHOTOELECTRON directed by the focusing towards the electron multiplier where are multiplied by a secondary - TPMSC0029EA sion process. The multiplied electrons then are collected by the b) Transmission Mode anode as an output signal. SEMITRANSPARENT Because of secondary-emission multiplication, photomultiplier PHOTOCATHODE tubes provide extremely high sensitivity and exceptionally low compared to other photosensitive devices currently used to detect radiant energy in the ultraviolet, visible, and near infra- DIRECTION red regions. The photomultiplier tube also features fast time re- OF LIGHT sponse and a choice of large photosensitive areas. This section describes the prime features of photomultiplier tube PHOTOELECTRON construction and basic operating characteristics. TPMHC0084EB Figure 1: Cross-Section of Head-On Type PMT FOCUSING ELECTRODE PHOTOELECTRON SECONDARY ELECTRON MULTIPLIER ELECTRON LAST STEM PIN The superior sensitivity (high current amplification and high S/N VACUUM ratio) of photomultiplier tubes is due to the use of a low-noise (10 -4 Pa) DIRECTION e- electron multiplier which amplifies electrons by a cascade sec- OF LIGHT ondary emission process. The electron multiplier consists of 8 to FACEPLATE 19 stages of electrodes called . STEM ELECTORON MULTIPLIER ANODE There are several principal types in use today. (DYNODES) PHOTOCATHODE TPMHC0006EA 1) Circular-cage type CONSTRUCTION The circular cage is generally used for the side-on type of photomultiplier tube. The prime features of the circular-cage The photomultiplier tube generally has a photocathode in either are compactness, fast response and high gain obtained at a a side-on or a head-on configuration. The side-on type receives relatively low supply voltage. incident light through the side of the glass bulb, while the head- on type receives light through the end of the glass bulb. In gen- eral, the side-on type photomultiplier tube is relatively low priced and widely used for spectrophotometers and general photomet- ric systems. Most side-on types employ an opaque photoca- thode (reflection-mode photocathode) and a circular-cage struc- ture electron multiplier (see description of "ELECTRON MULTI- PLIER") which has good sensitivity and high amplification at a relatively low supply voltage. The head-on type (or the end-on type) has a semitransparent Side-On Type Head-On Type photocathode (transmission-mode photocathode) deposited TPMOC0077EB upon the inner surface of the entrance window. The head-on type provides better uniformity (see page 9) than the side-on 2) Box-and-grid type type having a reflection-mode photocathode. Other features of This type consists of a train of quarter cylindrical dynodes head-on types include a choice of photosensitive areas ranging and is widely used in head-on type photomultiplier tubes be- from tens to hundreds of square centimeters. cause of good electron collection efficiency and excellent uni- Variants of the head-on type having a large-diameter hemisphe- formity. rical window have been developed for high energy physics ex- periments where good angular light reception is important. Figure 2: External Appearance a) Side-On Type b) Head-On Type TPMOC0078EA

PHOTO- 3) Linear-focused type SENSITIVE The linear-focused type features extremely fast response AREA PHOTO- time and is widely used in applications where time resolution SENSITIVE and pulse linearity are important. This type also has the ad- AREA vantage of providing a large output current.

TPMOC0079EA

TPMSF0039 TPMHF0192 4 4) Venetian blind type 7) Metal Channel type The venetian blind type has a large dynode area and is pri- The metal channel dynode has a compact dynode construc- marily used for tubes with large photocathode areas. It offers tion manufactured by our unique fine machining techniques. better uniformity and a larger output current. This structure is It delivers high-speed response due to a space between each usually used when time response is not a prime considera- dynode stage that is much smaller than other types of con- tion. ventional dynodes. The metal channel dynode is also ideal for position sensitive measurement.

ELECTRON

TPMOC0080EA

5) Mesh type The mesh type has a structure of fine mesh electrodes

stacked in close proximity. There are two mesh types of dy- TPMOC0084EA node: a coarse mesh type and a fine mesh type. Both types provide improved pulse linearity and high resistance to mag- Hybrid dynodes combining two of the above dynodes are also netic fields. The mesh type also has position-sensitive capa- available. These hybrid dynodes combine the best features of bility when used with cross- or multiple anodes. each dynode type. The fine mesh type is particularly suited for use in applica- tions where high magnetic fields are present.

SPECTRAL RESPONSE The photocathode of a photomultiplier tube converts energy from incident light into electrons. The conversion efficiency (pho- tocathode sensitivity) varies with the wavelength of the incident light. This relationship between photocathode sensitivity and wa- velength is called the spectral response characteristic. Figure 4 shows the typical spectral response of a bialkali photomultiplier tube. The spectral response on long wavelengths is determined ELECTRON ELECTRON ELECTRON by the photocathode material and on short wavelengths by the window material. Typical spectral response characteristics for various types of photomultiplier tubes are shown on pages 114 and 115. In this catalog, the long-wavelength cutoff of the spec- tral response characteristic is defined as the wavelength at

1 mm 13 µm which the cathode radiant sensitivity is 1 % of the maximum sen- sitivity in bialkali and Ag-O-Cs , and 0.1 % of the

COARSE MESH TYPE FINE-MESH TYPE maximum sensitivity in multialkali photocathodes. Spectral response characteristics shown at the end of this cata- TPMOC0081EB log are typical curves for representative tube types. Actual data may be different from tube to tube.

6) Microchannel plate (MCP) (see page 58) Figure 4: Typical Spectral Response of Bialkali Photocathode The MCP is a thin disk consisting of millions of microglass tubes (channels) fused in parallel with each other. Each (HEAD-ON TYPE, BIALKALI PHOTOCATHODE) 100 channel acts as an independent electron multiplier. The MCP offers much faster time response than other discrete dy- nodes. It also features good immunity from magnetic fields and two-dimensional detection ability when multiple anodes are used. 10

CATHODE RADIANT 1 SENSITIVITY

QUANTUM EFFICIENCY

QUANTUM EFFICIENCY (%) 0.1

TPMOC0082EA CATHODE RADIANT SENSITIVITY (mA/W)

0.01 200 400 600 800

WAVELENGTH (nm) TPMOB0070EA

5 Construction and Operating Characteristics

PHOTOCATHODE MATERIALS 2) UV-transmitting glass (UV glass) The photocathode is a photoemissive surface usually consisting This glass as the name implies is ideal for transmitting ultra- of alkali metals with very low work functions. The photocathode violet radiation and is used as widely as a . materials most commonly used in photomultiplier tubes are as The UV cutoff is approximately 185 nm. follows: 3) Synthetic silica The synthetic silica transmits ultraviolet radiation down to 160 1) Ag-O-Cs nm and offers lower absorption in the ultraviolet range com- The transmission-mode photocathode using this material is pared to fused silica. Since the synthetic silica has a different designated S-1 and sensitive from the range of visible light to thermal expansion coefficient than , which is used for infrared radiation (300 mm to 1000 nm). The reflection mode the tube leads, it is not suitable as the tube stem material covers a slightly narrower range from 300 mm to 1100 nm. (see Figure 1 on page 4). Borosilicate glass is used for the Since Ag-O-Cs has comparatively high thermionic dark emis- stem, and a graded seal using glass with gradually different sion (refer to "ANODE " on page 8), photo- thermal expansion coefficients is connected to the synthetic multiplier tubes of this photocathode material are chiefly used silica window. The graded seal structure is vulnerable to for detection in the infrared region with the photocathode shock so the tube should be handled carefully. cooled. 4) MgF2 (magnesium fluoride) 2) GaAs Crystals of alkali halide are superior in transmitting ultraviolet GaAs activated in cesium is also used as a photocathode. radiation, but have the disadvantage of deliquescence. The spectral response of this photocathode material usually Among these crystals, MgF2 is known as a practical window covers a wider spectral response range than multialkali, from material because it offers low deliquescence and transmits ultraviolet to 930 nm, which is comparatively flat over the ultraviolet radiation down to 115 nm. range between 300 mm and 850 nm. 3) InGaAs Figure 5: Typical Transmittance of Various Window Materials This photocathode material has greater extended sensitivity 100 in the infrared range than GaAs. Moreover, in the range be- tween 900 mm and 1000 nm, InGaAs has a much higher S/N ratio than Ag-O-Cs.

4) Sb-Cs BOROSILICATE UV- GLASS Sb-Cs has a spectral response in the ultraviolet to visible TRANSMITTING range and is mainly used in reflection-mode photocathodes. GLASS 5) Bialkali (Sb-Rb-Cs, Sb-K-Cs) 10 MgF2 These materials have a spectral response range similar to SYNTHETIC the Sb-Cs photocathode, but have higher sensitivity and low- SILICA er dark current than Sb-Cs. They also have a blue sensitivity TRANSMITTANCE (%) index matching the scintillation flashes of NaI , and so are frequently used for radiation measurement using scintillation counting. 1 6) High temperature bialkali or low noise bialkali (Na-K-Sb) 100 120 160 200 240 300 400 500 This is particularly useful at higher operating temperatures WAVELENGTH (nm) since it can withstand up to 175 °C. One major application is TPMOB0076EB in the oil industry. At room temperatures, this photocathode operates with very low dark current, making it RADIANT SENSITIVITY AND QUANTUM EFFICIENCY ideal for use in photon counting applications. As Figure 4 shows, spectral response is usually expressed in 7) Multialkali (Na-K-Sb-Cs) terms of radiant sensitivity or quantum efficiency as a function of The multialkali photocathode has a high, wide spectral re- wavelength. Radiant sensitivity is the photoelectric current from sponse from the ultraviolet to near infrared region. It is widely the photocathode, divided by the incident radiant power at a giv- used for broad-band spectrophotometers and photon count- en wavelength, expressed in A/W (amperes per watt). Quantum ing applications. The long wavelength response can be ex- efficiency (QE) is the number of photoelectrons emitted from the tended to 930 nm by special photocathode activation pro- photocathode divided by the number of incident . Quan- cessing. tum efficiency is usually expressed as a percent. Quantum effi- 8) Cs-Te, Cs-I ciency and radiant sensitivity have the following relationship at a These materials are sensitive to vacuum UV and UV rays but given wavelength. × not to visible light and are therefore referred to as solar blind. QE= S 1240 × 100 Cs-Te is quite insensitive to wavelengths longer than 320 nm, λ and Cs-I to those longer than 200 nm. where S is the radiant sensitivity in A/W at the given wavelength and λ is the wavelength in nm (nanometers). WINDOW MATERIALS Window materials commonly used in photomultiplier tubes are LUMINOUS SENSITIVITY described below. The window material must carefully be selec- Since measuring the spectral response characteristic of photo- ted according to the application because the window material multiplier tubes requires a sophisticated system and a great deal determines the spectral response short wavelength cutoff. of time, we instead provide figures for anode or cathode lumi- 1) Borosilicate glass nous sensitivity and only provide spectral response characteris- This is the most frequently used window material. Borosili- tics when specially required by the customer. cate glass transmits radiation from the infrared to approxi- Cathode luminous sensitivity is the photoelectric current from the mately 300 nm. It is not suitable for detection in the ultraviolet photocathode per incident light flux (10-5 to 10-2 lumens) from a region. For some applications, a combination of a bialkali filament lamp operated at a distribution temperature of photocathode and a low-noise borosilicate glass (so called K- 2856K. Anode luminous sensitivity is the anode output current free glass) is used. The K-free glass contains very low potas- (amplified by the process) per incident light sium (40K) which can cause unwanted background counts. flux (10-10 to 10-5 lumens) on the photocathode. Although the Tubes designed for scintillation counting often employ K-free same tungsten lamp is used, the light flux and the applied vol- glass not only for the faceplate but also for the side bulb to tage are adjusted to an appropriate level. These parameters are minimize noise pulses. particularly useful when comparing tubes having the same or 6 similar spectral response range. Hamamatsu final test sheets GAIN (CURRENT AMPLIFICATION) accompanying the tubes usually indicate these parameters ex- Photoelectrons emitted from a photocathode are accelerated by cept for tubes with Cs-I or Cs-Te photocathodes insensitive to an so as to strike the first dynode and produce sec- tungsten lamp light. (Radiant sensitivity at a specific wavelength ondary electron emissions. These secondary electrons then im- is listed for those tubes using CsI or Cs-Te.) pinge upon the next dynode to produce additional secondary The cathode luminous sensitivity is expressed in uA/lm (micro- electron emissions. Repeating this process over successive dy- amperes per lumen) and anode luminous sensitivity is ex- node stages achieves a high current amplification. A very small pressed in A/lm (amperes per lumen). Note that the lumen is a photoelectric current from the photocathode can therefore be ob- unit used for luminous flux in the visible region and therefore served as a large output current from the anode of the photomul- these values may be meaningless for tubes that are sensitive tiplier tube. beyond the visible light region. Gain is simply the ratio of the anode output current to the photo- Figure 6: Typical Human Eye Response from the photocathode. Ideally, the gain of a pho- and Spectral Distribution of 2856K Tungsten Lamp tomultiplier tube having n dynode stages and an average sec- ondary emission ratio δ per stage is δn. While the secondary 100 electron emission ratio δ is given by δ=A·Eα where A is the constant, E is the interstage voltage, and α is a TUNGSTEN 80 coefficient determined by the dynode material and geometric LAMP AT 2856 K structure. This usually has a value of 0.7 to 0.8. When a voltage V is applied between the cathode and the anode 60 of a photomultiplier tube having n dynode stages, the gain µ, be- comes

40 V α n VISUAL SENSITIVITY µ = δn = (A · Eα)n = A · RELATIVE VALUE (%) ( n+1 ) 20 n A αn αn = α · V = K · V (n+1) n (K: constant) 0 200 400 600 800 1000 1200 1400 Since photomultiplier tubes generally have 9 to 12 dynode sta-

WAVELENGTH (nm) TPMOB0054EC ges, the anode output has a 6th to 10th power gain proportional to the input voltage. So just a slight fluctuation in the applied vol- tage will appear as magnified 6 to 10 times in the photomultiplier BLUE SENSITIVITY INDEX AND RED/WHITE RATIO tube output. This means the photomultiplier tube is extremely The cathode blue sensitivity index and the red/white ratio are of- susceptible to fluctuations in the power supply voltage, so the ten used as a simple comparison of photomultiplier tube spectral power supply must be extremely stable and provide a minimum response. ripple, drift and temperature coefficient. Various types of well- The cathode blue sensitivity index is the photoelectric current regulated high-voltage power supplies designed for these re- from the photocathode produced by a light flux of a tungsten quirements are available from Hamamatsu (see page 96). lamp at 2856K passing through a blue filter (Corning CS 5-58 polished to half stock thickness), measured under the same con- ditions as the cathode luminous sensitivity measurement. The Figure 8: Typical Gain vs. Supply Voltage light flux, once transmitted through the blue filter cannot be ex- 104 109 pressed in lumens. The blue sensitivity index is an important parameter in scintillation counting using an NaI since the NaI scintillator produces emissions in the blue region of the 103 ANODE LUMINOUS 108 spectrum, and may be the decisive factor in energy resolution. SENSITIVITY The red/white ratio is used for photomultiplier tubes with a spec- tral response extending to the near infrared region. This parame- 102 107 ter is defined as the quotient of the cathode sensitivity measured with a light flux of a tungsten lamp at 2856K passing through a 101 106

red filter (Toshiba IR-D80A for the S-1 photocathode or R-68 for GAIN others) divided by the cathode luminous sensitivity measured without filters under the same conditions as in cathode luminous 100 105 sensitivity measurement.

Figure 7: Transmittance of Various Filters ANODE LUMINOUS SENSITIVITY (A / lm) 10-1 104 100

TOSHIBA R-68 GAIN 10-2 103 200 300 500 700 1000 1500 80 CORNING CS 5-58 (1/2 STOCK SUPPLY VOLTAGE (V) THICKNESS) TPMOB0058EB 60

40

TRANSMITTANCE (%) TOSHIBA 20 IR-D80A

0 200 400 600 800 1000 1200

WAVELENGTH (nm) TPMOB0055EB 7 Construction and Operating Characteristics

ANODE DARK CURRENT 2) of residual gases (ion feedback) A small amount of current flows in a photomultiplier tube even Residual gases inside a photomultiplier tube can be ionized when the tube is operated in a completely dark state. This output by collision with electrons. When these ions strike the photo- current is called the anode dark current, and the resulting noise cathode or earlier stages of dynodes, secondary electrons is a critical factor in determining the lower limit of light detection. may be emitted. These secondary electrons result in relative- As Figure 9 shows, dark current is greatly dependent on the sup- ly large output noise pulses. These noise pulses are usually ply voltage. observed as afterpulses following the primary signal pulses and may be a problem in detecting short light pulses. Present Figure 9: Typical Dark Current vs. Supply Voltage photomultiplier tubes are designed to minimize afterpulses. (AFTER 30 MINUTE STORAGE) 101 3) Glass scintillation When electrons deviating from their normal trajectories strike the glass envelope, scintillations may occur and a dark pulse may result. To eliminate this type of dark pulse, photomultipli- er tubes may be operated with the anode at a 0 10 and the cathode at ground potential. But this is not always possible during tube operation. To obtain the same effect without difficulty, Hamamatsu developed an "HA coating" in which the glass bulb is coated with a conductive paint making 10-1 the same electrical potential as the cathode (see "GROUND POLARITY AND HA COATING" on page 11). 4) Leakage current (ohmic leakage) Leakage current resulting from imperfect insulation of the -2

ANODE DARK CURRENT (nA) 10 glass stem base and socket may be another source of dark current. This is predominant when the photomultiplier tube is operated at a low voltage or low temperature. The flatter slopes in Figure 9 and 10 are mainly due to leakage current.

10-3 Contamination from dirt and moisture on the surface of the 400 600 800 1000 1200 1400 tube stem, base or socket may increase the leakage current,

APPLIED VOLTAGE (V) TPMOB0071EB and should therefore be avoided. 5) Field emissions Major sources of dark current may be categorized as follows: When a photomultiplier tube is operated at a voltage near the 1) of electrons maximum rated value, electrons might be emitted from elec- The materials of the photocathode emit tiny quantities of ther- trodes by the strong electric field and cause dark pulses. So mionic electrons even at room temperature. Most dark cur- operating the photomultiplier tube at a voltage 20 to 30% low- rents originate from the thermionic emissions, especially er than the maximum rating is recommended. those from the photocathode since they are successively The anode dark current decreases with time after the tube is multiplied by the dynodes. Cooling the photocathode is most placed in a dark state. In this catalog, anode dark currents are effective in reducing thermionic emission and is particularly measured after 30 minutes of storage in a dark state. useful in applications where low dark current is essential such as in photon counting. Figure 10 shows the relationship between dark current and ENI (EQUIVALENT NOISE INPUT) temperature for various photocathodes. Photocathodes which ENI indicates the photon-limited signal-to-noise ratio. ENI refers have high sensitivity in the red to infrared region, especially to the amount of light in watts necessary to produce a signal-to- S-1, show higher dark current at room temperature. Photo- noise ratio of unity in the output of a photomultiplier tube. The multiplier tubes using these photocathodes are usually value of ENI is given by: cooled during operation. ∆f Hamamatsu provides thermoelectric coolers (C9143, C9144, ENI = 2q · Idb · g · (watts) C4877, C4878) designed for various sizes of photomultiplier S tubes (see page 102). where q = electronic charge (1.60 × 10-19 coul.) Figure 10: Anode Dark Current vs. Temperature Idb = anode dark current in amperes after 30minute storage in darkness -5 10 g = gain ∆f = bandwidth of the system in hertz (usually 1 hertz) 10-6 R316-02 S = anode radiant sensitivity in amperes per watt (HEAD-ON TYPE, Ag-O-Cs) at the wavelength of interest 10-7 For tubes listed in this catalog, the value of ENI may be calcula- -15 10-8 R374 ted by the above equation. Usually it has a value between 10 (HEAD-ON TYPE, -16 MULTIALKALI) and 10 watts (at the peak sensitivity wavelength). 10-9 MAGNETIC FIELD EFFECTS 10-10 Most photomultiplier tubes are affected by the presence of mag- netic fields. Magnetic fields may deflect electrons from their nor-

ANODE DARK CURRENT (A) -11 10 mal trajectories and cause a loss of gain. The extent of the gain R3550A (HEAD-ON TYPE, loss depends on the type of photomultiplier tube and its orienta- 10-12 LOW-NOISE BIALKALI) tion in the magnetic field. Figure 11 shows typical effects of mag- R6095 (HEAD-ON TYPE, BIALKALI) netic fields on some types of photomultiplier tubes. In general, 10-13 tubes having a long path from the photocathode to the first dy- -60-40 -20 0 20 40 node (such as large diameter tubes) tend to be more adversely ° TEMPERATURE ( C) TPMOB0065EB affected by magnetic fields. 8 Figure 11: Typical Effects by Magnetic Fields Perpendicular SPATIAL UNIFORMITY to Tube Axis Although the focusing electrodes of a photomultiplier tube are 120 designed so that electrons emitted from the photocathode or dy- nodes are collected efficiently by the first or following dynodes, 110 28 mm dia. SIDE - ON TYPE some electrons may deviate from their desired trajectories caus- 100 ing lower collection efficiency. The collection efficiency varies with the position on the photocathode from which the photoelec- 90 trons are emitted and influences the spatial uniformity of a pho- 80 tomultiplier tube. The spatial uniformity is also determined by the

70 photocathode surface uniformity itself. In general, head-on type photomultiplier tubes provide better RELATIVE OUTPUT (%) 60 spatial uniformity than side-on types because of the photoca- 50 13 mm dia. thode to first dynode geometry. Tubes especially designed for HEAD-ON TYPE LINEAR-FOCUSED applications have excellent spatial uniformity, 40 ( ) TYPE DYNODE because uniformity is the decisive factor in the overall perfor- 30 mance of a gamma camera. 38 mm dia. 20 HEAD-ON TYPE CIRCULAR CAGE Figure 13: Examples of Spatial Uniformity ( TYPE DYNODE ) 10 1) Head-On Type 2) Side-On Type 0 (R6231-01 for gamma camera) Reflection-mode photocathode -0.5 -0.4 -0.3 -0.2 -0.10 0.1 0.2 0.3 0.4 0.5 PHOTO- CATHODE 100 MAGNETIC FLUX DENSITY (mT) TPMOB0086EC (TOP VIEW) ANODE 50 SENSITIVITY (%)

When a photomultiplier tube has to be operated in magnetic 050 100 0 fields, it may be necessary to shield the tube with a magnetic ANODE SENSITIVITY (%) shield case. (Hamamatsu provides a variety of magnetic shield cases. See page 106). The magnetic shielding factor is used to express the effect of a magnetic shield case. This is the ratio of 100 PHOTO- the strength of the magnetic field outside the shield case or CATHODE Hout, to that inside the shield case or Hin. The magnetic shield- 50 ing factor is determined by the permeability µ, the thickness t GUIDE KEY (mm) and inner diameter r (mm) of the shield case as follows. 0

Hout 3 µt ANODE SENSITIVITY (%) TPMHC0085EB TPMSC0030EC = Hin 4 r Note that the magnetic shielding effect decreases towards the edge of the shield case as shown in Figure 12. Covering the TEMPERATURE CHARACTERISTICS tube with a shield case longer than the tube length by at least Dark current originating from thermionic emissions can be re- half the tube diameter is recommended. duced by decreasing the ambient temperature of a photomultipli- er tube. The photomultiplier tube sensitivity also varies with the Figure 12: Edge Effect of Magnetic Shield Case temperature, but these changes are smaller than temperature-in- duced changes in dark current, so cooling a photomultiplier tube EDGE EFFECT will significantly improve the S/N ratio. t LONGER than r In the ultraviolet to visible region, the sensitivity temperature coefficient has a negative value, while near the long wavelength cutoff it has a positive value. Figure 14 shows typical tempera-

2r PHOTOMULTIPLIER TUBE ture coefficients for various photocathodes versus wavelength, L measured at room temperatures. Since the change in tempera- 1000 ture coefficient change is large near the long wavelength cutoff, temperature control may be needed in some applications. 100

10 Figure 14: Temperature Coefficient for Anode Sensitivity (Typ.)

SHIELDING FACTOR (Ho/Hi) 1.5 1 r r

TPMOB0011EB

C] 1

° BIALKALI MULTIALKALI Hamamatsu provides photomultiplier tubes using fine-mesh type Sb-Cs dynodes (see page 54). These photomultiplier tubes exhibit 0.5 Cs-Te much higher resistance to external magnetic fields than the pho- GaAs (Cs) tomultiplier tubes with other dynodes. When the light level to be measured is high, "" and "" type tubes can be used 0 even in highly magnetic fields.

Ag-O-Cs TEMPERATURE COEFFICIENT -0.5 FOR ANODE SENSITIVITY [%/ MULTIALKALI Sb-Cs

-1 200 300 400 500 600 700 800 900 1000 1100 1200

WAVELENGTH [nm] TPMOB0013EB 9 Construction and Operating Characteristics

HYSTERESIS TIME RESPONSE Photomultiplier tubes exhibit a slightly unstable output for sever- In the measurement of pulsed light, the anode output signal al seconds to nearly 1 minute after a voltage is applied or light is should faithfully reproduce a waveform resembling the incident input, and the output may overshoot or undershoot before reach- pulse waveform. This reproducibility is greatly affected by the ing a stable level (Figure 15). This unstable condition is called electron transit time, anode pulse rise time, and electron transit hysteresis and may be a problem in and time spread (T.T.S.). other applications. As illustrated in Figure 17, the electron transit time is the time in- Hysteresis is mainly caused by electrons deviating from their terval between the arrival of a delta function light pulse (pulse planned trajectories and electrostatically charging the dynode width less than 50 ps) at the photocathode and the instant when support section and glass bulb. When the applied voltage chan- the anode output pulse reaches its peak amplitude. The anode ges along with a change in the input light, noticeable hysteresis pulse rise time is defined as the time needed to rise from 10 % can occur. to 90 % of peak amplitude when the entire photocathode is illu- As a countermeasure, many Hamamatsu side-on photomultiplier minated by a delta function light pulse (pulse width less than 50 tubes employ an "anti-hysteresis design" which virtually elimin- ps). ates hysteresis. The electron transit time fluctuates between individual light pul- ses. This fluctuation is called transit time spread (T.T.S.) and de- Figure 15: Hysteresis fined as the FWHM of the frequency distribution of electron tran- sit times (Figure 18). The T.T.S. is an important factor in time-re- solved measurement. The time response characteristics depend on the dynode struc- ture and applied voltage. In general, photomultiplier tubes using I max. a linear-focused or circular-cage structure exhibit better time re- Ii I min. sponse than tubes using a box-and-grid or venetian blind struc- ture. Photomultiplier tubes for high-speed photometry use a ANODE CURRENT spherical window or plano-concave window (flat on one side and 0567 concave on the other) and electrodes specifically designed to TIME (MINUTE) shorten the electron transit time. MCP-PMTs, which employ an TPMOC0071EA MCP in place of conventional dynodes, offer better time re- sponse than tubes using other dynodes. For example, these have a significantly better T.T.S. compared to normal photomulti- plier tubes because a nearly parallel electric field is applied be- tween the photocathode, the MCP and the anode. Figure 19 DRIFT AND LIFE CHARACTERISTIC shows typical time response characteristics vs. applied voltage While operating a photomultiplier tube continuously over a long for Hamamatsu R2059 (51 mm diameter head-on, 12-stage, lin- period, the anode output current of the photomultiplier tube may ear-focused type). vary slightly over time, even though operating conditions have not changed. Among the anode current fluctuations, changes over a relatively short time are called "drift", while changes over Figure 17: Anode Pulse Rise Time and Electron Transit Time long periods such as 103 to 104 hours or more are called the life DELTA FUNCTION LIGHT characteristic. Figure 16 shows typical drift curves. Drift is primarily caused by damage to the last dynode by heavy electron bombardment. Therefore the use of lower anode current RISE TIME FALL TIME is desirable. When stability is of prime importance, keeping the µ 10 % average anode current within 1 A or less is recommended. ANODE OUTPUT 90 % SIGNAL Figure 16: Typical Life Characteristics TRANSIT TIME

TPMOB0060EB PMT:R1924A SUPPLY VOLTAGE:1000 V INITIAL ANODE CURRENT:10 µA x¯ + σ

100 Figure 18: Electron Transit Time Spread (T.T.S.)

x¯ TYPE NO. : R2059 ∗FWHM=550 ps 104 ∗FWTM=1228 ps 50 x¯ - σ

103 RELATIVE ANODE CURRENT (%)

102 0 1 10 100 1000 10000

101

TIME (h) RELATIVE COUNT TPMHB0448EB 100

-5 -4 -3 -2 -1 0 1 2 3 4 5

TIME (ns) TPMHB0126EC

10 Figure 19: Time Response Characteristics vs. Supply Voltage Generally high output current is required in pulsed light applica- TYPE NO. : R2059 tions. In order to maintain dynode potentials at a constant value 10 2 during pulse durations and obtain high peak currents, TRANSIT TIME are placed in parallel with the divider as shown in Fig- ure 20 (b). The values depend on the output charge. When the output linearity versus input pulsed light needs to be better than 1 %, the capacitor value should be at least 100 times 10 1 the photomultiplier output charge per pulse. If the peak output current (amperes) is I, the pulse width (seconds) t, and the vol- tage across the capacitor () V, then the capacitor value C RISE TIME should be as follows: TIME (ns)

0 I · t 10 C > 100 (farads) V

T. T. S. In high energy physics applications where a high pulse output is required, output saturation will occur at a certain level as the in- cident light is increased while the interstage voltage is kept 500 1000 1500 20002500 3000 fixed,. This is caused by an increase in electron density between the electrodes, causing effects which disturb the SUPPLY VOLTAGE (V) TPMOB0059EC electron current flow. As a corrective measure to overcome VOLTAGE-DIVIDER CIRCUITS these space charge effects, the voltage applied to the last few Interstage voltages for the dynodes of a photomultiplier tube are stages, where the electron density becomes high, should be set usually supplied by voltage-divider circuits consisting of series- to a higher value than the standard voltage distribution so that connected resistors. Schematic diagrams of typical voltage-div- the voltage gradient between those electrodes is enhanced. For ider circuits are illustrated in Figure 20. Circuit (a) is a basic ar- this purpose, a so-called tapered divider circuit (Figure 22) is of- rangement (DC output) and (b) is for pulse operations. Figure 21 ten employed. Use of this tapered divider circuit improves pulse shows the relation between the incident light level and the output linearity 5 to 10 times better than in normal divider circuits. current of a photomultiplier tube using the voltage-divider circuit Hamamatsu provides a variety of socket assemblies incorporat- of figure 20. Deviation from ideal linearity occurs at a certain inci- ing voltage-divider circuits. They are compact, rugged, light- dent level (region B). This is caused by an increase in dynode weight and carefully engineered to obtain the maximum perfor- voltage due to the redistribution of the voltage loss between the mance of a photomultiplier tube with just a simple connection. last few stages, resulting in an apparent increase in sensitivity. As the input light level is increased, the anode output current be- Figure 22: Typical Tapered Divider Circuit gins to saturate near the value of the current flowing through the (region C). To prevent this problem, it is recom- PHOTOCATHODE ANODE SIGNAL mended that the voltage-divider current be maintained at least at OUTPUT 20 times the average anode output current required from the RL photomultiplier tube. 1R 1R 1R 1R 2R 3R 2.5R Figure 20: Schematic Diagrams of Voltage-Divider Circuits C1 C2 C3 a) Basic arrangement for DC operation -HV PHOTOCATHODE ANODE TACCC0035EB

RL

1R 1R 1R 1R 1R 1R 1R 1R 1R 1R 1R

-HV b) For pulse operation GROUND POLARITY AND HA COATING PHOTOCATHODE ANODE The general technique used for voltage-divider circuits is to ground the anode with a high negative voltage applied to the RL cathode, as shown in Figure 20. This scheme facilitates the con-

1R 1R 1R 1R 1R 1R 1R 1R 1R 1R 1R nection of such circuits as ammeters or current-to-voltage con- version operational to the photomultiplier tube. How- -HV C1 C2 C3 TACCC0030EC ever, when a grounded anode configuration is used, bringing a Figure 21: Output Characteristics of PMT Using Voltage- grounded metallic holder or magnetic shield case near the bulb Divider Circuit of figure 20 of the tube can cause electrons to strike the inner bulb wall, re- 10 sulting in the generation of noise. Also, in head-on type photo- multiplier tubes, if the faceplate or bulb near the photocathode is C grounded, the slight conductivity of the glass material causes a 1.0 current to flow between the photocathode (which has a high B ACTUAL negative potential) and ground. This may cause significant dete- CURVE rioration of the photocathode. For this reason, extreme care is 0.1 IDEAL required when designing housings for photomultiplier tubes and CURVE when using electrostatic or magnetic shield cases. .In addition, when using foam rubber or similar material to mount TO DIVIDER CURRENT 0.01 A the tube in its housing, it is essential that material having suffi- ciently good insulation properties be used. This problem can be RATIO OF AVERAGE OUTPUT CURRENT solved by applying a black conductive coat around the bulb, con- 0.001 0.001 0.01 0.1 1.0 10 necting it to the cathode potential and covering the bulb with a protective film. This is called an "HA Coating" (see Figure 23). LIGHT FLUX (A.U.) TACCB0005EA 11 Construction and Operating Characteristics

As mentioned above, the HA coating can be effectively used to Figure 26: Discrete Output Pulses (Single Photon Event) eliminate the effects of external potential on the side of the bulb. However, if a grounded object is located on the photocathode faceplate, there are no effective countermeasures. Glass scintil- lation, if occurring in the faceplate, has adverse noise effects and also causes deterioration of the photocathode sensitivity. To TIME solve these problems, it is recommended that the photomultiplier TPMOC0074EB tube be operated in the cathode grounding scheme, as shown in Figure 24, with the anode at a high positive voltage. For exam- Simply counting the photomultiplier tube output pulses will not ple in scintillation counting, since the grounded scintillator is di- result in an accurate measurement, since the output contains rectly coupled to the faceplate of a photomultiplier tube, ground- noise pulses such as dark pulses and cosmic ray pulses extra- ing the cathode and maintaining the anode at a high positive vol- neous to the signal pulses representing photoelectrons as tage is recommended. In this case, a coupling capacitor Cc must shown in Figure 27. The most effective method for eliminating be used to isolate the high positive voltage applied to the anode the noise is to discriminate the output pulses according to their from the signal, and DC signals cannot be output. amplitude. (Dark current pulese by thermal electrons emitted from the photocathode cannot be eliminated.) Figure 23: HA Coating GLASS BULB Figure 27: Output Pulse and Discrimination Level CONDUCTIVE PAINT ULD: Upper Level Discri. COSMIC RAY PULSE (SAME POTENTIAL LLD: Lower Level Discri. AS CATHODE) DARK CURRENT PULSE INSULATING ULD

PULSE HEIGHT SIGNAL PULSE PROTECTIVE COVER

CONNECTED TO CATHODE PIN LLD

TPMOC0015EA TIME Figure 24: Cathode Ground Scheme TPMOC0075EC PHOTOCATHODE ANODE Cc SIGNAL A typical pulse height distribution (PHD) for a photomultiplier OUTPUT tube output is shown in Figure 28. In this PHD, the lower level RP discrimination (LLD) is set at the valley trough and the upper lev-

R1 R2 R3 R4 R5 R6 R7 C el discrimination (ULD) at the foot where there are very few out- C put pulses. Most pulses smaller than the LLD are noise and pul-

+HV TACCC0036EC ses larger than the ULD result from cosmic rays, etc. Therefore, by counting the pulses remaining between the LLD and ULD, ac- curate light measurements can be made. In the PHD, Hm is the PHOTON COUNTING mean height of the pulses. The LLD should be set at 1/3 of Hm Photon counting is one effective way to use a photomultiplier and the ULD at triple Hm. The ULD may be omitted in most ca- tube for measuring extremely low light levels and is widely used ses. in astronomical photometry and for making chemiluminescence Considering the above, a clearly defined peak and valley in the and bioluminescence measurements. In its usual application, a PHD is a very significant characteristic required of photomultipli- number of photons enter the photomultiplier tube and create an er tubes for photon counting. Figure 28 shows the typical PHD of output pulse train like that in (a) of Figure 25. The actual output a photomultiplier tube selected for photon counting. obtained by the measurement circuit is a DC current with a fluc- tuation as shown at (b). Figure 28: Typical Single Photon Pulse Height Distribution Figure 25: Overlapping Output Pulses a) SIGNAL PULSE + NOISE PULSE

NOISE PULSE TIME COUNTS b)

TIME LLD Hm ULD PULSE HEIGHT TPMOC0073EB TPMOC0076EA When the light intensity becomes so low that the incident pho- tons are separated as shown in Figure 26. This condition is called a single photon event. The number of output pulses is in direct proportion to the amount of incident light and this pulse SCINTILLATION COUNTING counting method has the advantages of better S/N ratio and sta- Scintillation counting is one of the most sensitive and effective bility than the current measurement method that averages all the methods for detecting radiation. It uses a photomultiplier tube pulses. This pulse counting technique is known as the photon coupled to a scintillator that produces light when struck by radia- counting method. tion. 12 Figure 29: Scintillation Using PMT and Scintillator b) 137Cs+NaI (Tl) 10000 (51 mm dia. × 51 mm t) REFLECTIVE PHOTOCATHODE COATING PHOTOELECTRONS

ANODE DYNODES 5000 COUNTS RADIATION SOURCE

0500 1000 SCINTILLATOR OPTICAL COUPLING PMT ENERGY (USING SILICONE OIL etc.) TPMHC0052EC c) 60Co+NaI (Tl) In radiation particle measurements, there are two parameters 10000 (51 mm dia. × 51 mm t) that should be measured. One is the energy of individual radia- tion particles and the other is the amount of radiation. Radiation 5000 measurement should determine these two parameters. COUNTS When radiation particles enter the scintillator, they produce light flashes in response to each particle. The amount of flash is ex- tremely low, but is proportional to the energy of the incident par- ticle. Since individual light flashes are detected by the 0500 1000 ENERGY photomultiplier tube, the output pulses obtained from the photo- TPMOB0087EC multiplier tube contain information on both the energy and amount of pulses, as shown in Figure 30. By analyzing these output pulses using a multichannel analyzer (MCA), a pulse Figure 32: Definition of Pulse Height Resolution (FWHM) height distribution (PHD) or energy spectrum is obtained, and b the amount of incident particles at various energy levels can be measured accurately. Figure 31 shows typical PHDs or energy spectra when radiation (55Fe, 137Cs, 60Co) is detected by the combination of an NaI(Tl) scintillator and a photomultiplier tube. The PHD must show distinct peaks at each energy level. These a peaks are evaluated as pulse height resolution which is the most H significant characteristic in the radiation measurements. As Fig- H ure 32 shows, the pulse height resolution is defined as the NUMBER OF PULSES 2 FWHM (a) divided by the peak value (b) when pulse height dis- tribution is measured using a single radiation source such as PULSE HEIGHT 137 55 Cs and Fe. TPMOB0088EB

Figure 30: Incident Radiation Particles and PMT Output a Energy resolution = × 100 % b TIME

Figure 33: PMT Spectral Response and Spectral Emission of Scintillators

100 SCINTILLATOR BGO

THE HEIGHT OF OUTPUT CsI (Tl) PULSE IS PROPORTIONAL BaF2 PMT TO THE ENERGY OF INCIDENT PARTICLE. NaI (Tl) 10

BIALKALI

1 QUANTUM EFFICIENCY (%) CURRENT

TIME OF VARIOUS SCINTILLATOR (%)

TPMOC0039EC RELATIVE EMISSION DISTRIBUTION 0.1 200 300 400 500 600 700 800 Figure 31: Typical Pulse Height Distributions (Energy Spectra) a) 55Fe+NaI (TI) WAVELENGTH (nm) TPMOB0073EA 1000 (51 mm dia. × 2.5 mm t)

Pulse height resolution is mainly determined by the quantum effi-

COUNTS 500 ciency of the photomultiplier tube that detects the scintillator emission. In the case of thallium-activated iodide or Na- I(Tl), which is one of the most popular scintillators, a head-on type photomultiplier tube with a bialkali photocathode is widely 0500 1000 used since its spectral response matches the NaI(Tl) scintillator ENERGY spectrum. 13 Connections to External Circuits

LOAD RESISTANCE This value of Ro, which is less than the value of RL, is then the Since the output of a photomultiplier tube is a current signal and effective load resistance of the photomultiplier tube. If, for exam- the type of external circuit to which photomultiplier tubes are ple, RL=Rin, then the effective load resistance is 1/2 that of RL usually connected has voltage inputs, a load is used for alone. From this we see that the upper limit of the load resis- current-voltage conversion. This section describes factors to tance is actually the input resistance of the amplifier and that consider when selecting this load resistor. making the load resistance much greater than this value does Since for low output current levels, the photomultiplier may be not have a significant effect. assumed to act as virtually an ideal constant-, the While the above description assumed the load and input impe- load resistance can be made arbitrarily large, when converting a dances to be purely resistive, stray , input capaci- low-level current output to a high-level voltage output. In prac- tance and stray inductances affect the phase relationships dur- tice, however, using a very large load resistance causes poor ing actual operation. Therefore, as the frequency is increased, frequency response and output linearity as described below. these circuit elements must be considered as compound impe- dances rather than pure resistances. Figure 34: Photomultiplier Tube Output Circuit From the above, three guides can be derived for selecting the load resistance: PHOTOCATHODE ANODE SIGNAL 1) When frequency response is important, the load resistance OUTPUT should be made as small as possible. Ip RL CS 2) When output linearity is important, the load resistance should be chosen to keep the output voltage within a few volts. 3) The load resistance should be less than the input impe-

-HV dance of the external amplifier. TACCC0037EB

HIGH-SPEED OUTPUT CIRCUITS In the circuit of Figure 34, if we let the load resistance be RL and When detecting high-speed and pulsed light signals, a coaxial the total of the photomultiplier tube anode to all cable is used to make the connection between the photomultipli- other electrodes including stray capacitance such as wiring er tube and the electronic circuit. Since commonly used cables capacitance be Cs, then the cutoff frequency fc is expressed by have characteristic impedances of 50 Ω, this cable must be ter- the following relationship. minated in a pure resistance equal to the characteristic impe- dance to match the impedance and ensure -free trans- 1 fc = mission of the signal waveform. If a matched transmission line is 2 π Cs · RL used, the impedance of the cable as seen by the photomultiplier This relationship indicates that even if the photomultiplier tube tube output will be the characteristic impedance of the cable, re- and amplifier have very fast response, the response will be gardless of the actual cable length so no distortion will occur in limited to the cutoff frequency fc of the output circuit. If the load the signal waveform. If the impedance is not properly matched when the signal is re- resistance is made large, then the voltage drop across RL becomes large at high current levels, affecting the voltage ceived, the impedance seen at the photomultiplier tube output differential between the last dynode stage and the anode. This will differ depending on both frequency and cable length, caus- increases the effect of the space charge and lowers the ing significant waveform distortion. Impedance mismatches efficiency of the anode in collecting electrons. In effect, the might also be due to the connectors being used. So these con- nectors should be chosen according to the frequency range to output becomes saturated above a certain current, causing poor be used, to provide a good match with the coaxial cable. output linearity (output current linearity versus incident light When a mismatch at the signal receiving end occurs, not all of level) especially when the circuit is operated at low voltages. the pulse energy from the photomultiplier tube is dissipated at the receiving end and is instead partially reflected back to the Figure 35: Amplifier Internal Resistance photomultiplier tube via the cable. However if an impedance

1) PMT P match has been achieved at the cable end on the photomultiplier tube side, then this reflected energy will be fully dissipated there. DYn SIGNAL Rin . If this is a mismatch, however, the energy will be reflected and OUTPUT RL CS returned to the signal-receiving end because the photomultiplier tube itself acts as an open circuit. Since part of the pulse makes a round trip in the coaxial cable and is again input to the receiv- ing end, this reflected signal is delayed with respect to the main pulse and results in waveform distortion (so called ringing phe- 2) PMT P CC nomenon). DYn Rin SIGNAL To prevent this phenomenon, in addition to matching the impe- OUTPUT RL CS dance at the receiving end, a resistor is needed for matching the cable impedance at the photomultiplier tube end as well (Figure 36). If this is provided, it is possible to eliminate virtually all ring- TACCC0017EA ing caused by an impedance mismatch, although the output pulse height of the photomultiplier tube is reduced to one-half of the normal level by use of this resistor. In Figure 35, let us consider the effect of the internal resistance of the amplifier. If the load resistance is RL and the input Figure 36: Connection to Prevent Ringing impedance of the amplifier is Rin, the combined parallel output 50 Ω OR 75 Ω COAXIAL CABLE resistance of the photomultiplier tube, Ro, is given by the following equation. PMT RL (50 Ω OR 75 Ω 50 Ω OR 75 Ω CONNECTOR MATCHING RESISTOR) RL · Rin Ro = HOUSING ANTI-REFLECTION RL + Rin RESISTOR

TACCC0039EB 14 Next, let us consider waveform observation of high-speed pulses Figure 38: Current-Voltage Conversion Using Operational using an . This type of operation requires a low load Amplifier resistance. However, the oscilloscope sensitivity is limited so an Rf amplifier may be required. lp lp p Vo= -lp ⋅ Rf Cables with a matching resistor have the advantage that the – cable length will not affect the electrical characteristics of the PMT + cable. However, since the matching resistance is very low com- OP-AMP V pared to the usual load resistance, the output voltage becomes too small. While this situation can be remedied with a high gain amplifier, the inherent noise of such an amplifier can itself hurt TACCC0041EA measurement performance. In such cases, the photomultiplier tube should be brought as close as possible to the amplifier to If the has an offset current (Ios), the above- reduce stray capacitance and a larger load resistance should be described output voltage becomes Vo = -Rf (Ip+Ios), with the off- used (while still maintaining the frequency response), to achieve set current component being superimposed on the output. Fur- the desired input voltage. (See Figure 37.) thermore, the magnitude of the temperature drift may create a problem. In general, a metallic film resistor which has a low tem- Figure 37: Measurement with Ringing Suppression Measures perature coefficient is used for the resistance Rf, and for high re- PMT sistance values, a vacuum-sealed type with a low leakage cur- P DYn rent is used. Carbon resistors with their highly temperature-de-

RL pendent resistance characteristics are not suitable for this appli- OSCILLOSCOPE cation. In addition to the above factors, when measuring extremely low level currents such as 100 pA and below, the materials used to WIRING SHOULD BE fabricate the circuit also require careful selection. For example, AS SHORT AS POSSIBLE. TACCC0026EA materials such as bakelite are not suitable. More suitable materi- It is relatively simple to implement a high-speed amplifier using a als include teflon, polystyrol or steatite. Low-noise cables should wide-band video amplifier or operational amplifier. However, as also be used, since general-purpose coaxial cables exhibit noise a trade-off for design convenience, these ICs tend to create per- due to physical factors. An FET input operational amplifier is rec- formance problems (such as noise). This makes it necessary to ommended for measuring low-level current. know their performance limits and take corrective action if nec- essary. Figure 39: Frequency Compensation by Operational Amplifier

As the pulse repetition frequency increases, baseline shift be- Cf comes one reason for concern. This occurs because the DC sig- nal component has been eliminated from the signal circuit by Cs coupling with a capacitor which blocks the DC components. If SHIELD CIRCUIT this occurs, the reference zero level observed at the last stage is not the actual zero level. Instead, the apparent zero level is a time-average of the positive and negative fluctuations of the sig- Rf nal waveform. This is known as baseline shift. Since the height of the pulses above this baseline level is affected by the repeti- - SIGNAL tion frequency, this phenomenon can be a problem when ob- OUTPUT + serving waveforms or discriminating pulse levels. OP-AMP.

TACCC0042EA

OPERATIONAL AMPLIFIERS In Figure 39, if a capacitance Cf (including any stray capacitance) When a high-sensitivity ammeter is not available, using an op- is in parallel with the resistance Rf, the circuit exhibits a time erational amplifier allows making measurements with an inex- constant of (Rf × Cf), and the response speed is limited to this pensive voltmeter. This section explains the technique for con- time constant. This is a particular problem if the Rf is large. Stray verting the output current of a photomultiplier tube to a voltage capacitance can be reduced by passing Rf through a hole in a signal. The basic circuit is as shown in Figure 38, for which the shield plate. When using coaxial signal input cables, oscillations output voltage, Vo, is given by the following relationship. may occur and noise might be amplified since the cable capaci- tance Cc and Rf are in a feedback loop. While one method to Vo = -Rf · Ip avoid this is to connect Cf in parallel with Rf, to reduce high fre- quency gain as described above, this method creates a time This relationship is derived for the following reason. If the input constant of Rf × Cf which limits the response speed. impedance of the operational amplifier is extremely large, and the output current of the photomultiplier tube is allowed to flow into the inverted (–) input terminal of the amplifier, most of the current will flow through Rf and subsequently to the operational amplifier output circuit. The output voltage Vo is therefore given by the expression -Rf × Ip. When using such an operational am- plifier, it is not of course possible to make unlimited increases in the output voltage because the actual maximum output is rough- ly equal to the operational amplifier supply voltage. At the other end of the scale, for extremely small currents, there are limits due to the operational amplifier offset current (Ios), the quality of Rf, and other factors such as the insulation materials used.

15 Selection Guide by Applications

Applications Required Major Characteristics Applicable PMT

Spectroscopy GEquipment Utilizing Absorption UV/Visible/IR Spectrophotometer When light passes through a substance, the light en- ergy causes changes in the electron energy of the substance, resulting in partial energy loss. This is called absorption and can be used to yield analytical R928, R955, R3896 data. In order to determine the quantity of a sample R7639 substance, it is irradiated while its light wavelength is R374, R376 scanned continuously. The spectral intensities of the light before and after passing through the sample are 1) Wide spectral response then detected by a photomultiplier tube and the 2) High stability amount of absorption in this way measured. 3) Low dark noise 4) High quantum efficiency 5) Low hysteresis Atomic Absorption Spectrophotometer 6) Good polarization characteristics This is widely used in analysis of minute quantities of metallic elements. A special elementary hollow cath- ode lamp for each element to be analyzed is used to R928 irradiate a sample which is burned to atomize it. A R955 photomultiplier tube then detects the light passing R7154 through the sample to measure the amount of ab- sorption, which is compared with a pre-measured ref- erence sample.

GEquipment Utilizing Emission Photoelectric Emission Spectrophotometer When external energy is applied to a sample, that sample then emits light. . By using a monochromator R6350, R6352, R6354 to disperse this light emission into characteristic spec- R6355, R6356, R7311 tral lines of elements and measuring their presence 1P28, R212, R1527 and intensity simultaneously with photomultiplier R7446, R8487 tubes, the photoelectric emission spectrophotometer can perform rapid qualitative and quantitative analysis of the elements contained in the sample. 1) High sensitivity 2) Low dark noise Fluorescence Spectrophotometer 3) High stability The fluorescence spectrophotometer is used in bio- logical science, especially in molecular biology. When an excitation light is applied, some substances emit R6353, R6358, R6357 light with a wavelength longer than that of the excita- R3788, R4220, R1527 tion light. This light is known as fluorescence. The in- R928, R3896 tensity and spectral characteristics of the fluorescence are measured by a photomultiplier tube, and the sub- stance then analyzed qualitatively and quantitatively.

Raman When monochromatic light strikes a substance and scatters, a process called Raman also oc- curs at a wavelength different from the excitation R2949 light. Since this wavelength differential is a unique 1) High quantum efficiency R1463P, R649 characteristic of a molecule, spectral measurement of 2) Less dark count Raman scattering can provide qualitative and quanti- 3) Single photon discrimination ability R943-02 tative data of molecules. Raman scattering is ex- R7400U-20 tremely weak and a sophisticated optical system is required for measurement, with the photomultiplier tube operated in the photon counting mode.

Other Spectrophotometric Equipment Using R3788, R4220 Photomultiplier Tubes R647-01, R1166, R6095, R580 • Liquid or gas chromatography R647 • X-ray diffractometers, X-ray fluorescence analyzers R7400U-01, R5900U-01 • Electron

16 Applications Required Major Characteristics Applicable PMT

Mass Spectroscopy and Solid Surface Analysis Solid Surface Analysis The composition and structure of a solid surface can be studied by irradiating a narrow beam of electrons, ions, light or X-rays onto the surface and measuring 1) High environmental resistance the secondary electrons, ions or X-rays that are pro- 2) High stability R474, R515, R596, R595 duced. Due to the rapid progress being made in the 3) High gain R2362, R5150-10 industry, this kind of is es- 4) Low dark current sential for measuring , including de- The above product is an electron fects, surface analysis, adhesion, and density profile. multiplier Electrons, ions, and X-rays are measured with elec- tron multipliers and MCPs.

Pollution Monitoring Dust Counter A dust counter measures the density of dust or partic- 1) Less dark count R6350 les floating in the atmosphere or inside rooms. The 2) Less spike noise R105, R3788 dust counter makes use of light scattering or absorp- 3) High quantum efficiency R647, R1924A, R6095 tion of beta-rays by the dust particles. Turbidimeter When floating particles are contained in a liquid, the light incident on the liquid is absorbed, scattered or 1) Low dark current R6350, R6357 refracted by these particles. This process merely ap- 2) Less spike noise R105, R7400U-01 pears cloudy or hazy to the human eye. A turbidime- 3) High quantum efficiency R1924A ter is a device that numerically measures the turbidity by using light transmission and scattering.

1) High quantum efficiency at target wave- Other Pollution Monitoring Equipment Using NOx= R3896, R5984, R374 lengths Photomultiplier Tubes R2228, R5929, R5070A • NOx meters, SOx meters 2) Low dark current 3) Good temperature characteristic SOx= R6095, R3788, R1527 4) High stability R5983

Biotechnology Flow Cytometer A flow cytometer uses a laser to irradiate cells labeled with fluorescent substance and measures the result- ing fluorescence or scattered light from those cells with a photomultiplier tube, in order to identify each cell. A cell sorter is one kind of flow cytometer having the function of sorting specific cells. DNA Sequencer The DNA sequence is used to decode the base ar- rangement of DNA. When a voltage is applied across the both ends of a gelatinous substance (gel) into R6357, R6358 which DNA segments are injected, those DNA seg- 1) High quantum efficiency R928, R3788 ments with a negative electric charge are drawn to- 2) High stability R4220, R3896 wards the plus electrode. The shorter the DNA seg- 3) Low dark current R7400U-01, R7400U-20 ment, the faster it moves, resulting in a separation ac- 4) High gain R5900U-01, R5900U-01-M4 cording to the DNA segment length. The base ar- R5900U-20-L16 rangement of each DNA segment can be determined H7260-20 by detecting the fluorescence emitted from the label- ing pigment at the end of each DNA.

DNA Microarray Scanner In this equipment, a DNA sample labeled by fluores- cent dye is combined with a DNA probe having a large number of DNAs whose arrangement is known and fixed at a high density on a glass plate or substrate. A laser beam is used to scan the sample and the resulting fluorescent intensity is measured to investigate the gene information. 17 Selection Guide by Applications

Applications Required Major Characteristics Applicable PMT

Medical Applications

Gamma Camera R6231-01 The gamma camera obtains an image of a radioiso- R6234-01 tope injected into the body of a patient to locate ab- 1) High energy resolution R6235-01 normalities. This equipment originated from a scintil- 2) Good uniformity R6236-01 lation scanner and has been gradually improved. Its 3) High stability R1307-01 detection section uses a large diameter NaI(Tl) scintil- 4) Uniform gain (between each tube) R6233-01 lator and light-guide coupled to a photomultiplier tube R6237-01 array. H8500, H9500

Positron CT R1635, R8520U-00-C12 The positron CT provides tomographic images by de- R1450 1) High energy resolution tecting the coincident gamma-ray emission that ac- R7899 2) High stability companies the annihilation of positrons emitted from R1548-07 3) Fast response time a tracer radioisotope (11C, 15O, 13N, 18F, etc.) injected R6427 4) Compact size into the body. Photomultiplier tubes coupled to scintil- H8500, H9500 lators are used to detect these gamma-rays. R9420, R9797, R9800

Liquid Liquid scintillation counters are used for tracer analy- 1) High quantum efficiency sis in age measurement and biochemical research. A 2) Low thermionic emission noise sample containing radioisotopes is dissolved into a 3) Less glass scintillation at bulb and solution containing an organic scintillator, and this is other materials R331, R331-05 placed in the center between a pair or photomultiplier 4) Fast response time tubes. These tubes simultaneously detect the emis- 5) High pulse linearity sion of the organic scintillator.

In-Vitro Assay In-vitro assay is used for physical checkups, diagno- sis, and evaluation of drug potency by making use of the specific antigen/antibody reaction characteristics of tiny amounts of insulin, hormones, drugs and viru- ses that are contained in blood or urine. Photomulti- plier tubes are used to optically measure the amount R1166, R5610A, R5611A-01 of antigens labeled by radioisotopes or fluorescent, R6350, R6352, R6353 chemiluminescent or bioluminescent substances. 1) High quantum efficiency R6356, R6357 • Radioimmunoassay (RIA) 2) High stability R4220, R928, R3788, R3896 Uses radioactive isotopes for labeling and scintilla- 3) Low dark current R647, R1463 tors for measurement. R1925A, R1924A, R3550A • Chemiluminoassay R6095, R374 CLIA (Chemilulminoassay) CLEIA (Enzyme-intensified chemiluminoassay) Uses luminescent substances for labeling to meas- ure chemiluminescence or bioluminescence. • Fluoroimmunoassay Uses fluorescent substances for labeling.

Others • X-ray phototimer This equipment automatically controls the X-ray film exposure during X-ray examinations. The X-rays 1) High sensitivity transmitting through a subject are converted into R6350 2) Low dark current visible light by a screen. A photomultiplier 931A, R105 tube detects this light and converts it into electrical 3) High stability signals. When the accumulated electrical signal reaches a preset level, the X-ray irradiation is shut off, to allow obtaining an optimum film density.

18 Applications Required Major Characteristics Applicable PMT

Radiation Measurement Area Monitor Area monitors are designed to continuously measure R1306 1) Long term stability changes in environmental radiation levels. Area moni- R329-02, R4607-01 2) Low background noise tors use a photomultiplier tube coupled to a scintillator R1307 3) Good plateau characteristic to monitor low level gamma-rays and beta-rays. R877, R877-01

Survey Meter R1635 Survey meters are used to measure low level gam- 1) Long term stability R647 ma-rays and beta-rays by using a photomultiplier tube coupled to a scintillator. 2) Low background noise R1924A 3) Good plateau characteristic R6095 R7400U

Resource Inquiry Oil Well Logging Oil well logging is used to locate an oil deposit and 1) Stable operation at high tempera- R4177-01 determine its size. A probe containing a radiation tures up to 175 °C R3991A source and a scintillator/photomultiplier tube is low- 2) Rugged structure resistant to shock R1288A, R1288A-01 ered into on oil well as it is being drilled. The scat- and vibration tered radiation or natural radiation from the geological R1750 3) Good plateau characteristic formation is detected and analyzed, to determine the R4607-01 type and density of the rock that surrounds the well.

Industrial Measurement Thickness Meter The thickness meter uses a radiation source and a scintillator/photomultiplier tube detector to measure R647, R7899 product thickness such as for paper, plastic, R6095 sheet on factory production lines. Beta-rays are used 1) Wide R580 as a radiation source to measure small density prod- 2) High energy resolution ucts such as rubber, plastic, and paper. Gamma-rays R1306, R6231 are used for large density products such as copper R329-02 plates. X-ray fluorescence is utilized to measure film thickness for plating, evaporation, etc.)

Semiconductor Inspection System This is widely used for semiconductor wafer inspec- 1) High quantum efficiency at target wa- tion and pattern recognition such as semiconductor velengths R928, R3896 mask alignment. In wafer inspection, the wafer is scanned by a laser beam, and the scattered light 2) Good uniformity R647, R1463 caused by dirt or defects is detected by a photomulti- 2) Low spike noise plier tube.

Photography and Printing

Color Scanner 1) High quantum efficiency at RGB wave- To print-out color pictures and photographs, color lengths scanners separate the original colors into the three R3788 2) Low dark current primary colors (RGB) and black. Color scanners use R3810, R3811 3) Fast signal pulse fall time photomultiplier tubes combined with optical filters to R647, R1463 4) High stability provide the different colors as image data. R1924A, R1925A 5) Good repeatability with changes in in- put signal

19 Selection Guide by Applications

Applications Required Major Characteristics Applicable PMT

High Energy Physics GAccelerator Experiment Hodoscope Photomultiplier tubes are coupled to the ends of long, R7400U Series, R7600U Series thin plastic scintillator arrays arranged in two layers R1635 (H3164-10) intersecting with each other in order to measure the R647-01 (H3165-10) time and position at which charged particles pass R1450 (H6524), R1166 (H6520) through the scintillator arrays. 1) Fast response time 2) Compact size TOF Counter R7400U Series, R7600U Series Two counters are arranged along a path of charged R7899, R1635 (H3164-10) particles, with each counter consisting of a scintillator R1450 (H6524), R4998 (H6533) and a photomultiplier tube. The velocity of the partic- R1828-01 (H1949-51) les is measured by the time difference between the R2083 (H2431-50) two counters. R5505-70 (H6152-70) 3) Resistance to magnetic fields (when R7761-70 (H8409-70) used in magnetic fields) R5924-70 (H6614-70) R6504-70 (H8318-70) Cherenkov Counter 1) High quantum efficiency A Cherenkov counter is used to identify secondary 2) Single photon discrimination ability R329-02 (H6410), R5113-02 particles generated by the collision reaction of partic- 3) High gain R1250 (H6527), R1584 (H6528) les. Cherenkov radiation is emitted from charged par- 4) Fast response time ticles with energy higher than a certain level when they pass through a gas or silicon aerogel. This weak R5505-70 (H6152-70) Cherenkov radiation is detected by a photomultiplier 5) Resistance to magnetic fields (when R7761-70 (H8409-70) tube. These particles are then identified by measuring used in magnetic fields) R5924-70 (H6614-70) the Cherenkov radiation emission angle. R6504-70 (H8318-70) H7546B, H8711 Calorimeter 1) Good pulse linearity R580 (H3178-51) The calorimeter measures the accurate energy of 2) High energy resolution R329-02 (H6410) secondary particles generated by the collision reac- 3) High stability tion of particles. R5924 (H6614-70) 4) Resistance to magnetic fields R6091 (H6559), R7600U Series

GNeutrino and Proton Decay Experiment, Cosmic Ray Detection Experiment Research on solar or particle astophysics is utilized in a neutrino experiment. This experimental system consists of a large amount of a medium sur- rounded by a great number of large-diameter photomul- tiplier tubes. When cosmic rays such as neutrinos enter and pass through the medium, their energy and travel- ing direction are measured by detecting Cherenkov ra- diation that occurs from interaction with the medium. R5912 Neutrino and Proton Decay Experiment R3600-08 In the neutrino and proton decay experiments being conducted at Kamioka, Japan, 11,200 photomultiplier tubes each 20" diameter are installed to surround 1) Large photocathode area from all directions a huge tank storing 50,000 t of 2) Fast time response pure water. The photomultiplier tubes are used to 3) High stability watch the subtle flash of Cherenkov radiation that oc- 4) Less dark count Even large diameter PMTs are curs when proton decays or solar neutrinos pass available. Consult with our sales of- through the pure water tank. fice. Air Shower Counter When cosmic rays collide with the earth's atmos- phere, secondary particles are created by the interac- R1166 (H6520) tion of the cosmic rays and atmospheric atoms. These R580 (H3178-51) secondary particles generate more secondary partic- R329-02 (H6410) les, which continue to increase in a geometrical pro- R6091 (H6559) gression. This is called an air shower. The gamma- R1250 (H6527) rays and Cherenkov radiation emitted in this air show- R6234 er are detected by photomultiplier tubes arranged in a lattice array on the ground. 20 The assembly type is given in parentheses. Applications Required Major Characteristics Applicable PMT

Aerospace

Astronomical X-ray Measurement X-rays from outer space include information on the R3991A enigmas of space. As an example, the X-ray observa- R6231 tion satellite "Asuka" developed by a group of the 1) High energy resolution R2486 ISAS (Institute of Space and Astronomical Science - 2) Resistance to shock and vibration Japan), uses a gas-scintillation proportional counter Ruggedized PMT with high resis- in conjunction with a position-sensitive photomultiplier tance to vibration and shock will be required. Consult with our sales of- tube to measure X-rays from supernovas, etc. fice. Measurement of Scattered Light from Fixed Stars and Interstellar Dust Ultraviolet rays from space contain a great deal of in- 1) Resistance to shock and vibration formation about the surface temperatures of stars and 2) Sensitivity only in VUV to UV range R1080, R976 interstellar substances. However, these ultraviolet (Solar blind response with no sensitivity R6834, R6835, R6836 rays are absorbed by the earth's atmosphere making to visible light: See page 6 for Cs-Te is impossible to measure them from the earth's sur- and CsI photocathodes) face. So photomultiplier tubes are mounted in rockets Ruggedized PMT with high resis- tance to vibration and shock will be or artificial satellites, to measure ultraviolet rays with required. Consult with our sales of- wavelengths shorter than 300 nm. fice.

Lasers

Laser R3809U Series The laser radar is used in applications such as at- R5916U Series mospheric measurement for highly accurate range R3234-01 finding or aerosol scattering detection. R7400U-20, R3896 1) Fast time response R7205-01, R7206-01 2) Less dark count Fluorescence Lifetime Measurement 3) High gain A laser is used as an excitation light for fluorescence 4) Less afterpulses R3809U Series lifetime measurement. The molecular structure of a R5916U Series substance can be studied by measuring the changes R7400U-01, -20 in temporal intensity in the emitted fluorescence. R5900U-01, R5900U-01-M4

Plasma

Plasma Observation Photomultiplier tubes are used in the electron density and electron temperature measurement system for 1) High detection capability at low light level plasma in the Tokamak-type nuclear fusion test reac- R2257 tor in Japan. Photomultiplier tubes and MCPs are 2) Quantum efficiency with less wavelength R1104 also used in similar measurements on plasma using dependence R943-02 Thompson scattering and the Doppler effect to ob- 3) Gate operation serve the spatial distribution of plasma, and to meas- ure impurities in the plasma with the objective of con- trolling impurities and ions.

21 Side-on Type Photomultiplier Tubes

Spectral Response Remarks Max. RatingsH ACDEFGJLB Effective Area (mm) Socket Peak Photo- Win- Out- Dynode Anode Average Anode to Curve & to Cathode Type No. Wave- cathode dow line Structure Anode Code Mate- Socket Cathode Supply Wavelength (nm) Current length Material rial No. / Stages Assembly Voltage Voltage 100 200 300 400 500 600 700 800 900 1000 (nm) (V) (mA) (V) 13 mm (1/2") Dia. Types R6350 4 × 13 350U 340 Sb-Cs U 1 CC/9 E678-11U* qw 1250 0.01 1000 i R6351 4 × 13 — 340 Sb-Cs Q 2 CC/9 E678-11U* qw 1250 0.01 1000 i R6352 4 × 13 452U 420 BA U 1 CC/9 E678-11U* qw 1250 0.01 1000 i R6353 4 × 13 456U 400 LBA U 1 CC/9 E678-11U* qw 1250 0.01 1000 i R6355 4 × 13 550U 530 MA U 1 CC/9 E678-11U* qw 1250 0.01 1000 i R6356-06 4 × 13 — 400 MA U 1 CC/9 E678-11U* qw 1250 0.01 1000 i R6357 4 × 13 — 450 MA U 1 CC/9 E678-11U* qw 1250 0.01 1000 i R6358 4 × 13 561U 530 MA U 1 CC/9 E678-11U* qw 1250 0.01 1000 i 13 mm (1/2") Dia. Subminiature Types R3810 3 × 4 350U 340 Sb-Cs U 3 CC/9 E678-11U* qw 1250 0.01 1000 i R3811 3 × 4 550U 530 MA U 3 CC/9 E678-11U* qw 1250 0.01 1000 i

Dimensional Outlines (Unit: mm) 1 R6350, R6352, R6353 etc. 2 R6351 3 R3810, R3811

13.5 ± 0.8 13.5 ± 0.8 4 MIN. 4 MIN. PHOTO- PHOTO- CATHODE CATHODE 13.5 ± 0.8 PHOTOCATHODE 0.5 ± 2 9.7 2 ± ± 3 4 MIN. 7 2 2 ± ± 13 MIN. 13 MIN. 17 MAX. 1.5 40 1.5 42 25 MAX. ± ± 50 MAX. 52 MAX. 24.0

24.0 3 MIN. 11 PIN BASE 11 PIN BASE

DY6 DY6 DY6 DY5 7 DY7 DY5 7 DY7 DY5 7 DY7 6 8 6 8 6 8 DY4 DY4 DY8 DY4 5 9 DY8 5 9 DY8 5 9

DY3 4 10 DY9 DY3 4 10 DY9 DY3 4 10 DY9

3 11 3 11 3 11 DY2 P DY2 P DY2 P 2 2 2 1 1 1 DY1 K DY1 K DY1 K

DIRECTION OF LIGHT DIRECTION OF LIGHT TPMSA0034EE DIRECTION OF LIGHT TPMSA0034EE TPMSA0013EC

22 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

× 5 × 6 Photon counting type: R6350P 20 40 5.0 — 48 50 300 3.6 10 7.5 10 0.5 5 1.4 15 Dark count 30 s-1 (Max.) R6350 20 40 5.0 — 48 50 300 3.6 × 105 7.5 × 106 0.5 5 1.4 15 R6351 80 120 10.0 — 90 100 700 5.2 × 105 5.8 × 106 1 10 1.4 15 R6352 × 5 × 6 Photon counting type: R6353P 30 70 6.5 — 65 100 400 3.7 10 5.7 10 0.1 2 1.4 15 Dark count 30 s-1 (Max.) R6353 80 150 6.0 0.15 45 100 600 1.8 × 105 4.0 × 106 1 10 1.4 15 R6355 200 300 10.0 0.3 77 400 2000 5.2 × 105 6.7 × 106 1 10 1.4 15 R6356-06 350 500 13.0 0.4 105 1000 2000 4.2 × 105 4.0 × 106 2 10 1.4 15 R6357 × 5 × 6 Photon counting type: R6358-10 140 200 7.5 0.15 70 300 700 2.5 10 3.5 10 0.1 1 1.4 15 Dark count 300 s-1 (Max.) R6358

× 5 × 6 Photon counting type: R3810P 20 40 5.0 — 48 50 300 3.6 10 7.5 10 0.5 5 1.4 15 Dark count 30 s-1 (Max.) R3810 50 150 6.0 0.15 45 50 200 5.9 × 104 1.3 × 106 1 10 1.4 15 R3811

Dimensional Outline of Socket (Unit: mm) E678-11U

24 18 5.5

°

45

13 3 10.5 0.5 4

11

TACCA0181EB

23 Side-on Type Photomultiplier Tubes

Spectral Response Remarks Max. RatingsH ACDEFGJLB Effective Area (mm) Socket Peak Photo- Win- Out- Dynode Anode Average Anode to Curve & to Cathode Type No. Wave- cathode dow line Structure Anode Code Mate- Socket Cathode Supply Wavelength (nm) Current length Material rial No. / Stages Assembly Voltage Voltage 100 200 300 400 500 600 700 800 900 1000 (nm) (V) (mA) (V) 28 mm (1-1/8") Dia. Types with UV to Visible Sensitivity 931A 8 × 24 350K 400 Sb-Cs K 1 CC/9 E678-11A ert 1250 0.1 1000 i 931B 8 × 24 453K 400 BA K 1 CC/9 E678-11A ert 1250 0.1 1000 i 1P21 8 × 24 350K 400 Sb-Cs K 1 CC/9 E678-11A ert 1250 0.1 1000 i R105 8 × 24 350K 400 Sb-Cs K 1 CC/9 E678-11A ert 1250 0.1 1000 i 1P28 8 × 24 350U 340 Sb-Cs U 1 CC/9 E678-11A ert 1250 0.1 1000 i R212 8 × 24 350U 340 Sb-Cs U 1 CC/9 E678-11A ert 1250 0.1 1000 i R1527 8 × 24 456U 400 LBA U 1 CC/9 E678-11A ert 1250 0.1 1000 i R4220 8 × 24 456U 410 LBA U 1 CC/9 E678-11A ert 1250 0.1 1000 i R7447 8 × 24 — 410 LBA Q 1 CC/9 E678-11A ert 1250 0.1 1000 i R3788 8 × 24 452U 420 BA U 1 CC/9 E678-11A ert 1250 0.1 1000 i R2693 18 × 16 430U 375 LBA U 2 CC/9 E678-11A ert 1250 0.1 1000 i R5983 10 × 24 456U 410 LBA U 3 CC/9 E678-11A ert 1250 0.1 1000 i R6925 8 × 24 351U 410 BA U 1 CC/9 E678-11A ert 1250 0.1 1000 i R7518 8 × 24 456U 410 LBA U 1 CC/9 E678-11A ert 1250 0.1 1000 i

Dimensional Outlines (Unit: mm) 1 931A, 1P21, R105, R212 etc. 2 R2693 3 R5983

28.5 ± 1.5 28.5 ± 1.5 29.0 ± 1.7 10 MIN. 8 MIN. 18 MIN. 2.5 ± 0.5 PHOTO- CATHODE PHOTO- PHOTO- CATHODE CATHODE DY6 DY5 6 DY7 DY6 5 7 DY6 DY5 6 DY7 5 DY5 6 DY7 DY4 4 8 DY8 7 5 7 DY4 4 DY8 8 DY4 4 8 DY8 DY3 3 9 DY9 24 MIN. 24 MIN. 16 MIN. 3 DY3 9 DY9 DY3 3 9 DY9 2 10

80 MAX. DY2 P 80 MAX.

76 MAX. 2 94 MAX. 1 11 10 P 2 10 2.5

2.5 DY2 2.5 P

± DY2 ± ±

DY1 K 1 11 94 MAX. 90 MAX. 1 11 K DY1 DY1 K 49.0 49.0

DIRECTION OF LIGHT 49.0 DIRECTION OF LIGHT DIRECTION OF LIGHT

± 34 MAX. 32.2 0.5 32.2 ± 0.5 HA COATING 11 PIN BASE 11 PIN BASE 11 PIN BASE JEDEC No. B11-88 JEDEC No. B11-88 JEDEC No. B11-88 TPMSA0001EA TPMSA0007EC TPMSA0035EC

24 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

25 40 5.0 — 48 50 400 4.8 × 105 1.0 × 107 5 50 2.2 22 931A 30 60 7.1 — 60 50 600 6.6 × 105 1.0 × 107 5 50 2.2 22 931B 25 40 5.0 — 48 50 250 3.0 × 105 6.3 × 106 1 5 2.2 22 1P21 25 40 5.0 — 48 50 400 4.8 × 105 1.0 × 107 1 10 2.2 22 R105 25 40 5.0 — 48 20 400 4.8 × 105 1.0 × 107 5 50 2.2 22 1P28 25 40 5.0 — 48 50 300 3.6 × 105 7.5 × 106 1 10 2.2 22 R212 × 5 × 6 Photon counting type: R1527P 40 60 6.4 — 60 200 400 4.0 10 6.7 10 0.1 2 2.2 22 Silica glass window type: R7446 R1527 80 100 8.0 — 70 1000 1200 8.4 × 105 1.2 × 107 0.2 2 2.2 22 Photon counting type: R4220P R4220 80 100 8.0 — 70 1000 1200 8.4 × 105 1.2 × 107 0.2 2 2.2 22 R7447 100 120 10.0 0.01 90 500 1200 9.0 × 105 1.0 × 107 5 50 2.2 22 Silica glass window type: R4332 R3788 30 50 7.0 — 62 100 300 3.7 × 105 6.0 × 106 0.5 5 1.2 18 Photon counting type: R2693P R2693 60 100 8.0 — 70 500 1000 7.0 × 105 1.0 × 107 0.2 2 2.2 22 Photon counting type: R5983P R5983 40 70 — 0.01 68 200 500 4.8 × 105 7.1 × 106 5 50 2.2 22 R6925 120 130 10 — 85 1200 1560 1.0 × 106 1.2 × 107 0.2 2.0 2.2 22 Photon counting type: R7518P R7518∗

Dimensional Outline of Socket (Unit: mm) E678-11A

49 38 33 3.5 5

29 4 18

TACCA0064EA

25 Side-on Type Photomultiplier Tubes

Spectral Response Remarks Max. RatingsH ACDEFGJLB Effective Area (mm) Socket Peak Photo- Win- Out- Dynode Anode Average Anode to Curve & to Cathode Type No. Wave- cathode dow line Structure Anode Code Mate- Socket Cathode Supply Wavelength (nm) Current length Material rial No. / Stages Assembly Voltage Voltage 100 200 300 400 500 600 700 800 900 1000 1100 1200 (nm) (V) (mA) (V) 28 mm (1-1/8") Dia. Types with UV to Near IR Sensitivity R5984 10 × 24 562U 400 MA U 1 CC/9 E678-11A ert 1250 0.1 1000 i R2368 18 × 16 500U 420 MA U 2 CC/9 E678-11A ert 1250 0.1 1000 i R928 8 × 24 562U 400 MA U 3 CC/9 E678-11A ert 1250 0.1 1000 i R955 8 × 24 552S 400 MA Q 3 CC/9 E678-11A ert 1250 0.1 1000 i R2949 8 × 6 552U 400 MA U 4 CC/9 E678-11A ert 1250 0.1 1000 i R3896 8 × 24 555U 450 MA U 3 CC/9 E678-11A ert 1250 0.1 1000 i R4632 8 × 24 556U 430 MA U 3 CC/9 E678-11A ert 1250 0.1 1000 i ∗R9110 8 × 6 555U 450 MA U 5 CC/9 E678-11A ert 1250 0.1 1000 i ∗R9220 8 × 24 — 450 MA U 3 CC/9 E678-11A ert 1250 0.1 1000 i R636-10 3 × 12 650U 300-800 GaAs U 6 CC/9 E678-11A er 1500 0.001 1250 i R2658 3 × 12 850U 400 InGaAs U 7 CC/9 E678-11A er 1500 0.001 1250 i R5108 18 × 16 700K 800 Ag-O-Cs K 8 CC/9 E678-11A er 1500 0.01 1250 i

Dimensional Outlines (Unit: mm) 1 R5984 2 R2368 3 R928, R3896 etc.

28.5 ± 1.5 28.5 ± 1.5 10 MIN. 29.0 ± 1.7 8 MIN. 2.5 ± 0.5 18 MIN. PHOTO- PHOTO- PHOTO- CATHODE CATHODE CATHODE

DY6 DY6 DY6 DY5 DY7 6 DY5 6 DY7 DY5 6 DY7 5 7 5 7 5 7 DY4 DY8 DY4 DY8 4 8 4 8 DY4 4 8 DY8 24 MIN. 16 MIN. 24 MIN. DY3 3 9 DY9 DY3 3 9 DY9 DY3 3 9 DY9 80 MAX. 80 MAX. 94 MAX.

2 10 76 MAX. 2.5 2

2.5 10 P 2.5 2 10 ± DY2 P ± DY2 ± P

94 MAX. DY2

1 11 90 MAX. 1 11 1 11 DY1 K K 49.0 DY1 K 49.0 49.0 DY1 DIRECTION OF LIGHT DIRECTION OF LIGHT DIRECTION OF LIGHT

± 32.2 0.5 32.2 ± 0.5 32.2 ± 0.5 HA COATING 11 PIN BASE 11 PIN BASE 11 PIN BASE JEDEC No. B11-88 JEDEC No. B11-88 JEDEC No. B11-88 TPMSA0035EC TPMSA0026EA TPMSA0001EA

4 R2949 5 R9110 6 R636-10

29.0 ± 1.7 29.0 ± 1.7 29.0 ± 1.7 8 MIN. 8 MIN. 8 MIN. 3 MIN.

PHOTO- PHOTO- PHOTO- CATHODE CATHODE CATHODE DY6 DY6 DY5 6 DY7 DY5 DY7 DY6 5 6 7 5 7 DY5 6 DY7

7 MIN. DY4 DY8 5 7 4 8 DY4 4 8 DY8 DY4 4 8 DY8 DY3 3 9 DY9 DY3 3 9 DY9 16 MIN. 12 MIN. DY3 3 9 DY9 2 10 2 10 80 MAX. 80 MAX. P 6 MIN. DY2 80 MAX. P 6 MIN. DY2 1

1 2 10

± 1 11 ± P 1 11 2.5 DY2 94 MAX. ± 94 MAX. DY1 K K 94 MAX. 1 11

49 DY1 49 DY1 K

DIRECTION OF LIGHT DIRECTION OF LIGHT 49.0 DIRECTION OF LIGHT

± 34 MAX. 32.2 0.5 INSULATION COVER 32.2 ± 0.5 INSULATION COVER HA COATING 11 PIN BASE 11 PIN BASE 11 PIN BASE JEDEC No. B11-88 JEDEC No. B11-88 JEDEC No. B11-88 TPMSA0016EB TPMSA0043EA TPMSA0027EE 26 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

140 300 9.0 0.32 76 400 3000 7.6 × 105 1.0 × 107 5 50 2.2 22 R5984 80 150 — 0.15 64 50 200 8.3 × 104 1.3 × 106 5 50 1.2 18 R2368 140 250 8.0 0.3 74 400 2500 7.4 × 105 1.0 × 107 3 50 2.2 22 R928 140 250 8.0 0.3 74 400 2500 7.4 × 105 1.0 × 107 3 50 2.2 22 R955 140 200 7.5 0.3 68 1000 2000 6.8 × 105 1.0 × 107 300h 500h 2.2 22 R2949 475 525 15.0 0.4 90 3000 5000 8.6 × 105 9.5 × 106 10 50 2.2 22 R3896 140 200 7.5 0.15 80 300 700 2.8 × 105 3.5 × 106 50h 100h 2.2 22 R4632 400 525 15.0 0.4 90 4000 10000 1.7 × 106 1.9 × 107 5 15 2.2 22 R9110∗ 375 450 12.5 0.4 85 1000 4500 8.5 × 105 1.0 × 107 10 50 2.2 22 R9220∗ Silica glass window type: R758-10 400 550 9.0 0.53 62 100 250 2.8 × 104 4.5 × 105 0.1f 2f 2.0 20 R636-10 1 × 2 × 5 Photon counting type: R2658P 50 100 4.5 0.4 at 1 µm 5 16 1.6 10 1.6 10 1 10 2.0 20 R2658 10 25 — — 2.2 3.5 7.5 6.6 × 102 3.0 × 105 350e 1000e 1.1 17 R5108

Dimensional Outline of Socket (Unit: mm) 7 R2658 E678-11A

28.5 ± 1.5 49 38 3 MIN.

PHOTO- CATHODE

DY6 DY5 6 DY7 5 7 DY4 4 8 DY8 33 3.5 DY3 3 9 DY9 5 2 10

80 MAX. DY2 P

2.5 1

12 MIN. 11 ± DY1 K 94 MAX. 29

49.0 DIRECTION OF LIGHT 4 18

32.2 ± 0.5

11 PIN BASE JEDEC No. B11-88 TPMSA0012ED TACCA0064EA

8 R5108

29.0 ± 1.7 18 MIN. PHOTO- CATHODE

DY6 DY5 6 DY7 5 7 DY4 4 8 DY8 16 MIN. DY3 3 9 DY9

76 MAX. 2 10 2.5 DY2 P ±

90 MAX. 1 11 DY1 K 49.0 DIRECTION OF LIGHT

34 MAX. HA COATING 11 PIN BASE JEDEC No. B11-88 TPMSA0023EC 27 Side-on Type Photomultiplier Tubes

Spectral Response Remarks Max. RatingsH ACDEFGJLB Effective Area (mm) Socket Peak Photo- Win- Out- Dynode Anode Average Anode to Curve & to Cathode Type No. Wave- cathode dow line Structure Anode Code Mate- Socket Cathode Supply Wavelength (nm) Current length Material rial No. / Stages Assembly Voltage Voltage 100 200 300 400 500 600 700 800 900 1000 (nm) (V) (mA) (V) 13 mm (1/2") Dia. Types with Solar Blind Response R7511 4 × 5 150M 130 Cs-I MF 2 CC/9 E678-11U* 1250 0.01 1000 i R6354 4 × 13 250S 230 Cs-Te Q 1 CC/9 E678-11U* qw 1250 0.01 1000 i R7311 4 × 5 250M 200 Cs-Te MF 2 CC/9 E678-11U* 1250 0.01 1000 i 28 mm (1-1/8") Dia. Types with Solar Blind Response R8487 8 × 12 150M 130 Cs-I MF 3 CC/9 E678-11A 1250 0.1 1000 i R7154 8 × 24 250S 230 Cs-Te Q 4 CC/9 E678-11A ert 1250 0.1 1000 i R7639 3 × 12 — 155 DIA MF 5 CC/9 E678-11A ert 1250 0.1 1000 i ∗R8486 8 × 12 250M 200 Cs-Te MF 3 CC/9 E678-11A 1250 0.1 1000 i

Dimensional Outlines (Unit: mm) 1 R6354 2 R7511, R7311 3 R8487, R8486

13.5 ± 0.8 28.5 ± 1.5 4 MIN. PHOTO-

0.6 8 MIN.

CATHODE ± MgF2

16.8 WINDOW 2

± ± 9.0 0.5 DY6 7 DY5 DY7 2 6

± 5 7 13 MIN. ± DY4 1.5 DY8 42 14.0 0.4 4 8 ±

52 MAX. DY6 4 MIN. DY5 DY7 DY3 3 9 DY9

24.0 7 6 8 14 MIN. DY4 5 9 DY8 2 10

11 PIN BASE 80 MAX. DY2 P 2 PHOTO- 1 11 MgF 2.5 94 MAX. DY3 4 10 DY9 ± DY1 K WINDOW 5 MIN. CATHODE

3 11 49.0 PHOTO- DY2 P DIRECTION OF LIGHT DY6 CATHODE 2 K 1.5 1 DY5 DY7 45 MAX. 7 ± DY1 6 8 DY4 DY8 53 MAX. DIRECTION OF LIGHT 5 9 24.0

DY3 4 10 DY9

3 11 11 PIN BASE DY2 P 32.2 ± 0.5 2 1 DY1 K 11 PIN BASE JEDEC No. B11-88 DIRECTION OF LIGHT TPMSA0034EE TPMSA0038ED TPMSA0042EB

4 R7154 5 R7639

± 28.5 ± 1.5 28.5 1.5 8 MIN. 3 MIN. MgF2 PHOTO- WINDOW CATHODE DY6 DY6 DY5 DY7 DY5 6 DY7 6 5 7 5 7 DY4 DY8 DY4 4 8 DY8 4 8 DY3 3 9 DY9

DY3 3 9 DY9 12 MIN. 24 MIN. 2 10 2 10 80 MAX. DY2 P 80 MAX. DY2 P

94 MAX. PHOTO- 1 11 1 11 2.5 2.5 94 MAX. ± K ± DY1 K CATHODE DY1

49.0 DIRECTION OF LIGHT

49.0 DIRECTION OF LIGHT

32.2 ± 0.5 32.2 ± 0.5

11 PIN BASE 11 PIN BASE JEDEC No. B11-88 JEDEC No. B11-88 TPMSA0001EA TPMSA0040EB 28 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

— — — — 26a — — 5.2 × 104a 2.0 × 106 0.3 3 1.4 15 R7511 — — — — 62b — — 1.8 × 105b 3.0 × 106 0.5 5 1.4 15 R6354 — — — — 40b — — 2.8 × 105b 7.0 × 106 0.3 3 1.4 15 R7311

— — — — 25.5a — — 1.0 × 105a 3.9 × 106 0.1 — 2.2 22 R8487 — — — — 62b — — 6.2 × 105b 1.0 × 107 1 10 2.2 22 R7154 — — — — 50 — — 1.5 × 105 3.0 × 106 0.5 5 2.2 22 R7639 — — — — 52b — — 5.2 × 105b 1.0 × 107 1 10 2.2 22 R8486∗

Dimensional Outline of Socket (Unit: mm) E678-11U

24 18 5.5

°

45

13 3 10.5 0.5 4

11

TACCA0181EB

E678-11A

49 38 33 3.5 5

29 4 18

TACCA0064EA 29 Head-on Type Photomultiplier Tubes

Spectral Response Remarks Max. RatingsH ACDEFGJLB Effective Area (mm) Socket Peak Photo- Win- Out- Dynode Anode Average Anode to Curve & to Cathode Type No. Wave- cathode dow line Structure Anode Code Mate- Socket Cathode Supply Wavelength (nm) Current length Material rial No. / Stages Assembly Voltage Voltage 100 200 300 400 500 600 700 800 900 1000 (nm) (V) (mA) (V) 10 mm (3/8") Dia. Types R1893 8 200S 240 Cs-Te Q 1 L/8 E678-11N* y 1500 0.01 1250 q R1635 8 400K 420 BA K 1 L/8 E678-11N* y 1500 0.03 1250 q R2496 8 400S 420 BA Q 1 L/8 E678-11N* ui 1500 0.03 1250 r R1894 8 500K 420 MA K 1 L/8 E678-11N* y 1500 0.03 1250 q 13 mm (1/2") Dia. Types R1081 6 100M 140 Cs-I MF 2 L/10 E678-12A* 2250 0.01 2000 !0 R1080 6 200M 240 Cs-Te MF 2 L/10 E678-12A* 1250 0.01 1000 !0 R759 10 200S 240 Cs-Te Q 3 L/10 E678-13A* o!0 1250 0.01 1000 !0 R647 10 400K 420 BA K 3 L/10 E678-13A* o!0 1250 0.1 1000 !0 R4124 10 400K 420 BA K 4 L/10 E678-13A* !1 1250 0.03 1000 !6 R2557 10 402K 375 LBA K 3 L/10 E678-13A* !2 1500 0.03 1250 !3 R4177-01 10 401K 375 HBA K 5 L/10 E678-13E* 1800 0.02 1500 !0 R1463 10 500U 420 MA U 3 L/10 E678-13A* o!0 1250 0.03 1000 !0

Dimensional Outlines (Unit: mm) 1 R1893, R1635, R2496, R1894 2 R1081, R1080 3 R759, R647, R2557, R1463

13.5 ± 0.5

FACEPLATE 6 MIN. A 13.5 ± 0.5 A Temporary Base Removed FACEPLATE FACEPLATE 8 MIN. 10 MIN. DY10 P DY8 P 7 DY8 PHOTOCATHODE 6 8 DY7 DY9 DY6 6 5 9 PHOTO- 5 7 DY5 DY6 PHOTOCATHODE CATHODE 2 DY7 4 10 DY4 DY10 4 8 ± P DY8

71 7 1.5 DY5 3 11 6 8 ± DY2 DY3 3 9 DY4 DY9 DY6 2 5 9 SEMI-FLEXIBLE DY3 2 2 10 LEADS 1 13 ± DY7 4 10 DY4 DY1 1 11 DY2 DY1 K 71 3 11

13 MAX. DY5 DY2 IC K A 2 12 B Bottom View DY3 IC 11 PIN BASE SHORT PIN 1 13 12 PIN BASE P DY10 JEDEC DY1 K DY9 6 7 DY8 No. B12-43 5 8 10 MAX. 45.0 SHORT PIN DY7 4 9 DY6

R1635, R1894 R1893, R2496 DY5 3 10 DY4 13 PIN BASE B A 9.7 ± 0.4 10.5 ± 0.5 2 11

DY3 13 MAX. LEAD LENGTH 33 MIN. 1 12 DY2 R2496 has a plano-concave faceplate. DY1 K 37.3 ± 0.5 TPMHA0100EB TPMHA0207EA TPMHA0014EA

4 R4124 5 R4177-01

14.5 ± 0.7 13.5 ± 0.5 FACEPLATE 10 MIN. FACEPLATE 10 MIN.

P DY10 DY9 DY10 PHOTOCATHODE P DY8 6 7 8 6 7 8 PHOTOCATHODE DY7 DY8 DY9 DY6 5 9 5 9 2 2 DY7 4 10 DY4 ± DY5 4 10 DY6 ± 50 61 3 11 3 11 DY5 DY2 DY3 DY4 2 12 2 12 DY3 1 IC DY1 1 13 DY2 13 DY1 K IC K SHORT PIN SHORT PIN

13 PIN BASE

13 MAX. 13 PIN BASE 13 MAX.

TPMHA0102EA TPMHA0006EA 30 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

× 3 b 1.2 10 × 3b × 5 — — — — 24 (A/W)b — 3.6 10 1.5 10 0.5 2.5 0.8 7.8 R1893 × 4 × 6 Photon counting type: R1635P 60 100 10 — 80 30 100 8.0 10 1.0 10 1 50 0.8 9.0 UV glass window type: R3878 R1635 60 100 10 — 80 30 100 8.0 × 104 1.0 × 106 2 50 0.7 9.0 R2496 80 120 — 0.2 51 10 50 2.1 × 104 4.2 × 105 2 20 0.8 7.8 R1894

2 × 102 a × 3a × 5 — — — — 12 (A/W)a — 1.2 10 1.0 10 0.03 0.05 1.8 18 R1081 4 × 103 Photon counting type: R1080P b × 4b × 5 — — — — 28 (A/W)b — 1.4 10 5.0 10 0.3 1 2.5 24 R1080 4 × 103 b × 4b × 5 — — — — 28 (A/W)b — 1.4 10 5.0 10 0.3 1 2.5 24 R759 Photon counting type: R647P 40 110 10 — 80 30 110 8.0 × 104 1.0 × 106 1 15 2.1 22 UV glass window type: R960 R647 Silica glass window type: R760 40 100 10 — 80 30 100 8.0 × 104 1.0 × 106 1 15 1.1 12 UV glass window type: R4141 R4124 25 40 5.5 — 50 50 200 2.5 × 105 5.0 × 106 0.5 4 2.2 22 Photon counting type: R2557P R2557 × 5 × 5 High temp. operation type: 20 40 6.0 — 51 10 20 2.5 10 5.0 10 0.5 10 2.0 20 -30 °C to +175 °C R4177-01 80 120 — 0.2 51 30 120 5.1 × 104 1.0 × 106 4 20 2.5 24 Photon counting type: R1463P R1463

Dimensional Outline of Socket (Unit: mm) E678-11N E678-12A

47 40 4.3 17

10.5 9.5 3

11 2- 3.2

3 34

9.5 5 15 8

TACCA0043EB TACCA0009EB

E678-13A E678-13E

12.4 11 24 5.5 18

2- 2.2

13 3 3 10.5 10 3.4 7 11 TACCA0005EA TACCA0013EB 31 Head-on Type Photomultiplier Tubes

Spectral Response Remarks Max. RatingsH ACDEFGJLB Effective Area (mm) Socket Peak Photo- Win- Out- Dynode Anode Average Anode to Curve & to Cathode Type No. Wave- cathode dow line Structure Anode Code Mate- Socket Cathode Supply Wavelength (nm) Current length Material rial No. / Stages Assembly Voltage Voltage 100 200 300 400 500 600 700 800 900 1000 1100 1200 (nm) (V) (mA) (V) 19 mm (3/4") Dia. Types R972 13 100M 140 Cs-I MF 1 L/10 E678-12A* !3 2250 0.01 2000 !2 R821 15 200S 240 Cs-Te Q 2 L/10 E678-12L* !4!5!6 1250 0.01 1000 !2 R1166 15 400K 420 BA K 2 L/10 E678-12L* !4!5!6 1250 0.1 1000 !2 R1450 15 400K 420 BA K 2 L/10 E678-12L* !7 1800 0.1 1500 !4 R3478 15 400K 420 BA K 3 L/8 E678-12L* !8!9 1800 0.1 1700 t ∗R5610A 15 402K 375 LBA K 4 CC/10 E678-12T* 1250 0.1 1000 !5 ∗R5611A-01 15 400K 420 BA K 5 CC/10 E678-12A* 1250 0.1 1000 !5 ∗R3991A 15 401K 375 HBA K 5 CC/10 E678-12R* 1800 0.02 1500 !5 R1617 15 500K 420 MA K 2 L/10 E678-12L* !4!5!6 1250 0.1 1000 !2 R1878 4 500K 420 MA K 6 L/10 E678-12L* @0 1250 0.1 1000 !3

Dimensional Outlines (Unit: mm) 1 R972 2 R821, R1166, R1450 etc. 3 R3478

19 ± 1 A FACEPLATE 13 MIN. FACEPLATE 15 MIN. 18.6 ± 0.7 A Temporary Base Removed PHOTOCATHODE DY8 DY6 FACEPLATE 15 MIN. DY10 7 6 8 DY4 PHOTO- P 9 5 CATHODE 10 DY9 DY2 DY10 DY8 4 IC DY8 2 6 7 PHOTOCATHODE

± 11 P DY6 DY7 3 K 5 8 P 6 7 DY6 88 12 5 8 2 DY5 DY9 4 9 DY4 DY1 2 2 IC DY4 1 ± 4 9 ± DY3 10

3 65

88 DY7 DY2 DY7 3 10 DY2 2 11 DY5 K 1 2 11 SEMI-FLEXIBLE B Bottom View 12 DY5 K

13 MAX. DY3 DY1 1 12 LEADS P DY10 DY3 DY1 DY9 6 7 DY8 SHORT PIN 5 8 SHORT PIN A DY7 4 9 DY6 12 PIN BASE JEDEC DY5 3 10 DY4 No. B12-43 R821 Others 12 PIN BASE 2 11

DY3 DY2 13 MAX. 1 12 A 19 ± 1 18.6 ± 0.7 DY1 K 12 PIN BASE LEAD LENGTH 45 MIN. B 13 MAX. R1450 has a plano-concave faceplate.

37.3 ± 0.5 TPMHA0208EA TPMHA0012EB TPMHA0119EB 4 R5610 5 R5611A-01, R3991A 6 R1878

19 ± 1 18.6 ± 0.7 A Temporary Base Removed FACEPLATE FACEPLATE 4 MIN. 15 MIN. P 6 DY10 DY9 18.6 ± 0.7 5 9 DY8 FACEPLATE 15 MIN. DY7 4 10 K DY1 PHOTOCATHODE A MASKED DY10 DY8 6 7 DY5 3 11 DY6 PHOTOCATHODE DY2 DY3 13 MAX. SEMIFLEXIBLE 6 PHOTO- 5 8 2 12 P 7 DY6 LEADS DY3 DY4 5 8 CATHODE DY4 4 9 DY5 1 14 13 1.5 A DY1 DY2 DY9 4 9 DY4 ± K 3 10 2 30 DY6 DY7 12 PIN BASE ± DY7 3 10 DY2 2 11 JEDEC 80 DY8 DY9 B Bottom View 2 11 1 12 No. B12-43 DY5 K DY10 P P DY10 1 12 DY9 6 7 DY8 HA COATING DY3 DY1

SHORT PIN LEAD LENGTH 45 MIN. 5 8 12 PIN BASE B SHORT PIN DY7 DY6

13 MAX. 4 9 37.3 ± 0.5 DY5 3 10 DY4 2 11 DY3 DY2 1 12 R5611A-01 R3991A DY1 K A 30 ± 1.5 28 ± 1.5 12 PIN BASE SHORT PIN 13 MAX.

TPMHA0269EA TPMHA0036EB TPMHA0027EA 32 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

× 2 a 2 10 × 3a × 5 — — — — 12 (A/W)a — 12 10 1.0 10 0.03 0.05 1.6 17 R972 × 3 MgF2 window type: R976 b 4 10 × 4b × 5 — — — — 28 (A/W)b — 1.0 10 3.6 10 0.3 0.5 2.5 27 (Dimensional Outline: q) R821 × 4 × 6 Photon counting type: R1166P 70 110 10.5 — 85 10 110 8.5 10 1.0 10 1 5 2.5 27 UV glass window type: R750 R1166 70 115 11.0 — 88 100 200 1.5 × 105 1.7 × 106 3 50 1.8 19 Flexible lead type: R1450-13 R1450 × 5 × 6 UV glass window type: R3479 70 115 11.0 — 88 100 200 1.5 10 1.7 10 10 300 1.3 14 Silica glass window type: R2076 R3478 30 50 6.5 — 50 20 100 1.0 × 105 2.0 × 106 0.5 4 1.3 12 Photon counting type: R5610P R5610A∗ 60 90 10.5 — 85 10 50 4.7 × 104 5.5 × 105 3 20 1.3 12 Button stem type: R5611 R5611A-01∗ × 4 × 5 High temp. operation type: ∗ 20 40 6.0 — 51 5 15 1.9 10 3.8 10 0.1 10 1.0 10 -30 °C to +175 °C R3991A × 4 × 6 UV glass window type: R1464 80 120 — 0.2 51 30 120 5.1 10 1.0 10 4 20 2.5 27 Silica glass window type: R2027 R1617 Bialkali photocathode type: R2295 80 120 — 0.2 51 30 150 6.1 × 104 1.2 × 106 100h 250h 1.7 24 R1878

Dimensional Outline of Socket (Unit: mm) E678-12A, E678-12R* E678-12L

47 40 35 28.6 2- 3.2 17 13 2-R4

360 9

13 6.7 (23.6)

18 2 2- 3.2 3.7 7 2 9.5 3.3 34 10.5 (8) 5 15 13 18 8

* Gold Plating type TACCA0009EB TACCA0047EA

E678-12T

35 28.5 2- 3.5 13 2.9 360 13 24 18.5

1.9 7.5 3 6.5

TACCA0275EA 33 Head-on Type Photomultiplier Tubes

Spectral Response Remarks Max. RatingsH ACDEFGJLB Effective Area (mm) Socket Peak Photo- Win- Out- Dynode Anode Average Anode to Curve & to Cathode Type No. Wave- cathode dow line Structure Anode Code Mate- Socket Cathode Supply Wavelength (nm) Current length Material rial No. / Stages Assembly Voltage Voltage 100 200 300 400 500 600 700 800 900 1000 (nm) (V) (mA) (V) 25 mm (1") Dia. Types R7899 22 400K 420 BA K 1 L/10 E678-14C* @1 1800 0.1 1250 !6 R4998 20 400K 420 BA K 2 L/10 E678-12A* 2500 0.1 2250 !9 R2078 21 201S 240 Cs-Te Q 3 CC/10 E678-12A* 2000 0.015 1500 !3 R1924A 22 400K 420 BA K 4 L/10 E678-14C* @2@333@4 1250 0.1 1000 !5 R3550A 22 402K 375 LBA K 4 L/10 E678-14C* @2@3@4 1250 0.1 1000 !5 R1288A 22 401K 375 HBA K 3 L/10 E678-12R* 1800 0.02 1500 !5 R1925A 22 500K 420 MA K 4 L/10 E678-14C* @2@3@4 1250 0.1 1000 !5 R5070A 21 502K 420 MA K 5 L/10 E678-14C* @2@3@4 1250 0.1 1000 !5

Dimensional Outlines (Unit: mm) 1 R7899 2 R4998 3 R2078, R1288A

26 ± 1 25.4 ± A 25.4 ± 0.5 FACEPLATE 20 MIN. A Temporary Base Removed FACEPLATE B FACEPLATE 22 MIN. P A Temporary Base Removed DY9 8 DY10 DY10 DY7 6 10 PHOTOCATHODE P 12 DY8 5 DY8 13 DY5 4 11 PHOTO- DY6

14 PHOTOCATHODE 1.5

± DY6 CATHODE DY9 5 DY3 3 12 P IC 15 DY4 DY9 1 2 13 IC ± DY7 DY1 DY4 7 8 4 43.0 6 (Acc) 16 9 71 DY2 14 DY7 DY10 3 5 DY5 DY2 10 17 13 MAX. 1.5 2 17 ± G SEMIFLEXIBLE DY5 4 11 DY8 HA COATING DY3 1 18 LEADS K DY1 68.0 K DY3 3 12 DY6 A

2 13 SMA 13 MAX. B DY1 1 14 DY4 CONNECTOR Bottom View P DY10 K DY2 SEMIFLEXIBLE 12 PIN BASE 6 LEADS B Bottom View JEDEC DY9 7 DY8 No. B12-43 5 8 SHORT PIN A P DY10 DY7 4 9 DY6 6 DY8

12 PIN BASE LEAD LENGTH 50 MIN. 7 JEDEC DY5 3 10 DY4 DY9 8 DY6 B No. B12-43 5 14 PIN BASE 2 11 DY7 4 9 DY4 DY3 DY2 (Acc) 37.3 ± 0.5 1 12 13 MAX. 3 10 DY2 LEAD LENGTH 52 MIN. DY5 DY1 K B 2 11 DY3 1 12 G R2078 R1288A DY1 K A 0.8 0.5 37.3 ± 0.5 TPMHA0492EB TPMHA0093ED B 21 22 TPMHA0039EB

4 R1924A, R3550A, R1925A 5 R5070A

25.4 ± 0.5 25.4 ± 0.5

FACEPLATE 22 MIN. FACEPLATE 21 MIN.

PIC PIC DY9 8 IC 7 DY9 IC PHOTO- 6 9 PHOTO- 7 8 DY7 DY10 CATHODE 6 9 CATHODE 5 10 DY7 DY10 1.5 5 10 1.5 ± DY5 4 11 DY8 ± DY5 4 11 DY8

43.0 3 12 DY3 DY6 46.0 3 12 2 13 DY3 DY6 DY1 1 14 DY4 2 13 DY1 DY4 K DY2 1 14 K DY2 SHORT PIN SHORT PIN

14 PIN BASE 13 MAX. 14 PIN BASE 13 MAX.

TPMHA0040EC TPMHA0491EA 34 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

× 5 × 6 Semiflexible leads type 70 95 11.0 — 88 — 190 1.7 10 2.0 10 2 15 1.6 17 : R7899-01 R7899 × 5 × 6 Assembly type H6533 (Recommended) 60 70 9.0 — 72 100 400 4.1 10 5.7 10 100 800 0.7 10 Silica glass window type: R5320 R4998 × 3 b 2 10 × 4b × 5 — — — — 29 (A/W)b — 1.5 10 5.0 10 0.015 0.1 1.5 14 R2078 60 90 10.5 — 85 40 180 1.7 × 105 2.0 × 106 3 20 1.5 17 Photon counting type R1924P R1924A 30 50 7.0 — 55 30 100 1.1 × 105 2.0 × 106 0.5 4 1.5 17 Photon counting type: R3550P R3550A Button stem type: R1288A-01 20 40 6.0 — 51 8 15 1.9 × 104 3.8 × 105 0.1 10 1.3 13 High temp. operation type: R1288A -30 °C to +175 °C 80 150 — 0.2 64 20 75 3.2 × 104 5.0 × 105 3 20 1.5 17 Silica glass window type: R1926A R1925A 130 230 — 0.25 65 20 100 2.8 × 104 4.3 × 105 3 20 2.2 19 Prism window type R5070A

Dimensional Outline of Socket (Unit: mm) E678-12A, E678-12R*

47 40 17

2- 3.2

34 5 15 8

* Gold Plating type TACCA0009EB

E678-14C

44 35 30 19.1 11.6

2- 3.5

26 7 2.5 9

25

TACCA0004EA 35 Head-on Type Photomultiplier Tubes

Spectral Response Remarks Max. RatingsH ACDEFGJLB Effective Area (mm) Socket Peak Photo- Win- Out- Dynode Anode Average Anode to Curve & to Cathode Type No. Wave- cathode dow line Structure Anode Code Mate- Socket Cathode Supply Wavelength (nm) Current length Material rial No. / Stages Assembly Voltage Voltage 100 200 300 400 500 600 700 800 900 1000 1100 1200 (nm) (V) (mA) (V) 28 mm (1-1/8") Dia. Types R6835 23 100M 140 Cs-I MF 1 B+L/11 E678-14C* 2500 0.01 2000 @3 R6836 23 200M 240 Cs-Te MF 1 B+L/11 E678-14C* 1500 0.01 1000 @3 R6834 25 200S 240 Cs-Te Q 2 B+L/11 E678-14C* @5@6@7 1500 0.01 1000 @3 R6095 25 400K 420 BA K 3 B+L/11 E678-14C* @5@6@7 1500 0.1 1000 @3 R6094 25 400K 420 BA K 4 B+L/11 E678-14C* @5@6@7 1500 0.1 1000 @3 R6427 25 400K 420 BA K 6 L/10 E678-14C* @8@9#0 2000 0.2 1500 !8 R374 25 500U 420 MA U 3 B/11 E678-14C* @5@6@7 1500 0.1 1000 @3 R5929 25 502K 420 MA K 3 B/11 E678-14C* @5@6@7 1500 0.1 1000 @3 R2228 25 501K 600 MA K 3 B/11 E678-14C* @5@6@7 1500 0.1 1000 @3 R7205-01 10 400K 420 BA K 5 B+L/11 E678-14C* #1 1500 0.01 1000 @5 R7206-01 10 500K 420 MA K 5 B+L/11 E678-14C* #1 1500 0.01 1000 @5 R3998-02 25 400K 420 BA K 7 B+L/9 E678-14C* #2 1500 0.1 1000 o R7111 25 400K 420 BA K 8 L/10 E678-14C* @2@3@4 1250 0.1 1000 !5

Dimensional Outlines (Unit: mm) 1 R6835, R6836 2 R6834 3 R6095, R374, R5929 etc.

± 28.2 ± 0.8 28.2 ± 0.8 28.5 0.5 25 MIN. FACEPLATE 23 MIN. FACEPLATE 25 MIN. FACEPLATE

PHOTO- PHOTO- PHOTO- CATHODE CATHODE CATHODE DY10 P P DY10 DY11 DY8 P DY10 7 8 DY11 7 8 DY8 6 9 6 9 DY11 7 8 DY8 DY9 DY6 6 9 5 10 DY9 5 10 DY6 DY9 5 10 DY6 2 2

DY7 4 11 DY4 ± ± DY7 4 11 DY4 2 DY7 4 11 DY4 ± 92 12 112 DY5 3 DY2 3 12 3 12 92 DY5 DY2 DY5 DY2 2 13 2 13 2 13 DY3 1 14 K DY3 1 14 K DY3 1 14 K IC DY1 IC DY1 IC DY1 SHORT PIN SHORT PIN SHORT PIN 13 MAX. 14 PIN BASE 14 PIN BASE 13 MAX. 14 PIN BASE 13 MAX. R2228, R5929 has a plano-concave faceplate. TPMHA0115EC TPMHA0226EC TPMHA0482EA

4 R6094 5 R7205-01, R7206-01 6 R6427

28.5 ± 0.5 29.0 ± 0.7 28.5 ± 0.5 25 MIN. 10 MIN. FACEPLATE FACEPLATE FACEPLATE 25 MIN.

PHOTOCATHODE PHOTOCATHODE PHOTO- CATHODE

P DY10 P DY10 P DY10 DY11 7 8 DY8 DY11 7 8 DY8 NC 7 8 DY8 6 9 6 9 6 9 DY9 DY6 DY9 5 10 DY6 5 10 DY9 5 10 DY6 2 ± 2 2 DY7 4 11 DY4 ± ± DY7 4 11 DY4 DY7 4 11 DY4 85 92 92 3 12 DY5 3 12 DY2 DY5 DY2 DY5 3 12 DY2 2 13 2 13 2 13 DY3 1 14 K HA COATING DY3 1 14 K DY3 1 14 K IC DY1 IC DY1 IC DY1 SHORT PIN SHORT PIN SHORT PIN

14 PIN BASE 14 PIN BASE 14 PIN BASE 13 MAX. 13 MAX. 13 MAX.

TPMHA0493EA TPMHA0412EB TPMHA0387EA 36 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

— — — — 12a — — 1.2 × 103a 1.0 × 105 0.03 0.05 2.8 22 R6835 × 3 4 10 × 4 × 5 — — — — 28b (A/W)b — 1.4 10 b 5.0 10 0.3 1 4 30 R6836 × 3 4 10 × 4 × 5 — — — — 28b (A/W)b — 1.4 10 b 5.0 10 0.3 1 4 30 R6834 Photon counting type: R6095P 60 95 11.0 — 88 50 200 1.8 × 105 2.1 × 106 2 10 4 30 UV glass window type: R7449 R6095 Silica glass window type: R7459 60 95 11.0 — 88 50 200 1.8 × 105 2.1 × 106 2 10 4 30 R6094 60 95 11.0 — 88 — 475 4.4 × 105 5.0 × 106 10 200 1.7 16 UV glass window type: R7056 R6427 80 150 — 0.2 64 20 80 3.4 × 104 5.3 × 105 3 15 15 60 High gain type: R1104 R374 130 230 — 0.25 65 30 180 5.1 × 104 7.8 × 105 5 25 15 60 Prism window type R5929 100 200 — 0.3 40 20 150 3.0 × 104 7.5 × 105 8 30 15 60 R2228 Silica glass window type: R7207-01 40 70 9.0 — 72 200 700 7.5 × 105 1.0 × 107 10h 30h 1.7 26 R7205-01 80 150 — 0.2 64 — 1500 6.4 × 105 1.0 × 107 300h 1000h 1.7 26 R7206-01 60 90 10.5 — 85 50 120 1.1 × 105 1.3 × 106 2 10 3.4 23 R3998-02 60 90 10.5 — 85 40 180 1.7 × 105 2.0 × 106 3 20 1.6 18 R7111

Dimensional Outline of Socket (Unit: mm) 7 R3998-02 E678-14C

44 35 28.5 ± 0.5 FACEPLATE 25 MIN.

PHOTO- P DY9

CATHODE DY8 DY7 30 7 8 19.1 6 9 11.6 DY6 5 10 DY5

2 4 11 IC ± IC

60 3 12 2- 3.5 DY4 DY3 2 13 DY2 1 14 DY1 26 G K SHORT PIN 7 2.5 9

14 PIN BASE

13 MAX. 25

TACCA0004EA TPMHA0114EA

8 R7111

28.5 ± 0.5 FACEPLATE 25 MIN.

P IC DY9 7 8 IC PHOTO- 6 9 CATHODE DY7 5 10 DY10 1.5 ± DY5 4 11 DY8

43.0 DY3 3 12 DY6 2 13 DY1 1 14 DY4 K DY2 SHORT PIN

14 PIN BASE 13 MAX.

TPMHA0395EA 37 Head-on Type Photomultiplier Tubes

Spectral Response Remarks Max. RatingsH ACDEFGJLB Effective Area (mm) Socket Peak Photo- Win- Out- Dynode Anode Average Anode to Curve & to Cathode Type No. Wave- cathode dow line Structure Anode Code Mate- Socket Cathode Supply Wavelength (nm) Current length Material rial No. / Stages Assembly Voltage Voltage 100 200 300 400 500 600 700 800 900 1000 1100 1200 (nm) (V) (mA) (V) 38 mm (1-1/2") Dia. Types R980 34 400K 420 BA K 1 CC/10 E678-12A* #3#4 1250 0.1 1000 !3 R3886 34 400K 420 BA K 2 CC/10 E678-12A* #3#4 1250 0.1 1000 !3 R580 34 400K 420 BA K 3 L/10 E678-12A* #3#4 1750 0.1 1250 !3 R1705 34 401K 375 HBA K 4 CC/10 E678-12R* #3#4 1800 0.02 1500 !3 R1387 34 500K 420 MA K 1 CC/10 E678-12A* #3#4 1250 0.2 1000 !3 R2066 34 501K 600 MA K 1 CC/10 E678-12A* #3#4 1500 0.2 1000 !3

Dimensional Outlines (Unit: mm) 1 R980, R1387, R2066 etc. 2 R3886 3 R580

38.0 ± 0.7 ± FACEPLATE ± 38 1 FACEPLATE 38 1 FACEPLATE 34 MIN. A 34 MIN. Temporary Base Removed 34 MIN. DY10 PHOTO- P 9 DY8 CATHODE 10 PHOTO- PHOTO- 6 CATHODE CATHODE DY9 5 11 DY6 DY7 4 12 DY4 1.5 ± DY5 3 13 P DY10 DY2 P DY10 6 7 63.5 2 DY9 DY8 DY3 1 15 DY9 6 7 DY8 5 8 5 DY1 K 8 DY7 DY6 2 4 9 ± DY7 4 9 DY6 2 ± DY5 3 10 DY4 109 DY5 3 10 DY4

99 B Bottom View

SEMIFLEXIBLE 127 MAX 2 11 2 11 LEADS P DY10 DY3 116 MAX. DY3 DY2 DY2 1 12 1 12 12 PIN BASE DY9 6 7 DY8 DY1 K 5 8 DY1 K JEDEC A 12 PIN BASE DY7 DY6 JEDEC No. B12-43 13 MAX. 4 9 R2066 has a plano-concave No. B12-43 12 PIN BASE 3 10 faceplate. DY5 DY4 JEDEC 11 No. B12-43 2 DY3 1 12 DY2

LEAD LENGTH 70 MIN. DY1 K B

37.3 ± 0.5 ± 37.3 ± 0.5 37.3 0.5

TPMHA0228EA TPMHA0104EA TPMHA0121EA

4 R1705

FACEPLATE 38.0 ± 0.7 34 MIN.

A Temporary Base Removed

PHOTO- DY10 CATHODE P 9 DY8 6 10 DY6 DY9 5 11

DY7 4 12 DY4 2 ± DY5 3 13 DY2 87 2 DY3 1 15 DY1 K

B Bottom View

13 MAX. P DY10 DY9 6 7 DY8 A 5 8 DY7 4 9 DY6 SEMI-FLEXIBLE LEADS 0.7 MAX. DY5 3 10 DY4 2 11 DY3 DY2 1 12 12 PIN BASE

70 MIN. DY1 K JEDEC No. B12-43

B

37.3 ± 0.5 TPMHA0042EB 38 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

70 100 11.5 — 90 10 100 9.0 × 104 1.0 × 106 3 5 2.8 40 R980 70 90 10.5 — 85 10 45 4.3 × 104 5.0 × 105 3 5 2.5 32 R3886 70 95 11.0 — 88 10 100 9.7 × 104 1.1 × 106 3 20 2.7 37 R580 × 4 × 5 High temp. operation type: 20 40 6.0 — 51 5 20 2.5 10 5.0 10 0.5 10 2.0 35 -30 °C to +175 °C R1705 × 4 × 5 UV glass window type: R1508 80 150 — 0.2 64 10 50 2.1 10 3.3 10 4 25 2.8 40 Silica glass window type: R1509 R1387 120 200 — 0.3 40 20 50 1.0 × 104 2.5 × 105 8 30 2.8 40 R2066

Dimensional Outline of Socket (Unit: mm) E678-12A, E678-12R*

47 40 17

2- 3.2

34 5 15 8

* Gold Plating type TACCA0009EB

39 Head-on Type Photomultiplier Tubes

Spectral Response Remarks Max. RatingsH ACDEFGJLB Effective Area (mm) Socket Peak Photo- Win- Out- Dynode Anode Average Anode to Curve & to Cathode Type No. Wave- cathode dow line Structure Anode Code Mate- Socket Cathode Supply Wavelength (nm) Current length Material rial No. / Stages Assembly Voltage Voltage 100 200 300 400 500 600 700 800 900 1000 (nm) (V) (mA) (V) 51 mm (2") Dia. Types with Plastic Base R6231 46 400K 420 BA K 1 B+L/8 E678-14W #5#6 1500 0.1 1000 y R1306 46 400K 420 BA K 2 B/8 E678-14W #7#8 1500 0.1 1000 w R2154-02 46 400K 420 BA K 3 L/10 E678-14W #9 1750 0.1 1250 !3 R1828-01 46 400K 420 BA K 4 L/12 E678-20A* $0 3000 0.2 2500 @6 R3234-01 10 400K 420 BA K 5 L/12 E678-20A* $1 2500 0.1 2000 #0 R550 46 500K 420 MA K 6 B/10 E678-14W $2$33$4$5 1500 0.3 1000 !1

Dimensional Outlines (Unit: mm) 1 R6231 2 R1306 3 R2154-02

51.0 ± 0.5 51.0 ± 0.5 ± 51.0 0.5 FACEPLATE FACEPLATE 46 MIN. 46 MIN. FACEPLATE 46 MIN.

PHOTO- PHOTO- CATHODE CATHODE PHOTO- DY6 IC DY7 DY8 CATHODE DY5 IC 7 8 DY6 7 8 IC 6 9 6 9 DY7 DY8 DY4 5 10 DY7 DY5 IC DY6 7 8 DY9 5 10 6 9 3

2 DY10 2 ± DY3 4 11 DY8 DY5 ± ± DY4 4 11 P 5 10 90 3 12 DY4 11 P

124 4 DY2 P 114 DY3 3 12 IC 113 MAX. 2 13 137 MAX. 2 13 IC 1 14 G DY3 3 12 IC DY2 1 14 G 147 MAX. 2 13 DY1 K DY1 K DY2 1 14 IC DY1 K

56.5 ± 0.5 ± 14 PIN BASE 56.5 0.5 JEDEC No. B14-38 56.5 ± 0.5 14 PIN BASE JEDEC No. B14-38 14 PIN BASE JEDEC No. B14-38

TPMHA0388EB TPMHA0089EC TPMHA0296EA

4 R1828-01 5 R3234-01 6 R550

53.0 ± 1.5 FACEPLATE 46 MIN. 53.0 ± 1.5 FACEPLATE 10 MIN. 51.0 ± 0.5 FACEPLATE 46 MIN. PHOTO- CATHODE PHOTO- CATHODE PHOTO- CATHODE P DY12 P DY12 IC DY10 IC DY10 DY7 DY8 10 11 DY11 9 10 11 12 DY8 DY11 9 12 DY8 DY6 7 8 DY9 8 13 DY9 8 13 DY6 6 9 DY9 DY6 7 14 HA COATING 3 7 14 DY5 DY10

3 10 ± DY7 DY4 DY7 DY4 5 6 15 ± 6 15 2 5 16 DY5 5 16 DY4 ± DY4 4 11 P 170 DY5 DY4 146

192 MAX. 4 17 4 17 IC DY2 IC DY2 124 3 12 3 18 168 MAX. 3 18 DY3 IC DY3 2 19 IC DY3 2 19 IC 13 1 20 14 PIN BASE 2 (G2) & DY1 1 20 G1 HA COATING DY1 NC 147 MAX. DY2 1 14 G IC K IC K JEDEC No. B14-38 DY1 K 20 PIN BASE JEDEC 20 PIN BASE No. B20-102 JEDEC No. B20-102 56.5 ± 0.5 52.5 MAX. 52.5 MAX.

TPMHA0064EC TPMHA0004EB TPMHA0210EB 40 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

80 110 12.0 — 95 3 30 2.6 × 104 2.7 × 105 2 20 5.0 48 R6231 80 110 12.0 — 95 3 30 2.6 × 104 2.7 × 105 2 20 7.0 60 R1306 60 90 10.5 — 85 20 90 8.5 × 104 1.0 × 106 5 20 3.4 31 Multialkali photocathode type: R3256 R2154-02 60 90 10.5 — 85 200 1800 1.7 × 106 2.0 × 107 50 400 1.3 28 Silica glass window type: R2059 R1828-01 60 80 9.0 — 72 500 2000 2.0 × 106 2.5 × 107 1 10 1.3 28 Silica glass window type: R3235-01 R3234-01 100 150 — 0.2 64 20 100 4.3 × 104 6.7 × 105 10 30 9.0 70 R550

Dimensional Outline of Socket (Unit: mm) E678-14W

19.8

62 56 11 30 17 2

TACCA0200EA

E678-20A 20

58 52.5 6 13 21 10

52 56

TACCA0003EA 41 Head-on Type Photomultiplier Tubes

Spectral Response Remarks Max. RatingsH ACDEFGJLB Effective Area (mm) Socket Peak Photo- Win- Out- Dynode Anode Average Anode to Curve & to Cathode Type No. Wave- cathode dow line Structure Anode Code Mate- Socket Cathode Supply Wavelength (nm) Current length Material rial No. / Stages Assembly Voltage Voltage 100 200 300 400 500 600 700 800 900 1000 (nm) (V) (mA) (V) 51 mm (2") Dia. Types with Glass Base R464 5 × 8 400K 420 BA K 1 B/12 E678-21C* $6 1500 0.01 1000 @8 R329-02 46 400K 420 BA K 2 L/12 E678-21C* $7$8$9 2700 0.2 1500 @7 R331-05 46 400K 420 BA K 3 L/12 E678-21C* $7$8$9 2500 0.2 1500 @7 R2083 46 400K 420 BA K 4 L/8 E678-19F* 3500 0.2 3000 e R4607-01 46 401K 375 HBA K 5 CC/10 E678-15B* 1800 0.02 1500 !3 R649 5 × 8 500K 420 MA K 1 B/12 E678-21C* $6 1500 0.01 1000 @8

Dimensional Outlines (Unit: mm) 1 R464, R649 2 R329-02 3 R331-05

53.0 ± 1.5 52.0 ± 1.5 53.0 ± 1.5 FACEPLATE FACEPLATE 46 MIN. FACEPLATE 5 × 8 46 MIN.

PHOTO- PHOTO- 0.2 CATHODE ± CATHODE PHOTO- SH IC DY10 IC IC CATHODE 50.0 IC DY8 IC DY10 SH DY10 10 11 12 IC DY8 IC DY8 DY12 9 13 DY6 10 11 12 10 11 12 8 14 DY12 13 DY6 DY12 13 DY6 9 9 P 15 DY4

2 7 HA COATING 8 14 8 14 2 ± P DY4 HA COATING P DY4 ± 2 7 15 7 15 DY11 6 16 DY2 ± DY11 16 DY2 DY11 6 16 DY2 5 17 6 127

126 DY9 G G DY9 17 G HA COATING 4 18 DY9 5 17 5 DY7 IC 18 4 18 3 19 DY7 4 IC DY7 IC 2 20 IC 3 19 3 19 DY5 1 21 DY5 2 20 IC DY5 2 20 IC DY3 IC 1 21 1 21 DY1 K DY3 IC DY3 IC DY1 DY1 K K *CONNECT SH TO DY5 LIGHT SHIELD *CONNECT SH TO DY5

21 PIN BASE 21 PIN BASE 13 MAX. 126 21 PIN BASE 13 MAX. 13 MAX.

TPMHA0216EB TPMHA0123EE TPMHA0072EC

4 R2083 5 R4607-01

53.0 ± 1.5 FACEPLATE 46 MIN. 52 ± 1

FACEPLATE 46 MIN. PHOTO- IC CATHODE NC NC NC IC DY10 DY8 9 10 11 P 7 8 9 DY8 P 8 12 DY6 PHOTOCATHODE 7 13 6 10

2 DY4 DY9 DY6 2 ± 6 14 5 11 ± DY7 5 15 DY4 DY7 4 12 DY4 80 HA COATING 121 16 DY5 4 DY2 3 13 3 17 DY5 DY2 DY3 2 18 IC 2 14 19 DY3 IC G2 & DY1 1 G1 1 15 ACC K DY1 K SHORT PIN SHORT PIN 19 PIN BASE 15 PIN BASE 13 MAX.

SMA CONNECTOR 13 MAX.

TPMHA0185EC TPMHA0003EC 42 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

Silica glass window type: R585 30 50 — — 50 100 300 3.0 × 105 6.0 × 106 5h 15h 13 70 R464 × 4 × 6 UV glass window type: R5113-02 60 90 10.5 — 85 30 100 9.4 10 1.1 10 6 40 2.6 48 Silica glass window type: R2256-02 R329-02 Silica glass window type: R331 60 90 10.5 — 85 30 120 1.1 × 105 1.3 × 106 200h 600h 2.6 48 R331-05 × 5 × 6 Assembly type: H2431-50 (Recommended) 60 80 10.0 — 80 50 200 2.0 10 2.5 10 100 800 0.7 16 Silica glass window type: H3378-50 R2083 × 4 × 5 High temp. operation type: 20 40 6.0 — 51 5 20 2.5 10 5.0 10 3 50 2.5 29 -30 °C to +175 °C R4607-01 80 120 — 0.2 51 100 800 3.4 × 105 6.7 × 106 200h 350h 13 70 R649

Dimensional Outline of Socket (Unit: mm) E678-21C E678-19F

60 51 50 19 4 45 40

R5 56.8

5

40 5 13 4 2 12 12 6.5 6.5

TACCA0066EC TACCA0203EA

E678-15B

60 50 4 45 40

5 2 11.5 5 40

TACCA0201EA 43 Head-on Type Photomultiplier Tubes

Spectral Response Remarks Max. RatingsH ACDEFGJLB Effective Area (mm) Socket Peak Photo- Win- Out- Dynode Anode Average Anode to Curve & to Cathode Type No. Wave- cathode dow line Structure Anode Code Mate- Socket Cathode Supply Wavelength (nm) Current length Material rial No. / Stages Assembly Voltage Voltage 100200 300 400 500 600 700 800 900 1000 1100 (nm) (V) (mA) (V) 51 mm (2") Dia. Types with Glass Base R375 46 500S 420 MA Q 1 B/10 E678-15B* %0 1500 0.1 1000 !1 R669 46 501K 600 EMA K 1 B/10 E678-15B* %0 1500 0.1 1000 !1

R943-02 10 650S 300-800 GaAs Q 2 L/10 (NOTE) E678-21C* 2200 0.001 1500 !7

R3310-02 10 851K 400 InGaAs K 2 L/10 (NOTE) E678-21C* 2200 0.001 1500 !7 R2257 46 501K 600 EMA K 3 L/12 E678-21C* $7$8$9 2700 0.2 1500 @7 (NOTE) For cooling operation, another socket, type number E678-21D (sold separately) is recommended.

Dimensional Outlines (Unit: mm) 1 R375, R669 2 R943-02, R3310-02 3 R2257

3.4 6.6

52 ± 1 51.0 ± 1.5 PHOTO- 10 FACEPLATE FACEPLATE 46 MIN. CATHODE 46 MIN. 10 × 10

PHOTO- PHOTO- CATHODE IC DY9 DY7 ± FACEPLATE 51 1 CATHODE IC DY10 8 SH P 7 9 DY5 IC DY8 DY12 10 11 12 6 10 IC 9 13 DY6 IC DY9 14 IC 5 11 DY3 PHOTO- IC DY7 P 8 DY4 2 10 11 12 7 15 2 ± CATHODE IC 9 13 DY5 DY11 DY2 DY10 4 12 DY1 ± 6 16 10 × 10 P 8 14 DY3 112 3 13 7 15 DY9 5 17 G DY8 126 K 2 DY10 6 16 DY1 4 18 ± DY7 IC 2 14 19 DY6 1 15 G DY8 5 17 IC 3 88 DY5 2 20 IC 4 18 1 21 DY4 DY2 DY6 IC DY3 IC 3 19 DY1 K DY4 2 20 IC SHORT PIN HA COATING 1 21 DY2 IC ∗ K IC CONNECT SH TO DY5 LIGHT SHORT PIN SHIELD 15 PIN BASE 13 MAX. 21 PIN BASE 21 PIN BASE 13 MAX. 14 MAX. R669 has a plano-concave faceplate.

TPMHA0211EA TPMHA0021EE TPMHA0359EA

44 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

80 150 — 0.2 64 20 80 3.4 × 104 5.3 × 105 5 20 9.0 70 R375 140 230 — 0.35 50 20 75 1.7 × 104 3.3 × 105 7 15 9.0 70 R669 300 600 — 0.58 71 150 300 3.6 × 104 5.0 × 105 20j 50j 3.0 23 R943-02 80 150 — 0.4 9.4c 15 50 3.1 × 103 3.3 × 105 30j 150j 3.0 23 R3310-02 140 230 — 0.35 50 15 100 2.2 × 104 4.3 × 105 30 100 2.6 48 R2257

Dimensional Outline of Socket (Unit: mm) E678-15B E678-21C

60 51 50 19 4 45 40

R5 56.8

5 5 2 11.5 13 5 4 40 6.5

TACCA0201EA TACCA0066EA

E678-21D

44.5 23.5 48 7.5 18.5 3.0 4.2 TACCA0054EB 45 Head-on Type Photomultiplier Tubes

Spectral Response Remarks Max. RatingsH ACDEFGJLB Effective Area (mm) Socket Peak Photo- Win- Out- Dynode Anode Average Anode to Curve & to Cathode Type No. Wave- cathode dow line Structure Anode Code Mate- Socket Cathode Supply Wavelength (nm) Current length Material rial No. / Stages Assembly Voltage Voltage 100 200 300 400 500 600 700 800 900 1000 (nm) (V) (mA) (V) 76 mm (3") Dia. Types R1307 70 400K 420 BA K 1 B/8 E678-14W #7#8 1500 0.1 1000 w R6233 70 400K 420 BA K 2 B+L/8 E678-14W #5#6 1500 0.1 1000 y R4143 65 400K 420 BA K 3 L/12 E678-20A* 3000 0.2 2500 @9 R6091 65 400K 420 BA K 4 L/12 E678-21C* $7$8$9 2500 0.2 1500 @7 127 mm (5") Dia. Types R877 111 400K 420 BA K 5 B/10 E678-14W $2$3$4$5 1500 0.1 1250 !1 R1250 120 400K 420 BA K 6 L/14 E678-20A* %1 3000 0.2 2000 #2 R1513 111 500K 420 MA K 5 VB/10 E678-14W $2$3$4$5 2000 0.1 1500 !1 R1584 120 400U 420 BA U 7 L/14 E678-20A* %1 3000 0.2 2000 #2

Dimensional Outlines (Unit: mm) 1 R1307 2 R6233 3 R4143

77.0 ± 1.5 FACEPLATE 65 MIN. 76.0 ± 0.8 76.0 ± 0.8 FACEPLATE 70 MIN. FACEPLATE 70 MIN

PHOTO- CATHODE DY6 IC PHOTO- P DY12 DY7 DY8 DY5 7 8 IC NC DY10 CATHODE PHOTO- DY11 10 11 DY6 8 IC 6 9 9 12 DY8 7 CATHODE 8 13 6 9 3 DY4 5 10 DY7 DY9 DY6 ± 7 14 3 ± ± DY5 IC 51.5 1.5 5 51.5 1.5 ± 5 10 DY7 NC 14 PIN BASE DY3 4 11 DY8 ± 6 15 DY4 4 11 P JEDEC 100 DY5 5 16 DY4 127 192 14 PIN BASE 123 MAX. No. B14-38 3 12 4 17 JEDEC 150 MAX. DY2 P NC DY2 3 12 HA 3 18 DY3 IC 215 MAX. No. B14-38 2 13 COATING DY3 2 19 NC 2 13 IC 1 14 G 1 20 DY2 1 14 G G2 & DY1 G1 DY1 K IC K DY1 K 20 PIN BASE JEDEC No. B20-102 56.5 ± 0.5

56.5 ± 0.5

53.5 MAX. TPMHA0078EA TPMHA0389EB TPMHA0112EB

4 R6091 5 R877, R1513 6 R1250

133 ± 2 FACEPLATE 120 MIN. ± 76 1 ± FACEPLATE 133.0 1.5 65 MIN. 111 MIN. PHOTO- CATHODE

PHOTO- SH IC DY10 CATHODE IC DY8 DY7 DY8 DY12 10 11 12 DY6 9 13 DY6 7 8 DY9 P DY14 8 14 IC DY12 P DY4 6 9 DY13 10 11 DY10 FACEPLATE 9 12 2 7 15 DY5 DY10 8 13

3 5 10 DY11 DY8 ± 5 DY11 DY2 ± 7 14 6 16 ± DY9 DY4 4 11 P 5 6 15 DY6 PHOTO- ± 171 137 DY9 5 17 G DY7 5 16 DY4 259 CATHODE 3 12 17 4 18 276 4 DY7 IC 55 MAX. DY3 IC DY5 DY2 19 194 MAX. 3 18 3 2 13 DY3 19 IC 2 20 DY2 G 2 1 20 DY5 1 21 IC 1 14 HA COATING G2 & DY1 G1 DY3 IC DY1 K IC K DY1 K 20 PIN BASE 14 PIN BASE JEDEC * CONNECT SH TO DY5 JEDEC No. B20-102 No. B14-38

21 PIN BASE 56.5 ± 0.5 13 MAX. 52.5 MAX.

TPMHA0285EB TPMHA0074EC TPMHA0018EB 46 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

80 110 12.0 — 95 3 30 2.6 × 104 2.7 × 105 2 20 8.0 64 R1307 80 110 12.0 — 95 3 30 2.6 × 104 2.7 × 105 2 20 6.0 52 R6233 60 80 9.5 — 76 100 400 3.8 × 105 5.0 × 106 50 500 1.8 32 R4143 60 90 10.5 — 85 50 450 4.3 × 105 5.0 × 106 10 60 2.6 48 R6091

× 4 × 5 K-free borosilicate glass type: 60 95 11.0 — 88 20 40 3.7 10 4.2 10 10 50 10 90 R877-01 R877 55 70 9.0 — 72 300 1000 1.0 × 106 1.4 × 107 50 300 2.5 54 R1250 100 150 — 0.2 64 10 50 2.1 × 104 3.3 × 105 30 150 7.0 82 R1513 55 70 9.0 — 72 300 1000 1.0 × 106 1.4 × 107 50 300 2.5 54 R1584

Dimensional Outline of Socket (Unit: mm) 7 R1584 E678-14W E678-20A

133 ± 2 120 MIN. 19.8

FACEPLATE

PHOTO- CATHODE 20

HA COATING DY14 IC P DY12 5

± DY13 9 101112 DY10 5 8 13 ± DY11 DY8 58 7 14 259 DY9 6 15 DY6 276 62 DY7 5 16 DY4 52.5 4 17 DY5 DY2 6 3 18 56 DY3 19 IC 2 1 20 G2 & DY1 G1 IC K 13 11 21 10 20 PIN BASE 30 17 JEDEC No. B20-102 52

2 56

52.5 MAX.

TPMHA0187EC TACCA0200EA TACCA0003EA

E678-21C

51

19

R5 56.8 5 13 4 6.5

TACCA0066EC 47 Hemispherical Envelope Type, Special Envelope Type Photomultiplier Tubes

Spectral Response Remarks Max. RatingsH ACDEFGJLB Effective Area (mm) Socket Peak Photo- Win- Out- Dynode Anode Average Anode to Curve & to Cathode Type No. Wave- cathode dow line Structure Anode Code Mate- Socket Cathode Supply Wavelength (nm) Current length Material rial No. / Stages Assembly Voltage Voltage 100 200 300 400 500 600 700 800 900 1000 (nm) (V) (mA) (V) Hemispherical Envelope Types R5912 190 400K420 BAK 1 B+L/10 E678-20A* %2%3 2000 0.1 1500 @2 Special Envelope Types R6234 55 (6) 400K 420 BA K 2 B+L/8 E678-14W #5#6 1500 0.1 1000 y R6236 54 400K 420 BA K 3 B+L/8 E678-14W #5#6 1500 0.1 1000 y R6235 70 (6) 400K 420 BA K 4 B+L/8 E678-14W #5#6 1500 0.1 1000 y R6237 70 400K 420 BA K 5 B+L/8 E678-14W #5#6 1500 0.1 1000 y R2248 8 400K 420 BA K 6 L/8 E678-11N* y 1500 0.03 1250 q R1548-07 8 × 18 × (2) 400K 420 BA K 7 L/10 E678-17A* 1750 0.1 1250 !8

Dimensional Outlines (Unit: mm) 1 R5912 2 R6234 3 R6236

202 ± 5 INPUT WINDOW 190 MIN. 0.6 1.0 ± ± 60 MIN. 54 MIN. 67.5 59.5 R131

59.5 ± 0.5 59.5 ± 1.0 PHOTOCATHODE FACEPLATE FACEPLATE 55 MIN. 54 MIN.

PHOTO- DY6 IC CATHODE 10 PHOTO- DY5 IC ± DY6 IC 7 8 CATHODE 6 9 DY5 7 8 IC DY4 DY7 220 6 9 5 10 3 DY4 DY7 3 ± 5 10 ± DY3 4 11 DY8 51.5 ± 1.5 51.5 ± 1.5 DY3 4 11 DY8 100 100 275 MAX. 3 12

123 MAX. DY2 P 14 PIN BASE 2 13 14 PIN BASE DY2 3 12 P 123 MAX. IC 1 14 G JEDEC 2 13 JEDEC 84.5 ± 2 DY1 K No. B14-38 IC 1 14 G No. B14-38 DY1 K

56.5 ± 0.5 56.5 ± 0.5

TPMHA0390EB TPMHA0392EB 20-PIN BASE JEDEC No. B20-102 52.5MAX. 4 R6235 5 R6237

IC IC IC DY10 P 9 10 11 12 DY8 DY9 8 13 7 14 DY6 IC 6 15 IC 1 1.5 DY7 5 16 DY4 ± ±

4 17 85

DY5 DY2 79 MIN.

3 18 70 MIN. DY3 2 19 FOCUS1 76.0 1 20 FOCUS3 FOCUS2 DY1 K

76.0 ± 1.5 76.0 ± 1.5 FACEPLATE FACEPLATE TPMHA0261EC 70 MIN. 70 MIN. DY6 IC DY6 IC DY5 7 8 IC PHOTO- 6 9 DY5 7 8 IC CATHODE 6 9 PHOTO- DY4 DY7 5 10 DY4 DY7 CATHODE 5 10 DY3 4 11 DY8 DY3 4 11 DY8 3 ± 3 3 12

± DY2 P 51.5 ± 1.5 DY2 3 12 P ± 2 13 51.5 1.5 100 2 13 100 IC 1 14 G 14 PIN BASE IC 1 14 G DY1 K 123 MAX. 123 MAX. JEDEC DY1 K No. B14-38 14 PIN BASE JEDEC No. B14-38

± 56.5 ± 0.5 56.5 0.5

TPMHA0391EB TPMHA0393EB 48 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

— 709.0 — 72 — 700 7.2 × 105 1.0 × 107 50 700 3.8 55 R5912

80 110 12.0 — 95 3 30 2.6 × 104 2.7 × 105 2 20 6.0 52 R6234 80 110 12.0 — 95 3 30 2.6 × 104 2.7 × 105 2 20 6.0 52 R6236 80 110 12.0 — 95 3 30 2.6 × 104 2.7 × 105 2 20 6.0 52 R6235 80 110 12.0 — 95 3 30 2.6 × 104 2.7 × 105 2 20 6.0 52 R6237 60 95 9.5 — 76 30 100 8.0 × 104 1.1 × 106 1 50 0.9 9 R2248 60 80 9.5 — 76 50 200 1.9 × 105 2.5 × 106 20 250 1.8 20 R1548-07

Dimensional Outline of Socket (Unit: mm) 6 R2248 E678-20A E678-14W

19.8

± 9.8 0.4 0.4 ± 8 MIN. 20 9.8 FACEPLATE 8 MIN.

P DY7 DY8 6 5 7 58 PHOTOCATHODE DY5 DY6 4 8 1.5

± 52.5 62

DY3 3 9 DY4 6 45.0 56

2 10 13 DY1 1 11 DY2 21 IC K 11 10 30

SHORT PIN 52 17 11 PIN BASE

56 2 10 MAX.

TACCA0003EA TACCA0200EA TPMHA0098EB 7 R1548-07 E678-11N E678-17A

8 MIN. 8 MIN. 4.3 0.5 ± 18 MIN. 24.0 18.0 24.0

24.0 ± 0.5 FACEPLATE

10.5 PHOTOCATHODE DY10 P2 DY8 9.5 21.9 P1 8 9 10 DY7 7 11 DY6 DY9 6 12 DY4 3

2 DY7 5 13 ± 4 14 DY5 DY2 11 70

3 15 0.1 DY3 IC 2 16 14.0 DY1 1 17 16.3

IC 3 IC K SHORT PIN 9.5 12.0

17 PIN BASE 22.8 13 MAX.

TPMHA0223EA TACCA0043EA TACCA0046EB 49 Metal Package Photomultiplier Tubes

Spectral Response Remarks Max. Ratings H ACDEFGJL Effective Area (mm) Socket Peak Photo- Win- Dynode Anode Average Anode to Out- & to Cathode Type No. Wave- cathode dow Structure Anode Mate- line Socket Cathode Supply Wavelength (nm) Current length Material rial No. / Stages Assembly Voltage Voltage 100 200 300 400 500 600 700 800 900 1000 (nm) (V) (mA) (V)

R7400U 8 420 BA K 1 MC/8 E678-12M %4 1000 0.1 800 u R7400U-01 8 400 MA K 1 MC/8 E678-12M %4 1000 0.1 800 u R7400U-02 8 500 MA K 1 MC/8 E678-12M %4 1000 0.1 800 u R7400U-03 8 420 BA U 1 MC/8 E678-12M %4 1000 0.1 800 u R7400U-04 8 400 MA U 1 MC/8 E678-12M %4 1000 0.1 800 u R7400U-06 8 420 BA Q 2 MC/8 E678-12M %4 1000 0.1 800 u R7400U-09 8 240 Cs-Te Q 2 MC/8 E678-12M %4 1000 0.01 800 u R7400U-20 8 630 MA K 1 MC/8 E678-12M %4 1000 0.1 800 u R7401 8 420 BA K 3 MC/8 E678-12M %4 1000 0.1 800 u R7402 8 400 MA K 3 MC/8 E678-12M %4 1000 0.1 800 u

Dimensional Outlines (Unit: mm) 1 R7400U, -01, -02, -03, -04, -20 2 R7400U-06, -09 3 R7401, R7402

INSULATION COVER (Polyoxymethylene) INSULATION COVER (Polyoxymethylene) INSULATION COVER (Polyoxymethylene) 12.8 ± 0.5 4.0 ± 0.3 19.0 ± 0.5 11.5 ± 0.4 4.0 ± 0.3 0.3 ± 0.2 5 ± 1 ± 4.0 ± 0.3 0.5 ± 0.2 5 ± 1 11.5 0.4 SHORT PIN SHORT PIN GUIDE MARK 5 ± 1 GUIDE MARK GUIDE MARK SHORT PIN 0.3 ± 0.3

12- 0.45 0.3 ± ± 12- 0.45 5.4 12- 0.45 SR7 5.4 0.4 5.4 0.4 0.3 0.4 ± ± 0.4 ± ± 0.4 ± ± 5.1 10.2 5.1 5.1 10.2 11.0 15.9 WINDOW 10.2 15.9 WINDOW 14.0 15.9 9.4 (a) (b) PHOTOCATHODE 5.1 PHOTOCATHODE PHOTOCATHODE 5.1 5.1 8 MIN. 8 MIN. 8 MIN. 10.2 10.2 10.2 Side View Bottom View Side View Bottom View Side View Bottom View (b) R7402 do not have (a) R7400U-01, -02, -04, -20 do not have DY3 SHORT PIN DY3 SHORT PIN DY5 DY5 SHORT PIN DY3 (IC) 2 (IC) DY5 1 3 2 (IC) 2 GUIDE MARK 1 3 1 3 K DY7 DY7 K DY7 12 4 K 12 4 12 4 DY1 11 5 P DY1 11 5 P DY1 11 5 P 10 6 10 6 DY2 SHORT PIN DY2 SHORT PIN 10 6 9 7 DY2 SHORT PIN 8 (IC) 9 7 (IC) 9 7 8 8 (IC) DY4 DY8 DY4 DY8 DY4 DY8 DY6 IC: Internal Connection DY6 IC: Internal Connection DY6 IC: Internal Connection (Do not use) (Do not use) (Do not use) TPMHA0411EE TPMHA0410ED TPMHA0415ED

50 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

40 70 8.0 — 62 10 50 4.3 × 104 7.0 × 105 0.2 2 0.78 5.4 Photon counting type: R7400P R7400U 80 150 — 0.2 60 15 75 3.0 × 104 5.0 × 105 0.4 4 0.78 5.4 R7400U-01 200 250 — 0.25 58 25 125 2.9 × 104 5.0 × 105 2.0 20 0.78 5.4 with condenser lens: R7402-02 R7400U-02 40 70 8.0 — 62 10 50 4.3 × 104 7.0 × 105 0.2 2 0.78 5.4 R7400U-03 80 150 — 0.2 60 15 75 3.0 × 104 5.0 × 105 0.4 4 0.78 5.4 R7400U-04 40 70 8.0 — 62 10 50 4.3 × 104 7.0 × 105 0.2 2 0.78 5.4 R7400U-06 — — — — 10b — — 500b 5.0 × 104 0.025 0.5 0.78 5.4 R7400U-09 350 500 — 0.45 78 35 250 3.9 × 104 5.0 × 105 2.0 20 0.78 5.4 with condenser lens: R7402-20 R7400U-20 40 70 8.0 — 62 10 50 4.3 × 104 7.0 × 105 0.2 2 0.78 5.4 R7401 80 150 — 0.2 60 15 75 3.0 × 104 5.0 × 105 0.4 4 0.78 5.4 R7402

ISpectral Response TPMHB0474EA TPMHB0475EB TPMHB0473EB 100 100 100 R7400U-04 R7400U-02 R7400U-06

R7400U R7400U-01 10 R7401 R7400U-09 R7402 10 10

R7400U-20 1 R7400U-03

1 1

0.1 PHOTOCATHODE RADIANT SENSITIVITY (mA/W) PHOTOCATHODE RADIANT SENSITIVITY (mA/W) PHOTOCATHODE RADIANT SENSITIVITY (mA/W) 0.1 0.1 0.01 100200 300 400 500 600 700 800 100 200 300 400 500 600 700 800 900 1000 100200 300 400 500 600

WAVELENGTH (nm) WAVELENGTH (nm) WAVELENGTH (nm)

IGain Dimensional Outline of Socket (Unit: mm) TPMHB0680EB 107 E678-12M R7400U-01/-02/-04/-20, R7402

106 12.5 R7400U/-03/-06, R7401 2.5

6.0 105

104 GAIN

R7400U-09 1.8 103 10.2

102 2.8 4.2

101 3.2 400 600 800 1000 0.5 SUPPLY VOLTAGE (V) TACCA0164EC 51 Metal Package Photomultiplier Tubes

Spectral Response Remarks Max. Ratings H ACDEFGJL Effective Area (mm) Socket Peak Photo- Win- Dynode Anode Average Anode to Out- & to Cathode Type No. Wave- cathode dow Structure Anode Mate- line Socket Cathode Supply Wavelength (nm) Current length Material rial No. / Stages Assembly Voltage Voltage 100 200 300 400 500 600 700 800 900 1000 (nm) (V) (mA) (V)

R7600U 18 × 18 420 BA K 1 MC/10 E678-32B %5 900 0.1 800 @1 R7600U-00-M4 8.9 × 8.9 × (4) 420 BA K 2 MC/10 E678-32B %6 900 0.1 800 @1 R5900U-00-L16 0.8 × 16 × (16) 420 BA K 3 MC/10 E678-32B %7 900 0.1 800 !0 R5900U-01 18 × 18 400 MA K 1 MC/10 E678-32B %5 900 0.1 800 @1 R5900U-01-M4 8.9 × 8.9 × (4) 400 MA K 2 MC/10 E678-32B %6 900 0.1 800 @1 R5900U-01-L16 0.8 × 16 × (16) 420 MA K 3 MC/10 E678-32B %7 900 0.1 800 !0 ∗R5900U-20 18 × 18 530 MA K 1 MC/10 E678-32B %6 900 0.1 800 @1 ∗R5900U-20-M4 8.9 × 8.9 × (4) 530 MA K 2 MC/10 E678-32B %6 900 0.1 800 @1 R5900U-20-L16 0.8 × 16 × (16) 630 MA K 3 MC/10 E678-32B %7 900 0.1 800 !0 R8520U-00-C12 22 × 22 420 BA K 4 MC/11 E678-32B %8 1000 0.1 800 @4 Multianode photomultiplier tubes R7600-00-M16 and R7600-00-M64 are listed in the group of photomultiplier tube assemblies on page 64.

Dimensional Outlines (Unit: mm) 1 R7600U, R5900U-01, R5900U-20 2 R7600U-00-M4, R5900U-01-M4, R5900U-20-M4

± 30.0 ± 0.5

30.0 0.5 (K)

(Dy10) (Dy10) 22.0 ± 0.5 4.4 ± 0.7 ± ± ± 25.7 ± 0.5 25.7 0.5 22.0 0.5 4.4 0.7 K IC (Dy10) IC Dy1 Dy2 Dy3 Dy4 IC (Dy10) CUT (K) K IC IC Dy1 Dy2 Dy3 Dy4 IC CUT 0.6 ± 0.4 2.54 PITCH 18 MIN. 0.6 ± 0.4 2.54 PITCH 18 MIN. 0.5 0.5 ± ± 123456789 123456789 IC 32 10 IC IC 32 10 IC 12.0 12.0 IC 31 11 IC P1 31 11 P2 P 30 12 IC IC 30 12 IC IC 29GUIDE 13 IC IC 29GUIDE 13 IC CORNER IC 28 CORNER 14 IC IC 28 14 IC P3 IC 27 15 IC 0.20 P4 27 15 IC IC 4 MAX. IC 26 16 IC 26 16 2524 23 22 21 20 19 18 17 2524 23 22 21 20 19 18 17 29- 0.45 0.20 4 MAX. PHOTOCATHODE 29- 0.45 EFFECTIVE AREA EFFECTIVE AREA PHOTOCATHODE INSULATION (K) (K) Dy9 Dy8 Dy7 Dy6 Dy5 COVER Dy9 Dy8 Dy7 Dy6 Dy5 INSULATION COVER (Dy10) Dy10 Dy10 CUT CUT IC TOP VIEW SIDE VIEW BOTTOM VIEW CUT (K) CUT (K) Top View Side View Bottom View K : Photocathode IC (Dy10) Dy : Dynode P : Anode K : Photocathode Dy : Dynode CUT : Short Pin P : Anode IC : Internal Connection (Don't Use) CUT : Short Pin IC : Internal Connection Basing Diagram (Don't Use) TPMHA0278EI Basing Diagram

TPMHA0297EI

3 R5900U-00-L16, R5900U-01-L16, R5900U-20-L16 4 R8520U-00-C12

G Dy1 Dy3 Dy5 Dy7 Dy9 Dy11 30.0 ± 0.5 30.0 ± 0.5 24 MAX. 4.4 ± 0.7 29.0 ± 0.5 4.4 ± 0.7 25.7 ± 0.5 K Dy6P13P11 P9 P7 P5 Dy7 25.7 ± 0.5 K PX1 1 MAX. 2.54 PITCH 2.54 PITCH 15.8 22 MIN. ± 123456789 EFFECTIVE Dy2 Dy9 0.6 0.4 0.5 ± Dy2 PX2 AREA 123456789 32 10 Dy4 P3 32 10 31 11 12.0 Dy4 PX3 NC 31 11 P1 30 12 30 12 P15 29 13 P2 Dy6 29 13 PY1 12 GUIDE GUIDE 20.32 28 CORNER 14 28 14 P16 27 15 NC CORNER Dy8 27 15 PX4 P14 26 16 Dy3 25 24 23 22 21 20 19 18 17 26 16 4 MAX. PHOTOCATHODE 4 MAX. Dy10 PX5 Dy10 Dy1 25- 0.45 25 24 23 22 21 20 19 18 17 30- 0.45 EFFECTIVE AREA INSULATION COVER Dy8 P12 P10 P8 P6 P4 Dy5 K PX6 PHOTOCATHODE Top View Side View Bottom View INSULATION 2.5 3.5 PY6 PY5 PY4 PY3 PY2 16 COVER K : Photocathode 18 0.5 3.5 2.5 Dy : Dynode (Dy1-Dy10) PX1 2.28 2.28

2.28 K: Photocathode Side View Bottom View P : Anode (P1-P16) 0.5 PX2 Dy: Dynode (Dy1-Dy11) NC : No Connection 2.5 PX3 P: Anode (PX1-PX6) 1.0 PITCH 0.8 3.5 Basing Diagram PX4 3.5 18 (PY1-PY6) 15.8 PX5 2.5 G: Grid PX6 PY1 PY6 PY2 PY3 PY5 Basing Diagram Top View 2.28 PY4 PX-ANODE PY-ANODE Top View TPMHA0298EF TPMHA0484EC

52 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

60 70 8.0 — 72 40 140 1.4 × 105 2.0 × 106 2 20 1.4 9.6 UV glass window type: R7600U-03 R7600U 60 70 8.0 — 72 25 140 1.4 × 105 2.0 × 106 0.5/ch 5/ch 1.2 9.5 UV glass window type: R7600U-03-M4 R7600U-00-M4 × 5 × 6 UV glass window type: R5900U-03-L16 50 70 8.5 — 72 50 280 2.9 10 4.0 10 0.2/ch 2/ch 0.6 7.4 Silica glass window type: R5900U-06-L16 R5900U-00-L16 150 200 — 0.2 70 50 200 7.0 × 104 1.0 × 106 10 50 1.4 9.6 UV glass window type: R5900U-04 R5900U-01 150 200 — 0.2 70 50 200 7.0 × 104 1.0 × 106 2.5/ch 25/ch 1.2 9.5 UV glass window type: R5900U-04-M4 R5900U-01-M4 × 4 × 6 UV glass window type: R5900U-04-L16 150 250 — 0.3 65 75 250 6.5 10 1.0 10 0.5/ch 5/ch 0.6 7.4 Silica glass window type: R5900U-07-L16 R5900U-01-L16 350 500 — 0.4 78 100 500 6.5 × 104 1.0 × 106 20 50 1.4 9.6 R5900U-20∗ 350 500 — 0.4 78 100 500 6.5 × 104 1.0 × 106 2.5/ch 12.5/ch 1.2 9.5 R5900U-20-M4∗ 350 500 — 0.45 78 175 500 7.8 × 104 1.0 × 106 1/ch 10/ch 0.6 7.4 R5900U-20-L16 50 80 9.0 — 72 15 70 6.5 × 104 0.9 × 106 2 10 2.4 15.2 R8520U-00-C12

ISpectral Response

TPMHB0266EA TPMHB0709EB TPMHB0710EB 100 100 100

CATHODE RADIANT SENSITIVITY

10 10 10

R5900U-20 QUANTUM R5900U-20-M4 EFFICIENCY R5900U-20-L16 R5900U-01 1 1 1 R5900U-01-M4 R5900U-01-L16

R7600U CATHODE RADIANT R7600U-00-M4 R5900U-00-L16 SENSITIVITY R8520U-00-C12 QUANTUM EFFICIENCY (%) QUANTUM EFFICIENCY (%) QUANTUM EFFICIENCY (%) 0.1 0.1 CATHODE RADIANT 0.1 SENSITIVITY QUANTUM EFFICIENCY CATHODE RADIANT SENSITIVITY (mA/W) CATHODE RADIANT SENSITIVITY (mA/W) CATHODE RADIANT SENSITIVITY (mA/W)

QUANTUM EFFICIENCY

0.01 0.01 0.01 100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

WAVELENGTH (nm) WAVELENGTH (nm) WAVELENGTH (nm)

IGain Dimensional Outline of Socket (Unit: mm)

TPMHB0681EA 8 10 E678-32B

R5900U-00-L16

107 R7600U 22.86 R7600U-00-M4 20.32 4.45 2.92 2.54 106 R5900U-01-L16 R5900U-20-L16 GAIN

105

R5900U-01-M4 12.7 22.86 20.32 0.51

104 R5900U-01 R8520U-00-C12 12.7 1.57

103 500 600 700800 900 MATERIAL: Glass Epoxy

SUPPLY VOLTAGE (V) TACCA0094ED 53 Photomultiplier Tubes for High Magnetic Environments

Spectral Response Remarks Max. RatingsH ACDEFGJL Effective Area (mm) Socket Anode Anode to Tube Peak Photo- Win- Out- Dynode Average dow & to Cathode Type No. Diameter Wave- cathode line Structure Anode Wavelength (nm) Mate- Socket Cathode Supply mm length Material rial No. / Stages Assembly Voltage Current Voltage (inch) 100 200 300 400 500 600 700 800 900 1000 (nm) (V) (mA) (V)

R5505-70 25 (1) 17.5 420 BA K 1 FM/15 E678-17A* %9 2300 0.01 2000 #3 R7761-70 38 (1-1/2) 27 420 BA K 2 FM/19 — 2300 0.01 2000 #4 R5924-70 51 (2) 39 420 BA K 3 FM/19 — 2300 0.1 2000 #4 R6504-70 64 (2-1/2) 51 420 BA K 4 FM/19 — 2300 0.1 2000 #4

Dimensional Outlines (Unit: mm) 1 R5505-70 2 R7761-70

39 ± 1 25.8 ± 0.7 FACEPLATE 27 MIN. FACEPLATE 17.5 MIN. DY 15 DY19 DY 13 P PHOTO- DY17 P 9 DY 14 DY15 DY18 DY 11 8 10 CATHODE 10 11 12 7 11 DY13 9 13 DY16 DY 9 12 DY 12 8 14 PHOTO- 6 DY11 DY14 2 7 15 CATHODE DY 7 5 13 DY 10 ± DY9 1.5 6 16 DY12 50 ± DY 5 4 14 DY 8 HA COATING DY7 5 17 DY10 DY 3 3 15 DY 6 40.0 4 18 2 16 DY5 DY8 HA COATING DY 1 1 17 DY 4 3 19 DY 2 DY3 2 20 DY6 K 1 21 DY1 DY4 SHORT PIN K DY2

17 PIN BASE SEMIFLEXIBLE

13 MAX. LEADS 0.7 13 MAX.

27

TPMHA0236EA TPMHA0469EA 3 R5924-70 4 R6504-70

52 ± 1 64 ± 1 FACEPLATE 39 MIN. FACEPLATE 51 MIN.

DY18 DY16 PHOTO- DY14 PHOTO- DY18 DY16 P 14 15 DY12 DY14 CATHODE DY19 16 CATHODE P 14 11 17 DY10 15 16 DY12 10 DY19 11 17 DY17 18 DY8 DY10 9 10 18 2 19 HA COATING DY17 DY8 ± DY15 8 20 DY6 2 9 19 ± DY15 DY6 50 7 21 8 20

DY13 DY4 55 6 22 DY13 7 21 DY4 DY11 5 DY2 6 22 DY11 DY2 HA COATING DY9 4 5 3 4 DY7 2 1 26 DY9 3 DY5 DY7 2 1 26 DY3 DY1 K DY5 DY3 DY1 K

SEMIFLEXIBLE

SEMIFLEXIBLE 13 MAX. LEADS 0.7 LEADS 0.7 13 MAX. 31 38

TPMHA0490EA TPMHA0336EA 54 Cathode Characteristics Anode Characteristics M (at 25 °C) Dark Current Time A Blue Gain Quantum Lumi- Sensitivity Lumi- (After 30 min.) Response Efficiency Index nous nous at 0 T at 0.5 T at 1.0 T Rise Transit Notes Type No. at 390 nm (CS 5-58) Time Time Typ. Typ. Typ. Typ. Typ. Typ. Typ. Max. Typ. Typ. (%)(µA/lm) (A/lm) (nA) (nA) (ns) (ns)

× 5 × 5 × 4 (For +HV operation) 23 80 9.5 40 5.0 10 2.3 10 1.8 10 5 30 1.5 5.6 Assembly type: H6152-70 Recommended R5505-70 × 7 × 6 × 5 (For +HV operation) 23 80 9.5 800 1.0 10 3.0 10 1.5 10 15 100 2.1 7.5 Assembly type: H8409-70 Recommended R7761-70 × 7 × 6 × 5 (For +HV operation) 22 70 9.0 700 1.0 10 4.1 10 2.5 10 30 200 2.5 9.5 Assembly type: H6614-70 Recommended R5924-70 × 7 × 6 × 5 (For +HV operation) 22 70 9.0 700 1.0 10 4.1 10 2.0 10 50 300 2.7 11.0 Assembly type: H8318-70 Recommended R6504-70

ISpectral Response IGain TPMHB0684EA TPMHB0258EC at 0 T 100 108

107 1.5" R7761-70 2" R5924-70 10 2.5" R6504-70

106

1 105 GAIN

PHOTOCATHODE RADIANT SENSITIVITY 1" R5505-70 104

QUANTUM EFFICIENCY (%) 0.1 QUANTUM EFFICIENCY 103 PHOTOCATHODE RADIANT SENSITIVITY (mA/W)

0.01 102 200 300 400 500 600 700 800 500 1000 1500 2000 2500

WAVELENGTH (nm) SUPPLY VOLTAGE (V)

IR5924-70, R6504-70 Relative Gain in Magnetic Fields Dimensional Outline of Socket (Unit: mm)

TPMHB0247EC 101 E678-17A SUPPLY VOLTAGE: 2000 V

100

30 ° 18.0 24.0

10-1

21.9 RELATIVE GAIN

10-2

0 ° 0.1 14.0 MAGNETIC 16.3 FIELD 10-3 12.0 0 0.25 0.50 0.75 1.0 1.25 1.5 22.8 MAGNETIC FLUX DENSITY (T)

TACCA0046EB 55 Position Sensitive Type Photomultiplier Tubes

Spectral Response Remarks Max. Ratings H A CJLDFE Effective Area (mm) Anode Anode to Peak Photo- Win- Anode Out- Dynode Average dow to Cathode Type No. Wave- cathode Matrixes line Structure Anode Wavelength (nm) Mate- Cathode Supply length Material rial No. / Stages Voltage Current Voltage 100 200 300 400 500 600 700 800 900 1000 (nm) (V) (mA) (V)

R2486-02 50 420 BA K 16(X) + 16(Y) 1 CM/12 1300 0.06 1250 #1 R3292-02 100 420 BA K 28(X) + 28(Y) 2 CM/12 1300 0.06 1250 #1 ISpectral Response TPMHB0495EB 100 CATHODE RADIANT SENSITIVITY

10

QUANTUM EFFICIENCY

1

QUANTUM EFFICIENCY (%) 0.1 CATHODE RADIANT SENSITIVITY (mA/W)

0.01 200400 600 800

Dimensional Outlines (Unit: mm) WAVELENGTH (nm) 1 R2486-02 14 1 2 3 4 5 6 7 8 9 10 11 12 13 ± 16 76 1 15 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 50 MIN.

X1 X2 PHOTO- X3 X4 CATHODE X5

2 X6

± X7 X8 55

3.0 X9

± X10 X11 X12

86.2 13 1 X

± X14 X15 20 X16 11.2

-H.V SIGNAL OUTPUT EACH RESISTOR: 1 kΩ : RG-174/U : 0.8D COAXIAL CABLES

XA XB YC YD C3

DY12 2R 1R DY11 2R 2R DY10 DY9 2R C2 2R DY8 1R : 180 kΩ 1/2 W DY7 2R Ω 2R 2R : 360 k 1/2 W DY6 C1 : 0.002 µF/2 kV C2 : 0.01 µF/500 V DY5 2R 2R C3 : 0.01 µF/500 V DY4 DY3 2R 2R DY2 DY1 2R C1 Focus 1R 10 kΩ RG174/U K HV IN TPMHA0160ED TPMHC0086EE 56 Cathode Characteristics Anode Characteristics M (at 25 °C) K Dark Current Time A Luminous Blue Red/ Luminous Sensitivity White Radiant Radiant Gain (After 30 min.) Response Index Ratio Rise Transit Notes Type No. (CS 5-58) (R-68) Time Time Min. Typ. Typ. Typ. Typ. Min. Typ. Typ. Typ. Typ. Max. Typ. Typ. (µA/lm) (µA/lm) (mA/W) (A/lm) (A/lm) (A/W) (nA) (nA) (ns) (ns)

50 80 9.0 — 72 5.0 40 3.6 × 104 5.0 × 105 20 50 5.5 17 R2486-02 50 80 9.0 — 72 5.0 10 9.4 × 103 1.3 × 105 40 150 6.0 20 R3292-02 R3292-02 Position Signal Linearity TPMHB0449EB 100 100

80 80

60 60

40 40

RELATIVE POSITION SIGNAL 20 INCIDENT LIGHT RELATIVE POSITION SIGNAL 20 INCIDENT LIGHT SPOT DIAMETER: 1 mm SPOT DIAMETER: 1 mm WAVELENGTH: 400 nm WAVELENGTH: 400 nm 0 0 10 20 30 40 50 60 70 80 90 100 110 120 10 20 30 40 50 60 70 80 90 100 110 120

X-AXIS (mm) Y-AXIS (mm)

2 R3292-02 26 1 2 3 4 5 24 25 28 132 ± 3 27 Y Y Y Y Y Y Y Y Y Y

100 MIN. X1 X2 X3 X4 X5 PHOTO- CATHODE

X24 X25 2

± X26

3 X27 ± 28 113 X 133 HA COATING

EACH RESISTOR: 1 kΩ 1

SIGNAL OUTPUT ±

: 0.8D COAXIAL CABLES 20 XA XB YC YD -H.V : RG-174/U C3 R DY12 2R 2R DY11 2R DY10 2R DY9 C2 2R DY8 2R DY7 2R Ω DY6 1R : 180 k 2R 2R : 360 kΩ DY5 2R C1 : 0.002 µF/2 kV DY4 2R C2 : 0.01 µF/500 V DY3 µ 2R C3 : 0.01 F/500 V DY2 2R DY1 K 1R C1 HV 10 kΩ IN RG174/U

TPMHA0162EE TPMHC0088EE 57 Microchannel Plate-Photomultiplier Tubes (MCP-PMTs)

Spectral Response Remarks Max. Ratings H ACDEB Effective Area (mm) Anode Current Peak Photo- Win- Out- No. of -HV Signal Anode Curve to Type No. Wave- cathode dow line MCP Input Output Contin- Pulsed Wavelength (nm) Code Mate- Cathode length Material rial No. Stage Terminals Terminals Voltage uous Peak 100 200 300 400 500 600 700 800 900 1000 1100 1200 (nm) (V) (nA) (mA) Standard Types R3809U-50 11 500S 430 MA Q 1 2 SHV-R SMA-R -3400 100 350 R3809U-51 11 501S 600 EMA Q 1 2 SHV-R SMA-R -3400 100 350 R3809U-52 11 403K 400 BA Q 1 2 SHV-R SMA-R -3400 100 350 R3809U-57 11 201M 230 Cs-Te MF 1 2 SHV-R SMA-R -3400 100 350 R3809U-58 11 500M 430 MA MF 1 2 SHV-R SMA-R -3400 100 350 R3809U-59 11 700M 800 Ag-O-Cs K 1 2 SHV-R SMA-R -3400 100 350 Gated Types R5916U-50 10 500S 430 MA Q 2 2 SHV-R SMA-R -3400 100 350 R5916U-51 10 501S 600 EMA Q 2 2 SHV-R SMA-R -3400 100 350 R5916U-52 10 403K 400 BA Q 2 2 SHV-R SMA-R -3400 100 350 The R5916 series can be gated by input of a +15 V gate signal. Standard types are normally OFF, but normally ON types are also available. Gate operation is 5 ns, though this depends on the gate signal input pulse.

Dimensional Outlines (Unit: mm) 1 R3809U-50, -51, -52, -57, -58, -59

MCP

70.2 ± 0.3 CATHODE ANODE SIGNAL EFFECTIVE OUTPUT PHOTOCATHODE 52.5 ± 0.1 -H.V INPUT SMA-R DIAMETER WINDOW 3.0 ± 0.2 SHV-R CONNECTOR 11.0 MIN. FACE PLATE 0.1 ±

13.7 12 MΩ 24 MΩ 6 MΩ 0.1 ± 11 MIN.

45.0 1000 pF 1000 pF 900 pF

3.2 ± 0.1 7.0 ± 0.2 ANODE OUTPUT PHOTOCATHODE SMA-R CONNECTOR -HV SHV-R

TPMHA0352EB TPMHC0089EC

58 Cathode Characteristics Anode Characteristics M Time A Anode to Dark Luminous Response Cathode Quantum Luminous Gain Current Supply Efficiency (After 30 min.) Rise Transit Transit Time Notes Type No. Voltage at peak Time Time Spread Min. Typ. Typ. Typ. Max. Typ. Typ. Typ. (V) (%) (µA/lm) (µA/lm) (A/lm) (nA) (ns) (ns) (ps)

-3000 20 100 150 30 2.0 × 105 10 0.15 0.55 25 R3809U-50 -3000 8.3 240 350 70 2.0 × 105 10 0.15 0.55 25 R3809U-51 -3000 20 20 50 10 2.0 × 105 0.5 0.15 0.55 25 R3809U-52 -3000 11 — — — 2.0 × 105 0.1 0.15 0.55 25 R3809U-57 -3000 20 100 150 30 2.0 × 105 10 0.15 0.55 25 R3809U-58 -3000 0.25 12 25 5 2.0 × 105 10 0.15 0.55 25 R3809U-59

-3000 15 100 150 30 2.0 × 105 10 0.18 1.0 90 R5916U-50 -3000 7.6 200 300 60 2.0 × 105 10 0.18 1.0 90 R5916U-51 -3000 15 20 45 9 2.0 × 105 0.5 0.18 1.0 90 R5916U-52

ISpectral Response IGain TPMHB0177ED TPMHB0179EA 103 107

QE = 25% -57 QE = 10% 102 -58 106 -50, -58 -51 -52 QE = 1% 101 105

QE = GAIN 0 0.1% 10 -59 104 -50, 52 -57

-1 10 103

10-2 PHOTOCATHODE RADIANT SENSITIVITY (mA/W) 102 100 200 300 400500 600 700 800 900 1000 1100 -2.0 -2.2 -2.4 -2.6 -2.8 -3.0 -3.2 -3.4

WAVELENGTH (nm) SUPPLY VOLTAGE (kV)

2 R5916U-50, -51, -52

GATE EFFECTIVE 71.5 ± 0.3 PHOTOCATHODE 53.8 ± 0.3 CATHODE MCP DIAMETER WINDOW -HV ANODE ANODE 10 MIN. FACE PLATE 3.0 ± 0.2 (SHV-R) OUTPUT SMA-R

100 kΩ 450 pF

19 330 pF 33 kΩ 12 MΩ 24 MΩ 6 MΩ 0.3 ± 10 MIN. 55 7 330 pF 1000 pF 1000 pF 330 pF 330 pF 17.5 50 Ω

GND10 kΩ GND 4.6 ± 0.1 7.9 SMA-R CONNECTOR ANODE OUTPUT PHOTOCATHODE SMA-R CONNECTOR -HV GATE SIGNAL GATE PULSE INPUT SHV-R INPUT SMA-R

TPMHA0348EC TPMHC0090ED

59 Gain Characteristics

For tubes not listed here, please consult our sales office.

Side-on Types Head-on Types (10 mm and 19 mm Dia.)

TPMSB0079EC TPMHB0198EG 108 108 R1878

R928 R6355 R5611A-01 107 107 R6357 R5611A

R6350 106 106 R1635

R3478

R636-10 105 105 GAIN GAIN

104 104

R632-01 103 103 R972

102 102 500 700 1000 1500 2000 3000 500 700 1000 1500 2000 3000

SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V)

Head-on Types (13 mm and 25 mm Dia.) Head-on Types (28 mm Dia.)

TPMHB0682EB TPMHB0199ED 108 108 R3998-02

R6834, R1924A R6836, R374 7 10 R3550A 107 R6427

R7899-01 106 106

R7205-01, R7206-01 R316-02

105 105 GAIN GAIN R4124

R6094, R6095

104 104 R2228, R5929 R5070A

103 103

2 10 102 500 700 1000 1500 2000 3000 500 700 1000 1500 2000 3000

SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V)

60 Head-on Types (38 mm Dia.) Head-on Types (51 mm Dia.)

TPMHB0200EE TPMHB0201ED 108 108 R1828-01

R1387 7 10 107 R943-02 R5496

R580 R3886

106 106 R6231

R1705 105 105 R464 GAIN GAIN 2083 R R1767

104 104

R329-02 103 103 R980

102 102 500 700 1000 1500 2000 3000 500 700 1000 1500 2000 3000

SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V)

Head-on Types (76 mm Dia.) Head-on Types (127 mm Dia.) and Special Types

TPMHB0202ED TPMHB0203ED 108 109

R1250 107 R6091 108 R1307

R6234 R6235 106 107 R5912 R6233 R6236 R6237

105 106 GAIN GAIN R1513

104 105 R4143 R1548

103 104 R877

102 103 500 700 1000 1500 2000 3000 500 700 1000 1500 2000 3000

SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V)

61 Voltage Distribution Ratio

The characteristic values tabulated in the catalog for the individual tube types are measured with the voltage-divider networks having the voltage distribution ratio shown below.

Distribution Number of Voltage Distribution Ratio Ratio Stage K: Photocathode Dy: Dynode P: Anode G: Grid F: Focus Codes

8 K G Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Acc Dy7 Dy8 P q 2 — 2 1 1 1 1 1 — 1 1 w 1 1 1 1 1 1 1 1 — 1 1 e 1.3 4.8 1.2 1.8 1 1 1 1 0.5 3 2.5 r 3 — 1.5 1.5 1 1 1 1 — 1 1 t 7 — 1 1.5 1 1 1 1 — 1 1 y 2 2 1 1 1 1 1 1 — 1 1 u 1 — 1 1 1 1 1 1 — 1 0.5 9 K G Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 P i 1 — 1 1 1 1 1 1 1 1 1 o 3 1 1 1 1 1 1.5 1 1 1 1 10 K G Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 P !0 1 — 1 1 1 1 1 1 1 1 1 1 !1 1 1 1 1 1 1 1 1 1 1 1 1 !2 1.5 — 1 1 1 1 1 1 1 1 1 1 !3 2 — 1 1 1 1 1 1 1 1 1 1 !4 2 — 1 1.5 1 1 1 1 1 1 1 0.75 !5 3 — 1 1 1 1 1 1 1 1 1 1 !6 3 — 1 1.5 1 1 1 1 1 1 1 1 !7 3 — 1.5 1 1 1 1 1 1 1 1 1 !8 4 — 1 1.5 1 1 1 1 1 1 1 1 !9 1.3 4.8 1.2 1.8 1 1 1 1 1 1.5 3 2.5 (Note 1) @0 1.5 — 1.5 1.5 1 1 1 1 1 1 1 0.5 @1 1.5 — 1.5 1.5 1 1 1 1 1 1 1 1 K Dy1 F2 F1 F3 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 P @2 11.3 0 0.6 0 3.4 5 3.33 1.67 1 1 1 1 1 1 11 K G Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 P @3 1 — 1 1 1 1 1 1 1 1 1 1 1 @4 0.5 1.5 2 1 1 1 1 1 1 1 1 1 0.5 @5 2 — 1 1 1 1 1 1 1 1 1 1 1 12 K G Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 P @6 1.2 2.8 1.2 1.8 1 1 1 1 1 1 1.5 1.5 3 2.5 @7 4 0 1 1.4 1 1 1 1 1 1 1 1 1 1 (Note 2) @8 4 0 2.5 1.5 1 1 1 1 1 1 1 1 1 1 @9 1 3 1.2 1.8 1 1 1 1 1 1 1.5 1.5 3 2.5 #0 4 0 1.2 1.8 1 1 1 1 1 1 1 1 1 1 #1 1 — 1 1 1 1 1 1 1 1 1 1 1 1 14 K G1 G2 Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 Dy13 Dy14 P #2 2.5 7.5 0 1.2 1.8 1 1 1 1 1 1 1 1 1.5 1.5 3 2.5 15 K Dy1 Dy2 Dy3 1 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 Dy13 Dy14 Dy15 P #3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19 K Dy1 Dy2 Dy3 · · · · · · · · · Dy17 Dy18 Dy19 P #4 2 1 1 1 · · · · · · · · · 1 1 1 1 Note 1: Please connect ACC of R5496 to Dy7. 2: The shield pin should be connected to Dy5.

62 Replacement Information

* : The same dimensional outline, base connection and electric characteristics. ** : The similar electric characteristics and the same dimensional outline and base connection. *** : The similar electric but different dimensional outline and/or different base connection.

BURLE Hamamatsu ETL Hamamatsu PHOTONIS Hamamatsu

Side-on Types Side-on Types Head-on Types 1P21 1P21* R105** 9780B 1P28** 931A** 1P21** XP1911 R1166** R1450* R3478*** 1P28 1P28* 9781B 1P28** R212** XP2012B, XP2072B R580** 1P28/V1 R212* 1P28** 9781R R3788** XP2013B R1387*** 4832 R636-10*** 9783B R106* XP2015B R1767*** 931A, 931VA 931A* XP2017B R2066*** 931B 931B* R105** Head-on Types XP2020 R1828-01* 9078B R1166** XP2050 R877*** Head-on Types 9082B R1450** XP2052B R980** 4501/V3 R331-05* 9102KB, 9902KB, 9903KB R580** XP2202B R2154-02** 4516 R1166*** R1450*** R3478*** 9110FLB R1288A** XP2206B R4607-01*** 4856 R2154-02*** 9111B, 9112B R1924A** XP2262B R329-02*** 4900 R1307*** 9113B R1925A** XP2282B R2083*** 4903 R1387*** 9124B, 9125B, 9128B R6094** R6095** XP2312B R6091*** 5819 R2154-02*** 9135B R7899*** XP2802 R1166*** 6199 R980*** 9207B R4607-01*** XP2971, XP2972 R6427** 6342A R2154-02*** 9214KB R1828-01*** XP3462B R6091*** 6342A/V1 R2154-02*** 9250KB, 9257KB, 9266KB R2154-02** XP4500B R1584*** 6655A R2154-02*** 9330KB, 9390KB R877** XP4512B R1250*** 8575 R329-02** 9353B R5912*** 8644 R1617*** 9524B, 9766B, 9924B R6095** C31000AJ4 R4607-01*** 9530KB, 9791KB R877*** C31000AP4 R4607-01*** 9558B R375*** C31000AJ-175 R4607-01*** 9659B R669*** C31000AP-175 R4607-01*** 9734B R6095*** C31016G4 R1288A*** 9758KB R1307*** C31016H5 R1288A*** 9789B, 9844B R464*** C31031 R943-02*** 9792KB R877*** C31034-02 R943-02*** 9798B R374** C31034-06 R943-02*** 9807KB, 9813KB R1828-01*** C31034A R943-02*** 9814B R329-02*** C31034A-02 R943-02*** 9815B R5496*** C31034A-05 R943-02*** 9821B, 9921B R6091*** S83006E R877*** 9822B R6091*** S83010E R980*** 9823KB R1250** S83010EM1 R3886*** 9826B R1450*** R3478*** S83049F R1307** 9828B R5929** S83050E R980*** 9829B, 9849B R331-05* S83050EM1 R3886*** 9865B R649*** S83054F R1306** 9881B R1450*** R3478*** S83068E R6427*** 9882B R1617*** 9884B, 9887B R329-02*** 9893KB/350 R3234-01*** 9899B R331-05*** 9972KB, 9973KB R1387**

63 Photomultiplier Tube Assemblies

Photomultiplier Tube Assemblies Photomultiplier tube assemblies are made up of a photomultiplier tube, a voltage- divider circuit and other components, all integrated into a single case.

TACCF0133 Max. Rating Cathode Sensitivity F Anode to Anode to Blue Divider Sensitivity Out- Dynode Cathode Cathode Luminous Assembly PMT Built-in Curve Current Index Type No. Wavelength line Structure Voltage Supply (CS 5-58) Dia. Dia. PMT Code Voltage mm No. / Stages Max. Max. Typ. Typ. (mm) (inch) (nm) (V) (mA) (V) (µA/lm)

10 q H3164-10 10.5 (3/8) R1635 400K 300 to 650 L/8 -1500 0.41 -1250 100 9.5 10 w H3695-10 11.3 (3/8) R2496 400S 160 to 650 L/8 -1500 0.37 -1250 100 9.5 13 e H3165-10 14.3 (1/2) R647 400K 300 to 650 L/10 -1250 0.34 -1000 110 10.0 19 r H6520 23.5 (3/4) R1166 400K 300 to 650 L/10 -1250 0.33 -1000 110 10.5 19 t H6524 23.5 (3/4) R1450 400K 300 to 650 L/10 -1800 0.43 -1500 115 11.0 19 y H6612 23.5 (3/4) R3478 400K 300 to 650 L/8 -1800 0.35 -1700 115 11.0 25 u H6152-70 31.0 (1) R5505-70 — 300 to 650 FM/15 +2300 0.41 +2000 80 9.5 25 i H6533 31.0 (1) R4998 400K 300 to 650 L/10 -2500 0.36 -2250 70 9.0 28 o H7415 33.0 (1-1/8) R6427 400K 300 to 650 L/10 -2000 0.41 -1500 95 11.0 38 !0 H3178-51 47.0 (1-1/2) R580 400K 300 to 650 L/10 -1750 0.63 -1500 95 11.0 38 !1 H8409-70 38.0 (1-1/2) R7761-70 — 300 to 650 FM/19 +2300 0.33 +2000 80 9.5 51 !2 H1949-51 60.0 (2) R1828-01 400K 300 to 650 L/12 -3000 0.70 -2500 90 10.5 51 !3 H6410 60.0 (2) R329-02 400K 300 to 650 L/12 -2700 0.67 -2000 90 10.5 51 !4 H7195 60.0 (2) R329-02 400K 300 to 650 L/12 -2700 1.23 -2000 90 10.5 51 !5 H2431-50 60.0 (2) R2083 400K 300 to 650 L/8 -3500 0.61 -3000 80 10.0 51 !6 H6614-70 60.0 (2) R5924-70 — 300 to 650 FM/19 +2300 0.33 +2000 70 9.0 51 !7 H6156-50 60.0 (2) R5496 400K 300 to 650 L/10 -3000 0.71 -2500 80 10.0 64 !8 H8318-70 71.0 (2-1/2) R6504-70 — 300 to 650 FM/19 +2300 0.33 +2000 70 9.0 76 !9 H6559 83.0 (3) R6091 400K 300 to 650 L/12 -2500 0.62 -2000 90 10.5 127 @0 H6527 142.0 (5) R1250 400K 300 to 650 L/14 -3000 1.02 -2000 70 9.0 127 @0 H6528 142.0 (5) R1584 400U 185 to 650 L/14 -3000 1.02 -2000 70 9.0 H9530-20 — @1 0.42 -1000 35 × 16 — — 300 to 920 MC/12 -1200 500 — H8711 30 — R7600-00-M16 — 300 to 650 @2 MC/12 -1000 0.35 -800 80 8.5

H7546B 30 — R7600-00-M64 — 300 to 650 @3 MC/12 -1000 0.45 -800 80 8.5

H7260-20 — R7259-20 @4 0.37 -800 52 × 24 — 300 to 920 MC/10 -900 500 — H8500 52 — R8400-00-M64 — 300 to 650 @5 MC/12 -1100 0.18 -1000 55 7.5

H9500 52 — R8400-00-M256 — 300 to 650 @6 MC/12 -1100 0.18 -1000 55 8.0 CAUTION: Photomultiplier tube assemblies listed in this catalog are not designed for use in a vacuum, please consult our sales office. 64 Anode Characteristics Pulse Dark Current Time Response Luminous Gain Linearity Rise Time Transit Time Transit Time Spread 2 % 5 % Notes Type No. Typ.Typ. Typ. Max. Typ.Typ. Typ. Typ. Typ. (A/lm) (nA) (nA) (ns) (ns) (ns) (mA) (mA)

100 1.0 × 106 1 50 0.8 9.0 0.5 3 7 H3164-11 (with 50 Ω *) H3164-10

100 1.0 × 106 2 50 0.7 9.0 0.5 3 7 H3695-11 (with 50 Ω *) H3695-10

150 1.4 × 106 1 2 2.5 24 1.6 3 7 H3165-11 (with 50 Ω *) H3165-10

110 1.0 × 106 1 5 2.5 27 2.8 4 7 H6520-01 (with 50 Ω *) H6520

200 1.7 × 106 3 50 1.8 19 0.76 4 8 H6524-01 (with 50 Ω *) H6524

200 1.7 × 106 10 300 1.3 14 0.36 4 8 H6612-01 (with 50 Ω *) H6612

40 5.0 × 105 5 30 1.5 5.6 0.35 180 250 H6152-70

400 5.7 × 106 100 800 0.7 10 0.16 40 70 H6610 (R5320) H6533 Ω × 6 H7415-01 (with 50 *) 475 5.0 10 10 200 1.7 16 0.5 10 30 H7416 (R7056) H7415 75 7.9 × 105 2 15 2.7 40 4.5 150 200 H3178-51

800 1.0 × 107 15 100 2.1 7.5 0.35 350 500 H8409-70

1800 2.0 × 107 50 400 1.3 28 0.55 100 200 H3177-51 (R2059) H1949-51

270 3.0 × 106 10 100 2.7 40 1.1 100 200 H6521 (R2256) H6522 (R5113) H6410

270 3.0 × 106 10 100 2.7 40 1.1 80 110 H7195

200 2.5 × 106 100 800 0.7 16 0.37 100 150 H3378-50 (R3377) H2431-50

700 1.0 × 107 30 200 2.5 9.5 0.44 500 700 H6614-70

1000 1.3 × 107 100 800 1.5 24 0.27 100 150 H6156-50

700 1.0 × 107 50 300 2.7 11 0.47 700 1000 H8318-70

900 1.0 × 107 30 120 2.3 40 1.5 80 110 H6559

1000 1.4 × 107 50 300 2.5 54 1.2 100 150 H6527

1000 1.4 × 107 50 300 2.5 54 1.2 100 150 H6528

1500 3.0 × 106 1/ch 10/ch 0.7 6.0 0.25 0.9/ch 1/ch H9530-20

× 6 16 Multianode 280 3.5 10 0.8/ch 4 0.83 12 0.3 0.5/ch 1/ch H8711-10 (Taper Divider Type) H8711 24 3.0 × 105 0.2/ch 2 1.0 10.9 0.3 0.3/ch 0.6/ch 64 Multianode H7546B

× 6 32 Linearanode 500 1.0 10 1/ch 10/ch 0.6 6.8 0.18 0.6/ch 0.8/ch H7260A-20 (-HV Cable Input Type) H7260-20 55 1.0 × 106 0.5/ch — 0.8 6.0 0.4 1/ch 2/ch H8500

55 1.0 × 106 0.1/ch — 0.8 6.0 0.4 0.2/ch 0.5/ch H9500 Note: * marks = 50 Ω is a terminal resistor at anode output. 65 Photomultiplier Tube Assemblies Dimensional Outlines and Diagrams (Unit: mm)

q H3164-10 w H3695-10

10.5 ± 0.6 11.3 ± 0.7 8 MIN. 8 MIN.

SIGNAL OUTPUT SIGNAL OUTPUT : RG-174/U (BLACK) : RG-174/U (BLACK)

PHOTOCATHODE PHOTOCATHODE P 1.5 1.5

± R10 C3 P ± DY8 PMT: R1635 R11 C3 DY8 PMT: R2496 R9 C2 45.0 WITH HA COATING R10 C2 45.0 WITH HA COATING DY7 DY7 R8 C1 MAGNETIC R9 C1 MAGNETIC DY6 2.5 2.5 ± SHIELD (t=0.2 mm) DY6 ± SHIELD (t=0.2mm) R7 WITH HEAT R8 WITH HEAT DY5 R6 95.0 SHRINKABLE TUBE DY5 95.0 SHRINKABLE TUBE R7 DY4 DY4 R5 R6 DY3 DY3 R4 DY2 R5 *MAGNETIC SHIELD DY2 R3 R4 DY1 *MAGNETIC SHIELD R2 R3 POTTING POTTING DY1 K R1 COMPOUND R2 COMPOUND -H.V : COAXIAL CABLE (RED) ± ± 10.6 0.2 K R1 10.6 0.2 -H.V R1 to R4 : 510 kΩ : COAXIAL CABLE (RED) R5 to R10 : 330 kΩ C1 to C3 : 0.01 µF 1500 -H.V R1 to R11 : 330 kΩ 1500 -H.V : COAXIAL CABLE (RED) C1 to C3 : 0.01 µF : COAXIAL CABLE (RED) * MAGNETIC SHIELD IS CONNECTED SIGNAL OUTPUT SIGNAL OUTPUT TO -H.V INSIDE OF THIS PRODUCT. : RG-174/U (BLACK) * MAGNETIC SHIELD IS CONNECTED : RG-174/U (BLACK) TO -H.V INSIDE OF THIS PRODUCT.

TPMHA0309EC TPMHA0310EC

e H3165-10 r H6520

14.3 ± 0.6 23.5 ± 0.5 10 MIN. 19.3 ± 0.7 15 MIN.

PHOTOCATHODE SIGNAL OUTPUT SIGNAL OUTPUT : RG-174/U (BLACK) : RG-174/U (BLACK) 1MAX. PHOTOCATHODE PMT: R647-01 P WITH HA COATING P 2 R11 C3 PMT: R1166 ± DY10 WITH HA COATING

71 MAGNETIC R10 C2 R11 C3 2

SHIELD (t=0.2 mm) DY9 ± DY10 WITH HEAT R9 C1 R10 C2 88

3.0 SHRINKABLE TUBE DY8 MAGNETIC SHIELD DY9 ± R8 CASE (t=0.5mm) R9 C1

DY7 0.8 DY8 R7 ± R8 116.0 DY7 DY6 R7 R6 130.0 DY6 DY5 R6 R5 DY5 DY4 R5 R4 DY4 R4 *MAGNETIC SHIELD DY3 R3 DY3 R3 DY2 DY2 R2 R2 POTTING DY1 DY1 COMPOUND K R1 -H.V K R1 -H.V : RG-174/U (RED) POTTING :COAXIAL CABLE (RED) or EQUIV. COMPOUND 12.4 ± 0.5 R1 : 510 kΩ * -H.V R1 to R11 : 330 kΩ R2 to R11 : 330 kΩ TO MAGNETIC : RG-174/U (RED) C1 to C3 : 0.01 µF C1 to C3 : 0.01 µF SHIELD CASE or EQUIV. -H.V

1500 :COAXIAL CABLE (RED) 1500 * MAGNETIC SHIELD IS CONNECTED * MAGNETIC SHIELD IS CONNECTED SIGNAL OUTPUT TO -H.V INSIDE OF THIS PRODUCT. TO GND INSIDE OF THIS PRODUCT. : RG-174/U (BLACK)

SIGNAL OUTPUT : RG-174/U (BLACK) TPMHA0311EC TPMHA0312EB

t H6524 y H6612

23.5 ± 0.5 23.5 ± 0.5 19.3 ± 0.7 19.3 ± 0.7 15 MIN. 15 MIN.

SIGNAL OUTPUT : RG-174/U (BLACK) SIGNAL OUTPUT

: RG-174/U (BLACK) 1MAX. 1MAX. PHOTOCATHODE PHOTOCATHODE P P PMT: R1450 2 PMT: R3478

± R11 C3 WITH HA COATING WITH HA COATING DY8 R11 C3 65 R10 C2 2

± DY10 DY7 R10 C2 R9 C1 88 MAGNETIC SHIELD DY9 MAGNETIC SHIELD DY6 CASE (t=0.5mm) R9 C1 CASE (t=0.5 mm) R8 DY5 0.8

0.8 DY8 ± ± R8 R7 DY7 DY4 R7 R6 130.0 130.0 DY6 DY3 R6 R5 DY5 DY2 R5 R4 DY4 DY1 R4 R3 DY3 R3 R2 DY2 R2 K R1 DY1 -H.V : COAXIAL CABLE (RED) K R1 -H.V POTTING POTTING : COAXIAL CABLE (RED) Ω COMPOUND COMPOUND R1 : 1 M * R2 : 750 kΩ TO MAGNETIC R1 : 680 kΩ * R3 : 560 kΩ SHIELD CASE R3 : 510 kΩ TO MAGNETIC R4, R6 to R11 : 330 kΩ R2, R4 to R11 : 330 kΩ SHIELD CASE R5 : 510 kΩ -H.V µ C1 to C3 : 0.01 F -H.V C1 to C3 : 0.01 µF : COAXIAL CABLE (RED) 1500

1500 : COAXIAL CABLE (RED)

* MAGNETIC SHIELD IS CONNECTED * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. TO GND INSIDE OF THIS PRODUCT. SIGNAL OUTPUT : RG-174/U (BLACK) SIGNAL OUTPUT : RG-174/U (BLACK)

TPMHA0313EA TPMHA0315EB 66 u H6152-70 i H6533

31.0 ± 0.5 ± 31.0 0.5 SIGNAL OUTPUT ± : RG-174/U (BLACK) 25.8 0.7 26 ± 1 P SIGNAL 17.5 MIN. OUTPUT 20 MIN. R19 R23 : RG-174/U C4 (BLACK) R22 R18 DY10 C6 C7 R17 PHOTOCATHODE R22 R24 +H.V PHOTOCATHODE 1MAX. P R16 PMT: R5505-70 R21 R17 C5 : SHIELD 1MAX. C3 WITH SHRINKABLE DY15 CABLE 1 R21 R15 TUBING R20 R16 C4 (RED) ± PMT: R4998 (H6533) DY14 DY9 71 R5320 (H6610) R14 R19 R15 C3 WITH HA COATING DY13 C2 R14 C2 R20 R13 DY12 DY8 0.8

R13 C1 ± R12 C1 DY7 DY11 MAGNETIC SHIELD 0.8 R12 R11 ± CASE (t=0.8 mm) DY10 120.0 DY6 R11 R10 DY5

100.0 DY9 POM CASE R10 R9 DY8 DY4 R9 R8 DY7 DY3 R8 R7 DY6 POTTING COMPOUND R7 R6 (SILICONE & EPOXY) DY5 DY2 R6 R5 DY4 POTTING DY1 R5 COMPOUND R4 +50 -0 DY3 +H.V R4 R3 : SHIELD CABLE (RED) 1500 DY2 ACC R3 R2 -H.V F DY1 : COAXIAL CABLE (RED) R2 K R1 -H.V SIGNAL OUTPUT : COAXIAL CABLE : RG-174/U (BLACK) K R18 R1 1500 (RED)

10 * SIGNAL OUTPUT Ω 5 R1, R3, R19: 430 k TO MAGNETIC : RG-174/U (BLACK) R2, R7 to R12, R15 to R17: 330 kΩ SHIELD CASE R1 to R17 : 330 kΩ R4: 820 kΩ R18, R23 : 1 MΩ R5, R18: 390 kΩ R19 to R21 : 51 Ω R6, R14: 270 kΩ R22 : 100 kΩ R13: 220 kΩ R24 : 10 kΩ R20 to R22: 51 Ω C1 to C5 : 0.01 µF C1 to C3: 0.022 µF C6, C7 : 0.0047 µF C4: 0.033 µF

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

TPMHA0470EA TPMHA0317EB o H7415 !0 H3178-51

33.0 ± 0.5 47.0 ± 0.5 29.0 ± 0.7 39 ± 1 * TO MAGNETIC SHIELD CASE 25 MIN. 34 MIN. SIGNAL OUTPUT

SIGNAL OUTPUT 1MAX. : BNC-R : RG-174/U (BLACK) P R13 PHOTOCATHODE C4 1MAX. P PHOTOCATHODE R14 R12 DY10 PMT: R6427 (H7415) PMT: R580 (H3178-51) R11 R7056 (H7416)

2 R580-17 (H3178-61) C3 ± WITH HA COATING R16 R13 C3 WITH HA COATING DY10 R10

85 DY9 R15 R12 C2 DY9 R9 C2 0.8

0.8 DY8 ± ± R14 R11 C1 DY8 MAGNETIC SHIELD R8 C1 MAGNETIC SHIELD DY7 CASE (t=0.5 mm) R10 R1,R2 : 430 kΩ CASE (t=0.8mm) 130.0 DY7 Ω 162.0 R7 R3 : 470 k DY6 R9 R5 : 510 kΩ DY6 R6 R4,R6 to R13 : 330 kΩ DY5 R8 R14 to R16 : 51 Ω DY5 R5 C1 to C3 : 0.01 µF DY4 R7 DY4 R4 DY3 R6 DY3 R3 DY2 POTTING R5 C5 DY2 R2 COMPOUND DY1 R4 K R15 -H.V DY1 R1 -H.V : COAXIAL CABLE R3 : SHV-R (RED) SIG -HV 1500 R2 R1, R10, R12 : 300 kΩ R2 to R6, R13 : 150 kΩ K R1 SIGNAL R7 : 180 kΩ SIGNAL OUTPUT -H.V Ω OUTPUT -H.V R8 : 220 k : RG-174/U (BLACK) : COAXIAL CABLE (RED) Ω : BNC-R : SHV-R R9 : 330 k * R11 : 240 kΩ TO MAGNETIC R14 : 51 Ω SHIELD CASE R15 : 10 kΩ * MAGNETIC SHIELD IS CONNECTED * R580-17 has a plano-concave C1 : 0.01 µF TO GND INSIDE OF THIS PRODUCT. face plate. C2 : 0.022 µF C3 : 0.047 µF C4 : 0.1 µF C5 : 4700 pF

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

TPMHA0318EB TPMHA0320EB 67 Photomultiplier Tube Assemblies Dimensional Outlines and Diagrams (Unit: mm)

!1 H8409-70 !2 H1949-51

* TO MAGNETIC 60.0 ± 0.5 SHIELD CASE 45.0 ± 0.5 53.0 ± 1.5 SIGNAL OUTPUT : BNC-R 39 ± 1 46 MIN. 27 MIN. P R17 1MAX. C6 C9 PHOTOCATHODE SIGNAL OUTPUT R20 R16 1 MAX. : RG-174/U (BLACK) DY12 R28 R15 C5 C8 PMT: R7761-70 PHOTOCATHODE C10 2 WITH HEAT R19 R14 ± C7 C6 DY11 SHRINKABLE TUBING R27 R26 50 R18 R13 C4 C7 0.8

± P +H.V DY10 R25 R21 C5 : SHIELD CABLE PMT: R1828 (H1949-51) R12 C3 DY19 (RED) 80.0 R2059 (H3177-51) DY9 POM CASE R24 R20 C4 R4004 (H4022-51) R11 C2 DY18 WITH HA COATING DY8 POTTING COMPOUND R23 R19 C3 R10 C1 (SILICONE & EPOXY) DY17 DY7 R18 C2 R9 DY16

0.5 DY6 +H.V R17 C1 ± R8 DY15 +50 -0 : SHIELD CABLE (RED) R1 to R21 : 330 kΩ MAGNETIC SHIELD DY5 R16 Ω CASE (t=0.8mm) R7 R22, R28 : 1 M 235.0 DY14 DY4 1500 R23 to R25 : 51 Ω R15 R6 DY13 Ω SIGNAL OUTPUT R26 : 10 k DY3 R14 Ω : RG-174/U (BLACK) R27 : 100 k R5 DY12 µ DY2 R13 C1 to C5 : 0.01 F C6, C7 : 0.0047 µF R4 DY11 DY1 R12 R3

510 DY10 C11 R11 Acc R2 DY9 G1 R10 K R1 R21 DY8 -H.V R9 : SHV-R DY7 R1, R4 : 240 kΩ R8 R2, R5 : 360 kΩ DY6 R3, R6 to R11, R17 : 200 kΩ R7 R12 to R16 : 300 kΩ DY5 R18 to R20 : 51 Ω R6 R21 : 10 kΩ DY4 C1 to C7 : 0.01 µF R5 µ DY3 C8 : 0.022 F R4 C9 : 0.033 µF -HV DY2 A1 C10 : 0.01 µF R3 C11 : 470 pF DY1 SIGNAL -H.V R2 OUTPUT : SHV-R * MAGNETIC SHIELD IS CONNECTED : BNC-R TO GND INSIDE OF THIS PRODUCT. K R22 R1

TPMHA0476EA TPMHA0326EC

!3 H6410 !4 H7195

* TO MAGNETIC 60.0 ± 0.5 * TO MAGNETIC 60.0 ± 0.5 SHIELD CASE SHIELD CASE 53.0 ± 1.5 53.0 ± 1.5 ANODE OUTPUT 2 SIGNAL OUTPUT : BNC-R 46 MIN. 46 MIN. : BNC-R ANODE OUTPUT 1 P : BNC-R

R18 1MAX. C5 R21 R17 DYNODE OUTPUT DY12 R16 : BNC-R C4 R25 R20 R15 P DY11 R21 PHOTOCATHODE R14 C7 C6 C3 PHOTOCATHODE R24 R20 R19 R13 DY12 DY10 R19 R12 C2 DY9 PMT: R329-02 R18 C5 PMT: R329 (H6410) R11 C1 WITH HA COATING R23 R17 R5113 (H6522) DY8 DY11 R10 R16 R2256 (H6521) DY7 C4 R9 R22 R15 WITH HA COATING DY6 MAGNETIC SHIELD DY10 R8 R14 C3 DY5 CASE (t=0.8mm) DY9 R13 C2 SH R7 DY8 0.5 1MAX. R12 ± MAGNETIC SHIELD DY7 1 R11 CASE (t=0.8mm) DY4 ± DY6 R6 R10 DY3 DY5 200.0 R5 215 R9 DY2 DY4 R4 R8 DY1 C6 DY3 R3 R7 G DY2 R2 R6 K R22 DY1 R1 -H.V R5 : SHV-R G R4 R3 R1, R5 : 240 kΩ K R1 R2, R10, R16 : 220 kΩ R2 -H.V : SHV-R R3, R9 : 180 kΩ C1 R4, R6 to R8, R14, R18 : 150 kΩ R11, R13, R17 : 300 kΩ R12, R15 : 360 kΩ R1, R25 : 10 kΩ R19 : 51 Ω R2 to R4, R17 to R19 : 110 kΩ R20, R21 : 100 Ω DYNODE 12 R5, R6, R8 to R13, R15 R22 : 10 kΩ R16, R20, R21 : 100 kΩ C1 : 0.022 µF OUTPUT Ω : BNC-R R7, R14 : 160 k C2 : 0.047 µF R22 : 51 Ω -HV SIG C3 : 0.1 µF R23, R24 : 100 Ω SIGNAL C4 : 0.22 µF DY C1 : 470 pF -HV µ A1 OUTPUT -H.V C5 : 0.47 F ANODE C2 : 0.022 µF : BNC-R : SHV-R C6 : 470 pF OUTPUT 1 A2 C3 : 0.047 µF : BNC-R - H.V C4 : 0.1 µF * MAGNETIC SHIELD IS CONNECTED : SHV-R C5 : 0.22 µF ANODE TO GND INSIDE OF THIS PRODUCT. C6 : 0.47 µF OUTPUT 2 C7 : 0.01 µF : BNC-R * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

TPMHA0324EB TPMHA0323EB 68 !5 H2431-50 !6 H6614-70

* TO MAGNETIC ± SHIELD CASE 60.0 0.5 60.0 ± 0.5 53.0 ± 1.5 SIGNAL OUTPUT : BNC-R 52 ± 1 46 MIN. P R16 C7 39 MIN. R17 R15

1MAX. SIGNAL OUTPUT DY8 : RG-174/U (BLACK) R14 PHOTOCATHODE R29 C6 R13 C9 PMT: R5924-70 DY7 WITH HEAT C7 C6 PHOTOCATHODE R28 R27 R12 0 SHRINKABLE TUBING -1 C5 + P +H.V R11 C8 80 1 MAX. R26 R21 C5 : SHIELD CABLE DY6 DY19 (RED) R10 C4 LIGHT SHIELD STEM R25 R20 C4 PMT: R2083 (H2431-50) DY18 DY5 POM CASE R3377 (H3378-50) R9 C3 R24 R19 C3 WITH HA COATING DY4 DY17 AL PANEL R23 R18 C2 1 R8 C2 ± DY3 DY16 R7 +H.V R17 C1 200 DY2 : SHIELD CABLE DY15 50 + R6 -0 (RED) R16 MAGNETIC SHIELD DY1 DY14 CASE (t=0.8mm) R15

R5 1500 DY13 Ω R14 R1 to R21 : 330 k R4 Ω SIGNAL OUTPUT DY12 R22, R29 : 1 M ACC C1 Ω R3 : RG-174/U (BLACK) R13 R23 to R26 : 51 F DY11 R27 : 10 kΩ R2 R1 R12 Ω

K 10 R28 : 100 k -H.V DY10 : SHV-R C1 to C5 : 0.01 µF

5 R11 R1 : 33 kΩ DY9 C6, C7 : 0.0047 µF R2, R15 : 390 kΩ R10 R3, R4, R13 : 470 kΩ DY8 R5 : 499 kΩ R9 R6, R16 : 360 kΩ DY7 R7 : 536 kΩ R8 R8 to R11 : 300 kΩ DY6 Ω R8 R12 : 150 k DY5 R14 : 430 kΩ Ω R6 R17 : 51 DY4 C1 : 2200 pF SIGNAL R5 C2, C3 : 4700 pF DY3 OUTPUT SIG -HV -H.V C4 : 0.01 µF R4 : BNC-R : SHV-R C5, C6 : 0.022 µF DY2 C7 : 0.047 µF R3 C8, C9 : 1000 pF DY1 R2 * MAGNETIC SHIELD IS CONNECTED R1 TO GND INSIDE OF THIS PRODUCT. K R22

TPMHA0327EB TPMHA0472EA

!7 H6156-50 !8 H8318-70

* TO MAGNETIC ± SHIELD CASE 71.0 0.5 60.0 ± 0.5 64 ± 1 53 ± 1 SIGNAL OUTPUT 51 MIN. SIGNAL OUTPUT 46 MIN. P R16 : BNC-R R29 : RG-174/U C6 C9 1 MAX. (BLACK) 1 MAX. R19 R15 DY10 PHOTOCATHODE C7 C6 R14 R28 R27 +H.V C5 C8 PMT: R6504-70 P R18 R13 C10 R26 R21 C5 : SHIELD PHOTOCATHODE DY9 WITH HEAT DY19 CABLE R17 R12 C4 C7 +0 -1 SHRINKABLE TUBING R25 R20 C4 (RED) DY18 PMT DY8 85 R11 C3 R24 R19 C3 WITH HA-COATING DY7 DY17 AND HEAT R10 C2 R23 R18 C2 DY16 SHRINKABLE TUBING DY6 LIGHT SHIELD STEM R9 C1 R17 C1 POM CASE DY15

0.5 DY5

± R16 R8 +H.V MAGNETIC SHIELD DY4 DY14 CASE R7 : SHIELD CABLE (RED) R15 215.0 DY3 DY13

+50 -0 R14 R6 AL PANEL DY2 DY12 R13 R5 1500 DY1 DY11 R4 R12 DY10 SIGNAL OUTPUT R3 R11 : RG-174/U (BLACK) DY9 C11 Acc R2 R10 DY8 G 10 R9 K R1 R20 -H.V 5 DY7 : SHV-R R8 DY6 R1 : 270 kΩ R7 R2, R3, R6 : 360 kΩ DY5 R4, R5 : 240 kΩ R6 R7 to R11, R16 : 200 kΩ DY4 R12 to R15 : 300 kΩ R5 R17 to R19 : 51 Ω DY3 SIG -HV R20 : 10 kΩ R4 DY2 SIGNAL C1 to C3, C9 : 0.01 µF -H.V µ R3 OUTPUT C4, C5 : 0.022 F : SHV-R µ DY1 : BNC-R C6 : 0.033 F R2 C7, C8 : 4700 pF C10 : 0.01 µF R1 C11 : 470 pF K R22

* MAGNETIC SHIELD IS CONNECTED Ω TO GND INSIDE OF THIS PRODUCT. R1 to R21 : 330 k R22, R29 : 1 MΩ R23 to R26 : 51 Ω R27 : 10 kΩ R28 : 100 kΩ C1 to C5 : 0.01 µF C6, C7 : 0.0047 µF

TPMHA0489EA TPMHA0473EA 69 Photomultiplier Tube Assemblies Dimensional Outlines and Diagrams (Unit: mm)

!9 H6559 @0 H6527, H6528

142.0 ± 0.8

131 ± 2 SIGNAL 83 ± 1 OUTPUT 120 MIN. * TO MAGNETIC P : BNC-R 77.0 ± 1.5 SHIELD CASE 65 MIN. R20 R17 C5 SIGNAL OUTPUT DY14 : BNC-R R19 R16 C4

1MAX. PHOTOCATHODE DY13 P R18 R18 R15 C3 C5 R21 R17 1 DY12 ± 1 PHOTOCATHODE DY12 ± R16 R14 C2 C4 DY11

R20 140

40 R15 DY11 R13 C1 R14 2 DY10 C3 ± R19 R13 DY10 PMT: R1250 (H6527) R12 R12 C2 DY9 DY9 259 R1584 (H6528) R11 C1 6 R11 56 DY8 ± WITH HA COATING R10 DY8 PMT: R6091 DY7 R10

R9 356 WITH HA COATING DY6 DY7 R8 77 DY5 R9 DY6 MAGNETIC SHIELD 1 SH R7 R8 ± CASE (t=0.8mm) DY5 MAGNETIC SHIELD DY4 R7 218 R6 CASE (t=0.8mm) DY3 DY4 R5 BLACK TAPE DY2 R6 R4 DY1 C6 SOCKET ASSY DY3 R3 74 HOUSING R5 G R2 DY2 K R1 R22 -H.V R4 : SHV-R DY1 R3 40 G2 C6 R1, R5 : 240 kΩ R2 R2, R10, R16 : 220 kΩ G1 R3, R9 : 180 kΩ K R1 R21 Ω -H.V R4, R6 to R8, R14, R18 : 150 k : SHV-R Ω R11, R13, R17 : 300 k Ω Ω R1, R17 : 240 k R12, R15 : 360 k Ω Ω R2 : 360 k -HV R19 : 51 SIG R3 : 390 kΩ R20, R21 : 100 Ω R4 : 120 kΩ ± R22 : 10 kΩ 70 1 R5 : 180 kΩ C1 : 0.022 µF R6 to R13 : 100 kΩ C2 : 0.047 µF SIGNAL OUTPUT -H.V R14, R15 : 150 kΩ C3 : 0.1 µF : BNC-R : SHV-R R16 : 300 kΩ C4 : 0.22 µF R18 : 51 Ω C5 : 0.47 µF R19, R20 : 100 Ω C6 : 470 pF H6527=Flat window, Borosilicate R21 : 10 kΩ H6528=Curved window, UV glass C1 : 0.022 µF -HV SIG * MAGNETIC SHIELD IS CONNECTED C2 : 0.047 µF TO GND INSIDE OF THIS PRODUCT. C3 : 0.1 µF C4 : 0.22 µF SIGNAL C5 : 0.47 µF OUTPUT -H.V C6 : 470 pF : BNC-R : SHV-R

TPMHA0331EB TPMHA0332EC

@1 H9530-20 @2 H8711

2.5 4 × 16 4.5 PITCH 2.8 GND GND GND GND

2 4- 0.3 16 4 GUIDE MARKS 15 3 14 2 M2 MAX. L5 25.7 18.1 13 1 -HV INPUT 0.3

TERMINAL ( 0.46) 4.2 1 TOP VIEW 2 GND INPUT 3

TERMINAL ( 0.46) ANODE1 OUTPUT ANODE2 OUTPUT GND ANODE8 OUTPUT ANODE9 OUTPUT ANODE15 OUTPUT ANODE16 OUTPUT GND DY12 OUTPUT GND -HV INPUT GND TERMINAL PINS 4 0.5 ± ± 30.0 0.5 5=12.7 5 26 × TERMINAL PINS TERMINAL PINS TERMINAL PINS

21.6 PMT: 6 2.54 35.0 8 6 4 2 GND 7531 -HV 7 R7600-00-M16 R34 8 ANODE #1 to #8 OUTPUT ( 0.46) INSULATING TAPE 1 0.8 MAX. 2.54 ± P1 P2 P8 P9 P15 P16 R18

16.0 ± 0.5 0.5 TYP. 33.0 ± 0.5 3.08 8 45 POM CASE C4 R13 C3 DIVIDER R17 ASSEMBLY Dy12 K R16 R12 C2 Dy11 DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12 SB A-1 ANODE1 R15 R11 C1 3.7 A-2 ANODE2 3.2 SIDE VIEW Dy10 R12 R13 R14 A-3 ANODE3 R10 C1 C2 C3 C4 A-4 ANODE4 Dy9 2.54 5.08 2.54 R9 A-5 ANODE5 Dy8 ACTIVE VOLTAGE A-6 ANODE6 7.62 R8 4-SCREWS R1 R2 R3 R4 R5 R6 R7 R8 R9 DIVIDER A-7 ANODE7 Dy12 OUTPUT Dy7 R7 (M2) TERMINAL PIN DY7-1 R10 R11 A-8 ANODE8 Dy6 -HV ( 0.46) DY

P1 R6 DY7-2 P9 Dy5 N -HV GND

7=17.78 R5 GND 2.54 × VR1 DY7-3 P16 12.7 Dy4 R1 to R6, R9: 220 kΩ P8 R4 VR2 DY7-4 Ω 2.54 R7: 1 K -HV INPUT Dy3 DY7-5 Ω R3 VR3 R8, R11: 200 K ANODE OUTPUT TERMINAL PINS Ω Dy2 VR4 DY7-6 R10: 1.3 M TERMINAL PIN ( 0.46) R2 Ω R12 to R14: 51 ( 0.46, Dy1 VR5 DY7-7 VR1 to VR8: 2 MΩ 2.54 PITCH 8 × 4) DY7-8 C1 to C4: 0.01 µF F R1 VR6 BOTTOM VIEW K R14 VR7 VR8 R1 to R3: 360 kΩ R4 to R13: 180 kΩ VOLTAGE DIVIDER CURRENT: 0.35 mA at -1000 V INPUT R14: 1 MΩ R15 to R17: 51 Ω R18: 10 kΩ C1 to C4: 0.01 µF

TPMHA0508EB TPMHA0487EC 70 @3 H7546B @4 H7260-20

TERMINAL PINS (2.54 mm-PITCH, 8 × 2 LINE 52.0 ± 0.5 0.64, 8 × 8) 2.54 PITCH 31.8 1

TERMINAL PIN 75 906 2364 6263 61 5960 58 57 4- 0.3 GUIDE MARKS 0.5 25.7 18.1 ± TERMINAL PIN 7

-HV INPUT 12345678 . . . 24.0 ANODE1 OUTPUT ANODE2 OUTPUT ANODE31 OUTPUT ANODE32 OUTPUT DY10 OUTPUT GND 2 0.3 ANODE1 OUTPUT ANODE2 OUTPUT ANODE63 OUTPUT ANODE64 OUTPUT Dy12 OUTPUT TERMINAL PIN ( 0.64) GND TERMINAL PIN ( 0.64) GND TERMINAL PIN ( 0.64) TOP VIEW ANODE #32 ANODE #1 0.8

30 ± 0.5 PMT: R20 R7600-00-M64

R16 0.8 Typ.

. . . SHIELD

P1 P2 C4 P1 P2 P31 P32 SOFT TAPE P63 P64 R19 R15 0.8 MAX. 0.8 Dy12 SHIELD

± POM CASE R10 0.5

R14 ± 45 DIVIDER

ASSEMBLY R18 R13 35.0 C3 HOUSING (POM) C4 R8 Dy11 DY10

R17 C1R12 C2 C3 C2 2.54 Dy10 1.27 2.54 × 15 = 38.1 2.54 DY9 3.3 5.2

4.2 R11 C1 2.54×7=17.78 Dy9 DY8

R10 ACTIVE VOLTAGE DIVIDER SIDE VIEW -HV INPUT Dy8 DY7 4-SCREWS (M2) TERMINAL PINS R9 R1, R5 to R14 : 100 kΩ R7 ( 0.64) Dy7 R2 to R4, R15 : 200 kΩ DY6 GND P8 P1 HV DY10 OUTPUT R6 R16 : 300 kΩ R8 ANODE #31 PIN ( 0.5) DY5 ANODE OUTPUT Dy6 R17 to R19 : 51 Ω GND TERMINAL R5

9=22.86 Ω ANODE #1 PIN ( 0.5) 2.54 R7 R20 : 10 k DY4

× TERMINAL PINS ( 0.64, Dy5 R21 : 1 MΩ R4 DY P64 P57 GND 2.54 µ DY3 2.54 PITCH 8 × 8) R6 C1 to C3 : 0.022 F DY OUT A31-ANODE - A1 GND

7.5 R3 Dy12 OUTPUT Dy4 µ C4 : 0.01 F DY2 GND TERMINAL A32-ANODE - A2 -HV TERMINAL PIN R5 R2 ( 0.64) PIN ( 0.64) Dy3 ANODE #32

2.54 DY1 5.08

BOTTOM VIEW R4 7.62 ANODE #2 R1 Dy2 -HV INPUT G R3 ANODE #1 to #32 OUTPUT ( 0.46) TERMINAL ( 0.5) K R9 Dy1 (16PIN × 2 LINE 2.54 PITCH) F R2 R1 to R7 : 220 kΩ Ω R21 R1 R8 : 51 K -HV R9 : 1 MΩ TERMINAL PIN R10 : 10 kΩ ( 0.64) C1 to C4 : 0.01 µF DIVIDER CURRENT: 0.37 mA (at -900 V)

TPMHA0488EC TPMHA0455EC TPMHA0192EA

@5 H8500 @6 H9500

32.7 ± 1.0 27.4 ± 0.9 12 × 3=36 ± 4 4.5 ± 0.3 START MARK 14.4 0.5 1.5 4 2

P1 P2 P3 P4 P5 P6 P7 P8 -HV: SHV-P 2 (COAXIAL CABLE, RED) P9 P10 P11 P12 P13 P14 P15 P16 10, 9, 2, 16, 15, 12, 11, 4, P17 P18 P19 P20 P21 P22 P23 P24 14, 13, 6,

-HV H8500 CAP HOUSING (POM) 0.3 0.5

P25 P26 P27 P28 P29 P30 P31 P32 ± ± 51.3 36 6=36.48 6.26 GND 2.6 MAX. 17=34 SOCKET HOUSING (POM) 49 ×

P33 P34 P35 P36 P37 P38 P39 P40 × 51.7

2 SEPARATION MARK +20 -0 52.0 BASE (POM) 6.08 P41 P42 P43 P44 P45 P46 P47 P48 ON FOCUSING ELECTRODE 56, 55 52, 51 450 61, 54, 53 57, 50, 49 START MARK INSULATING TAPE SIG4 SIG3 6 SIG2 SIG1 P49 P50 P51 P52 P53 P54 P55 P56 6260, 59 5 3 58, 1 DY,64, 63 8, 7

P57 P58 P59 P60 P61 P62 P63 P64 SIG4 SIG3 SIG2 SIG1

PHOTOCATHODE (EFFECTIVE AREA) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 6.26

0.5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 6.26 6.08 × 6=36.48 6.26 M3 DEPTH 5 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

INSULATING TAPE 20 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 ± 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 3.04 PLASTIC BASE 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 450 4-SIGNAL OUTPUT CONNECTOR 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 PC BOARD 0.3 TMM-118-03-G-D, mfg. SAMTEC 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 ±

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 14=42.56 49 46.24 TOP VIEW SIDE VIEW 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 ×

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 52.0 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 3.04 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 PHOTOCATHODE (EFFECTIVE AREA)

3.04 1.5 8.6 23.65 8.6 -HV: SHV-P 3.04 × 14=42.56 14.4 ± 0.5 (COAXIAL CABLE, RED) 4-SIGNAL CONNECTOR M3 DEPTH: 4 BOTTOM VIEW 49 33.3 ± 0.9 ; QTE-040-03-F-D-A, SAMTEC (0.8 mm PITCH. DOUBLE ROW 36.4 ± 0.9 WITH INTEGRAL GND PLATE) TOP VIEW SIDE VIEW BOTTOM VIEW P8 P64

P7 P63 P16 P256 P6 P62 P15 P255 P5 P61 P4 P60 P3 P59 ......

P2 P58 P2 P242 K DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12 GR P1 P57 K DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12 GR P1 P241

C7 C7

R21 R16 R17 R18 R20 R16 R17 R18 R19 C1 C2 C3 C1 C2 C3 R19

R1 R2 R3 R4 R5 R6 R7 R8 R9 R1 R2 R3 R4 R5 R6 R7 R8 R9 ACTIVE VOLTAGE DIVIDER ACTIVE VOLTAGE C8 C8 DIVIDER C9 .... R21 .... R20 R22 (P9 to P16) (P49 to P56) (P17 to P32) ...... (P225 to P240) R1 to R9: 470 kΩ R1 to R9: 470 kΩ (±5 %, 0.125 W) Ω R16 to R18: 51 R16 to R18: 51 Ω (±5 %, 0.125 W) GND R19: 10 kΩ R19: 10 kΩ (±5 %, 0.125 W) R20: 10 kΩ Ω ± -HV -HV R20: 1 M ( 5 %, 0.125 W) R21: 1 MΩ R21, R22: 4.99 kΩ (±5 %, 0.125 W) ...... SHV-P SIGNAL GND µ SHV-P DY12 OUTPUT µ

C1: 0.01 F DY12 OUTPUT (COAXIAL CABLE, RED) (COAXIAL CABLE, RED) C1, C7: 0.01 F (200 V) C2: 0.022 µF C2: 0.022 µF (200 V) C3: 0.033 µF C3: 0.033 µF (200 V) µ C7: 0.0047 F ANODE OUTPUT (P1) ANODE OUTPUT (P2) ANODE OUTPUT (P3) ANODE OUTPUT (P4) ANODE OUTPUT (P5) ANODE OUTPUT (P6) ANODE OUTPUT (P7) ANODE OUTPUT (P8) ANODE OUTPUT (P57) ANODE OUTPUT (P58) ANODE OUTPUT (P59) ANODE OUTPUT (P60) ANODE OUTPUT (P61) ANODE OUTPUT (P62) ANODE OUTPUT (P63) ANODE OUTPUT (P64) C8: 0.0047 µF (2 kV) C8, C9: 0.015 µF ANODE OUTPUT (P1) ANODE OUTPUT (P2) ANODE OUTPUT (P15) ANODE OUTPUT (P16) ANODE OUTPUT (P241) ANODE OUTPUT (P242) ANODE OUTPUT (P255) ANODE OUTPUT (P256) DIVIDER CURRENT 180 µA at -1100 V 4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR DIVIDER CURRENT 4 × 0.8 mm PITCH HEADER : 180 µA(at -1100 V) (P/N QTE-040-03-F-D-A, SAMTEC) TPMHA0498ED TPMHA0504EB 71 Photomultiplier Assemblies

Photomultiplier Tube Socket Assemblies Hamamatsu provides a wide variety of socket assemblies specifically designed for simple and reliable operation of photomultiplier tubes (often abbreviated as PMTs). These socket assemblies consist primarily of a high quality socket and voltage divider circuit integrated into a compact case. Variant types are available with internal current-to-voltage conversion amplifiers, gate circuits and high vol- tage power supply circuits.

TACCF0178

Types of Socket Assemblies DP-Type Socket Assemblies (C6270, C8991) The circuit elements used in Hamamatsu socket assemblies DP-type socket assemblies comprise a built-in high-voltage are represented by the three letters below. The socket as- power supply circuit added to a D-type socket assembly. sembly types are grouped according to the combination of these letters. Figure 3: DP-Type Socket Assembly D : Voltage Divider SOCKET HIGH VOLTAGE POWER SUPPLY A : Amplifier SIGNAL OUTPUT P : High Voltage Power Supply SIGNAL GND LOW VOLTAGE INPUT PMT HIGH VOLTAGE CONTROL D-Type Socket Assemblies (E717, E990 Series, etc.)

The D-type socket assemblies contain a voltage divider cir- VOLTAGE DIVIDER POWER SUPPLY GND cuit along with a socket in a compact metallic or plastic case. Plastic case types are potted with silicone compound to en- TACCC0003EB sure high environmental resistance. DAP-Type Socket Assemblies (C6271) Refer to page 78 for the selection guide to D-type socket as- This type of socket assembly has a current-to-voltage con- semblies. version amplifier and a high voltage power supply, efficiently added to the circuit components of the D-type socket assem- Figure 1: D-Type Socket Assembly bly. SOCKET Figure 4: DAP-Type Socket Assembly SIGNAL OUTPUT SOCKET AMPLIFIER SIGNAL GND SIGNAL OUTPUT

PMT POWER SUPPLY GND SIGNAL GND LOW VOLTAGE INPUT PMT HIGH VOLTAGE INPUT HIGH VOLTAGE CONTROL POWER SUPPLY GND VOLTAGE DIVIDER CIRCUIT VOLTAGE DIVIDER HIGH VOLTAGE POWER SUPPLY TACCC0001EB TACCC0054EA

DA-Type Socket Assemblies (C7246, C7247 Series) Basics of Voltage Dividers In addition to the circuit elements of the D-type socket as- The following information describes voltage divider circuits semblies, the DA-type socket assemblies include an amplifi- which are basic to all types of socket assemblies. Refer to er that converts the low-level, high-impedance current output this section for information on proper use of the socket as- of a photomultiplier tube into a low-impedance voltage out- semblies. put. Possible problems from noise induction are eliminated since the high-impedance output of the photomultiplier tube Voltage Divider Circuits is connected to the amplifier at the minimum distance. To operate a photomultiplier tube, a high voltage of 500 volts Figure 2: DA-Type Socket Assembly to 2000 volts is usually supplied between the photocathode (K) and the anode (P), with a proper voltage gradient set up SOCKET AMP along the photoelectron focusing electrode (F) or grid (G), secondary electron multiplier electrodes or dynodes (Dy) LOW VOLTAGE INPUT and, depending on photomultiplier tube type, an accelerating SIGNAL OUTPUT PMT electrode (Acc). Figure 5 shows a schematic representation SIGNAL GND of photomultiplier tube operation using independent multiple HIGH VOLTAGE INPUT power supplies, but this is not a practical method. Instead, a VOLTAGE-DIVIDER CIRCUIT voltage divider circuit is commonly used to divide, by means TACCC0002ED of resistors, a high voltage supplied from a single power sup- ply. 72 Figure 5: Schematic Representation of Photomultiplier Standard Voltage Divider Circuits Tube Operation Basically, the voltage divider circuits of socket assemblies LIGHT listed in this catalog are designed for standard voltage dis- K F Dy1 Dy2 Dy3 P SECONDARY ELECTRONS tribution ratios which are suited for constant light measure- e- e- e- e- ment. Socket assemblies for side-on photomultiplier tubes in PHOTOELECTRONS ANODE CURRENT Ip particular mostly use a voltage divider circuit with equal inter- A stage voltages allowing high gain. V1 V2 V3 V4 V5 Figure 8: Equally Divided Voltage Divider Circuit K Dy1 Dy2 Dy3Dy4 Dy5 P POWER SUPPLIES TACCC0055EA

Figure 6 shows a typical voltage divider circuit using resis- OUTPUT tors, with the anode side grounded. The capacitor C1 con- nected in parallel to the resistor R5 in the circuit is called a RL 1R 1R 1R 1R1R 1R storage capacitor and improves the output linearity when the photomultiplier tube is used in pulse operation, and not nec- essarily used in providing DC output. In some applications, C1 C2 -HV or Zener may be used in place of these re- TACCC0058EB sistors. Figure 6: Anode Grounded Voltage Divider Circuit Tapered Voltage Divider Circuits In most pulsed light measurement applications, it is often K F Dy1 Dy2 Dy3 P necessary to enhance the voltage gradient at the first and/or Ip last few stages of the voltage divider circuit, by using larger OUTPUT resistances as shown in Figure 9. This is called a tapered voltage divider circuit and is effective in improving various RL characteristics. However it should be noted that the overall R1 R2 R3 R4 R5 gain decreases as the voltage gradient becomes greater. In addition, care is required regarding the interstage voltage tol-

C1 erance of the photomultiplier tube as higher voltage is sup- plied. The tapered voltage circuit types and their suitable ap- -HV plications are listed below.

TACCC0056EB Tapered circuit at the first few stages (resistance: large / small) Anode Grounding and Photocathode Grounding Photon counting (improvement in pulse height distribution) In order to eliminate the potential difference between the Low-light-level detection (S/N ratio enhancement) photomultiplier tube anode and external circuits such as an High-speed pulsed light detection (improvement in timing properties) Other applications requiring better magnetic characteristics and uniformity ammeter, and to facilitate the connection, the generally used Tapered circuit at the last few stages (resistance: small / large) technique for voltage divider circuits is to ground the anode High pulsed light detection (improvement in output linearity) and supply a high negative voltage (-HV) to the photoca- High-speed pulsed light detection (improvement in timing properties) thode, as shown in Figure 6. This scheme provides the sig- Other applications requiring high output across the load resistor nal output in both DC and pulse operations, and is therefore used in a wide range of applications. Figure 9: Tapered Voltage Divider Circuit K Dy1 Dy2 Dy3Dy4 Dy5 P In photon counting and scintillation counting applications, however, the photomultiplier tube is often operated with the OUTPUT photocathode grounded and a high positive voltage (+HV) supplied to the anode mainly for purposes of noise reduction. RL 2R 1.5R 1R 1R2R 3R This photocathode grounding scheme is shown in Figure 7, along with the coupling capacitor Cc for isolating the high voltage from the output circuit. Accordingly, this setup cannot C1 C2 provide a DC signal output and is only used in pulse output -HV TACCC0059EB applications. The resistor RP is used to give a proper poten- tial to the anode. The resistor RL is placed as a load resistor, Voltage Divider Circuit and Photomultiplier Tube Output Linearity but the actual load resistance will be the combination of RP In both DC and pulse operations, when the light incident on and RL. the photocathode increases to a certain level, the relation- Figure 7: Photocathode Grounded Voltage Divider Circuit ship between the incident light level and the output current KF Dy1 Dy2 Dy3 P begins to deviate from the ideal linearity. As can be seen from Figure 10, region A maintains good linearity, and region CC OUTPUT B is the so-called overlinearity range in which the output in- Ip crease is larger than the ideal level. In region C, the output

RP RL goes into saturation and becomes smaller than the ideal lev- el. When accurate measurement with good linearity is essen- R1 R2 R3 R4 R5 C2 tial, the maximum output current must be within region A. In contrast, the lower limit of the output current is determined by C1 the dark current and noise of the photomultiplier tube as well

+HV TACCC0057EB as the leakage current and noise of the external circuit. 73 Photomultiplier Tube Socket Assemblies

Figure 10: Output Linearity of Photomultiplier Tube Figure 12: Operation without Light Input

TACCB0005EA I4 (=IP) I1 (=IK)I2 I3 10 K Dy1 Dy2 Dy3 P

C IK IDy1 IDy2 IDy3 IP IR1 IR2 IR3 IR4 1.0 R1 R2 R3 R4 B ACTUAL CURVE V1 V2 V3 V4

0.1 IDEAL CURVE -HV ID TACCC0061EA

TO DIVIDER CURRENT 0.01 A RATIO OUTPUT CURRENT [When light is incident on the tube] When light is allowed to strike the photomultiplier tube under

0.001 the conditions in Figure 12, the resulting currents can be 0.001 0.01 0.1 1.0 10 considered to flow through the photomultiplier tube and the

LIGHT FLUX (A.U.) voltage divider circuit as schematically illustrated in Figure 13. Here, all symbols used to represent the current and vol- tage are expressed with a prime ( ' ), to distinguish them Output Linearity in DC Mode from those in dark state operation. Figure 11 is a simplified representation showing photomulti- The voltage divider circuit current ID' is the sum of the voltage plier tube operation in the DC output mode, with three stages divider circuit current ID in dark state operation and the cur- of dynodes and four dividing resistors R1 through R4 having rent flowing through the photomultiplier tube ∆ID (equal to the same resistance value. average interelectrode current). The current flowing through each dividing resistor Rn becomes as follows: Figure 11: Basic Operation of Photomultiplier Tube and Voltage Divider Circuit IRn' = ID' - In'

K Dy1 Dy2 Dy3 P Where In' is the interelectrode current which has the follow- ing relation: I2 I3 I1 I4 I1' < I2' < I3' < I4' Ip Thus, the interstage voltage Vn' (=IRn' • Rn) becomes smaller IK IDy1 IDy2 IDy3 A at the latter stages, as follows: R1 R2 R3 R4 V1' > V2' > V3' > V4' IR1 IR2 IR3 IR4

ID Figure 13: Operation with Light Input -HV TACCC0060EA I4' (=IP') I1' (=IK') I2' I3' K Dy1 Dy2 Dy3 P [When light is not incident on the tube] In dark state operation where a high voltage is supplied to a Ik'IDy1'IDy2'IDy3'IP' IR1'IR2'IR3'IR4' photomultiplier tube without incident light, the current components flowing through the voltage divider circuit will be R1 R2 R3 R4 similar to those shown in Figure 12 (if we ignore the V1'V2'V3'V4' photomultiplier tube dark current). The relation of current and voltage through each component is given below -HV

ID' =ID + ∆ID Interelectrode current of photomultiplier tube TACCC0062EA I1=I2=I3=I4 (= 0 A) Electrode current of photomultiplier tube Figure 14 shows changes in the interstage voltages as the incident light level varies. The interstage voltage V4' with light IK=IDy1=IDy2=IDy3=IP (= 0 A) input drops significantly compared to V4 in dark state opera- Voltage divider circuit current 4 tion. This voltage loss is redistributed to the other stages, re- IR1=IR2=IR3=IR4=ID= (HV/ Σ Rn) sulting an increases in V1', V2' and V3' which are higher than n=1 Voltage divider circuit voltage those in dark state operation. The interstage voltage V4' is only required to collect the secondary electrons emitted from V1=V2=V3=V4=ID • Rn (= HV/4) the last dynode to the anode, so it has little effect on the anode current even if dropped to 20 or 30 volts. In contrast, the increases in V1', V2' and V3' directly raise the secondary emission ratios (δ1, δ2 and δ3) at the dynodes Dy1, Dy2 and Dy3, and thus boost the overall gain m (= δ1 • δ2 • δ3 ). This is the cause of overlinearity in region B in Figure 10. As the in- cident light level further increases so that V4' approaches 0 volts, output saturation occurs in region C.

74 Figure 14: Changes in Interstage Voltages at Different As stated above, good output linearity can be obtained sim- Incident Light Levels ply by increasing the voltage divider current. However, this is TACCB0017EA accompanied by heat emanating from the voltage divider. If 120 this heat is conducted to the photomultiplier tube, it may MODERATE cause problems such as an increase in the dark current, and LIGHT INPUT variation in the output. 110 HIGH LIGHT INPUT 2Using the active voltage divider circuit Use of a voltage divider circuit having transistors in place of 100 the dividing resistors in last few stages (for example, Hama-

NO OR FAINT matsu E6270 series using FETs) is effective in improving the LIGHT INPUT output linearity. This type of voltage divider circuit ensures 90 good linearity up to an output current equal to 60 % to 70 %

INTERSTAGE VOLTAGE (%) of the voltage divider current, since the interstage voltage is not affected by the interelectrode current inside the photo-

80 multiplier tube. A typical active voltage divider circuit is V1 V2 V3 V4 shown in Figure 16. (See page 93 for DC linearity character- istics examples.) POSITION OF INTERSTAGE VOLTAGE

Linearity Improvement in DC Output Mode Figure 16: Active Voltage Divider Circuit To improve the linearity in DC output mode, it is important to KPDy1 Dy2 Dy3 Dy4 Dy5 minimize the changes in the interstage voltage when photo- current flows through the photomultiplier tube. There are sev- eral specific methods for improving the linearity, as dis- cussed below. RL TWO TRANSISTORS 1Increasing the voltage divider current Figure 15 shows the relationship between the output linearity of a 28 mm (1-1/8") diameter side-on photomultiplier tube and the ratio of anode current to voltage divider current. For -HV example, to obtain an output linearity of 1 %, it can be seen from the figure that the anode current should be set approxi- TACCC0063EA mately 1.4 % of the divider circuit current. However, this is a 3Using Zener Diodes calculated plot, so actual data may differ from tube to tube The output linearity can be improved by using Zener diodes even for the same type of photomultiplier tube, depending on in place of the dividing resistors in the last few stages, be- the supply voltage and individual dynode gains. To ensure cause the Zener diodes serve to maintain the interstage vol- high photometric accuracy, it is recommended that the - tages at a constant level. However, if the supply voltage is age divider current be maintained at least twice the value ob- greatly varied, the voltage distribution may be imbalanced tained from this figure. compared to other interstage voltages, thus limiting the ad- justable range of the voltage with this technique. In addition, The maximum linear output in DC mode listed for the D-type if the supply voltage is reduced or if the current flowing socket assemblies in this catalog indicates the anode current through the Zener diodes becomes insufficient due to an in- equal to 1/20 of the voltage divider current. The output linear- crease in the anode current, noise may be generated from ity at this point can be maintained within ±3 % to ±5 %. the Zener diodes. Precautions should be taken when using this type of voltage divider circuit. Figure 17 shows a typical Figure 15: Output Linearity vs. Anode Current to voltage divider circuit using Zener diodes. Voltage Divider Current Ratio

TACCB0031EA 10 Figure 17: Voltage Divider Circuit Using Zener Diodes

K Dy1 Dy2 Dy3 Dy4 Dy5 P

1

RL TWO ZENER DIODES

0.1 -HV OUTPUT LINEARITY (%)

TACCC0064EA

0.01 0.11 10

RATIO OF ANODE CURRENT TO VOLTAGE DIVIDER CURRENT (%) 75 Photomultiplier Tube Socket Assemblies

4Using Cockcroft-Walton Circuit C > 100 • Q/V When a Cockcroft-Walton circuit as shown in Figure 18 is where Q is the charge of one output pulse (coulombs) and V used to operate a 28 mm (1-1/8") diameter side-on photo- is the voltage (volts) across the last dynode and the anode. multiplier tube with a supply voltage of 1000 volts, good DC linearity can be obtained up to 200 µA and even higher. Since this method directly supplies the pulse current with Since a high voltage is generated by supplying a low voltage electrical charges from the capacitors, if the count rate is in- to the oscillator circuit, there is no need for using a high vol- creased and the resulting duty factor becomes larger, the tage power supply. electrical charge will be insufficient. Therefore, in order to This Cockcroft-Walton circuit achieves superior DC output maintain good linearity, the capacitance value obtained from linearity as well as low current consumption. the above equation must be increased according to the duty factor, so that the voltage divider current is kept at least 50 Figure 18: Cockcroft-Walton Circuit times larger than the average anode current just as with the K Dy1 Dy2 Dy3 Dy4 Dy5 P DC output mode. The active voltage divider circuit and the booster method us- ing multiple power supplies discussed previously, provide su- RL perior pulse output linearity even at a higher duty factor.

-HV GENERATED Figure 20: Equally Divided Voltage Divider Circuit and OSCILLATION CIRCUIT Storage Capacitors

TACCC0065EA K Dy1 Dy2 Dy3 Dy4 Dy5 P 5Using multiple high voltage power supplies As shown in Figure 19, this technique uses multiple power supplies to directly supply voltages to the last few stages RL near the anode. This is sometimes called the booster meth- 1R 1R 1R 1R1R 1R od, and is used for high pulse and high count rate applica- tions in high energy physics experiments. C1 C2

Figure 19: Voltage Divider Circuit Using Multiple Power TWO STORAGE CAPACITORS Supplies (Booster Method) K Dy1 Dy2 Dy3 Dy4 Dy5 P -HV TACCC0067EB

2Using tapered voltage divider circuit with storage

RL capacitors Use of the above voltage divider circuit having storage ca- pacitors is effective in improving pulse linearity. However, AUXILIARY when the pulse current increases further, the electron density POWER SUPPLY 2 also increases, particularly in last stages. This may cause a AUXILIARY POWER SUPPLY 1 space charge effect which prevents interelectrode current from flowing adequately and leading to output saturation. A MAIN POWER SUPPLY commonly used technique for extracting a higher pulse cur- TACCC0066EA rent is the tapered voltage divider circuit in which the voltage Output Linearity in Pulsed Mode distribution ratios in the latter stages are enhanced as shown In applications such as scintillation counting where the inci- in Figure 21. Care should be taken in this case regarding dent light is in the form of pulses, individual pulses may loss of the gain and the breakdown voltages between elec- range from a few to over 100 milliamperes even though the trodes. average anode current is small at low count rates. In this Since use of a tapered voltage divider circuit allows an in- pulsed output mode, the peak current in extreme cases may crease in the voltage between the last dynode and the reach a level hundreds of times higher than the voltage divid- anode, it is possible to raise the voltage across the load re- er current. If this happens, it is not possible to supply intere- sistor when it is connected to the anode. It should be noted lectrode currents from the voltage divider circuit to the last however, that if the output voltage becomes excessively few stages of the photomultiplier tube, thus leading to degra- high, the voltage between the last dynode and the anode dation in the output linearity. may drop, causing a degradation in output linearity. Improving Linearity in Pulsed Output Mode Figure 21: Tapered Voltage Divider Circuit Using 1Using storage capacitors Storage Capacitors Using multiple power supplies mentioned above is not popu- K Dy1 Dy2 Dy3 Dy4 Dy5 P lar in view of the cost. The most commonly used technique is to supply the interelectrode current by using storage capaci- tors as shown in Figure 20. There are two methods for con- necting these storage capacitors: the serial method and the RL parallel method. As Figures 20 and 21 show, the serial meth- 1R 1R 1R 1.5R2.5R 3R od is more widely used since it requires lower tolerance vol- tages of the capacitors. The capacitance value C (farads) of C1 C2 the storage capacitor between the last dynode and the TWO STORAGE CAPACITORS anode should be at least 100 times the output charge as fol- lows: -HV TACCC0068EB 76 D-Type Socket Assemblies (d) For DC or pulsed output (-HV supply), or pulsed output The D-type socket assemblies are grouped as follows: (+HV supply) (a) For DC output (-HV supply) ex. E717-35 Available only upon request (b) For DC or pulsed output (-HV supply) Connection of D-Type Socket Assemblies to External ex. E717-63 Circuits (c) For pulsed output (+HV supply) Figure 22 shows typical examples of connecting various D- ex. E990-08 type socket assemblies to external circuits.

Figure 22: Connection of D-Type Socket Assemblies to Extrernal Circuits

KF (a) For DC output (-HV supply) P SIG Eo=Ip • RL Dy1 Dy2 Dy3 TO VOLTMETER, Ip RL AMPLIFIER UNIT OR OSCILLOSCOPE

SIGNAL GND R1 R2 R3 R4 R5

Ip A AMMETER

Rf -HV POWER SUPPLY GND - Eout=-Ip • Rf Ip Cf TO VOLTMETER OR SIGNAL PROCESSING CIRCUIT -HV +

FET INPUT OP AMP TACCC0069EA

KF (b) For DC or pulsed output (-HV supply) P SIG Eo=Ip • RL Dy1 Dy2 Dy3 TO VOLTMETER Ip RL AMPLIFIER UNIT OR OSCILLOSCOPE

SIGNAL GND R1 R2 R3 R4 R5

Ip A AMMETER

C1 C2 Rf -HV POWER SUPPLY GND - Eout=-Ip • Rf Ip Cf TO VOLTMETER OR SIGNAL PROCESSING CIRCUIT -HV +

FET INPUT OP AMP TACCC0070EA

KF AMPLIFIER UNIT (c) For pulsed output (+HV supply) SIG P TO SIGNAL PROCESSING Dy1 Dy2 Dy3 CIRCUIT Cp RL CL Ip Rp SIGNAL GND R1 R2 R3 R4 R5 CHARGE AMP Cf C1 C2 C3 Rf — Qs TO SIGNAL PROCESSING POWER SUPPLY +HV + CIRCUIT GND Vout=-Qs/Cf

+HV TACCC0071EB

(d) For DC or pulsed output (-HV supply), KF or pulsed output (+HV supply) P SIG Eo=Ip • RL Dy1 Dy2 Dy3 Ip RL d-1. For DC or pulsed output (-HV supply) SIGNAL GND TO VOLTMETER, AMPLIFIER UNIT OR OSCILLOSCOPE * GND should be connected externaly. R1 R2 R3 R4 R5 ∗ Ip A AMMETER C1 C2 Rf - + - Eout=-Ip • Rf Ip Cf -HV POWER SUPPLY TO VOLTMETER OR SIGNAL PROCESSING CIRCUIT -HV GND +

FET INPUT OP AMP TACCC0072EA

0.001 µ F to 0.005 µ F KF CERAMIC DISK AMPLIFIER UNIT d-2. For pulsed output/+HV supply (2 kV to 3 kV) P TO SIGNAL PROCESSING Dy1 Dy2 Dy3 CIRCUIT CP SIG RL CL For general scintillation counting and Ip

Ω SIGNAL photon counting applications, recom- GND R1 R2 R3 R4 R5 Rp to 1 M

mended values for CP and RP are 0.001 Ω CHARGE AMP Cf µ µ Ω Ω 10 k F to 0.005 F and 10 k to 1 M . ∗ C1 C2 Rf Since a high voltage is supplied to - TO SIGNAL - + Qs + PROCESSING CIRCUIT these parts, care must be taken when Vout=-Qs/Cf handling this circuit. +HV ∗ CB

POWER SUPPLY TACCC0073EC * GND and CB should be connected externally. GND 77 D-Type Socket Assemblies

Maximum Ratings BC Grounded Insulation A Leakage Total Maximum Socket Applicable Out- Electrode/ Voltage Current in Voltage Linear Voltage Supply Signal Assembly PMT line Supply between Divider Signal Divider Output in Note Voltage Output Type No. Diameter and Voltage Case and Current Max. Resistance DC Mode Dia- Polarity Pins gram (V)(V) (mA) (A) (MΩ) (µA) For Side-on Types 18 E850-13 q Anode/- 1500 1250 0.38 1 × 10-10 3.30 DC/Pulse (at 1250 V) 13 mm (1/2") 18 E850-13, E850-22 w Anode/- 1500 1250 0.38 1 × 10-10 3.30 DC/Pulse (at 1250 V) with connector 22 E717-63 e Anode/- 1500 1500 0.45 1 × 10-10 3.30 DC/Pulse (at 1500 V) Anode• 22 E717-74 28 mm (1-1/8") r Cathode 1500 1500 0.45 1 × 10-10 3.30 DC/Pulse Pin output /+•- (at 1500 V) 18 E717-63, E717-500 t Anode/- 1250 1250 0.38 1 × 10-10 3.30 DC/Pulse (at 1250 V) with connector For Head-on Types 20 E1761-04 y Anode/- 1500 1500 0.41 1 × 10-10 3.63 DC/Pulse (at 1500 V) 19 For R2496, E1761-22 10 mm (3/8") u Anode/- 1500 1500 0.37 1 × 10-10 4.02 DC/Pulse (at 1500 V) with connector 19 E1761-05 i Anode/- 1500 1500 0.37 1 × 10-10 4.02 DC/Pulse For R2496 (at 1500 V) 17 E849-35 o Anode/- 1500 1250 0.34 1 × 10-10 3.63 DC/Pulse (at 1250 V) 17 E849-35, E849-90 !0 Anode/- 1500 1250 0.34 1 × 10-10 3.63 DC/Pulse (at 1250 V) with connector 13 mm (1/2") 13 E849-68 !1 Anode/- 1500 1250 0.27 1 × 10-10 4.48 DC/Pulse For R4124 (at 1250 V) 15 For R2557, E849-52 !2 Anode/- 1500 1250 0.31 1 × 10-10 3.98 DC/Pulse (at 1250 V) with connector 29 E2183-04 !3 Anode/- 2250 2250 0.59 1 × 10-10 3.81 DC/Pulse (at 2250 V) 23 E974-13 !4 Anode/- 1800 1800 0.47 1 × 10-10 3.81 DC/Pulse (at 1800 V) E974-14 !5 Cathode/+ 1800 1800 0.47 — 3.81 — Pulse For Scintillation Counting 23 E974-13, E974-17 !6 Anode/- 1800 1800 0.47 1 × 10-10 3.81 DC/Pulse (at 1800 V) with connector 19 mm (3/4") 21 For R1450, E974-22 !7 Anode/- 1800 1800 0.43 1 × 10-10 4.16 DC/Pulse (at 1800 V) with connector 17 For R3478, E2253-05 !8 Anode/- 1800 1800 0.35 1 × 10-10 5.13 DC/Pulse (at 1800 V) with connector For R3478, E2253-08 !9 Cathode/+ 1800 1800 0.35 — 5.13 — Pulse for Scintillation Counting 18 For R1878, E974-18 @0 Anode/- 1500 1500 0.37 1 × 10-10 3.98 DC/Pulse (at 1500 V) with connector 20 E2924-11 @1 Anode/- 1800 1800 0.41 1 × 10-10 4.47 DC/Pulse For R7899 (at 1800 V) 14 E2924 @2 Anode/- 1500 1250 0.3 1 × 10-10 4.29 DC/Pulse (at 1250 V) 25 mm (1") 14 E2924, E2924-500 @3 Anode/- 1500 1250 0.3 1 × 10-10 4.29 DC/Pulse (at 1250 V) with connector E2924-05 @4 Cathode/+ 1500 1250 0.3 — 4.30 — Pulse For Scintillation Counting 18 E990-07 @5 Anode/- 1500 1500 0.38 1 × 10-10 3.96 DC/Pulse (at 1500 V) E990-08 @6 Cathode/+ 1500 1500 0.38 — 3.96 — Pulse For Scintillation Counting 18 E990-07, E990-501 @7 Anode/- 1500 1500 0.38 1 × 10-10 3.96 DC/Pulse (at 1500 V) with connector 28 mm (1-1/8") 26 E2624 @8 Anode/- 2500 2500 0.53 1 × 10-10 4.80 DC/Pulse For R6427, (at 2500 V) For R6427, E2624-05 @9 Cathode/+ 2500 2500 0.53 — 4.80 — Pulse for Scintillation Counting 26 E2624, E2624-14 #0 Anode/- 2500 2500 0.53 1 × 10-10 4.80 DC/Pulse (at 2500 V) with connector NOTE: AMeasured with the maximum supply voltage Temperature ranges of D-type socket assemblies. BMeasured with a supply voltage of 1000 V Operating: 0 °C to +50 °C CThe current at which the output linearity is kept within ±5 % Storage : -15 °C to +60 °C

78 Maximum Ratings BC Grounded Insulation A Leakage Total Maximum Socket Applicable Out- Electrode/ Voltage Current in Voltage Linear Voltage Supply Signal Assembly PMT line Supply between Divider Signal Divider Output in Note Voltage Output Type No. Diameter and Voltage Case and Current Max. Resistance DC Mode Dia- Polarity Pins gram (V)(V) (mA) (A) (MΩ) (µA) For Head-on Types 17 E990-500 #1 Anode/- 1500 1500 0.35 1 × 10-10 4.29 DC/Pulse (at 1500 V) 28 mm (1-1/8") 16 E990-29 #2 Anode/- 1500 1500 0.34 1 × 10-10 4.48 DC/Pulse For R3998-02 (at 1500 V) 22 E2183-500 #3 Anode/- 2000 1750 0.45 1 × 10-10 3.97 DC/Pulse With connector (at 1750 V) 38 mm (1-1/2") With connector, E2183-502 #4 Cathode/+ 2000 1750 0.45 — 3.96 — Pulse for scintillation counting 18 E1198-26 #5 Anode/- 1500 1500 0.38 1 × 10-10 4.01 DC/Pulse (at 1500 V) E1198-27 #6 Cathode/+ 1500 1500 0.38 — 4.01 — Pulse For scintillation counting 51 mm (2") 76 mm (3") 22 E1198-05 #7 Anode/- 1500 1500 0.46 1 × 10-10 3.3 DC/Pulse (at 1500 V) E1198-20 #8 Cathode/+ 1500 1500 0.46 — 3.3 — Pulse For scintillation counting 22 E1198-07 #9 Anode/- 1750 1750 0.44 1 × 10-10 3.98 DC/Pulse For R2154-02 (at 1750 V) 34 For R1828-01, E2979-500 51 mm (2") $0 Anode/- 3000 3000 0.70 1 × 10-10 4.31 DC/Pulse with rear panel connector, (at 3000 V) with magnetic shield 33 For R3234-01, E2979-501 $1 Anode/- 2500 2500 0.67 1 × 10-10 3.75 DC/Pulse with rear panel connector, (at 2500 V) with magnetic shield E1198-23 $2 Cathode/+ 2200 2000 0.50 — 3.97 — Pulse For scintillation counting 25 E1198-22 51 mm (2") $3 Anode/- 2200 2000 0.50 1 × 10-10 3.97 DC/Pulse (at 2000 V) 76 mm (3") For E1198-23, E6316 127 mm (5") $4 Cathode/+ 2200 2000 0.50 — 3.97 — Pulse with rear panel connector, for scintillation counting 25 For E1198-22, E6316-01 $5 Anode/- 2200 2000 0.50 1 × 10-10 3.97 DC/Pulse (at 2000 V) with rear panel connector 18 E5859-05 $6 Anode/- 1500 1500 0.38 1 × 10-10 3.98 DC/Pulse With rear panel connector (at 1500 V) 33 E5859 $7 Anode/- 2700 2700 0.67 1 × 10-10 4.06 DC/Pulse With rear panel connector 51 mm (2") (at 2700 V) 76 mm (3") 37 E5859-01 $8 Anode/- 2700 2700 0.75 1 × 10-10 3.62 DC/Pulse With rear panel connector (at 2700 V) With rear panel connector, E5859-03 $9 Cathode/+ 2700 2700 0.75 — 3.63 — Pulse for scintillation counting 18 E1435-02 51 mm (2") %0 Anode/- 1500 1500 0.38 1 × 10-10 3.96 DC/Pulse (at 1500 V) 51 For R1250, for R1584, E7693 127 mm (5") %1 Anode/- 3000 3000 1.02 1 × 10-10 2.94 DC/Pulse (at 3000 V) with rear panel connector 19 For R5912, E7694 %2 Anode/- 1800 1800 0.39 1 × 10-10 4.71 DC/Pulse (at 1800 V) with rear panel connector 208 mm (8") For R5912, E7694-01 %3 Cathode/+ 1800 1800 0.39 — 4.71 — Pulse with rear panel connector Metal Package PMT 17 E5780 %4 Anode/- 1000 1000 0.36 1 × 10-10 2.8 DC/Pulse R7400U Series (at 1000 V) Metal Package PMT 16 E5996 %5 Anode/- 900 900 0.33 1 × 10-10 2.75 DC/Pulse R7600U Series (at 900 V) Metal Package PMT 4 D E7083 %6 Anode/- 900 900 0.33 1 × 10-10 2.75 DC/Pulse R7600U-M4 Series (at 900 V) Metal Package PMT 1.16 D E6736 %7 Anode/- 900 900 0.38 1 × 10-10 2.42 DC/Pulse R5900U-L16 (at 900 V) Metal Package PMT 1.4 D E7514 %8 Anode/- 1000 1000 0.34 1 × 10-10 2.97 DC/Pulse R8520U-C12 (at 1000 V) for High Magnetic For R5505, E6133-04 Environments %9 Cathode/+ 2500 2500 0.45 — 5.62 — Pulse 25 mm (1") with connector NOTE: DCurrent of one anode CAUTION: Socket assemblies are not designed to operate in a vacuum.

79 D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm)

q E850-13 w E850-22

SOCKET SOCKET PMT PMT PIN No. PIN No. SIGNAL GND SIGNAL OUTPUT 11 RG-174/U (BLACK) 11 SIGNAL OUTPUT RG-174/U (BLACK) BNC CONNECTOR ± POWER SUPPLY GND 14.0 0.3 14.0 ± 0.3 P P AWG22 (BLACK) R10 C3 R10 C3 0.5 MAX.

0.5 MAX. DY9 10 10

DY9 5

5 R9 C2 R9 C2 12.6 ± 0.5 DY8 9 12.6 ± 0.5 DY8 9 10 10 0.5 R8 C1 ± 0.5 R8 C1 ± 12.4 ± 0.5 DY7 8 12.4 ± 0.5 DY7 8

35.0 R7

35.0 R7 HOUSING HOUSING DY6 7 DY6 7 (INSULATOR) (INSULATOR) R6 R6 DY5 6 DY5 6 POTTING R1 to R10 : 330 kΩ POTTING R1 to R10 : 330 kΩ R5 R5 COMPOUND C1 to C3 : 10 nF COMPOUND C1 to C3 : 10 nF DY4 5 DY4 5 10 10 R4 ± ± R4 DY3 4 DY3 4 450 450 R3 R3 DY2 3 DY2 3 R2 R2 DY1 2 DY1 2 R1 -HV R1 K K 1 RG-174/U (RED) 1 -HV AWG22 (VIOLET) SHV CONNECTOR

TACCA0096EC TACCA0240EB

e E717-63 r E717-74

HOUSING (INSULATOR)

SOCKET 5 PMT SOCKET PIN No. SIGNAL GND PMT PIN No. 3.5 0.3 10 SIGNAL OUTPUT 10 SIGNAL ± RG-174/U(BLACK) 0.5 0.2 P ± ± P OUTPUT (A) POWER GND (G) 33.0 32.0 26.0 R10 C3 SUPPLY GND R10 C3 AWG22 (BLACK) DY9 9 DY9 9 ± R9 C2 R9 C2 38.0 0.3 26.0±0.2 DY8 8 DY8 8 ± 49.0 0.3 R8 C1 32.0±0.5 R8 C1 DY7 DY7 7 7

2 R7 R7 29.0 ± 0.3 DY6 6 7

DY6 6 0.5 R1 to R10 : 330 kΩ ± R6 4 R6 DY5 5 R1 to R10 : 330 kΩ

C1 to C3 : 10 nF 14.0 DY5 5 A R5 C1 to C3 : 10 nF 2.7 R5 G 22.4±0.2 K DY4 4 0.7 -1 +0 DY4 4 31.0 ± 0.5 R4 R4 DY3 3 30.0 HOUSING DY3 3 ° 0.7 R3 ° 30 (INSULATOR) R3 10 4- 2.8 DY2 2 DY2 2 R2 R13

10 DY1 1 POTTING R2 ± COMPOUND DY1 1 K R1 11 -HV (K) 450 K R1 11 -HV AWG22 (VIOLET) * "Wiring diagrm at left applies when -HV is supplied." To supply +HV,connect the pin "G" to+HV, and the pin "K" to the GND. TACCA0002EH TACCA0277EA

t E717-500 y E1761-04

5 SOCKET

3.5 PMT 0.3 PIN No. SIGNAL GND

± SOCKET PMT PIN No. SIGNAL OUTPUT 6 SIGNAL OUTPUT

33.0 10 RG-174/U (BLACK) RG-174/U (BLACK) P BNC CONNECTOR POWER SUPPLY GND 10.6 ± 0.2 P R11 C3 AWG24 (BLACK) ± 38.0 0.3 R10 C3 DY8 7

49.0 ± 0.3 DY9 9 3 R10 C2 R9 C2 DY7 5 DY8 8 R9 C1 ± R8 C1 29.0 0.3 DY6 8 DY7 7 4 R7 R8 0.5

DY6 6 ± DY5 4 Ω Ω R1 to R11: 330 k R6 R to R10: 330 k R7

0.7 C1 to C3: 10 nF

C1 to C3: 10 nF 50.0 0.5 31.0 ± 0.5 DY5 5 DY4 9 ± HOUSING HOUSING R5 R6 DY4 (INSULATOR) 41.0 (INSULATOR) 4 DY3 3 R4 R5 DY3 3 POTTING DY2 10 R3

10 COMPOUND R4

POTTING DY2 2 ± 10

COMPOUND R2 ± DY1 1 450 R3 DY1 2 450 K R1 11 -HV R2 RG-174/U (RED) SHV CONNECTOR R1 K 11 -HV AWG24 (VIOLET) TACCA0241EC TACCA0019ED 80 u E1761-22 i E1761-05

SOCKET PMT PIN No. SIGNAL GND SOCKET 6 SIGNAL OUTPUT 10.6 ± 0.2 PMT PIN No. RG-174/U (BLACK) SIGNAL OUTPUT 10.6 ± 0.2 6 POWER SUPPLY GND

3 SOCKET RG-174/U (BLACK) P AWG24 (BLACK) 3 R10 C3 : E678-11N BNC CONNECTOR DY8 P 7 R10 C3 R9 C2 0.5

± HOUSING DY8 7 DY7 5 (INSULATOR) R9 C2 R8 C1 DY7 5 50.0 R8 C1 0.5 DY6 8 ± DY6 8 R7 R7 R1 to R4: 510 kΩ DY5 4 50.0 Ω POTTING DY5 4 R5 to R10: 330 kΩ R1 to R4 : 510 k R6 R6 Ω COMPOUND C1 to C3: 10 nF HOUSING R5 to R10 : 330 k DY4 9 (INSULATOR) DY4 9 10 R5 C1 to C3 : 10 nF ± R5 DY3 3 R4 DY3 3 450 POTTING DY2 10 R4 10 COMPOUND

R3 ± DY1 2 DY2 10 R3 R2 450 -H.V R1 DY1 2 : RG-174/U or K 11 R2 COAXIAL CABLE (RED) SHV CONNECTOR R1 K 11 -HV AWG24 (VIOLET) TACCA0076EC TACCA0208EB o E849-35 !0 E849-90

PMT SOCKET PIN No. SIGNAL GND 6 SIGNAL OUTPUT RG-174/U (BLACK) 14.0 ± 0.3 PMT SOCKET PIN No.

POWER SUPPLY GND 0.5 MAX. SIGNAL OUTPUT 14.0 ± 0.3 6 P C3 AWG22 (BLACK) RG-174/U (BLACK)

R11 5 0.5MAX. DY10 7 BNC CONNECTOR P

5 12.6 R10 C2 10 R11 C3

12.6 DY9 5 0.5 10 DY10 7 ± 12.4 R9 C1 R10 C2 R1 to R11: 330 kΩ 0.5

± 12.4 DY8 8 DY9 5 45.0 C1 to C3: 10 nF R9 C1 R8 HOUSING 8

45.0 DY8 DY7 4 (INSULATOR) HOUSING R8 R7 DY7 4 (INSULATOR) DY6 9 POTTING R7 Ω R6 R1 to R11 : 330 k COMPOUND DY6 9 POTTING DY5 3 C1 to C3 : 10 nF R6 COMPOUND DY5 3 R5 10

± R5 DY4 10 10 DY4 10

± R4 450 R4 DY3 2 DY3 2 450 R3 R3 DY2 11 DY2 11 R2 R2 DY1 1 DY1 1 R1 -HV K R1 K 13 COAXIAL CABLE (RED) -HV SHV CONNECTOR 13 AWG22 (VIOLET)

TACCA0022EB TACCA0077EC

!1 E849-68 !2 E849-52

SOCKET SOCKET SIGNAL GND PMT PMT PIN No. PIN No. SIGNAL OUTPUT 7 SIGNAL OUTPUT 6 RG-174/U (BLACK) RG-174/U (BLACK) BNC CONNECTOR POWER SUPPLY GND 14.0 ± 0.3 14.0 ± 0.3 P P AWG22 (BLACK) R11 C3

R11 C3 0.5 MAX.

0.5 MAX. 7 DY10 8 DY10 5

5 C2 R10 C2 R10 12.6 DY9 5 12.6 DY9 6 10 10 C1 R9 C1 R9 0.5 0.5 ± 12.4 DY8 8 ± 12.4 DY8 9 R8 R8 45.0 4 45.0 DY7 DY7 5 HOUSING HOUSING R7 R7 (INSULATOR) 9 (INSULATOR) DY6 10 DY6 Ω R6 R1: 680 kΩ R6 R1: 1 M Ω Ω POTTING 3 R2 to R11: 330 k POTTING DY5 4 R3: 510 k DY5 R2, R4 to R11: 330 kΩ COMPOUND C1 to C3: 10 nF COMPOUND R5 R5 C1 to C3: 10 nF DY4 10

DY4 11 10 10 ± R4 ± R4 DY3 2

DY3 3 450 450 R3 R3 11 DY2 12 DY2 R2 R2 1 DY1 2 DY1 R1 K R1 -HV K -HV COAXIAL CABLE (RED) 13 13 AWG22 (VIOLET) SHV CONNECTOR

TACCA0210EB TACCA0209EB 81 D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm)

!3 E2183-04 !4 E974-13

SOCKET PMT PIN No. SOCKET SIGNAL GND PMT 6 SIGNAL OUTPUT PIN No. SIGNAL GND RG-174/U (BLACK) 5 SIGNAL OUTPUT P RG-174/U (BLACK) POWER SUPPLY GND P R12 C3 C3 AWG22 (BLACK) DY10 7 R11 R11 C2 23.0 ± 0.5 DY10 6 52.0 ± 0.5 DY9 5 R10 C2 17.4 ± 0.2 34.0 ± 0.3 R10 C1 DY9 4 DY8 8 R9 C1 R9 DY8 7 8.2 DY7 4 R8 R8 DY7 0.5 3 ± DY6 9 R1 : 510 kΩ R7 Ω R7 R1: 180 k 1.0 R2 to R11 : 330 kΩ 0.5 ± DY6 48.5 Ω 8 HOUSING DY5 3 R2 to R12: 330 k ± C1 to C3 : 10 nF (METAL) R6 C1 to C3: 10 nF HOUSING R6

47.5 DY5 DY4 10 C4: 4.7 nF 43.0 (INSULATOR) 2 R5 R5 POTTING DY3 2 DY4 9 COMPOUND R4 R4 DY2 11 10 10 POTTING DY3 1 ± R3 ± COMPOUND DY1 1 R3 450 R2 C4 450 DY2 10 R2 K R1 DY1 12 12 -HV R1 K -HV SHIELD CABLE (RED) 11 AWG22 (VIOLET) POWER SUPPLY GND TACCA0242EB TACCA0099EB

!5 E974-14 !6 E974-17

SOCKET SOCKET PMT PMT PIN No. PIN No. C5 SIGNAL GND SIGNAL OUTPUT 5 5 SIGNAL OUTPUT RG-174/U (BLACK) P BNC CONNECTOR R12 C4 RG-174/U (BLACK) +HV P R11 C3 R11 C3 AWG22 (RED) 23.0 ± 0.5 DY10 6 23.0 ± 0.5 DY10 6 R10 C2 R10 C2 17.4 ± 0.2 17.4 ± 0.2 DY9 4 DY9 4 R9 C1 R9 C1 DY8 7 DY8 7 R8 R8 DY7 3 DY7 3 R1 : 510 kΩ R7 Ω 1.0

R7 R2 to R11 0.5 : 330 k ± 1.0 DY6 8 ± 0.5 ± DY6 Ω Ω ± 8 R12 : 100 k HOUSING R6 R1 : 510 k Ω HOUSING R6 C1 to C3 : 10 nF 47.5 R2 to R11 : 330 k

43.0 (INSULATOR) 2 47.5 DY5

43.0 (INSULATOR) DY5 C4 to C5 : 4.7 nF C1 to C3 : 10 nF 2 R5 R5 DY4 9 DY4 9 R4 R4 POTTING 1

10 DY3 10 POTTING ±

± DY3 1 COMPOUND COMPOUND R3 R3 10

450 DY2 450 DY2 10 R2 R2 DY1 12 DY1 12 R1 K -HV K R1 POWER 11 11 SUPPLY GND COAXIAL CABLE (RED) AWG22 (BLACK) SHV CONNECTOR TACCA0100EB TACCA0212EB

!7 E974-22 !8 E2253-05

SOCKET PMT PIN No. PMT SOCKET SIGNAL OUTPUT 5 PIN No. RG-174/U(BLACK) SIGNAL OUTPUT 5 RG-174/U (BLACK) 21.0 ± 0.2 BNC CONNECTOR 18.6 ± 0 0.4 P BNC CONNECTOR P R11 C3 R11 C3 DY8 7 DY10 6 R10 C2 R10 C2 DY7 3 R1:1 MΩ 0.5 DY9 4 6.2 ± R9 C1 Ω

0.5 R2:750 k R9 C1 R1:680 kΩ HOUSING ± DY6 8 Ω DY8 7 Ω HOUSING R3:560 k

40.0 (INSULATOR) R3:510 k R8 R8 (INSULATOR) R4, R6 to R11:330 kΩ Ω 2

R2, R4 to R11:330 k 55.0 DY5 DY7 3 R5:510 kΩ R7 R7 C1 to C3:10 nF C1 to C3:10 nF POTTING DY6 8 DY4 9 COMPOUND R6 R6 10

± DY5 2 DY3 1 POTTING 10 R5

R5

± COMPOUND 450 DY4 9 DY2 10 R4 R4 DY3 1 450 DY1 12 R3 R3 DY2 10 R2 R2 -HV DY1 12 R1 11 R1 -HV K COAXIAL CABLE (RED) K 11 COAXIAL CABLE(RED) SHV CONNECTOR SHV CONNECTOR

TACCA0078EC TACCA0079EB 82 !9 E2253-08 @0 E974-18

SOCKET PMT PIN No. 5 SIGNAL OUTPUT PMT SOCKET R14 RG-174/U (BLACK) PIN No. SIGNAL GND C5 BNC CONNECTOR 5 SIGNAL OUTPUT RG-174/U (BLACK) P ± 0 R11 C3 18.0 0.2 23.0 ± 0.5 R12 C4 DY10 6 R13 +HV 17.4 ± 0.2 R10 C2 AWG22 (RED) DY9 4 P R11 C3

6.2 DY8 7 R9 C1 R10 C2 DY8 7 DY7 3 R8

0.5 R9 C1 DY7 3 ± HOUSING DY6 8 1.0 R7 0.5 (INSULATOR) ±

R8 ± 65.0 DY6 8 Ω DY5 2 R1, R14: 1 MΩ HOUSING R1: 680 k Ω R6 Ω R2: 750 k 47.5 R2 to R11: 330 k

R7 43.0 (INSULATOR) R3: 560 kΩ DY5 2 C1 to C3: 10 nF DY4 9 Ω R5: 510 k R5 R6 R4, R6 to R12: 330 kΩ DY3 1 R13: 10 kΩ DY4 9 POTTING R5 C1 to C3: 10 nF R4 C4, C5: 4.7 nF POTTING COMPOUND DY2 10 10 DY3 1 ± COMPOUND R4 R3 10 ± DY1 12 450 DY2 10 R3

450 R2 12 R2 DY1 K R1 -HV COAXIAL CABLE (RED) K R1 11 POWER SUPPLY GND SHV CONNECTOR 11 AWG22 (BLACK) E974-18 attaches BNC and SHV connector TACCA0214EB at the end of cables. TACCA0213EB

@1 E2924-11 @2 E2924

SOCKET SOCKET PMT PMT PIN No. SIGNAL GND PIN No. SIGNAL GND ± 7 SIGNAL OUTPUT ± 7 SIGNAL OUTPUT 44.0 0.3 P RG-174/U (BLACK) 44.0 0.3 P RG-174/U (BLACK) 35.0 ± 0.3 POWER SUPPLY GND 35.0 ± 0.3 POWER SUPPLY GND R13 C3 AWG22 (BLACK) R13 C3 AWG22 (BLACK) DY10 10 DY10 10 R12 C2 R12 C2

0.3 DY9 6 0.3 DY9 6 ± R11 C1 ± R11 C1 DY8 11 DY8 11 30.0 R10 30.0 R10 DY7 5 DY7 5 2- 3.5 R1 to R4,R6 to R13: 330 kΩ 2- 3.5 R1 to R13: 330 kΩ 26.0 ± 0.3 R9 Ω 26.0 ± 0.3 R9 DY6 12 R5: 510 k DY6 12 C1 to C3: 10 nF C1 to C3 R8 : 10 nF R8 DY5 DY5 7 4 7 4 R7 R7 DY4 13 DY4 13 0.8 0.8

0.5 R6 0.5 R6 ± DY3 ± DY3 HOUSING 3 HOUSING 3 R5 R5 43.0 ± (INSULATOR) 43.0 ± (INSULATOR) 28.0 0.5 DY2 14 28.0 0.5 DY2 14 R4 R4 DY1 2 DY1 2

10 POTTING R3 10 POTTING R3 ± COMPOUND ± COMPOUND

450 R2 450 R2

K R1 K R1 1 -HV 1 -HV AWG22 (VIOLET) AWG22 (VIOLET)

TACCA0032EC TACCA0032EC

@3 E2924-500 @4 E2924-05

44.0 ± 0.3 35.0 ± 0.3 SOCKET PMT PMT SOCKET 44.0 ± 0.3 PIN No. C4 SIGNAL GND PIN No. 7 SIGNAL OUTPUT 0.3 SIGNAL OUTPUT 35.0 ± 0.3 RG-174/U (BLACK) ± 7 P RG-174/U (BLACK) R12 C5 +HV P BNC CONNECTOR SHIELD CABLE (RED) 30.0 R13 C3 R11 C3 POWER SUPPLY GND 2- 3.5 Dy10 10 R12 C2 0.3 DY10 10 ± ± 26.0 0.3 Dy9 6 R10 C2 R11 C1 DY9 Dy8 30.0 6

7 11 R10 R9 C1 Dy7 5 DY8 11 R9 2- 3.5 0.8 0.5 Dy6 12 ± R8

± 26.0 0.3 28.0 ± 0.5 R8 DY7 5 Dy5 4 R1 to R13: 330 kΩ R7 R7 43.0 HOUSING Dy4 13 C1 to C3: 10 nF R1, R12 : 1 MΩ

7 DY6 12 (INSULATOR) R6 C4: 4.7 nF R2 to R11: 330 kΩ Dy3 3 R6 DY5 C1 to C3 : 10 nF R5 0.8 4 Dy2 14 C4, C5 : 4.7 nF POTTING 0.5 R5 R4 ± COMPOUND Dy1 2 DY4 13 R3 HOUSING 43.0 R4 28.0 ± 0.5 C4 (INSULATOR) DY3 3

450 K R2 -HV R3 R1 1 SHIELD CABLE (RED) DY2 14

10 POTTING SHV CONNECTOR ± R2 COMPOUND DY1 2 450 K R1 1

TACCA0081EC TACCA0102EA 83 D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm)

@5 E990-07 @6 E990-08

44.0 ± 0.3 SOCKET 35.0 ± 0.3 SOCKET 44.0 ± 0.3 PMT PIN No. PMT SIGNAL GND PIN No. SIGNAL GND SIGNAL OUTPUT 35.0 ± 0.3 7 7 SIGNAL OUTPUT P RG-174/U (BLACK) P C4 RG-174/U (BLACK) POWER SUPPLY GND C5

0.3 +HV

R12 C3 AWG22 (BLACK) ± R13 AWG22 (RED) R12 C3 DY11 6 0.3 DY11 6 30.0 ± R11 C2 R11 C2 DY10 8 DY10 30.0 8 R10 C1 2- 3.5 R10 C1 DY9 ± 5 26.0 0.3 DY9 5 2- 3.5 R9 R9 26.0 ± 0.3 DY8 9 DY8 9 R8 7 R8 DY7 4 R1 to R12 : 330 kΩ 7 Ω DY7 4 R7 R1 to R12: 330 k R13 : 1 MΩ 0.8 R7 DY6 10 C1 to C3 : 10 nF C1 to C3 : 10 nF

0.8 DY6 10

R6 0.5 C4, C5 : 4.7 nF 0.5

± R6 ± HOUSING DY5 3 ± (INSULATOR) DY5 3 HOUSING R5 28.0 0.5 53.0 43.0 R5 28.0 ± 0.5 (INSULATOR) DY4 11 DY4 11 R4 R4 DY3 2 DY3 2

10 POTTING R3

± R3 10 POTTING

COMPOUND DY2 12 ± COMPOUND DY2 12

450 R2 R2 DY1 450 14 DY1 14 R1 K R1 13 -HV K POWER SUPPLY GND AWG22 (VIOLET) 13 AWG22 (BLACK)

TACCA0101EB TACCA0103EB

@7 E990-501 @8 E2624

44.0 ± 0.3 SOCKET PMT PIN No. SIGNAL GND 35.0 ± 0.3 SOCKET SIGNAL OUTPUT PMT 44.0 ± 0.3 7 PIN No. SIGNAL OUTPUT RG-174/U (BLACK) 7 RG-174/U (BLACK) 35.0 ± 0.3 POWER SUPPLY GND P BNC CONNECTOR AWG22 (BLACK) P R17 R14 C3 0.3

± DY10 8 R12 C3 R16 R13 C2

DY11 6 0.3 30.0

± DY9 5 R11 C2 R15 R12 C1 DY10 8 30.0 2- 3.5 DY8 9 R10 C1 R11 26.0 ± 0.3 DY9 5 R1 to R5, R7 to R14 : 330 kΩ 2- 3.5 DY7 4 R9 R6 : 510 kΩ 26.0 ± 0.3 R10 Ω DY8 9 R15 to R17 : 51 DY6 10 C1 to C3 : 10 nF 7 R8 R9 C4 : 4.7 nF R1 to R12: 330 kΩ DY7 4 7 DY5 3 C1 to C3: 10 nF 0.8 R7 R8 0.5 ± DY6 10 0.8 DY4 11 C4 0.5 28.0 ± 0.5 HOUSING R6 ± R7 43.0 (INSULATOR) DY5 3 HOUSING DY3 2 R5 43.0 28.0 ± 0.5 (INSULATOR) R6 DY4 11 DY2 12 POTTING R4 R5 DY1 14 10 DY3 2 COMPOUND 10 POTTING ± R3 ± COMPOUND R4

450 DY2 12 450 R2 R3 DY1 14 R2 K R1 -HV 13 SHIELD CABLE (RED) E2924-500 attaches BNC R1 SHV CONNECTOR K -HV and SHV connector at the 13 end of cables. AWG22 (VIOLET) TACCA0243EA TACCA0216EB

@9 E2624-05 #0 E2624-14

SOCKET 44.0 ± 0.3 PMT SIGNAL GND PIN No. C4 ± 44.0 ± 0.3 SIGNAL OUTPUT 35.0 0.3 7 RG-174/U (BLACK) ± PMT 35.0 0.3 R15 +HV SOCKET AWG22 (RED) PIN No. SIGNAL OUTPUT P R18 R14 C3 7 : RG-174/U (BLACK)

8 0.3 BNC CONNECTOR DY10 ± R17 R13 C2 0.3 ± DY9 5 30.0 P R16 R12 C1 R14 R11 C3 30.0 DY8 9 Dy10 8 R1: 1320 kΩ 2- 3.5 R11 R10 C2 R3: 510 kΩ Ω ± R13 Ω 2- 3.5 DY7 4 R1 to R5, R7 to R15 : 330 k 26.0 0.3 5 R2, R4 to R11: 330 k Ω Dy9 26.0 ± 0.3 R10 R6 : 510 k R12 to R14: 51 Ω R16 to R18 : 51 Ω R9 C1 DY6 10 R12 C1 to C3: 10 nF C1 to C3 : 10 nF Dy8 9 R9 C4 : 4.7 nF 7 R8 C4: 4.7 nF 7 DY5 3 Dy7 4 R7 R8 0.8 Dy6 10 0.5 0.8 DY4 11 ± R6 0.5 Dy5 3 ± R7 28.0 ± 0.5 HOUSING R5 43.0 Dy4 HOUSING DY3 2 (INSULATOR) 11 43.0 R4 28.0 ± 0.5 (INSULATOR) R6 Dy3 2 DY2 12 R3 Dy2 12 R5 POTTING R2 DY1 14 Dy1 14

10 K POTTING 10 C4 ± COMPOUND COMPOUND R4 ± R1 -H.V 450 450 : COAXIAL CABLE (RED) R3 13 SHV CONNECTOR R2

K R1 13 POWER SUPPLY GND AWG22 (BLACK)

TACCA0217EB TACCA0082EC 84 #1 E990-500 #2 E990-29

SOCKET 44.0 ± 0.3 PMT ± PIN No. SIGNAL OUTPUT 44.0 0.3 RG-174/U (BLACK) 35.0 ± 0.3 7 35.0 ± 0.3 P BNC CONNECTOR PMT SOCKET SIGNAL GND PIN No. SIGNAL OUTPUT 6 R13 C3 RG-174/U (BLACK)

0.3 DY11 6 ± R12 C2 0.3 P POWER SUPPLY GND DY10 8 ± R11 C3 AWG22 (BLACK) 30.0 R11 C1 DY9 8 DY9 5 30.0 R10 C2 2- 3.5 R10 DY8 6 26.0 ± 0.3 DY8 9 2- 3.5 R9 C1 R9 ± DY7 9 Ω 26.0 0.3 DY7 4 R1 to R13: 330 k R8 C1 to C3: 10 nF 5 7 R8 DY6 R1: 1 MΩ C4: 4.7 nF R7

DY6 10 7 R2 to R6,R8 to R11: 330 kΩ DY5 10 0.8 R7 R7: 510 kΩ

0.5 R6 ± DY5 3 C1 to C3: 10 nF 0.8 DY4 3

± HOUSING R6 0.5 R5

28.0 0.5 ± 43.0 (INSULATOR) DY4 11 DY3 12 R5 HOUSING R4 DY3 2 43.0 28.0 ± 0.5 (INSULATOR) DY2 2 R4 R3 POTTING DY2 12 13 10 COMPOUND DY1 ± R3 R2

DY1 14 10 POTTING G 1 450 ± R2 C4 COMPOUND R1 -HV 14 450 K AWG22 (VIOLET) K R1 -HV 13 SHIELD CABLE (RED) SHV CONNECTOR

TACCA0244EA TACCA0215EB

#3 E2183-500 #4 E2183-502

SOCKET SOCKET PMT PMT PIN No. SIGNAL OUTOPUT PIN No. C6 SIGNAL OUTPUT 6 RG-174/U (BLACK) 6 RG-174/U (BLACK) BNC CONNECTOR BNC CONNECTOR R13 C5 +HV SHIELD CABLE (RED) P P R13 C3 R12 C3 C4 SHV CONNECTOR DY10 7 DY10 7 ± 52.0 ± 0.5 52.0 0.5 R12 C2 R11 C2 34.0 ± 0.3 34.0 ± 0.3 DY9 5 DY9 5 R11 C1 R10 C1 DY8 DY8 8

8 8.2 8.2 R9 Ω R10 R1 : 10 kΩ R1 to R12 : 330 k DY7 Ω DY7 4 R13 : 1 MΩ 4 R2 to R13: 330 k 0.5 0.5 ± ± R9 C1 to C3 : 10 nF R8 C1, C5, C6: 4.7 nF DY6 9 C4 : 4.7 nF DY6 9 C2 to C4 : 10 nF 40.0 40.0 HOUSING R8 HOUSING R7 (INSULATOR) DY5 3 (INSULATOR) DY5 3 R7 R6 POTTING DY4 10 POTTING DY4 10 COMPOUND R6 COMPOUND R5 DY3 2 DY3 2 10 10 ± ± R5 R4 DY2 11 DY2 11 450 450 R4 R3 DY1 1 DY1 1 R3 C4 R2

R1 K R2 R1 -HV K 12 SHIELD CABLE (RED) 12 SHV CONNECTOR

TACCA0166EC TACCA0167EB

#5 E1198-26 #6 E1198-27

SOCKET SOCKET SIGNAL GND R13 SIGNAL GND PMT PIN No. PMT PIN No. 12 SIGNAL OUTPUT 12 SIGNAL OUTPUT RG-174/U (BLACK) C5 RG-174/U (BLACK) R11 C4 R12 +HV P R11 C3 P R10 C3 SHIELD CABLE (RED) DY8 11 DY8 11 POWER SUPPLY GND R10 C2 R9 C2 DY7 10 DY7 10 R9 C1 R8 C1 DY6 7 DY6 7 R8 R1: 10 kΩ R7 64.0 ± 0.3 DY5 6 R2, R3: 680 kΩ 64.0 ± 0.3 DY5 6 R7 R4 to R11: 330 kΩ 56.0 ± 0.3 56.0 ± 0.3 R6 C1 to C3: 10 nF DY4 5 DY4 5 R1 to R2 : 680 kΩ C4: 4.7 nF R6 R5 R3 to R11 : 330 kΩ DY3 4 DY3 4 R12 : 10 kΩ R5 R4 R13 : 1 MΩ DY2 3 DY2

0.5 3 0.5 C1 to C3 : 10 nF ± ± R4 R3 C4, C5 : 4.7 nF DY1 1 DY1 1 38.0 38.0 HOUSING R3 HOUSING R2 (METAL) G 13 C4 (METAL) G 13 K R2 R1 K R1 10 10 14 -HV ±

± 14 SHIELD CABLE (RED) 450 450 The housing is internally POWER SUPPLY GND The housing is internally connected to the GND. connected to the GND.

TACCA0224EC TACCA0225EB 85 D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm)

#7 E1198-05 #8 E1198-20

SOCKET SOCKET PMT SIGNAL GND PMT SIGNAL GND PIN No. PIN No. 11 SIGNAL OUTPUT 11 SIGNAL OUTPUT RG-174/U (BLACK) C5 RG-174/U (BLACK) R11 C4 POWER SUPPLY GND P R10 C3 AWG22 (BLACK) +HV DY8 8 P R10 C3 SHIELD CABLE (RED) R9 C2 DY8 8 POWER SUPPLY GND DY7 7 R9 C2 R8 C1 DY7 7 DY6 6 R8 C1 R7 DY6 6 DY5 5 R7 64.0 ± 0.3 R6 64.0 ± 0.3 DY5 5 DY4 4 Ω R6 56.0 ± 0.3 R1 to R10: 330 k 56.0 ± 0.3 R5 C4 C1 to C3: 10 nF DY4 4 R1 to R11: 330 kΩ DY3 3 C4: 4.7 nF R5 C1 to C3: 10 nF R4 DY3 3 C4, C5: 4.7 nF DY2 2 R4 R3 DY2 2 0.5 0.5 ± DY1 1 ± R3 R2 DY1 1 38.0 HOUSING 38.0 G 13 HOUSING R2 (METAL) (METAL) R1 G 13 K -HV 14 R1 AWG22 (VIOLET) K 10 10 14 ± ± The housing is internally 450 connected to the GND. 450 The housing is internally connected to the GND.

TACCA0221EB TACCA0223EB

#9 E1198-07 $0 E2979-500

62.0 ± 0.5 SOCKET PMT SIGNAL GND SOCKET PIN No. PMT PIN No. 11 SIGNAL OUTPUT SIGNAL OUTPUT 10 BNC CONNECTOR RG-174/U (BLACK) P POWER SUPPLY GND R18 C7 C10 P R11 C3 AWG22 (BLACK) R21 R17 0.5 11 DY10 10 ± DY12 R16 R10 C2 C6 C9 R20 R15 C11

DY9 9 164.0 MAGNETIC DY11 8 R9 C1 SHILD CASE R19 R14 C5 C8 DY10 12 DY8 8 R13 C4 R1: 10 kΩ R8 DY9 7 R12 C3 R2, R5: 240 kΩ DY7 7 DY8 13 R3, R7 to R12, R18: 200 kΩ R7 R11 C2 64.0 ± 0.3 DY7 6 R4, R6: 360 kΩ DY6 6 Ω R10 Ω R1: 680 k DY6 14 R13 to R17: 300 k 56.0 ± 0.3 R6 Ω 3-M2 Ω C4 R2 to R11: 330 k 11 R9 R19 to R21: 51 DY5 5 C1 to C3: 10 nF DY5 5 C1: 470 pF 0.5 R8 R5 C4: 4.7 nF ± DY4 15 C2 to C8, C11: 10 nF DY4 4 HOUSING R7 DY3 3 C9: 22 nF R4 82.0 (METAL) R6 C10: 33 nF

0.5 DY3 3 DY2 17 ± R5 R3 DY1 2 R4

38.0 HOUSING DY2 2 G2 (METAL) R2 ACC R3 G1 19 DY1 1 R2 C1 -HV K 20 R1 SHV CONNECTOR 10 K -HV R1 ± 14 AWG22 (VIOLET) - SIG H.V 450 The housing is internally The housing is internally SIGNAL connected to the GND. connected to the GND. OUTPUT -H.V : BNC-R : SHV-R

TACCA0220EC TACCA0093EB $1 E2979-501 $2 E1198-23

± SOCKET 62.0 0.5 PMT PIN No. C6 SIGNAL GND 11 SIGNAL OUTPUT SOCKET RG-174/U (BLACK) PMT R13 C5 PIN No. +HV SIGNAL OUTPUT 10 SHIELD CABLE (RED) BNC CONNECTOR P P R12 C3 C4 R14 DY10 10 POWER SUPPLY GND 0.5

± R19 R16 C7 C10 R11 C2 DY12 11 DY9 9 R18 R15 C6 C9

140.0 MAGNETIC DY11 8 R10 C1 SHILD CASE R17 R14 C5 C8 DY8 8 DY10 12 R13 C4 R1: 10 kΩ R9 DY9 7 R2,R3: 330 kΩ DY7 7 R12 C3 ± DY8 13 R4,R7 to R16: 220 kΩ 64.0 0.3 R8 R11 C2 R1 to R12 : 330 kΩ DY7 Ω DY6 6 6 R5: 270 k 56.0 ± 0.3 R13 : 1 MΩ R10 Ω R7 DY6 14 R6: 390 k R14 : 10 kΩ 3-M2 Ω DY5 5 11 R9 R17 to R19: 100 C1 to C4 : 10 nF DY5 5 C1: 470 pF R6

0.5 R8 C5, C6 : 4.7 nF ± DY4 15 C2 to C9: 10 nF DY4 4 HOUSING R7 C10: 33 nF R5 DY3 3 0.5 82.0 (METAL) R6 ± DY3 3 DY2 17 R4

R5 38.0 DY1 2 HOUSING DY2 2 G R4 (METAL) R3 ACC R3 DY1 1

R2 C1 -HV 10 R2 ± K 20 13 R1 SHV CONNECTOR G 450 K R1 - SIG 14 H.V Thie housing is internally SIGNAL connected to the GND. OUTPUT -H.V The housing is internally : BNC-R : SHV-R connected to the GND.

TACCA0222EB TACCA0169EC 86 $3 E1198-22 $4 E6316

SOCKET PMT PIN No. SIGNAL GND 11 SIGNAL OUTPUT RG-174/U (BLACK) PMT SOCKET PIN No. P C6 R13 C3 11 SIGNAL OUTPUT DY10 10 P BNC CONNECTOR R12 C2 R13 C5 R14 DY9 9 +HV R11 C1 R12 C3 C4 SHV CONNECTOR ± Dy10 10 DY8 8 64.0 0.5 R11 C2 R10 Dy9 9 R10 C1 DY7 7 Dy8 8 R9 R9 Dy7 7 DY6 6 R1 : 10 kΩ THREADED HOLES R8 64.0 ± 0.3 0.5 Dy6 6 R8 Ω ± FOR INSTLLATION R2 to R13 : 330 k R7 56.0 ± 0.3 DY5 5 C1 to C3 : 10 nF OR MAGNETIC Dy5 5

R7 51.5 SHIELD CASE R6 C4 : 4.7 nF Dy4 4 Ω DY4 4 R5 R1 to R12: 330 k HOUSING Ω R6 Dy3 3 R13: 1 M (METAL) R4 Ω DY3 3 Dy2 2 R14: 10 k R3 C1 to C4: 10 nF 0.5 R5 Dy1 1 ± DY2 G R2 C5, C6: 4.7 nF 2 13 R4 R1 38.0 HOUSING K 14 DY1 (METAL) 1 R3 C4 +H.V G 13 SIG The housing is internally 10

± R2 nonnected to the GND. K R1 -HV SIGNAL 14 OUTPUT +HV

450 SHIELD CABLE (RED) : BNC-R : SHV-R POWER SUPPLY GND The housing is internally connected to the GND.

TACCA0168EB TACCA0226EB

$5 E6316-01 $6 E5859-05

PMT SOCKET PIN No. SIGNAL OUTPUT SOCKET 7 PMT PIN No. BNC CONNECTOR 11 SIGNAL OUTPUT P BNC CONNECTOR R24 C4 R27R23 Dy12 8 R22 P R13 C3 DY10 10 R21 C3 R12 C2 R26R20 ± Dy11 6 DY9 9 58.0 0.5 R19 C2 64.0 ± 0.5 R11 C1 51.0 ± 0.4 R25R18 Dy10 12 DY8 8 R17 R1: 10 kΩ R10 Ω Ω R1: 10 k R16 R2 to R5,R8 to R13: 220 k DY7 7 R2 to R13: 330 kΩ 9 3-M2 Dy9 5 R6: 560 kΩ R15 THREADED HOLES R9 C1 to C3: 10 nF THREADED HOLES R7,R14 to R21,R23,R24: 110 kΩ 12.5 0.5 0.5 Ω ± ± FOR INSTLLATION DY6 6 C4: 4.7 nF FOR INSTLLATION R14 R22,R25 to R27: 0 Dy8 13 OR MAGNETIC R8 OR MAGNETIC R13 C1: 470 pF 55.0 51.5 DY5 5 Dy7 4 C2,C3: 10 nF SHIELD CASE SHIELD CASE R12 R7 Dy6 14 C4: 22 nF HOUSING R11 (METAL) DY4 4 HOUSING (METAL) Dy5 3 R6 R10 DY3 3 ± Dy4 15 R5 60.0 0.5 R9 DY2 2 Dy3 2 R8 R4 DY1 1 R7 -H.V SIG Dy2 16 R3 C4 R6 Dy1 1 SIGNAL G 13 R5 G 17 OUTPUT -HV K R2 R1 R4 -H.V -HV SIG : BNC-R : SHV-R 14 SHV CONNECTOR SIGNAL R3 C1 OUTPUT -H.V K R2 -HV The housing is internally :BNC-R :SHV-R 21 connected to the GND. R1 SHV CONNECTOR The housing is internally TACCA0245EB connected to the GND. TACCA0219EC

$7 E5859 $8 E5859-01

PMT SOCKET PIN No. SIGNAL OUTPUT PMT SOCKET 7 BNC CONNECTOR PIN No. SIGNAL OUTPUT P 7 BNC CONNECTOR R24 P C6 C7 R24 R27R23 C4 Dy12 8 R27 R23 Dy12 8 R22 R22 R21 C5 R21 C3 R26R20 R26 R20 58.0 ± 0.5 Dy11 6 ± Dy11 6 R19 58.0 0.5 R19 C2 C4 51.0 ± 0.4 R25 R18 ± R25R18 Dy10 12 51.0 0.4 Dy10 12 R17 R1: 10 kΩ R17 R1: 10 kΩ R16 R2 to R6,R9 to R13: 220 kΩ C3 R2, R12, R16, : 180 kΩ Dy9 5 R16 9 3-M2 R7,R8: 154 kΩ Dy9 5 R15 9 3-M2 R17, R20, R21 Ω R15 (THREADED HOLES R14 R14 to R21,R23,R24: 110 k 12.5 Ω 0.5 R3, R13, R18, R19, : 226 k 13 (THREADED HOLES C2 ± Dy8 R22: 0 Ω 12.5 0.5 R14 FOR INSTALLATION R13

± R22 to R24 FOR INSTALLATION Dy8 13 OF MAGNETIC Dy7 4 R25: 51 Ω R4, R5, R7, R8: 121 kΩ R12 OF MAGNETIC R13 55.0 Ω Dy7 4 SHIELD CASE) Dy6 14 R26,R27: 100 55.0 R6, R9 to R11, : 150 kΩ R11 SHIELD CASE) R12 Dy5 3 C1: 470 pF Dy6 14 R14, R15 HOUSING (METAL) 10 R10 C2,C3: 10 nF R11 R25: 51 kΩ SH HOUSING (METAL) Dy5 3 C4: 22 nF R26, R27: 100 Ω Dy4 15 10 R10 R9 SH C1: 470 pF Dy3 2 60.0 ± 0.5 R8 Dy4 15 60.0 ± 0.5 R9 C2: 22 nF R7 Dy2 16 Dy3 2 C3: 47 nF R6 R8 µ Dy1 1 C4: 0.1 F R5 R7 C5 to C7: 0.22 µF G 17 Dy2 16 R4 R6 R3 C1 Dy1 1 R5 R2 -HV -H.V SIG K G 17 21 R4 SIGNAL R1 SHV CONNECTOR -H.V SIG C1 OUTPUT -H.V SIGNAL R3 The housing is internally -H.V :BNC-R :SHV-R OUTPUT K R2 -HV connected to the GND. :BNC-R :SHV-R 21 R1 SHV CONNECTOR

The housing is internally connected to the GND. TACCA0176ED TACCA0178EC 87 D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm)

$9 E5859-03 %0 E1435-02

C5 R29 SOCKET PMT PIN No. SIGNAL GND PMT SOCKET PIN No. 6 SIGNAL OUTPUT C4 SIGNAL OUTPUT 7 BNC CONNECTOR RG-174/U (BLACK) P C6 R28 P R12 C3 R24 +HV DY10 4 R23 SHV CONNECTOR C3 R11 C2 R27R22 C9 DY9 8 Dy12 8 ± 58.0 ± 0.5 R21 52.0 0.5 R10 C1 R20 C2 40.0 ± 0.5 3 51.0 ± 0.4 DY8 R26R19 C8 Dy11 6 R9 R1 to R12: 330 kΩ R18 2 C1 DY7 9 C1 to C3: 10 nF R25R17 C7 9 3-M2 Dy10 12 R8 C4: 4.7 nF R16

TH READED HOLES 0.5 DY6 2 12.5 0.5

R15 ± ± FOR INSTLLATION Dy9 5 R1 to R5,R8 to R12 : 220 kΩ R7 R14 OR MAGNETIC R6, R7 : 154 kΩ DY5 10 C4 55.0 SHIELD CASE R13 R13 to R20, R22, R23 : 110 kΩ 36.0 HOUSING Dy8 13 R6 R12 R21 : 0 Ω (METAL) Dy7 4 DY4 1 HOUSING (METAL) R11 R24 : 10 kΩ Dy6 14 Ω R5 R10 R25 : 51 Dy5 3 R26, R27 : 100 Ω DY3 11 ± 10 R28 : 100 kΩ 60.0 0.5 SH R9 R4 R29 : 1 MΩ POTTING Dy4 15 10 DY2 15 R8 C1, C2 : 10 nF ± COMPOUND Dy3 2 R3 R7 C3 : 22 nF

450 DY1 12 R6 C4, C5 : 2.2 nF Dy2 16 C6 : 470 pF R2 R5 Dy1 1 C7 to C9 : 4.7 nF R4 G 14 +H.V SIG G 17 R3 K R1 SIGNAL OUTPUT +H.V R2 13 -HV :BNC-R :SHV-R R1 SHIELD CABLE (RED) K 21 The housing is internally POWER SUPPLY GND connected to the GND. The housing is internally TACCA0246EB connected to the GND. TACCA0218EC

%1 E7693 %2 E7694

PMT SOCKET PIN No. SIGNAL OUTPUT PMT SOCKET 10 PIN No. BNC CONNECTOR SIGNAL OUTPUT P 8 R21 R18 C5 BNC CONNECTOR Dy14 11 P R20 R17 C4 Dy13 8 R20 R17 C3 R16 C3 Dy10 12 74.0 ± 0.5 R19 74.0 ± 0.5 R19 R16 C2 Dy12 12 Ω Dy9 R15 C2 R1: 10 k 7 Dy11 7 Ω R18 R15 C1 R2, R18: 240 k Dy8 13 R14 C1 R3: 360 kΩ Dy10 13 R14 R1: 10 kΩ : 390 kΩ Dy7 5 R13 R4 Ω Dy9 6 Ω R13 R2, R3, R7: 750 k R5: 120 k Dy6 14 R12 : 180 kΩ R4, R9: 200 kΩ Dy8 14 R6 R12 Ω Dy5 4 R5 Ω R11 R7 to R14: 100 k : 91 k

0.5 Ω R11 Dy7 5 R15, R16: 150 k 0.5 R6: 510 kΩ ± R10 R17: 300 kΩ ± R8: 300 kΩ Dy6 15 Ω R10 100 R19: 51 Dy4 16 Ω 100 R10: 100 k R9 : 100 Ω Dy5 4 R20, R21 R9 R11 to R17: 150 kΩ R8 C1: 22 nF Dy4 16 HOUSING R8 R18 to R20: 51 Ω C2: 47 nF Dy3 3 HOUSING R7 C1 to C3: 10 nF Dy3 C3: 100 nF (METAL) R7 (METAL) 3 Dy2 R6 C4: 220 nF 17 C4: 4.7 nF Dy2 17 C5: 470 nF R6 R5 Dy1 2 C6: 470 pF R5 Dy1 R4 1 C6 R4 R3 F3 2 C4

G1 G2 19 19 F2 R3 R2 R1 -HV F1 18 20 R2 R1 K 20 -HV -H.V SHV CONNECTOR K SIG -H.V SIG SHV CONNECTOR The housing is internally The housing is internally connected to the GND. SIGNAL SIGNAL connected to the GND. OUTPUT -H.V OUTPUT -H.V (BNC-R) : SHV-R (BNC-R) : SHV-R TACCA0229EB TACCA0227EC

%3 E7694-01 %4 E5780

6 PMT SOCKET R18 SIGNAL GND PIN No. C4 8 SIGNAL OUTPUT 5 SIGNAL OUTPUT BNC CONNECTOR RG-174/U (BLACK) R17 C5 P POWER SUPPLY GND P +HV GUIDE MARK AWG22 (BLACK) R22 R16 C3 R19 SHV CONNECTOR Dy10 12 R9 C3 R21 R15 C2 DY8 7 Dy9 7 ± 74.0 ± 0.5 R20 R14 C1 17 0.2 R8 C2 Dy8 13 R13 DY7 4 Dy7 5 R7 C1 R12 Dy6 14 DY6 8 R11 Dy5 4 R1, R2,R6: 750 kΩ R6 R10 0.5 R3, R8: 200 kΩ ± HOUSING DY5 3 R4: 91 kΩ R9 15 (INSULATOR) R5 0.5 Dy4 16 R1 to R8: 330 kΩ ± R5: 510 kΩ DY4 9 Ω R8 R7: 300 kΩ R9: 160 k

100 R4 R7 R9: 100 kΩ C1 to C3: 10 nF Dy3 3 Ω DY3 2 R6 R10 to R16: 150 k HOUSING Dy2 17 R17: 100 kΩ R3 (METAL) R5 R18: 1 MΩ DY2 10 R4 R19: 10 kΩ Dy1 R2 1 R20 to R22: 51 Ω R3 DY1 11 F3 2 C1 to C3: 10 nF F2 19 R2 C4, C5: 4.7 nF 450 K R1 F1 18 -HV R1 12 K 20 AWG22 (VIOLET) +H.V SIG The housing is internally nonnected to the GND. SIGNAL OUTPUT +H.V : BNC-R : SHV-R

TACCA0247EB TACCA0060EH 88 %5 E5996 %6 E7083

SOCKET SIGNAL GND SOCKET PMT PMT 30.0 ± 0.5 PIN No. 30.0 ± 0.5 PIN No. SIGNAL GND SIGNAL OUTPUT PIN No.1 30 27 P4 PIN No.1 RG-174/U (BLACK) P 15 P3 0.5 SIGNAL OUTPUT R14 R11 ± C3 11 P2 : 0.8D-QEV (GRAY) 0.5

± 24

DY10 30.0 31 P1 R13 R10 C2 HOUSING 30.0 DY9 23 (INSULATOR) P4 P3 P2 P1 R14 R11 C3 HOUSING R12 R9 C1 DY10 24 0.5 (INSULATOR) DY8 22 ± R13 R10 C2 15.0 R8 23

0.5 DY9 ± DY7 21 POTTING R12 R9 C1 15.0 R1 to R3: 330 kΩ COMPOUND R7 DY8 22 R4 to R11: 220 kΩ DY6 20 10 R8 POTTING R12 to R14: 51 Ω ± R6 21 COMPOUND R15: 1 MΩ DY7 Ω

450 R1 to R3: 330 k DY5 19 C1 to C3 : 10 nF R7 R4 to R11: 220 kΩ R5 DY6 20 R12 to R14: 51 Ω 10 Ω ± R15: 1 M DY4 7 R6 DY5 19 C1 to C3 : 10 nF

450 R4 R5 DY3 6 P2 P3 DY4 7 R3 POTTING -HV R4 5 COMPUND DY2 RG-174/U (RED) DY3 6 R2 R3 DY1 4 DY2 5 K R2 R15 R1 -HV GUIDE MARK DY1 4 1 : RG-174U (RED) K P1 P4 R1 R15 -HV POWER SUPPLY GND 1 P1 to P4 :SIGNAL OUTPUT : RG-174U (RED) COAXIAL CABLE (GRAY) POWER SUPPLY GND

TACCA0234EC TACCA0162ED

%7 E6736 %8 E7514

SIGNAL GND 25.4 ± 0.5 SOCKET 30.0 ± 0.5 PMT PIN No. 1 16 PX6 PIN No. SIGNAL GND PX6 28 P16 24 PY6 29 • PY6 27 •

3 • 0.5 ± 15 PX5 0.5 23 • PX5 ± 4 • Pin No.1 22 • 25.4 23 PY5 30.0 PY5 5 • 21 SIGANL OUTPUT P8 14 PX4 6 • : 0.8D-QEV (GRAY) PX4 POM 20 • 0.5 ± HOUSING 7 • POM 22 PY4 19 • PY4 SIGNAL OUTPUT HOUSING : 0.8D-QEV (GRAY) 15.0 11 •

POTTING 13 • 0.5 12 PX3

± PX3 10 COMPOUND 12 ± P1

P9 P8 P7 P6 P5 P4 P3 P2 P1 20 PY3 P16 P15 P14 P13 P12 P11 P10 15.0

450 PY3 R14 R11 C3 Ω Dy10 R1 to R11: 220 k 26 Ω POTTING 11 PX2 10 R13 R10 C2 R12 to R14: 51 PX2 Dy9 10 R15: 1 MΩ COMPOUND

5 R12 R9 C1 Dy8 24 C1 to C3: 10 nF 19 PY2 R8 PY2 -HV Dy7 8 10 P3 P1 P2 RG-174/U (RED) R7 ± 10 PX1 Dy6 2 PX1 R6 Dy5 18 450 R5 13 PY1 P4 Dy4 31 PY1 P7 P5 P6 P9 P8 R4 P11 P10 Dy3 15 R14 C3 P13 P12 R3 R18 Dy2 32 DY11 8 R2 K Dy1 16 R17 R13 C2 GUIDE MARKE R15 R1 -HV DY10 27 P15 P16 P14 17 RG-174/U (RED) R16 R12 C1 P1 to P16 : SIGNAL OUTPUT POWER SUPPLY GND DY9 7 COAXIAL CABLE (GRAY) R11 DY8 28 Ω R10 R1, R14: 110 k PX2 PY1 PX4 Ω TACCA0158ED DY7 6 R2: 330 k PX1 PX3 PX5 R3 to R13: 220 kΩ R9 -H.V PX6 R15: 1 MΩ DY6 29 : RG-174/U (RED) R16 to R18: 51 Ω PY2 %9 R8 C1 to C3: 10 nF E6133-04 POTTING PY3 DY5 5 COMPOUND R7 PY4 DY4 30 PY5 R6 PMT SOCKET PY6 R20 DY3 4 PIN No. SIGNAL OUTPUT GUIDE MARK C6 R5 10 : RG-174/U (BLACK) DY2 31 P BNC CONNECTOR R19 C7 R4 R1 +HV R24 R18 C5 SHIELD CABLE (RED) R3 24.0 ± 0.5 Dy15 9 SHV CONNECTOR DY1 3 R23 R17 C4 R2 ± SOCKET: G 22.0 0.5 Dy14 118 1 E678-17C R22 R16 C3 K Dy13 8 R15 R1 -H.V 32 R15 C2 : RG-174/U (RED) Dy12 12 R14 C1 R1: 10 kΩ POWER Dy11 7 R2 to R18: 330 MΩ SUPPLY GND 0.5 R13 ± Ω HOUSING Dy10 13 R19: 100 k Ω (INSULATOR) R12 R20, R21: 1 M TACCA0236EB 55.0 Dy9 6 R22 to R24: 51 Ω R11 Dy8 14 C1 to C5: 10 nF POTTING R10 C6, C7: 4.7 nF COMPOUND Dy7 5 R9 Dy6 SIGNAL OUTPUT 15 R8 10 : RG-174/U (BLACK) Dy5 4 ± BNC CONNECTOR R7 Dy4 16 450 +H.V R6 : SHIELD CABLE (RED) Dy3 3 SHV CONNECTOR R5 Dy2 17 R4 Dy1 2 R3 R21 R2 K 1

TACCA0248EA 89 DA-Type Socket Assemblies

DA-TYPE SOCKET ASSEMBLIES C7246 SERIES, C7247 SERIES

The C7246 and C7247 series are DA type socket assemblies designed for 28 mm (1-1/8 inch) diameter side-on and head-on pho- tomultiplier tubes. A voltage-divider circuit and an amplifier are incorporated in the same package. The C7247 series uses an amplifier with a wide bandwidth of 0 Hz to 5 MHz, while the C7246 uses an amplifier with a practical bandwidth of 0 Hz to 20 kHz to improve the effective S/N ratio. The photomultiplier tube low-level, high-impedance current can be converted into a low-impedance voltage output by a factor of 0.3 V/µA. Both the C7246 and C7247 series use an active voltage-divider circuit that ensures excellent DC linearity at low power consump- tion. The C7246 series also has a gain adjustment function that does not affect amplifier frequency bandwidth.

Specifications Parameter C7246/C7246-20 C7246-01/C7246-21 C7247/C7247-20 C7247-01/C7247-21 Unit 28 mm Dia. Head-on 28 mm Dia. Head-on Applicable PMTs R316-02, R374, R2228 28 mm Dia. Side-on R316-02, R374, R2228 28 mm Dia. Side-on — R5929, R6094, R6095, etc. R5929, R6094, R6095, etc. MAXIMUM RATINGS Parameter C7246/C7246-20 C7246-01/C7246-21 C7247/C7247-20 C7247-01/C7247-21 Unit Input Voltage for Amplifier ±18 ±18 V Supply Voltage for Divider -1500 -1500 V Operating Temperature 0 to +40 0 to +40 °C Storage Temperature -15 to +60 -15 to +60 °C GENERAL Parameter C7246/C7246-20 C7246-01/C7246-21 C7247/C7247-20 C7247-01/C7247-21 Unit Input Voltage for Amplifier ±12 to ±15 ±12 to ±15 V Input Current for Amplifier Typ. 0.53 12 mA (at ±15 V) Recommended -400 to -1000 A -300 to -1000 A -400 to -900 -300 to -600 V Supply Voltage for Divider 174 211 219 166 Divider Current Typ. µA (at HV = -1000 V) (at HV = -1000 V) (at HV = -900 V) (at HV = -600 V) Current to Voltage Conversion Factor (with no load resistor) 0.3 0.3 V/µA Maximum Output Voltage (with no load resistor) 10 10 V Output Voltage (with 50 Ω load resistor) 0.9 3 V Maximum input Signal Current DC 33 33 µA (with no load resister) Pulse 33 33 µA Frequency Bandwidth (-3 dB) 0 Hz to 20 kHz 0 Hz to 5 MHz — Output Impedance 50 50 Ω Offset Voltage Max. ±1 ±3 mV Output Noise Voltage (rms) Typ. 0.09 9 mV Adjustable Gain Range Min. 10 30 — — dB Total Power Consumption 190 227 558 460 Typ. mW (at ±15 V) (at HV = -1000 V) (at HV = -1000 V) (at HV = -900 V) (at HV = -600 V) Weight Typ. 55 / 170 50 / 170 55 / 170 50 / 170 g NOTE: A Keep more than 600 V at -HV input when input signal gives more than 10 µA. (C7246/-01/-20/-21)

Circuit Diagrams C7246 (-01B/-20/-21B) C7247 (-01B/-20/-21B)

K P K P SIGNAL SIGNAL DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 AMP DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 AMP OUTPUT OUTPUT 50 Ω 50 Ω

C1 C2 C3 C4 C1 C2 C3 C4

ACTIVE VOLTAGE DIVIDER ACTIVE VOLTAGE DIVIDER C1,C2 : 0.01 µF C1,C2 : 0.01 µF C3 : 0.022 µF C3 : 0.022 µF C4 : 0.047 µF C4 : 0.047 µF

VR = 5 MΩ -HV * GAIN ADJ. CIRCUIT * PATENT

TACCC0103EC -HV TACCC0115EB NOTE: BC7246-01/-21 are for 28 mm side-on PMT so that the last dynode number is "DY9" NOTE: BC7247-01/-21 are for 28 mm side-on PMT so that the last dynode number is "DY9" 90 Frequency Response of Built-in Amplifier C7246/-01/-20/-21 C7247/-01/-20/-21 TACCB0046EB TACCB0065EA 10 10

5 5

0 0

-3dB -3dB -5 -5

-10 -10 RELATIVE GAIN (dB) RELATIVE GAIN (dB)

-15 -15

-20 -20 0.1 1 10 100 1000 0.01 0.1 110100

FREQUENCY (kHz) FREQUENCY (MHz)

Dimensional Outlines (Unit : mm) C7246/-20, C7247/-20 C7246-01/-21, C7247-01/-21 5 [BOTTOM VIEW] [BOTTOM VIEW] 0.3 3.5 ± C7246/-20 C7246-01/-21 33.0 GAIN ADJ. GAIN ADJ. 38.0 ± 0.3 31.7 ± 0.3 1) 49.0 ± 0.3 1) 25.2 POT (VR) POT (VR)

29.0 ± 0.3 4

0.5 C7247/-20 ± C7247-01/-21 0.5 HOUSING 0.7 ± ± 40.0 31.7 0.3 (METAL) HOUSING 37.7 (METAL)

TACCA0175EE

Type No. Input/output Cable TypeCable Length Connector TACCA0197EC -HV COAXIAL CABLE 2) (RED) — C7246/-01 Signal Output COAXIAL CABLE: RG-174/U (BLACK) 450 ± 10 — C7247/-01 ±15 V TWISTED PAIR CABLE WITH SHIELD 3) (GRAY) — -HV COAXIAL CABLE (RED) SHV C7246-20/-21 Signal Output COAXIAL CABLE: RG-174/U (BLACK) 1500 ± 25 BNC C7247-20/-21 ±15 V TWISTED PAIR CABLE WITH SHIELD (GRAY) MIYAMA MC-032 NOTES: 1) Turning this pot clockwise increases the PMT gain. (25 turns max.) 2) At the end of HV cable, it's possible to attach SHV connector fitting RG-174/U. 3) Connect as follow. WHITE...... -15 V ORANGE.... +15 V SHIELD...... GND

Sold Separately HOUSING E7718 (for C7246/-20 or C7247/-20) FLANGE A7709* (for C7246-01/-21 or C7247-01/-21) [Including part 1, 2, 4 and 5] [Including part 1, 4, 5, 6, 8 and !0] 132 1 2 3 4 5 6 7

1 HOUSING 1 INSULATOR (CUSHION) 2 MAGNETIC SHIELD CASE 2 PMT 3 E989 MAGNETIC SHIELD CASE

42 3 26 PMT 4 CLAMPING METAL PARTS

4 O-RINGS 1.0 5 4-M2 SCREWS L = 6 ± 5 2-M3 SCREWS L = 5 6 C7246/-20 or C7247/-20 6 FLANGE

54 60 7 C7246-01/-21 or C7247-01/-21 35.2 8 O-RING 1.5 M42 P = 1.5 9 FIXTURE (FOR FIXING) 123 4 5 6 !02-M3 SCREWS L = 5

[HOW TO USE THE HOUSING WITH FLANGE] [SUGGESTED FIXTURE LAYOUT FOR THE FLANGE] 80 ± 2 8 5 9 !0

[SUGGESTED FIXTURE LAYOUT FOR THE FLANGE]

3 4 3-M3 46 60 54 ± 0.1 54 8 4 54 ± 0.1 DIRECTION OF LIGHT

° °

120 * O-RING 120 3 4-M3 FLANGE * 10.2

* THE FLANGE AND O-RING ARE AVAILABLE TO SOLD SEPARATELY AS P/N; A7719. * A7709 can be attached to the E717-63/-500 TACCA0199EB TACCA0198EA 91 DP / DAP-Type Socket Assemblies

HIGH VOLTAGE POWER SUPPLY SOCKET ASSEMBLY C6270, C8991 (DP Type) HIGH VOLTAGE POWER SUPPLY SOCKET ASSEMBLY WITH TRANSIMPEDANCE AMPLIFIER C6271 (DAP Type)

C6270 is a high voltage power supply socket assembly for 28 mm (1-1/8 inch) diameter side-on photomultiplier tubes (PMTs), in- corporating a regulated high voltage power supply and an active voltage divider. It enables simple yet stable photomultiplier tube operations with extended DC output linearity by only supplying +15 V and connecting to a or a 0 V to +5 V for high voltage adjustments. C6271 further incorporates a transimpedance amplifier which converts the photomultiplier tubes current signal to low impedance voltage signal. The C8991 uses a Cockcroft-Walton type high voltage power supply that ensures high output linearity of photomultiplier tube while maintaining low power consumption.

Features (C6270) Features (C6271) Features (C8991) G Superior DC Output Linearity G With Transimpedance Amplifier G Superior DC Output Linearity G Fast High Voltage Programming G Superior DC Output Linearity G Low Power Consumption Response G Fast High Voltage Programming G Wide High Voltage Output Range Response G Low Ripple/Noise G Wide High Voltage Output Range G Low Ripple / Noise

Common Specifications GENERAL Parameter C6270 C6271C8991 Unit Applicable PMTs 28 mm (1-1/8 inch) Dia. side-on types — Input Voltage +15 ± 1 +11.5 to +15.5 V Input Current Typ. 45 55 8 mA Linear DC Output Current at -1000 V Typ. 100 43 100 µA of PMT A at -500 V Typ. 50 43 50 µA Operating Temperature 0 to +40 0 to +50 °C Storage Temperature -15 to +60 °C Weight Typ. 50 53 57 g NOTE: A Within: ±2 % linearity HIGH VOLTAGE POWER SUPPLY ParameterC6270 C6271 C8991 Unit Output Voltage Range 0 to -1250 -200 to -1200 V Line Regulation Against ±1 V Input Change Typ. ±0.01 % Ripple/Noise (p-p) in High Voltage Output Typ. 0.008 — % Anode Ripple Noise B (p-p) 1 mV 0 V to +1.2 V or High Voltage Control 0 V to +5 V or external 50 kΩ potentiometer — external 10 kΩ potentiometer High Voltage Programming Response C Typ. 80 — ms Settling Time D — 10 s Temperature Coefficient of High Voltage Output Typ. ±0.01 ±0.005 %/°C NOTE: B Load resistance = 1 MΩ, Load capacitance = 22 pF C for 0 %/99 % HV change D The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V.

C6271 Specifications TRANSIMPEDANCE AMPLIFIER SECTION Parameter Value Unit Current to Voltage Conversion Factor 0.3 V/µA Maximum Linear Signal Output Voltage Typ. +13 (Anode Current=43 µA) V Bandwidth (-3 dB) 0 Hz to 10 kHz — Signal Output Offset Voltage Typ. -0.3 to +0.3 mV Induced Ripple (p-p) on Signal Output Typ. 2 mV 92 Schematic Diagrams

C6270 C6271 C8991

COCKCROFT- ACTIVE TRANS- WALTON VOLTAGE SIGNAL OUT (COAX) IMPEDANCE CIRCUIT DIVIDER AMP (HIGH VOLTAGE DIVIDER) PMT PMT PMT SOCKET SOCKET SOCKET

+15 V IN (RED) +15 V IN (RED) +15 V IN (RED) HIGH HIGH ACTIVE HIGH VOLTAGE VOLTAGE Vref (5 V) OUT (BLUE) VOLTAGE Vref (5 V) OUT (BLUE) Vref (+1.2 V) OUT (BLUE) VOLTAGE ADJUSTMENT POWER HV CONTROL (WHITE) POWER HV CONTROL (WHITE) HV CONTROL (WHITE) DIVIDER CIRCUIT SUPPLY GROUND (BLACK) SUPPLY GROUND (BLACK) GROUND (BLACK) GROUND (BLACK) GROUND (BLACK)

SIGNAL OUT (COAX) SIGNAL OUT (COAX) TACCC0095EC TACCC0096EE TACCC0124EA

DC Linearity Characteristics Practical PMT DC Output Limits

TACCB0040EC TACCB0042EB 20 140 PMT SUPPLY VOLTAGE: -1000 V

120 A) C6270, C8991 (Reference) µ 330 kΩ/STAGE 100 10 RESISTIVE DIVIDER

80

60 C6270 C6271 0 DEVIATION (%) 40 (Reference) C6271 Ω C8991 330 k /STAGE RESISTIVE DIVIDER PMT OUTPUT CURRENT ( 20

-10 0 1 10 100 1000 -400 -600 -800 -1000 -1200 -1400

PMT OUTPUT CURRENT (µA) PMT SUPPLY VOLTAGE (V)

High Voltage Controlling Characteristics Dimensional Outlines (Unit: mm)

TACCB0041EC C6270, C6271 C8991 -1500 2- 3.2 5 -1250 0.3

DIRECTION DIRECTION ± OF LIGHT 32 OF LIGHT 33.0 3.5 -1000 ± 38 38.0 0.3 C6270, C6271 ± 45 49.0 0.3 -750

31.5 29.0±0.3 -500

OUTPUT VOLTAGE (V) C8991

R1 0.7 4 2.5 4

0.5 ±

-250 ± 31.7 0.3 37.7 48.5 CONDUCTIVE 0 10.5 PLASTIC 0+2+3+5+1 +4 +6 (C6270, C6271) 0+0.2 +0.4 +0.6+0.8 +1.0 +1.2 (C8991) HOUSING

10 (METAL) CONTROL VOLTAGE (V) 32 ± 450 450 MIN.

OTHER : AWG24 SIGNAL OUT (COAXIAL CABLE: RG-174/U) SIGNAL OUTPUT COAX RG-174/U +15 V INPUT AWG 22, RED HV CONTROL INPUT AWG 22, WHITE Vref OUTPUT AWG 22, BLUE GND AWG 22, BLACK TACCA0156ED TACCA0053EE 93 Amplifier Units

Amplifier Units C7319, C6438, C9663, C5594

Hamamatsu provides four types of amplifier units for photomultiplier tubes. Features of each type are as follows. Select the one that best matches your application.

Features G C7319 • Switchable frequency bandwidth (2 ranges) and current-to-voltage conversion factor (3 ranges) • Ideal for applications requiring low noise and high gain G From left: C9663, C7319, C6438, C5594 C6438 • Wide bandwidth from 0 Hz up to 50 MHz G C9663 • Wide bandwidth from DC to 150 MHz and gain of 38 dB G C5594 • 1.5 GHz cutoff frequency for reliable amplification of high-speed output pulse from PMT • Choice of SMA or BNC input and output connector

Characteristics Parameter C7319 C6438 C6438-01 C9663 C5594-44 Unit Frequency Bandwidth DC to 20 kHz or DC to A DC to 50 MHz DC to 50 MHz DC to 150 MHz 50 kHz to 1.5 GHz — (-3 dB) 200 kHz (switchable) B D D D D Voltage Gain — 20 ± 3 (Approx. 10 times) 54 ± 3 (Approx. 500 times) 38 (Approx. 80 times) 36 (Approx. 63 times) dB Current-to-Voltage 0.1 V/µA, 1 V/µA E E E E 0.5 mV/µA 25 mV/µA 4 mV/µA 3.15 mV/µA — Conversion Factor or 10 V/µA (switchable) Amplifier Input (output) ±Current (inverted) ±Voltage (non-inverted) ±Voltage (non-inverted) ±Voltage (non-inverted) -Voltage (non-inverted) — B — 50 50 50 50 Ω Recommended Load Resistance — 50 50 50 50 Ω C D D D D Max. Output Signal Voltage ±13 ±1 ±1 ±1.4 -2.5 V Input BNC-R BNC-R BNC-R BNC-R BNC-R — Connector Output BNC-R BNC-R BNC-R BNC-R BNC-R — Power DIN (6-pin) DIN (6-pin) DIN (6-pin) DIN (6-pin) — — Input Voltage ±5 to ±15 ±5 ±5 ±5 +12 to +16 V Input Current Max. ±16 ±55 ±80 ±80 +95 mA Dimensions (W × H × D) 60 × 43.2 × 65 60 × 43.2 × 65 60 × 43.2 × 65 60 × 43.2 × 65 54 × 17 × 33 mm Weight Approx.170 Approx.160 Approx.160 Approx.180 Approx.80 g NOTE: AFrequency bandwidth is limited to DC to 100 kHz at conversion coefficient of 10 V/µA. C5594 Input connector and type No. BC7319 is current input type. Output Input CAt ±15 V Supply voltage and 10 kΩ load resistance. SMA jack (female) BNC jack (female) D Ω At 50 load resistance. SMA plug (male) C5594-12 C5594-14 EValue after current-to-voltage conversion by input impedance. FContact our sales office for other connectors for C5594. SMA jack (female) C5594-22 C5594-24 BNC plug (male) C5594-32 C5594-34 BNC jack (female) C5594-42 C5594-44

94 Frequency Response C7319 C6438 TACCB0044ED TACCB0039EC at 50 Ω load resister +10 10

+5 5

0 0

-5 -5

-10 -10 RELATIVE GAIN (dB) RELATIVE GAIN (dB) 0 Hz to 20 kHz 0 Hz to 200 kHz A -15 -15

-20 -20 100 101 102 103 10-1 100 101 102

FREQUENCY (kHz) FREQUENCY (MHz) A To be limited to 0 Hz to 100 kHz at 10 V/µA (Current to voltage conversion factor) C9663 C5594 TACCB0074EA at 50 Ω load resister TACCB0006EB 10 10

5 5

0 0

-5 -5

-10 -10 RELATIVE GAIN (dB) RELATIVE GAIN (dB)

-15 -15

-20 -20 100 101 102 103 10-2 10-1 100 101 102 103 104

FREQUENCY (MHz) FREQUENCY (MHz)

Dimensional Outlines (Unit: mm)

C7319 C6438 DIN TYPE DIN TYPE BNC-R ALUMINUM HOUSING (6 PINS) ALUMINUM HOUSING (6 PINS) BNC-R BNC-R

SIG IN SIG OUT ±5 V INPUT ±15 V OUTPUT 0.5 0.5 ± BW GAIN ±

5 6 7 43.2 LH 1010 10 V/A 43.2 OFFSET

SWITCH OF VR OFFSET FREQUENCY OF ATTACHMENT BANDWIDTH CONVERSION RATIO SCREW HOLES FOR FIXTURE(2-M3) SCREW HOLES (2-M3)

∗ Exclusiver cable with a plug connector attached at one end ∗ Exclusiver cable with a plug will be provided for ±5 V supply connector attached at one end ± connection together with the 0.2 0.5 will be provided for 15 V supply 0.2 0.5 ± ± unit. ± connection together with the ± 60 47.5 60.0 unit. 47.5

65.0 ± 0.5 65 ± 0.5 TACCA0174EA TACCA0134EA

C9663 ALUMINUM HOUSING DIN TYPE (6 PINS) BNC-R C5594 BNC-R 9.6 54 9.6 17

INPUT ±5 V OUTPUT 0.5

OFFSET ±

43.2 HIGH SPEED AMPLIFIER IN OUT

C5594 33 50k-1.5GHz 36dB

VR OFFSET GND +15V 16.5 ATTACHMENT SCREW HOLES (2-M3)

* Exclusiver cable with a plug connector attached at one 18 18 9.5 end will be provided for ±5 V supply connection together 0.2 0.5 ± with the unit. ± 47.5 60.0 11.4

65.0 ± 0.5 TACCA0262EA TACCA0051EB 95 High Voltage Power Supplies

Voltage Dependence of Photomultiplier Tube Gain

The photoelectrons emitted from the photocathode of a pho- Hamamatsu regulated high voltage power supplies are tomultiplier tube are channeled by the electron lens to im- products developed based on our years of experience as a pinge on the first dynode where several times the number of photomultiplier tube manufacturer and our leading edge secondary electrons are then emitted. This multiplicative in- technology. All models are designed to conform to stability crease of secondary electrons is repeated at the latter dy- requirements demanded of photomultiplier tube operations. nodes and as a result, the number of electrons reaching the Various models are provided, ranging from on-board unit anode is approximately 105 to 107 times the original number types to general-purpose bench-top types, allowing you to of photoelectrons emitted from the photocathode. choose the desired power supply that suits your application. The relationship of the secondary electron emission δ for each dynode to the supplied voltage is expressed as follows: Gain vs. Supply Voltage δ = A • Eα TPMOB0082EB 108 where A is a constant, E is the interstage voltage, and α is another constant determined by the dynode material and α geometric structure. The value of is usually in the range 107 0.7 to 0.8. When a voltage V is supplied between the anode and the photocathode of a photomultiplier tube having n dy- node stages, the overall gain µ is given by 106 µ = (A • Eα)n = {A • [V/n+1]α}n = {An/ (n+1)αn}Vαn Here, if {An/ (n+1)αn} is substituted for K, µ becomes 105 αn µ = K • V GAIN Typical photomultiplier tubes have 9 to 12 dynode stages and as shown in Figure 23, the gain is proportional to the 6th 104 to 10th power of the voltage supplied between the photoca- thode and the anode. This essentially means that the output of a photomultiplier tube is extremely sensitive to variations 103 in the supplied voltage. Thus the power supply stability such as drift, ripple, temperature regulation, input regulation and 102 load regulation must be at least 10 times as stable as the 200300 500 700 1000 1500 output stability required of the photomultiplier tube. SUPPLY VOLTAGE (V)

Selection Guide to High Voltage Power Supplies

Max. Output Output Current Dimensions** Type Type No. Input Voltage Weight Voltage (V) (mA) (W × H × D) (mm) — 0.6 +15 V -1250 -01 0.5 +12 V C4900 46 × 24 × 12 31 g -50 0.6 +15 V +1250 -51 0.5 +12 V — +15 V Unit Type -01 -1500 +12 V -02 +24 V C4710 1 65 × 27.5 × 45 105 g -50* +15 V -51* +1500 +12 V -52* +24 V — AC 100 V/120 V C3830 -1500 -22 AC 230 V 1 255 × 54 × 230 2.8 kg — AC 100 V/120 V Bench-top Type C4720 +1500 -22 AC 230 V -01 AC 120 V C4840 ±3000 10 245 × 135 × 385 10 kg -02 AC 230 V * Order made products ** Excluding projecting parts

96 Compact High Voltage Power Supply Units C4900 Series

The C4900 series is an on-board type high voltage power supply unit, with a design that aims at providing both "compactness and high performance". The newly developed circuit achieves high performance and low power consumption. The C4900 series in addition provides enhanced protective functions yet is offered at lower costs. The C4900 and -01 are designed for negative output, while the C4900-50 and -51 have positive output.

Features Very compact and lightweight High stability Low power consumption Quick response TACCF0154 EN61010-1: 2001 Variable output voltage range from 0 V Ample protective functions

Specifications Parameter C4900 C4900-01 C4900-50 C4900-51 Unit Input Voltage Range +15 ± 1 +12 ± 0.5 +15 ± 1 +12 ± 0.5 V with no load Typ. 14 15 14 15 Input Current A mA with full load Typ. 90 95 90 95 Variable Output Range 0 to -1250 0 to +1250 V Specification Guaranteed Output Voltage Range -200 to -1250 +200 to +1250 V Output Current Max. 0.6 0.5 0.6 0.5 mA Line Regulation Against ±1 V/0.5 V Input Change AB Typ. ±0.01 % Load Regulation Against 0 % to 100 % Load Change A Typ. ±0.01 % Ripple/Noise (p-p) AB Typ. 0.007 % Output Voltage Control By external controlling voltage (0 V to +5 V) or external potentiometer (50 kΩ ±2.5 kΩ) — Controlling Voltage Input Typ. 80 kΩ Impedance Output Voltage Setting (Absolute Value) Typ. (Controlling Voltage × 250) ± 0.5 % V Output Voltage Rise Time (0 % ➝ 99 %) AB Typ. 50 ms Temperature Coefficient AB Typ. ±0.01 %/°C Operating Ambient Temperature AB 0 to +50 °C Storage Temperature -20 to +70 °C Operating Ambient Humidity ABCD Max. 65 RH at 40 °C % Storage Humidity D Max. 75 % Weight 31 g Units protected against reversed power input, reversed/excessive controlling Protective Functions — voltage input, continuous overloading/short circuit in output NOTE: AAt maximum output voltage. BAt maximum output current. CPlease ask our sales representative in case of higher humidity use. DNo condensation. Output Voltage Controlling Dimensional Outlines (Unit: mm) Characteristic 46 12 3.81 15.88 15.88 4-φ2 (C4900, -01) (C4900-50, -51) TACCB0043EB -1500 +1500 11.7

24 -1250 +1250 29 2.54 6-φ0.8 q wert y 10.16 17.78 -1000 +1000 PIN ASSIGNMENT 5 MIN. q+15 V /+12 V IN 1.5 0.3 wGND 1 (INPUT/OUTPUT GND) -750 +750 2.5 eGND 2 (CONTROLLING VOLTAGE GND) MOUNTING TABS r 3.81 15.88 15.88 HV ADJ (CONTROLLING VOLTAGE INPUT) • The mounting tabs can be tVref OUT -500 +500 bent to the right angle only once yHV OUT ( • The mounting tabs are solderable. ) ∗The housing is internally connected to pin w. OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) Pins w and e are internally connected. 0.5×0.25 -250 +250

0 0 2.54 0 +1 +2 +3 +4+5 5.3 +6 10.16 17.78

(BOTTOM VIEW) TACCA0157EC TACCA0159EB CONTROLLING VOLTAGE (V) 97 High Voltage Power Supplies

Compact High Voltage Power Supply Units C4710 Series

The C4710 series comprises on-board type high voltage power supply units, designed specifically for photomultiplier tube operations. The C4710 series is designed for ease of use and high performance, and can be se- lected from among 6 models to meet your various needs.

Features G Compact and lightweight G High stability G High output voltage up to 1500 V G Ample protective functions G TACCF0113 Fully enclosed metal-shielded package

Specifications

Parameter C4710C4710-01 C4710-02 C4710-50 C C4710-51 C C4710-52 C Unit Input Voltage +15 ± 1 +12 ± 1 +24 ± 1 +15 ± 1 +12 ± 1 +24 ± 1 V Input Current A with no load Typ. 95 120 65 95 120 65 mA (at maximum output voltage) with full load Typ. 260 340 145 260 340 145 Specification Guaranteed Output Voltage Range -240 to -1500 +240 to +1500 V Output Current Max. 1 mA Line Regulation Against ±1 V Input Change AB Typ. ±0.01 ±0.015 ±0.015 ±0.02 ±0.02 ±0.015 % Load Regulation Against 0 % to 100 % Load Change A Typ. ±0.01 ±0.015 ±0.01 ±0.01 ±0.01 ±0.01 % Ripple/Noise (p-p) AB Typ. 0.005 % Output Voltage Control By external controlling voltage (+0.8 V to +5 V) or external potentiometer (10 kΩ) — Controlling Voltage Typ. 40 56 kΩ Input Impedance Output Voltage Setting (Absolute Value) Typ. (Controlling Voltage × 300) ± 0.5 % V Output Voltage Rise Time (0 % ➝ 99 %) AB Typ. 100 ms Temperature Coefficient AB Typ. ±0.01 %/°C Operating Ambient Temperature AB 0 to +40 °C Storage Temperature -20 to +60 °C Weight 105 g Units protected against reversed power input, reversed/excessive controlling Protective Functions — voltage input, continuous overloading/short circuit in output NOTE: AAt maximum output voltage. BAt maximum output current. COrder made products Output Voltage Controlling Dimensional Outlines (Unit: mm) Characteristic

(C4710, −01, −02) (C4710−50, −51, −52) 65 TACCB0009EB −1800 +1800 55

27.5 8 45 −1500 +1500

−1200 +1200 1 +12/15/24 V IN

2 COMMON −900 +900 45 25 10 35 5

1 3 HV ADJ HV OUT 5 −600 +600 4 V REF OUT OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V)

−300 +300 2-MOUNTING THREADS (M2.3)

0 0 SIDE VIEW BOTTOM VIEW 0 0.43 1 234565.3

TACCA0124EA CONTROLLING VOLTAGE 98 Compact Bench-Top Regulated DC Power Supplies C3830 Series, C4720 Series

The C3830 series and C4720 series are multipurpose power supplies de- signed to provide a high voltage output for photomultiplier tube operation and low voltage outputs (±5 V, ±15 V) for peripheral devices such as Ha- mamatsu amplifier units and photon counting units. The C3830 series pro- vides a negative high voltage of -200 V to -1500 V, and the C4720 series a positive high voltage of +200 V to +1500 V. In either model, the high vol- tage output is accurately displayed in four digits on the digital panel meter.

TACCF0080 Specifications Low Voltage Power Supply Section Parameter High Voltage Power Supply Section ±5 V Power Supply Section ±15 V Power Supply Section C3830/C3830-22 -200 V to -1500 V (Variable) Output Voltage ±4.75 V to ±5.25 V (fixed) ±14.25 V to ±15.75 V (fixed) C4720/C4720-22 +200 V to +1500 V (Variable) Maximum Output Current 1 mA 500 mA 200 mA AB Line Regulation Against ±10 % Line Voltage Change Typ. ±0.005 % ±0.005 % ±0.015 % Load Regulation Against 0 % to 100 % Load Change A Typ. ±0.01 % ±0.5 % ±0.5 % AB Ripple/Noise (p-p) Typ. 0.005 % 0.16 % 0.06 % AB Drift Typ. ±0.03 %/h ±0.05 %/h ±0.05 %/h AB Temperature Coefficient Typ. ±0.03 %/°C ±0.03 %/°C ±0.03 %/°C High Voltage Output Monitor 4-digit display — — High Voltage Output Monitoring Accuracy A Typ. ±0.5 % — — Two 4-pin receptacles One 4-pin receptacle C3830/C4720 One SHV receptacle Output Receptacle (HIROSE SR30-10R-4S) (MIYAMA MC-032) C3830-22/C4720-22 One SHV receptacle Two 6-pin DIN connectors (HOSHIDEN TCS0260-01-1201) C3830/C4720 100 V / 120 V (±10 %) (50/60 Hz) AC Input Voltage C3830-22/C4720-22 230 V (±10 %) (50/60 Hz) Power Consumption AB Max. Approx. 40 V·A ABC Operating Ambient Temperature/Humidity 0 °C to +40 °C / 90 % RH Max. ABC Specification Guaranteed Temperature/Humidity +5 °C to +35 °C / 85 % RH Max. Storage Temperature/Humidity C -20 °C to +50 °C / 95 % RH Max. Weight Approx. 2.8 kg C3830/C4720 — CE Marking Conforms to EMC directive (89/336/EEC)/EN61326: 1997 + A1: 1998 + A2: 2001 Class B C3830-22/C4720-22 Conforms to low voltage directive (73/223/EEC)/EN61010-1: 2001 NOTE: AAt maximum output voltage. BAt maximum output current. CNo condensation. Accessories 1High voltage output cable (1.5 m long) terminated with SHV-P plugs E1168-17...... 1 2Spare fuses...... 2 3Low voltage power supply section mating plugs C3830/C4720; ±5 V mating plugs (HIROSE SR30-10PE-4P)...... 2 ±15 V mating plugs (MIYAMA MC-032)...... 1 C3830-22/C4720-22; ±5 V, ±15 V mating plugs (6-pin DIN plgus, HOSIDEN TCP0566-71-5201) ...... 2 4AC line Cable (2 m) ...... 1

Dimensional Outlines (Unit: mm) 269 Low voltage cable (sold separately) 255 230 *Between C3830/C4720 and following product Product Low Voltage Cable HV-POWER SUPPLY C7319 E1168-24 POWER HV OUT HV ADJ C9744, C9663, C6438 E1168-25 VOLTAGE *Between C3830-22/C4720-22 and following product 62 54 Product Low Voltage Cable C9744, C9663, C7319, C6438 E1168-26

TACCA0016EC 99 High Voltage Power Supplies

Bench-Top High Voltage Power Supply C4840 (±3 kV Output)

The C4840 series are highly regulated, bench-top power supply that pro- vides high output voltage up to ±3 kV/10 mA. The LED panel meter on the front panel allows easy and precise voltage monitoring. The C4840 is ideal- ly suited for operating photomultiplier tubes or proportional counter tubes.

TACCF0188 Specifications Parameter Value/Description Output Voltage 0 V to ±3000 V Specification Guaranteed Output Voltage ±250 V to ±3000 V Maximum Output Current 10 mA Line Regulation Against ±10 % Line Voltage Change AB Max. ±(0.005 % + 10 mV) Load Regulation Against 0 % to 100 % Load Change A Max. ±(0.01 % + 50 mV) Ripple/Noise (p-p) AB Max. 0.0007 % Drift (after 1 h Warm-up) AB Max. ±(0.02 % + 10 mV)/8 h Temperature Coefficient AB Max. ±0.01 %/°C Output Voltage Monitor 4-digit digital meter Output Voltage Monitoring Accuracy A Max. ±(0.1 % ± 3 V) Protection Circuit For short circuit and excess output current C4840-01 120 V (±10 %) (50/60 Hz) AC Input Voltage C4840-02 230 V (±10 %) (50/60 Hz) Power Consumption AB Approx. 100 V·A Operating Ambient Temperature/Humidity C 0 °C to +40 °C / 80 % RH Max. Specification Guaranteed Temperature/Humidity ABC +5 °C to +35 °C / 80 % RH Max. Storage Temperature/Humidity C -20 °C to +50 °C / 85 % RH Max. Output Receptacles Two SHV receptacles Weight 10 kg Conforms to EMC directive (89/336/EEC)/EN61326: 1997 + A1: 1998 + A2: 2001 Class B CE Marking Conforms to low voltage directive (73/223/EEC)/EN61010-1: 2001 NOTE: AAt maximum output voltage. BAt maximum output current. CNo condensation

Accessories 1AC line cable (2.4 m long)...... 1 2High voltage output cable (1.5 m long) terminated with SHV-P plugs E1168-19 ...... 1 3Spare fuses...... 1 43P/2P connector AC adapter (C4840-01 only) ...... 1

Dimensional Outlines (Unit: mm) 245 ± 1 24 385 ± 1

V 1 ± 135

MODEL C4840 HIGH VOLTAGE POWER SUPPLY

10 FRONT VIEW SIDE VIEW REAR VIEW TACCA0256EB 100 Thermoelectric Coolers

Photomultiplier Tube Dark Current and Cooling Effect

Causes of Dark Current Thermal electron Emission and Cooling Effect A small amount of current flows in a photomultiplier tube op- Figure 24 shows a comparison of the temperature character- erated at a high voltage even when no light enters it. This out- istics of dark current for various photocathode materials used put current is called the dark current. Since the dark current in photomultiplier tubes of the same configuration and dynode degrades the S/N ratio, it is the factor that determines the structure. From this figure, it is clear that photocathodes with lower limit of detection when the output current is extremely higher sensitivity at longer wavelengths (multialkali and Ag-O- low such as in low-level-light measurement. Major causes of Cs) exhibit larger dark currents as the temperature increases. the dark current can be classified into the seven described In other words, the cooling effect on the dark current and S/N below. The extent to which each of these causes affects the ratio is more remarkable in such photocathodes. In this figure, dark current depends on the type of photomultiplier tube and the cooling effect is limited in the region below -20 °C to -30 varies from tube to tube or according to operating conditions. °C, due to the fact that contribution of factors other than ther- Specific Causes mionic emission becomes relatively large in this region. In 1 Thermionic emission of electrons from the photocathode photon counting applications, since the leakage current can and dynode surfaces be ignored, greater cooling effect can be achieved. 2 Leakage current between electrodes and lead pins (Mainly due to impurities on the electrode supporting materials, Thermal electrons are emitted not only from the photocathode glass stem, plastic base surfaces and on the socket surface) but also from the dynodes. However, thermal electrons emit- 3 Ion current flowing as a result of ionization of residual ga- ted from the latter dynodes multiply less, and therefore the ses inside the bulb real problems are electrons from the photocathode and the 4 Photoelectron emission caused by internal electrons and first or second dynode. Cooling these portions can consider- ions colliding with the electrode support materials and glass ably reduce the dark current. 5 Photoelectron emission by the glass scintillation as a result of gamma rays emitted from radioactive elements (chiefly Figure 24: Dark Current vs. Temperature for Various photocathodes 40K) inside the bulb TPMOB0065EC 6 Photoelectron emission caused by Cherenkov radiation 10-5 due to cosmic ray passing through the glass 7 Field emission of electrons from the photocathode and dy- 10-6 R316 node surfaces (HEAD-ON TYPE, Ag-O-Cs) Figure 23 shows the relationship between the voltage sup- 10-7 plied across the photomultiplier tube cathode and anode, and 10-8 R374 the anode dark current. This characteristic curve can be divi- (HEAD-ON TYPE, ded into three regions. In the low-voltage region a, the major MULTIALKALI) 10-9 cause of dark current is the leakage current 2 and in the high-voltage region c, 3, 4, and 7 become the governing 10-10 factors that determine the dark current. In contrast, in region b which approximates actual operating conditions, thermal ANODE DARK CURRENT (A) 10-11 electron emission is predominant. From this behavior, it can R3550A (HEAD-ON TYPE, be seen that cooling the photocathode and dynodes would be 10-12 LOW-NOISE BIALKALI) very effective in reducing the dark current when the photomul- R6095 (HEAD-ON TYPE, BIALKALI) tiplier tube is operated at the normal voltage range. 10-13 -60 -40 -20 0 20 40

Figure 23: Dark Current vs. Supply Voltage TEMPERATURE (°C)

TPMOB0064EA 10-5

c 10-6

SIGNAL OUTPUT 10-7 Selection Guide Type No. Applicable PMTs b 10-8 28 mm (1-1/8"), 38 mm (1-1/2") and C4877 Series DARK 51 mm (2") Head-on CURRENT C4878 Series MCP-PMT (R3809U-50 series) 10-9 a C9143 28 mm (1-1/8") Side-on ANODE DARK CURRENT (A) ANODE SIGNAL OUTPUT (A) C9144 28 mm (1-1/8") Side-on IDEAL LINE BY -10 10 THERMIONIC EMISSION ONLY

10-11 200 300 500 1000 1500 2000

SUPPLY VOLTAGE (V) 101 Thermoelectric Coolers

High Performance Thermoelectric Coolers C4877, C4878 Series

The C4877 series and C4878 series are thermoelectric coolers constructed with enhanced electrostatic and magnetic shielding (C4877 Series). This minimizes the influence of external noise on the photomultiplier tube and thus significantly improves photometric accuracy. These coolers offer user- friendly functions such as easy temperature control and pilot lamp blanking. The C4877 series is designed for use with 51 mm (2"), 38 mm (1-1/2") or 28 mm (1-1/8") diameter head-on photomultiplier tubes, and the C4878 series for MCP-PMTs.

Features G Thermoelectric cooling using peltier module TACCF0161 Left: C4877 Power Supply G About -30 °C cooling temperature (with +20 °C cooling water) Right: C4877 Cooled PMT Housing G Evacuated, double-pane window with heater for frost prevention G Built-in electrostatic and magnetic shielding (C4877 Series) G Water shut-off protection to guard the peltier module G Stable operation due to a regulated power supply

Specifications [Cooled PMT Housing] Parameter Value/Description Cooling Thermoelectric cooling using peltier module Heat Exchange Medium Water Amount of Cooling Water 1 L/min to 3 L/min Cooling Temperature (with cooling water at +20 °C) Approx. -30 °C Temperature Controllable Range (with cooling water at +20 °C) -30 °C to 0 °C (continuously adjustable) Cooling Time Approx. 120 min Optical Window Material Evacuated double-pane synthetic silica window with heater C4877 Series 28 mm (1-1/8") Dia., 38 mm (1-1/2") Dia. and 51 mm (2") Dia. Head-on Applicable PMTs (Optional) C4878 Series MCP-PMT (R3809U-50 Series) A Applicable Socket Assembly C4877 Series E2762 Series or PMT Holder (Optional) C4878 Series E3059-500 (R3809U-50 Series) B Operating Ambient Temperature 0 °C to +40 °C B Storage Temperature 0 °C to +40 °C Weight C4877 5.8 kg / C4878 5.5 kg NOTE: ASee P.103 BNo condensation [Power Supply] Parameter Value/Description C4877, C4878 100 V ± 10 V (50 Hz/60 Hz) AC Input Voltage C4877-01, C4878-01 120 V ± 12 V (50 Hz/60 Hz) C4877-02, C4878-02 230 V ± 23 V (50 Hz/60 Hz) Power Consumption 270 V·A Output Voltage 28 V Output Current 4.3 A Protection Circuit Functions against cooling water suspension and over current/short circuit B Operating Ambient Temperature 0 °C to +40 °C B Storage Temperature 0 °C to +40 °C Weight 8.5 kg NOTE: BNo condensation [Components and Accessories] GCooled PMT housing (Including an input window) GPower supply GLight shield cap GSpare GWater hose clamps GConnection cable (1.5 m) GAC line cable (2.5 m: -02 type, 2 m: other types) * To operate C4877 and C4878, water hoses with an inner diameter of 15 mm are required. ** C4877-02 and C4878-02 conform to the EMC directive (89/336/EEC) and the LVD (73/223/EEC) of the European Union.

102 Spectral Transmission Charac- Cooling Characteristics teristics of Optical Window TACCB0034EA TACCB0035EA TACCB0036EA +30 -10 100

COOLING WATER : +20 °C +20 AMBIENT TEMPERATURE: +20 °C C) C) ° ° 80 -20 +10

0 60 -30 -10 40

-20

-40 TRANSMITTANCE (%) 20 COOLING TEMPERATURE ( -30 COOLING TEMPERATURE (

-40 -50 0 02040 60 80 100 120 0+10 +20 +30 100200400 600 800 1000 1200

TIME (min) COOLING WATER TEMPERATURE (°C) WAVELENGTH (nm)

Dimensional Outlines (Unit: mm)

HOUSING POWER SUPPLY 126 140 180 1.5 ± 35 140

104 200 16 160 30 215 302 205 30 200 8 275 35 MAX.

+2 50 -0 61.5 8 8 6-M3 THREAD 6-M3 THREAD

S-100 O-RING S-100 O-RING PMT PMT

120 120 130 130 52 86 95 86 52 95 100 100

EVACUATED WINDOW EVACUATED WINDOW WINDOW FLANGE WINDOW FLANGE HOUSING HOUSING WINDOW FLANGE FRONT PANEL WINDOW FLANGE FRONT PANEL (C4877 Series) (C4878 Series) TACCA0172EB TACCA0173EB

Sold Separately (Unit: mm) Socket Assemblies for C4877 Series MCP-PMT Holder for C4878 Series E2762 Series E3059-500 (For R3809U-50 Series)

SOCKET -HV: SHV CONNECTOR SIGNAL OUTPUT: BNC CONNECTOR 222 ± 2 35 MAX. -HV : SHV CONNECTOR HOUSING (INSULATOR) 192 60 13 119 SIGNAL OUTPUT : SMA CONNECTOR 73 69

106 R3809U 0.2 -50 ± 85 ± 5 69 73 67.2

119 L 35 MAX. HOUSING (METAL) HOUSING (INSULATOR) HIGH VOLTAGE CONTACT RING HOUSING (METAL) N2 GAS INLET TACCA0130ED

L: E2762-502...133.5 E2762-510...106.5 * The high voltage contact ring TACCA0133EC E2762-506...144.5 E2762-511...120.5 is used for internal electrical E2762-509...106.5 E2762-513...120.5 connection to the magnetic shield case in the cooler.

NOTE: A E2762 Series PMT E2762-502 R1767, R980, R1387, R2066 E2762-506 R943-02, R3310-02 E2762-509 R464, R585, R649 E2762-510 R329-02, R331-05, R2257 E2762-511 R316-02, R374, R2228, R5929, R6249 E2762-513 R375, R669 103 Thermoelectric Coolers

High Performance Thermoelectric Coolers for 28 mm Dia. Side-on PMTs C9143, C9144 Series The C9143 and the C9144 are thermoelectric coolers designed for 28mm di- ameter side-on photomultiplier tubes (PMT). The C9143 and the C9144 im- prove S/N (signal to noise ratio) of PMT measurement because of reduction of thermal electrons, which are emitted from PMT photocathode, and minimi- zation of external noise by a built-in electrostatic and magnetic shield. The C9143 and the C9144 can communicate with a PC via an RS-232C serial in- terface. It enables the PC to control the cooling temperature, high voltage output of C9145 (optionally available socket assembly with a built in Cock- cloft-Wolton high voltage power supply) and ±5 V power supply for external equipment. The C9143 and the C9144 use water and forced air respectively to exchange heat of the thermoelectric cooler (Peltier module). Features LLeft: Controller for C9144 and C9143 G Thermoelectric cooling using peltier module Center: C9144 and socket assembly C9145 G Built-in electrostatic and magnetic shield Right: C9143 and socket assembly E9146 G Protective function for peltier module in case of suspension of water flow or fan operation G Low voltage output for driving C9145 (sold separately) G Control and monitor function of high voltage output of C9145 G ±5 V output for external equipment G Built-in interface for controlling external equipment (D-Sub) Specifications G PMT temperature control by PC [Cooled PMT Housing] A A Parameter C9143/-01/-02 C9144/-01/-02 Unit Cooling Method Thermoelectric cooling using peltier module — Heat Exchange Medium Water Forced air — Cooling Temperature Approx. -30 B (with cooling water of +20 °C) Approx. -25 C (with ambient temperature of +25 °C) °C Maximum Cooling Temperature -30 °C Time to Stable Cooling Temperature Approx. 70 Approx. 90 min Optical Window Material Synthetic silica (185 nm to 2200 nm) — Light Input Aperture Dimension 8 × 24 mm Applicable PMTs (sold separately) 28 mm Dia. Side-on Type — Applicable Socket Assembly (sold separately) C9145 (DP-type), E9146 (D-type) — D Operating Ambient Temperature/Humidity +5 °C to +40 °C / 75 % RH Max. +5 °C to +35 °C / 75 % RH Max. — D Storage Temperature/Humidity -20 °C to +50 °C / 85 % RH Max. — Weight Approx. 1 Approx. 1.7 kg Feature Law infuluence by ambient temperature Easy operation — NOTE: AC9143/C9144: For AC 100 V operation. C9143-01/C9144-01: For AC 120 V operation. C9143-02/C9144-02: For AC 230 V operation. BC9143 achieves cooling temperature of approx. -30 °C with water temperature of +20 °C. If the water temperature is higher, the possible lowest cooling tem- perature becomes higher (Note: Maximum cooling temperature is -30 °C). CC9144 achieves cooling temperature of approx. -25 °C with ambient temperature of +25 °C. If the ambient temperature is higher, the possible lowest cooling temperature becomes higher. If the ambient temperature is lower, the possible lowest cooling temperature becomes lower (Note: Maximum cooling temperature is -30 °C). DNo condensation [Controller] Parameter Value/Description Unit AC Input Voltage 100 to 240 (±10 %) (50 Hz / 60Hz) V Maximum Power Consumption 120 V·A D Temperature Controllable Range -30 to -5 (0.5 °C step) °C Protection for peltier module in case of suspension of water flow Protective Functions — or Fan operation, protection in case of over current / short circuit Output Voltage ±5 (±0.25) V Power Supply Unit for Output Current 0.5 A External Equipment Connector HIROSE SR30-10R-4S — DI (Input) 4 (TTL input) Control Interface — DO (Output) 4 bit (TTL open collector output) Serial Interface RS-232C, 9600 bps — C Operating Temperature / Humidiy +5 °C to +40°C / 75 % RH Max. — C Storage Temperature / Humidity -20 °C to +50°C / 85 % RH Max. — Weight Approx. 4 kg NOTE: CNo condensation DPMT temperature may not achieve set up cooling temperature controlled by the operator if ambient temperature and/or water temperature is high. The cooling temperature is controlled on personal . [Components and Accessories] GCooled PMT housing GController GLight shield cap GAC line cable (2.5 m: -02 type, 2 m: other types) GConnection cable (1.5 m) between cooled PMT housing and controller GSerial cable (RS-232C crossing cable 1.5 m) GD-Sub 15 pin connecter plug GCable terminated with a ±5 V plug (1.5 m, one end unterminated) GCD-R (Instruction manual, sample software for control of cooling temperature and C9145 voltage) GSpare fuses (2 pcs) * To operate C9143, water hoses with an outer diameter of 6 mm and an inner diameter of 4 mm are required. ** C9143 series and C9144 series conform to the EMC directive (89/336/EEC) and the LVD (73/223/EEC) of the European Union. 104 Cooling Characteristics

G TACCB0069EA G TACCB0070EA C9143 30 C9144 30

COOLING WATER: +20 °C AMBIENT TEMPERATURE: +25 °C 20 ° 20

C) AMBIENT TEMPERATURE: +25 C C) ° °

10 10

0 0

-10 -10

-20 -20

COOLING TEMPERATURE ( -30 COOLING TEMPERATURE ( -30

-40 -40 0 102030405060708090100110120 0 102030405060708090100110120 TIME (min) TIME (min)

Dimensional Outlines (Unit: mm) G G C9143 50 4-M3 L=5 (SCREW) C9144 50 2-M3 L=5 (2-M3 L=5) (SCREW) (SCREW) 80 72 60 (60) 60

7.5 7.5 40 6 93 40 4.5 73.9 LIGHT SHIELD CAPTOP VIEW BOTTOM VIEW LIGHT SHIELD CAP TOP VIEW BOTTOM VIEW

50 C9145 (sold separately) 50 C9145 (sold separately) CONNECTOR FOR POWER INPUT

PHOTOMULTIPLIER COOLER C9143 PHOTOMULTIPLIER COOLER 26 21 26 C9144

INPUT CONNECTOR FOR 20 POWER INPUT 132 32 132 32 24 24

INPUT WATER 56 56 24 19

8 5 105 30 8 5 155 21 3.6 3.6 100 M56 P=0.75 COOLING WATER IN/OUT 102 M56 P=0.75 (FOR INPUT OPTICAL SYSTEM) Plastic hose attachment port with OD6 and ID4 (FOR INPUT OPTICAL SYSTEM) FRONT VIEW SIDE VIEW REAR VIEW FRONT VIEW SIDE VIEW REAR VIEW TACCA0253EB TACCA0254EB GCONTROLLER

EXT POWER OUT RS232C I/O ALARM READY EXT POWER ON HV ADJ

LH OFF TO C9145 ±5 V

MONITOR OUTPUT + –

POWER 121 LINE IN 130 100 V–240 V ~ FUSE 50 Hz–60 Hz 120V·A T4AL 250V

PHOTOMULTIPLIER COOLER

195 295 SIDE VIEW FRONT VIEW REAR VIEW TACCA0255JA

Sold Separately (Unit: mm) GC9145 (DP Type) GC9146 (D Type) SPACER (INSULATOR) HOUSING (METAL) -HV CONTROL SPACER (INSULATOR) HOUSING (METAL) 1: HV MONITOR -HV 4-M3 L=14 HR10A-7R-6S, HRS 2: Vref OUTPUT HOUSING HOUSING SHV CONNECTOR (SCREW) 3: HV CONTROL (INSULATOR) (INSULATOR) 4: LOW VOLTAGE INPUT (+) 5: GND -HV 0.5 0.5

0.5 -HV 0.5 CONT ± ± 6: LOW VOLTAGE INPUT (-) ± ±

SIG SIG 43.8 43.8 SIGNAL 50.0 50.0 35.0 35.0 3 4 OUTPUT 2 5 BNC CONNECTOR 27 SOCKET 27 4-M3 L=14 1 6 SOCKET E678-11M 34 3 (SCREW) 43.8 E678-11M 34 3 43.8 59.0 ± 0.5 SIGNAL OUTPUT 50.0 ± 0.5 59.0 ± 0.5 50.0 ± 0.5 BNC CONNECTOR POWER SUPPLY CABLE ASSEMBLY (SUPPLIED) HR10A-7P-6P, HRS SHIELD CABLE HR10A-7P-6P, HRS 4.3 TO C9143 TO C9145 or C9144 1500 1: HV MONITOR 2: Vref OUTPUT 3: HV CONTROL 4: LOW VOLTAGE INPUT (+) 5: GND 6: LOW VOLTAGE INPUT (-) CONNECTOR BODY CONNECTOR BODY 105 Magnetic Shield Cases

Magnetic Shield Cases E989 Series

Photomultiplier tubes are extremely sensitive to magnetic fields and exhibit output variations even from sources such as terrestrial magnetism. Hamamatsu E989 series magnetic shield cases are designed specifically to protect photomultiplier tubes from the influence of such magnetic fields. The E989 series uses permalloy, a material that has an extremely high per- meability (approximately 105). The magnetic field intensity within the shield case can be attenuated from 1/1000 to 1/10000 of that outside the shield case (this ratio is called the shielding factor). The E989 series ensures a stable output for photomultiplier tubes operating in proximity to magnetic fields.

Features TACCF0093 G Made of high-permeability permalloy (Ni: 78 %, Fe and others: 22 %) G Various sizes available with inner diameters from 12 mm to 138 mm G Lusterless black paint finish

Specifications Photomultiplier Tube Diameter Type No.Internal Dia. D ( mm) Thickness t (mm) Length L (mm) Weight (g) E989-10 47 ± 0.5 10 Side-on 13 mm (1/2") 14.5 0.5 28 mm (1-1/8") * E989 33.6 ± 0.8 0.8 80 ± 1 66 10 mm (3/8") E989-28 12 ± 0.5 0.5 48 ± 0.5 9 13 mm (1/2") E989-09 16 ± 0.5 0.8 75 ± 0.5 28 19 mm (3/4") E989-02 23 ± 0.5 0.8 95 ± 1 50 25 mm (1") E989-39 29 ± 0.5 0.8 48 ± 0.5 32 Head-on 28 mm (1-1/8") E989-03 32 ± 0.5 0.8 120 ± 1 90 +1 38 mm (1-1/2") E989-04 44 -0 0.8 100 ± 1 102 +1 51 mm (2") E989-05 60 -0 0.8 130 ± 1 180 +1.5 76 mm (3") E989-15 80 -0 0.8 120 ± 1 200 127 mm (5") E989-26 138 ± 1.5 0.8 170 ± 1 600 * Photomultiplier tubes with HA coating extending to the base portion cannot be used. Please consult our sales offices for details.

Dimensional Outlines (Unit: mm)

E989E989-02 to -05, -09*, -39* E989-10 E989-15 E989-26 E989-28 3-No.5 120° ° 120 120 ° 90 ° 40UNC ° ± 90 22.0 0.3 40 18.0 ± 0.1 2- 2.3 10

± 0.5 6 R35.0 120 120 ° °

° ° 120 120

90 ° ± 14.5 0.5 ° 12.0 0.5 0.5 90 ° 120 D t 5

33.6 ± 0.8 0.8 +1.5 80.0-0 0.8 138.0 ± 1.5 0.8 8 0.5

±

0.5 50 ± 48.0 47.0 10 26 23 1 45 ° ± 1 0.5 ± 170 24 L 1 120

±

80 4- 4 1 3-M2.6 *3- 3.5 5 60.0 ± 1.5 10 37

68.0 ± 1.5 10 10

*No mounting hole is provided for E989-09 and E989-39.

TACCA0117EB TACCA0118EA TACCA0119EC TACCA0120EC TACCA0121EC TACCA0122EC 106 Housings, Power and Signal Cables, Connector Adapters

Housing E1341-01 (For E5859 series socket assemblies)

The E1341-01 is a metal housing designed for 51 mm (2") diameter head-on photomultiplier tubes operated at room temperature. The E1341-01 ensures complete light-shielding and also accommodates a magnetic shield case E989-62 (sold separately). The E1341-01 housing can be easily attached to a monochromator by pre- paring a simple adapter.

TACCF0177

Dimensional Outlines (Unit: mm) CAP (SUPPLIED) MOUNT FLANGE (SUPPLIED) 37 2 MOUNT RING 38 70 69 83 70 52 70 61.35

M61 P=0.75 M61 P=0.75 10 4-M2, L=8 4-M3.2 183.0 ± 0.5 (HEX SCREW) O-RING GND TERMINAL M61 P=0.75 CUSHION TACCA0228EB Power and Signal Cables E1168 Series, Connector Adapters A4184 Series

Hamamatsu offers the E1168 series cables for connection of photomultiplier tube assemblies and their accessories. A variety of cables are available, for handling high voltage, low voltage and signals. In addition, Hamamatsu also provides the A4184 series connector adapters designed for SHV/MHV connector conversion.

Dimensional Outlines (Unit: mm) 1500

E1168 Series

MHV-P MHV-P TACCA0141EA 300 A5026 Series TACCF0153

SMA-P SMA-P TACCA0052EA

Selection Guide G For Signal G For High Voltage Type No. Cable Type Impedance Connector Types Type No. Cable Type Cable Diameter Maximum Voltage Connector Types E1168-01 N-P—N-P 3D-2V 50 Ω E1168 MHV-P—MHV-P E1168-02 N-P—BNC-P RG-59B/U E1168-10 6.2 mm 2.3 kV MHV-P—SHV-P E1168-03 3C-2V 75 Ω BNC-P—BNC-P (Red) E1168-17 SHV-P—SHV-P E1168-05 3D-2V 50 Ω BNC-P—BNC-P E1168-18 Custom MHV-P—MHV-P A5026 SPECIAL SMA-P—SMA-P 6.15 mm 50 Ω E1168-19 High Voltage 5 kV SHV-P—SHV-P A5026-01 COAXIAL CABLE SMA-P—SMA-J ±0.3 mm E1168-20 Cable (Red) MHV-P—SHV-P G Connector Adapters G For Low Voltage Type No. Connector Types Type No. Cable Type Connector Types A4184-02 MHV Plug—SHV Jack E1168-13 MVVS 3 × 0.3 MC-032—MC-032 A4184-03 SHV Plug—MHV Jack E1168-14 MVVS 2 × 0.3 SR30-10PQ-4P—SR30-10PQ-4P G Relay Adapters E1168-24 MC-032—DIN6P Plug Type No. Connector Types Multiconductor E1168-25 SR30-10PQ-4P—DIN6P Plug A5074 SHV Jack—SHV Jack Cable with Shield E1168-26 DIN6P Plug—DIN6P Plug A7992 BNC Jack—BNC Jack 107 Related Products for Photon Counting

Photon Counting Unit C9744

This photon counting unit contain an amplifier and discriminator to convert the single photoelectric pulses from a photomultiplier tube into a 5 V digital signal.

The C9744 has an output linearity up to 1 × 107 S-1, and a high-speed counter is not required when set to division by 10.

LC9744 TACCF0195

Specifications

Parameter C9744 Unit Input Impedance 50 Ω Discrimination Level (input conversion) -0.4 to -16 mV PMT Gain 3 × 106 — Prescaler ÷1 ÷10 — Count Linearity 4 × 106 1 × 107 s-1 Pulse-pair Resolution 25 10 ns Output Pulse CMOS 5 V, POSITIVE LOGIC — Output Pulse Width 10 Depends on count rate ns Supply Voltage +5.0 ± 0.2 V, 130 mA / -5.0 ± 0.2 V, 50 mA — Input BNC-R — Connector Output BNC-R — B Power DIN (6-pin) — Dimensions 90 × 3.5 × 140 mm Operating Ambient Temperature A 0 to +50 °C Storage Temperature A -15 to +60 °C Weight Approx. 250 g NOTE: ANo condensation BSupplied with a cable (1.5 m) attached to the mating plug.

Dimensional Outlines (Unit: mm) C9744 +1.0 140 -0 NU DISCRI INPUT OUTOPUT 10 ÷ (–) (+) MONITOR +1.0 -0 1 ÷

PRESCALER 90 POWER

PHOTON COUNTING UNIT C9744

DIN TYPE (6 PIN)

TPHOA0002EB

108 Counting Board M9003 / Counting Unit C8855

LM9003 LC8855

The M9003 and the C8855 can be used as a photon counter when cambined with a photon counting head, etc. The M9003 and the C8855 have two counter circuits (double counter method) which enable the user to count signal without dead time. The M9003 does not have its own memory so it sends measurement data directly to the PC's main memory by DMA (direct memory access) transfer. The C8855 has a USB interface to allow users to operate it at various fields by connecting to a notebook personal computer. When used with a photon counting head, the C8855 supplies power (+5 V / 200 mA) necessary to operate the photon counting head.

Specifications M9003 C8855 Parameter Description / Value Parameter Description / Value Number of Channels 2 Number of Input Signals 1 ch Input Signal Input Level TTL positive logic Signal Input Level TTL positive logic Input Section Signal Pulse Width 8 ns or more Signal Pulse Width 8 ns or longer Input Impedance (Switchable) 50 Ω (at SW ON), 100 kΩ (at SW OFF) Input Impedance 50 Ω A B Counter Method Gate mode / Reciprocal mode Counter Method Double counter method Maximum Count Rate 50 MHz (gate mode) / 20 MHz (reciprocal mode) Counter Max.Count Rate 50 MHz Counter Maximum Count 28 / 216 counts (gate mode) / Max.Counter Capacity 232 counts/counter gate Capacity 231 counts (reciprocal mode) Counter Counter Gate Mode Internal counter gate only Gate Section Gate Time Resolution 50 ns to 12.7 µs Gate Internal Counter Gate Time 50 µs to 10 s (1, 2, 5 step) Trigger Signal Input Method External trigger / Software trigger Trigger Method Software or external trigger Trigger Trigger Signal Level TTL negative logic External Trigger Signal TTL negative logic Trigger Trigger Signal Pulse Width 1 µs or more General Output Section Open collector / 2 Trigger Signal Output Timing At start of counting by software trigger Voltage Output +5 V / 200 mA Max. Input Signal TTL level signal (7 bits) Compatible OS Windows® 98/98SE/Me/2000/XP Pro General Input Strobe Signal TTL level signal Interface USB (Ver. 1.1) Input/ Output Signal Open collector (8 bits) +7 V / 500 mA Max. Output Supply Voltage Output Strobe Signal Open collector (supplied from accessory AC adapter) Compatible OS Microsoft Windows® 2000 / XP Pro 148 mm × 30 mm × 96 mm Dimensions (W × H × D) Bus Format PCI bus interface; conforms to Rev 2.1. (excluding rubber feet and projecting parts) Data Transfer Method DMA transfer (scatter-gather method) Weight 300 g A Maximum 64 Mbytes Operating Ambient Temperature / Humidity +5 °C to +45 °C / 80 % or less Data Transfer Quantity A (data quantity transferable by one DMA.) Storage Temperature / Humidity 0 °C to +50 °C / 85 % or less Data Transfer Rate 40 Mbytes/sec (depends on CPU and peripherals) Conforms to the EMC directive (89/336/EEC) Board Size PCI standard (half size) CE Marking and the low voltage directive (73/23/EEC) Weight Approx. 150 g of the European Union. Operating Ambient ° ° AC AC Input 90 V to 264 V C +5 C to +45 C / Below 80 % Temperature / Humidity Adapter Output 7 V / 1.6 A C Storage Temperature / Humidity 0 °C to +45 °C / Below 85 % NOTE: ANo condensation CE Conforms to EMC directives (89 / 336 / EEC) Supplied: CD-ROM (containing instruction manual, device driver, DLL, NOTE: AGate counter mode counts the input signal pulses only sample software*, etc.) USB cable, AC adapter, AC cable, during each specified gate time. power output connector. BReciprocal counter mode counts the number of internal *: Sample software is configured from Lab VIEW™ of National Instru- pulses generated between input signal pulses. ments, Inc. CNo condensation Supplied: CD-R (containing instruction manual, device drivers, sample software), Signal cables E1168-22 × 4 (LEMO-BNC: coaxial 1.5 m), Flat cable plug TXA20A-26PH1-D2P1-D1 (manufactured by JAE) 109 Electron Multipliers

Electron multipliers (also called ion multipliers) are specially py and ESCA. designed for the detection and measurement of electrons, Each type has Cu-BeO dynodes connected by built-in divider ions, charged particles, VUV radiation and soft X-rays. Hama- resistors of 1 MΩ per stage. The first dynode can be replaced matsu electron multipliers deliver high gain and low noise, by a photocathode of Cs-I, K-Br, and so on for use in VUV making them ideal for the detection of very small or low ener- spectroscopy. In applications where the operating vacuum gy particles by using the counting method. Especially useful level is inadequate, the R5150-10 is recommended. In TOF- applications include mass spectroscopy, field ion MS applications, the R2362 with mesh dynodes is recommen- and electron or VUV spectroscopy such as Auger spectrosco- ded.

Dynode Characteristics Max. Ratings A J Anode Anode to Anode to to all Other Number Input Rise First Last Average Operating Out- Supply Gain Electrode Type No. of Structure Material Aperture Time Dynode Dynode Anode Vacuum line Voltage Capaci- Stages Diameter Typ. Typ. tance Voltage Voltage Current Level (mm) (V) (ns) (pF) (V) (V) (µA) (Pa) Head-on Type R5150-10 1 17 Box and Line Cu-BeO 8 2000 5 × 106 1.7 4.0 3500 350 10 133 × 10-4 R2362 2 23 Mesh Cu-BeO 20 3450 5 × 105 3.5 23 4000 350 10 133 × 10-4 R474 3 16 Box and Grid Cu-BeO 8 × 6 2400 1 × 106 9.3 5.0 4000 350 10 133 × 10-4 R515 4 16 Box and Grid Cu-BeO 8 × 6 2400 1 × 106 9.3 4.0 4000 350 10 133 × 10-4 R596 6 16 Box and Grid Cu-BeO 12 × 10 2400 1 × 106 10 9.0 4000 400 10 133 × 10-4 R595 5 20 Box and Grid Cu-BeO 12 × 10 3000 4 × 107 12 9.0 5000 400 10 133 × 10-4

Spectral Response (Cu-BeO) Gain

TEM B0021EA TEM B0022ED 100 1010

109

108

R595

10 107 R5150-10 GAIN

106 R474, R515, R596 QUANTUM EFFICIENCY (%)

105 R2362

1 104 20 40 60 80 100 120 140 160 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.55.0

WAVELENGTH (nm) SUPPLY VOLTAGE (kV)

110 Dimensional Outlines (Unit: mm) 1 R5150-10 2 R2362

OUTPUT PIN (P) OUTPUT PIN (P) 34.0 ± 0.5 P P R23 50.0 ± 0.1 DY23 GND PIN 8.0 ± 0.3 R17 R22 DY17 GND PIN ± DY22 44.0 0.1 R21 R16 DY21 DY16 R20 R15 DY20 R19 DY15 DY19 INPUT WINDOW R14 20 2-3.2 R18 DY14 DY18 R17 R13 DY17 DY13 INPUT WINDOW R16 SHIELD CASE R12 DY16 R15 DY12 DY15

HAMAMATSU R11 R14

0.5 DY11 DY14 ± 1 RESISTORS R13 ± Ω R10 R1 : 3 M DY13 DY10 Ω R12 72 R2 : 1.5 M 66.0 DY12 R1 to R23 : 1 MΩ R9 R3 to R17 : 1 MΩ 60 MAX. R11 DY9 DY11 R8 R10 DY8 DY10 R7 R9 12 1.5 DY9 GND PIN OUTPUT PIN (P) DY7 R8 R6 DY8 OUTPUT PIN (P) GND PIN R7 DY6 DY7 R5 R6 10 DY5 DY6 R5

11 R4

30 DY5 DY4 20 R4 R3 DY4 HV PIN (DY1) R3 DY3 IC (DY2) DY3 (3- 1.2) R2 HV PIN (DY1) R2 DY2 DY2 IC PIN (DY2) R1 R1 DY1 HV PIN (DY1) DY1 HV PIN MOUNTING TEM A0015EB PLATE TEM A0009EC

3 R474 4 R515

OUTPUT (P) ± OUTPUT (P) 20.0 ± 0.5 20.0 0.5 INPUT HOLDER INPUT 6 WINDOW GRID GRID 6 WINDOW R15 0.5 0.5 DY16 ± ± 8

8 R15 R14 DY16 DY15 26.0 26.0 R14 R13 2- 3.2 2- 3.2 SHIELD (SH) DY15 4 DY14 4 SHIELD (SH) R13 R12 DY14 DY13 R12 R11 DY13 DY12 R11 RESISTORS R10 RESISTORS DY12 DY11 Ω R10 2 R9 R1 to R15: 1 M DY11 ± DY10 2 R9 R1 to R15 : 1 MΩ ± 70 R8 DY10

DY9 79

86 MAX. R8 90 MAX. R7 DY9 DY8 R7 R6 HOLDER DY8 SHIELD (SH) DY7 R6 R5 DY7 DY6 SHIELD (SH) OUTPUT (P) R5 DY2 LEAD R4 DY6 DY5 R4 R3 0.5 DY2 LEAD DY5 ± DY4 R3

R2 0.5 DY4 DY3 ± 17.0 DY1 LEAD R2 R1 2- 3.2 DY3

DY2 LEAD 21.0 DY2 R1 ± DY2 DY2 LEAD DY1 DY1 LEAD OUTPUT (P) 34.0 0.5 DY1 LEAD 39 MAX. DY1 DY1 LEAD G G TEM A0005EC TEM A0006ED

5 R596 6 R595

INPUT INPUT 10 10 WINDOW OUTPUT PIN (P) GRID WINDOW GRID OUTPUT PIN (P) GND PIN GND PIN 0.2 ± 0.2 12 ± SHIELD (SH) PIN 12 R20 42.0 SHIELD (SH) PIN SHIELD DY20 DY20 PIN 42.0 R16 R19 SHIELD DY16 DY16 PIN 2- 4.2 6.5 DY19 2- 4.2 MOUNTING PLATE 6.5 MOUNTING PLATE R15 R18 DY15 DY18 R14 R17 DY14 DY17 R13 R16 DY13 DY16 R15 R12 DY15 DY12 R14 R11 DY14 DY11 R13 2 1.5 R10 R1 to R16 : 1 MΩ ±

± DY13 DY10 R12 131 RESISTORS R9 140 MAX. DY12 120 MAX. 150 MAX. 130 MAX. 111.0 DY9 RESISTORS R11 R8 DY11 DY8 R10 R1 to R20 : 1 MΩ R7 DY10 DY7 R9 SHIELD (SH) R6 DY9 DY6 SHIELD (SH) R8 R5 DY8 DY5 R7 7- 1.5 R4 DY7 0.5 7- 1.5 R6 ± DY4 0.5 ± DY6 R3 10.0 DY20 R5 GND DY2 DY3 DY3 PIN 10.0 DY20 DY5 R2 GND DY2 G R4 DY2 DY2 PIN G DY4 R1 R3 0.1

DY1 DY1 PIN 0.1 DY3 DY3 PIN ± P

± P R2 44 30 3- 3.5 G G PIN 44 30 3- 3.5 DY2 DY2 PIN

50.0 R1 50.0 DY1 DY1 PIN DY1 DY1 SH DY3 SH DY3 G G PIN TEM A0007ED TEM A0008ED 111 Caution and Warranty

SAFETY PRECAUTIONS WARNING

A high voltage is applied to a photomultiplier tube during operation. Always provide adequate safety measures to prevent the operator or service per- HIGH sonnel from electrical shock and the equipment VOLTAGE from being damaged.

HANDLING PRECAUTIONS

GHandle tubes with extreme care. GCarefully handle tubes with a glass base. Photomultiplier tubes have evacuated glass envelopes. Photomultiplier tubes with a glass base (also called but- Allowing the glass to be scratched or subjected to ton stem) are less rugged than tubes with a plastic shock can cause cracks. Take extreme care during base, so sufficient care must be taken when handling handling, particularly for tubes with graded sealing on this type of tube. When fabricating a voltage-divider cir- synthetic silica bulbs. cuit by soldering resistors and capacitors to socket lugs, solder them while the tube is fully inserted into the GKeep faceplate and base clean. socket. Do not touch the faceplate and base with bare hands. Dirt and grime on the faceplate causes loss of transmit- GHelium permeation through silica bulb tance and dirt or grime on the base may cause ohmic will permeate through silica bulbs and increase leakage. If the faceplate becomes soiled wipe it clean noise, leading to damage that makes photomultiplier using alcohol. tubes unusable. Avoid operating or storing them in an atmosphere where helium is present. GDo not expose to strong light. The photocathode of photomultiplier tubes may be damaged if exposed to direct sunlight or intense illu- mination. Never allow strong light to strike the photoca- thode.

WARRANTY ORDERING INFORMATION

Hamamatsu photomultiplier tubes and related products are This catalog lists photomultiplier tubes and related prod- warranted to the original purchaser for a period of 12 ucts currently available from Hamamatsu Photonics. months after delivery. The warranty is limited to repair or Please select those products that best match your design replacement of a defective product due to defects in work- specifications. If you do not find the products you want in manship or materials used in its manufacture. this catalog, feel free to contact our sales office nearest However, even if within the warranty period the warranty you. We will modify our current products or design new shall not apply to failures or damages caused by misoper- types to meet your specific needs. ation, mishandling, modification or accidents such as natu- ral or man-made disasters. The customer should inspect and test all products as soon as they are delivered.

* Characteristics and specifications in this catalog are subject to change without prior notice due to product improvement or other factors. Before you design equipment according to the characteristics and specifications of our products listed in this catalog, please con- tact us to check the product specifications.

112 Typical Photocathode Spectral Response

Spectral Response Photocathode Window Luminous Peak Wavelength Curve Codes Range PMT Examples Materials Materials (Typ.) Radiant Sensitivity Q.E. (nm) (nm) (mA/W) (nm) (%) (nm)

Semitransparent Photocathode

K 100M Cs-I MgF2 — 115 to 200 14 140 13 130 R972, R1081, R6835 K 200S Cs-Te Syinthetic silica — 160 to 320 29 240 14 210 R759, R821, R1893, R6834

K 200M Cs-Te MgF2 — 115 to 320 29 240 14 200 R1080, R6836 201S Cs-Te Syinthetic silica — 160 to 320 31 240 17 210 R2078 K 400K Bialkali Borosilicate 95 300 to 650 88 420 27 390 R329-02, R331-05, R464, R1635, R1924A, R2154-02, R5611A-01, others K 400U Bialkali UV 95 185 to 650 88 420 27 390 R1584 K 400S Bialkali Syinthetic silica 95 160 to 650 88 420 27 390 R2496 K 401K High temp. bialkali Borosilicate 40 300 to 650 51 375 17 375 R1288A, R1705, R3991A,R4177-01, R4607-01 K 402K Low noise bialkali Borosilicate 40 300 to 650 54 375 18 375 R2557, R3550A, R5610A 430U Bialkali UV 50 185 to 650 62 375 20 300 R2693 K 500K(S-20) Multialkali Borosilicate 150 300 to 850 64 420 20 375 R550, R649, R1387, R1513, R1617, R1878, R1894, R1925A K 500U Multialkali UV 150 185 to 850 64 420 25 280 R374, R1463, R2368 K 500S Multialkali Syinthetic silica 150 160 to 850 64 420 25 280 R375 K 501K(S-25) Multialkali Borosilicate 200 300 to 900 40 600 8 580 R669, R2066, R2228, R2257 K 502K Multialkali Borosilicate (prism) 230 300 to 900 69 420 20 390 R5070A, R5929 K 700K(S-1) Ag-O-Cs Borosilicate 20 400 to 1200 2.2 800 0.36 740 R5108

Reflection mode Photocathode

K 150M Cs-I MgF2 — 115 to 200 25.5 135 26 125 R7511, R8487 K 250S Cs-Te Syinthetic silica — 160 to 320 62 240 37 210 R6354, R7154

K 250M Cs-Te MgF2 — 115 to 320 63 220 35 220 R7311, R8486 K 350K(S-4) Sb-Cs Borosilicate 40 300 to 650 48 400 15 350 R105, 1P21, 931A K 350U(S-5) Sb-Cs UV 40 185 to 650 48 340 20 280 R212, R3810, R6350, 1P28 K 351U(Extd S-5) Sb-Cs UV 70 185 to 750 70 410 25 280 R6925 K 452U Bialkali UV 120 185 to 750 90 420 30 260 R3788, R6352 453K Bialkali Borosilicate 60 300 to 650 60 400 19 370 931B K 456U Low noise bialkali UV 60 185 to 680 60 400 19 300 R1527, R4220, R5983, R6353, R7518 550U Multialkali UV 150 185 to 850 45 530 15 250 R3811, R6355 K 552U Multialkali UV 200 185 to 900 68 400 26 260 R2949 552S Multialkali Syinthetic silica 200 160 to 900 68 400 29 220 R955 K 555U Multialkali UV 525 185 to 900 90 450 30 260 R3896, R9110, R9220 556U Multialkali UV 200 185 to 850 80 430 27 280 R4632 561U Multialkali UV 200 185 to 830 70 530 24 250 R6358 K 562U Multialkali UV 300 185 to 900 76 400 26 260 R928, R5984 K 650U GaAs(Cs) UV 550 185 to 930 62 300 to 800 23 300 R636-10 K 650S GaAs(Cs) Syinthetic silica 550 160 to 930 62 300 to 800 23 300 R943-02 850U InGaAs(Cs) UV 100 185 to 1010 40 400 14 330 R2658 K 851K InGaAs(Cs) Borosilicate 150 300 to 1040 50 400 16 370 R3310-02

K: Spectral response curves are shown on page 114, 115

113 SEMITRANSPARENT PHOTOCATHODE SPECTRAL RESPONSE CHARACTERISTICS TRANSMISSION MODE PHOTOCATHODE 100 80 10 % 60 50 % QUANTUM EFFICIENCY 5 % 40 400K 25 % 2.5 % 20 200M

10 400U 1 % 8 401K, 402K 6 400S 0.5 % 4 100M 200S % 2 0.25

1.0 0.1 % 0.8 0.6 0.4

0.2

0.1 100 200 300 400 500 600 700800 1000 1200 PHOTOCATHODE RADIANT SENSITIVITY (mA/W)

WAVELENGTH (nm) TPMOB0077EE

TRANSMISSION MODE PHOTOCATHODE 100 80 10 % 50 % QUANTUM 60 % EFFICIENCY 500S 5 40 500K 25 % 2.5 % 20 502K 500U 10 1 % 8 6 0.5 % 4 % 2 0.25 501K 1.0 0.1 % 0.8 0.6 0.4 700K 0.2

0.1 100 200 300 400 500 600 700800 1000 1200 PHOTOCATHODE RADIANT SENSITIVITY (mA/W)

WAVELENGTH (nm) TPMOB0078EG 114 OPAQUE PHOTOCATHODE SPECTRAL RESPONSE CHARACTERISTICS REFLECTION MODE PHOTOCATHODE 100 80 10 % 60 50 % QUANTUM EFFICIENCY 5 % 40 350U 25 % 351U 2.5 % 20 456U

10 250S 452U 1 % 8 250M 6 150M 0.5 % 4 350K % 2 0.25

1.0 0.1 % 0.8 0.6 0.4

0.2

0.1 100 200 300 400 500 600 700800 1000 1200 PHOTOCATHODE RADIANT SENSITIVITY (mA/W)

WAVELENGTH (nm) TPMOB0079EF

REFLECTION MODE PHOTOCATHODE 100 80 10 % 60 50 % QUANTUM EFFICIENCY 5 % 40 555U 25 % 2.5 % 20 552U 10 1 % 8 6 0.5 % 4 650S 650U 0.25 % 2 851K 1.0 0.1 % 0.8 562U 0.6 0.4

0.2

0.1 100 200 300 400 500 600 700800 1000 1200 PHOTOCATHODE RADIANT SENSITIVITY (mA/W)

WAVELENGTH (nm) TPMOB0080EI 115 Notes

A Types marked ∗ are newly listed in this catalog.

B See pages 114 and 115 for typical spectral response charts.

C Photocathode materials BA : Bialkali LBA : Low noise bialkali HBA : High temperature bialkali MA : Multialkali EMA : Extended red multialkali DIA : Diamond Other photocathodes are indicated by the element symbols.

D Window materials MF : MgF2 Q : Quartz (Fused silica or synthetic silica) K : Borosilicate glass U : UV glass

E Base diagram

BASING DIAGRAM SYMBOLS All base diagrams show terminals viewed from the base end of the tube. Each symbol used in basing diagrams signifies the following. Short (Index) Pin DY : Dynode G(F) : Grid (Focusing electrode) Pin ACC : Accelerating electrode K : Photocathode P : Anode SH : Shield key Flying IC : Internal connection (Do not use.) Lead NC : No connection (Do not use.)

F Dynode structure B : Box-and-grid VB : Venetian blind CC : Circular-cage L : Linear-focused B + L : Box and linear-focused FM : Fine mesh CM : Coarse mesh MC : Metal channel

G See page 78 for suitable socket assemblies. Mating sockets (E678 series) *: A socket will be supplied with the tube. No mark: Sockets may be obtained from supply houses or our sales office.

H Operating ambient temperature range for the photomultiplier itself is -30 °C to +50 °C except for some types of tubes. However, when photomultiplier tubes are operated below -30 °C at their base section, please consult us in advance.

J Averaged over any interval of 30 seconds maximum.

K Measured at the peak sensitivity wavelength.

L See page 62 for voltage distribution ratio.

M Anode characteristics are measured with the supply voltage and voltage distribution ratio specified by Note L.

Cathode and anode characteristics are measured under the following conditions if noted. a at 122 nm b at 254 nm c at 852 nm d Measured using a red filter Toshiba IR-D80A e at 4 A/lm f at 10 A/lm g at 1000 A/lm h Dark count per second (s-1) j Dark count per second (s-1) after one hour storage at -20 °C k Background noise per minute (min-1) How to Use This Folding Page

To read this catalog, open this page as shown below.

G"NOTES" are listed on the inside of this page so that you can refer to them while looking at the specification tables.

Related Product Catalogs

Photomultiplier Tube Modules

PHOTOMULTIPLIER TUBE MODULES The photomultiplier tube module is ba- sically comprised of a photomultiplier tube, a high-voltage power supply cir- cuit to operate the photomultiplier tube, and a voltage divider circuit to distribute the optimum voltage to each dynode, all integrated into a compact case. In addition to these basic configurations, Hamamatsu also provides modules having various added functions such as PHOTOMULTIPLIER TUBE MODULES signal conversion, photon counting, cooling and interfacing to a PC.

Photomultiplier Tubes and Assemblies for Scintillation Counting & High Energy Physics

PHOTOMULTIPLIER TUBES This catalog is a selection guide for Ha- AND ASSEMBLIES mamatsu photomultiplier tubes and as- semblies specially fabricated and se- lected for scintillation counting and high energy physics applications. These photomultiplier tubes offer high quan- tum efficiency, high energy resolution, wide dynamic range and fast time re- sponse, as well as remarkable resis- tance to harsh environments ranging from strong magnetic fields to high tem- peratures. A wide variety of products are listed here ranging in diameter from 3/8 inches up to 20 inches. HAMAMATSU PHOTONICS K.K., Electron Tube Division 314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, Japan : (81)539/62-5248, Fax: (81)539/62-2205 www.hamamatsu.com

Main Products Sales Offices

Electron Tubes ASIA: Germany, Denmark, Netherland, Poland: Photomultiplier Tubes HAMAMATSU PHOTONICS K.K. HAMAMATSU PHOTONICS DEUTSCHLAND GmbH Light Sources 325-6, Sunayama-cho, Arzbergerstr. 10, Microfocus X-ray Sources Hamamatsu City, 430-8587, Japan D-82211 Herrsching am Ammersee, Germany Image Intensifiers Telephone: (81)53-452-2141, Fax: (81)53-456-7889 Telephone: (49)8152-375-0, Fax: (49)8152-2658 X-ray Image Intensifiers E-mail: [email protected] Microchannel Plates U.S.A.: Fiber Optic Plates HAMAMATSU CORPORATION Danish Office: Main Office Skovbrynet 3, DK-5610 Assens, Denmark 360 Foothill Road, P.O. BOX 6910, Telephone: (45)4346/6333, Fax: (45)4346/6350 Opto-semiconductors Bridgewater, N.J. 08807-0910, U.S.A. E-mail: [email protected] Si Telephone: (1)908-231-0960, Fax: (1)908-231-1218 Photo IC E-mail: [email protected] Netherlands Office: PSD PO Box 50.075, 1305 AB Almere The Netherland InGaAs PIN Photodiodes Western U.S.A. Office: Telephone: (31)36-5382123, Fax: (31)36-5382124 Compound Semiconductor Photosensors Suite 110, 2875 Moorpark Avenue E-mail: [email protected] Image sensors San Jose, CA 95128, U.S.A. Light Emitting Diodes Application Products and Modules Telephone: (1)408-261-2022, Fax: (1)408-261-2522 Poland Office: Optical Communication Devices E-mail: [email protected] 02-525 Warsaw, 8 St. A. Boboli Str., Poland Telephone: (48)22-660-8340, Fax: (48)22-660-8352 High Energy Particle/X-ray Detectors United Kingdom: E-mail: [email protected] HAMAMATSU PHOTONICS UK LIMITED Imaging and Processing Systems Main Office North Europe and CIS: Video Cameras for Measurement 2 Howard Court, 10 Tewin Road Welwyn Garden City HAMAMATSU PHOTONICS NORDEN AB Image Processing Systems Hertfordshire AL7 1BW, United Kingdom Smidesvägen 12 Streak Cameras Telephone: 44-(0)1707-294888, Fax: 44-(0)1707-325777 SE-171 41 Solna, Sweden Optical Measurement Systems E-mail: [email protected] Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01 Imaging and Analysis Systems E-mail: [email protected] South Africa Office: PO Box 1112, Buccleuch 2066, Russian Office: Johannesburg, South Africa Riverside Towers Telephone/Fax: (27)11-802-5505 Kosmodamianskaya nab. 52/1, 14th floor RU-113054 Moscow, Russia France, Portugal, Belgiun, Switzerland, Spain: Telephone/Fax: (7)095 411 51 54 HAMAMATSU PHOTONICS FRANCE S.A.R.L. E-mail: [email protected] 8, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France Italy: Telephone: (33)1 69 53 71 00 HAMAMATSU PHOTONICS ITALIA S.R.L. Fax: (33)1 69 53 71 10 Strada della Moia, 1/E E-mail: [email protected] 20020 Arese, (Milano), Italy Telephone: (39)02-935 81 733, Fax: (39)02-935 81 741 Swiss Office: E-mail: [email protected] Dornacherplatz 7 4500 Solothurn, Switzerland Rome Office: Telephone: (41)32/625 60 60, Viale Cesare Pavese, 435, 00144 Roma, Italy Fax: (41)32/625 60 61 Telephone: (39)06-50513454, Fax: (39)06-50513460 E-mail: [email protected] E-mail: [email protected]

Belgian Office: 7, Rue du Bosquet B-1348 Louvain-La-Neuve, Belgium Telephone: (32)10 45 63 34 Fax: (32)10 45 63 67 E-mail: [email protected] FEB. 2006 REVISED Spanish Office: Information in this catalog is Centro de Empresas de Nuevas Tecnologies believed to be reliable. However, Parque Tecnologico del Valles no responsibility is assumed for 08290 CERDANYOLA, (Barcelona) Spain possible inaccuracies or omission. Telephone: (34)93 582 44 30 Specifications are subject to Fax: (34)93 582 44 31 change without notice. No patent E-mail: [email protected] rights are granted to any of the circuits described herein. © 2005 Hamamatsu Photonics K.K. TPMO0005E03 FEB. 2006 IP Quality, technology, and service are part of every product. (6000)