Photomultiplier Tubes 1)-5)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Measurements and Studies of Secondary Electron Emission of Diamond Amplified Photocathode
BNL-81607-2008-IR C-A/APl#328 October 2008 Measurements and Studies of Secondary Electron Emission of Diamond Amplified Photocathode Qiong Wu Collider-Accelerator Department Brookhaven National Laboratory Upton, NY 11973 Notice: This document bas been authorized by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the US.Department of Energy. Tbe United States Government retains a non- exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form ofthis document, or allow others to do so, for United States Government purposes. MEASUREMENTSAND STUDIES OF SECONDARY ELECTRONEMISSION OF DIAMONDAMPLIFIED PHOTOCATHODE Qiong Wu September, 2008 CONTENTS 1 Introduction .......................................................................................................... 1 1.1 The Diamond Amplified Photocathode (DAF') hoject .................................... 1 1.2 Advantages of diamond for amplified photocathodes ...................................... 4 1.2.1 Wide Band Gq ..... ....................................... 5 1.2.2 Best Rigidiiy ..................... ............ 6 1.2.3 Highest Thermal Conducfivity ................................................................................................ 7 1.2.4 Very high Mobility and Sahrralion Velocity............ ....................... ....8 2 DAP Design ........................................................................................................ 10 2.1 vacuum .......................................................................................................... -
Building a Photomultiplier Tube Testing Lab and Measuring Dark Rate
Building a photomultiplier tube testing lab and measuring dark rate Suffolk County Community College and Brookhaven National Lab Lab Setup • Dark box set up to hold four Photomultiplier tubes simultaneously and output signals • Three step data collection 1. Discriminator 2. Delay Generator 3. Visual Scalar • Labview collects and files data and Oscilloscope shows signal outputs from PMTs Wiring Discriminator: The PMTs constantly output a signal (Dark current) regardless of whether or not it detected a photon. The discriminator sets a voltage that has to be exceeded for the signal to pass through. Delay Generator: The delay generator receives the input from the discriminator and outputs to the visual scalar. When active, the delay generator allows the signal to pass through, but only for a set period of time. Visual Scalar: The visual scalar receives the output from the delay generator and outputs the number of signals it receives. Dark Box “light tight” testing • The first problem we encountered with the dark box was there was there was a measureable difference in counts when testing with the lights on vs. the lights off. This meant that the box wasn’t completely sealed • We taped any visible weaknesses in the box and added a layer of foam tape between the box and the lid • We tested the modified box at several different voltages with the lights both on and off and the differences were negligible • The data is plotted above, the red line represents the data collected with the lights on and the black line represents the data with the lights off Dark Current • PMTs constantly output a very low signal whether or not the have detected a photon. -
Abstract an Introduction to the Physics and Applications Of
Abstract An Introduction To The Physics And Applications Of Electron Sources Kevin L. Jensen Naval Research Laboratory Models of thermal, field, photo, and secondary emission, as well as space charge limited current flow, have existed since the 1920’s. With the realization that such sources were crucial to Radar and communications, research in harnessing their capabilities greatly accelerated, and now they are key components of cutting edge applications such as High Power Microwave generation and x-ray Free Electron Lasers. Although the processes behind the emission mechanisms (namely, heat, electric field, photoemission effect, and ejection of secondaries due to a high energy primary beam) appear distinct, they can all be understood collectively using simple models from quantum mechanics, condensed matter physics, and electrostatics. A description of the theoretical models and some history behind each mechanism, examples of the kinds of emitters that employ those mechanisms, and the challenges to utilizing the beams generated by various electron source candidates (particularly with respect to beam parameters such as current density, space charge, emittance, and brightness) will be covered. A full description of the canonical emission equations of thermal (Richardson), field (Fowler-Nordheim), photo (Fowler-DuBridge), and secondary (Young) equations is given – but even more interestingly, a demonstration of how the equations are fundamentally related is explored. Processes that affect emission, such as electrostatic shielding, coatings, space charge (Child-Langmuir), and complications due to material properties (metal versus semiconductor) shall be described. Biographical Summary Kevin L. Jensen is a theoretical physicist whose research concerns emission properties of electron sources, particularly cold cathodes and photocathodes, but also thermal and secondary sources, for vacuum nanoelectronics, space-based applications, high power microwave generation, and particle accelerators and Free Electron Lasers. -
Vacuum Tube Theory, a Basics Tutorial – Page 1
Vacuum Tube Theory, a Basics Tutorial – Page 1 Vacuum Tubes or Thermionic Valves come in many forms including the Diode, Triode, Tetrode, Pentode, Heptode and many more. These tubes have been manufactured by the millions in years gone by and even today the basic technology finds applications in today's electronics scene. It was the vacuum tube that first opened the way to what we know as electronics today, enabling first rectifiers and then active devices to be made and used. Although Vacuum Tube technology may appear to be dated in the highly semiconductor orientated electronics industry, many Vacuum Tubes are still used today in applications ranging from vintage wireless sets to high power radio transmitters. Until recently the most widely used thermionic device was the Cathode Ray Tube that was still manufactured by the million for use in television sets, computer monitors, oscilloscopes and a variety of other electronic equipment. Concept of thermionic emission Thermionic basics The simplest form of vacuum tube is the Diode. It is ideal to use this as the first building block for explanations of the technology. It consists of two electrodes - a Cathode and an Anode held within an evacuated glass bulb, connections being made to them through the glass envelope. If a Cathode is heated, it is found that electrons from the Cathode become increasingly active and as the temperature increases they can actually leave the Cathode and enter the surrounding space. When an electron leaves the Cathode it leaves behind a positive charge, equal but opposite to that of the electron. In fact there are many millions of electrons leaving the Cathode. -
Characterisation of Silicon Photomultipliers for the Detection of Near Ultraviolet and Visible Light
Universit`adegli Studi di Trento { Dipartimento di Fisica Fondazione Bruno Kessler { Integrated Radiation and Image Sensors Characterisation of Silicon Photomultipliers for the detection of Near Ultraviolet and Visible light Cycle XXIX G. Zappala' Supervised by: N. Zorzi Abstract Light measurements are widely used in physics experiments and medical ap- plications. It is possible to find many of them in High{Energy Physics, As- trophysics and Astroparticle Physics experiments and in the PET or SPECT medical techniques. Two different types of light detectors are usually used: thermal detectors and photoelectric effect based detectors. Among the first type detectors, the Bolometer is the most widely used and developed. Its in- vention dates back in the nineteenth century. It represents a good choice to detect optical power in far infrared and microwave wavelength regions but it does not have single photon detection capability. It is usually used in the rare events Physics experiments. Among the photoelectric effect based detectors, the Photomultiplier Tube (PMT) is the most important nowadays for the de- tection of low{level light flux. It was invented in the late thirties and it has the single photon detection capability and a good quantum efficiency (QE) in the near{ultraviolet (NUV) and visible regions. Its drawbacks are the high bias voltage requirement, the difficulty to employ it in strong magnetic field environments and its fragility. Other widely used light detectors are the Solid{State detectors, in particular the silicon based ones. They were developed in the last sixty years to become a good alternative to the PMTs. The silicon photodetectors can be divided into three types depending on the operational bias voltage and, as a conse- quence, their internal gain: photodiodes, avalanche photodiodes (APDs) and Geiger{mode detectors, Single Photon Avalanche Diodes (SPADs). -
3 Large Photocathode Photodetectors Using Photon Amplification
Large Photocathode Photodetectors Using Photon Amplification and Phase-Space Compression Alex Carrio1, Joseph Dowling1, Kevin Greener1, Sean McGuiness1, Victor Podrasky1, John Sullivan1, David R Winn1*, 2 2 Burak Bilki , Yasar Onel 1. Department of Physics, Fairfield University, Fairfield, CT 06824 USA 2. Department of Astronomy & Physics, University of Iowa, Iowa City, IA, USA *Corresponding – [email protected] Abstract: We describe a simple technique to both amplify incident photons and compress their angular x area phase space. These Optical Compressor Amplifier Tubes (OCA Tube) use techniques analogous to image intensifiers, using vacuum photocathodes to detect photons as converted to photoelectrons, amplify the photons via photoelectron bombardment of fast scintillators, and compress the optical phase space onto optical fibers, so that small, high gain photodetectors, like miniature PMT or SiPM, can be used to detect photons from large areas, at comparatively low cost. The properties of and benefits of OCA tubes are described. Introduction: Photomultiplier tubes (PMT) and SiPM are ubiquitous in particle detection apparatus and experiments. Their virtues are the ability to generate detectable signals from one photon, at high speed. In general, PMT gain-bandwidth is still unmatched. Experiments planned for high energy physics, particle astrophysics, intensity frontier and intermediate energy and nuclear physics anticipate the need for: a) Large areas of photocathode for non-accelerator experiments such as for nucleon decay, neutrino oscillations, or large underwater or ice detectors for astrophysical phenomena. b) Cosmic gamma ray telescopes and cosmic ray detectors, both terrestrial, and in satellites, which need to operate at low power, low mass, remotely, and over long times. -
INDUSTRIAL STRENGTH by MICHAEL RIORDAN
THE INDUSTRIAL STRENGTH by MICHAEL RIORDAN ORE THAN A DECADE before J. J. Thomson discovered the elec- tron, Thomas Edison stumbled across a curious effect, patented Mit, and quickly forgot about it. Testing various carbon filaments for electric light bulbs in 1883, he noticed a tiny current trickling in a single di- rection across a partially evacuated tube into which he had inserted a metal plate. Two decades later, British entrepreneur John Ambrose Fleming applied this effect to invent the “oscillation valve,” or vacuum diode—a two-termi- nal device that converts alternating current into direct. In the early 1900s such rectifiers served as critical elements in radio receivers, converting radio waves into the direct current signals needed to drive earphones. In 1906 the American inventor Lee de Forest happened to insert another elec- trode into one of these valves. To his delight, he discovered he could influ- ence the current flowing through this contraption by changing the voltage on this third electrode. The first vacuum-tube amplifier, it served initially as an improved rectifier. De Forest promptly dubbed his triode the audion and ap- plied for a patent. Much of the rest of his life would be spent in forming a se- ries of shaky companies to exploit this invention—and in an endless series of legal disputes over the rights to its use. These pioneers of electronics understood only vaguely—if at all—that individual subatomic particles were streaming through their devices. For them, electricity was still the fluid (or fluids) that the classical electrodynamicists of the nineteenth century thought to be related to stresses and disturbances in the luminiferous æther. -
Thermionic Emission
Gas Discharge Fundamentals Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Thermionic emission Theoretically, the current density, , of electrons emitted from a cathode at an absolute temperature, (K), is given by: = / Richardson-Dushman equation 2 − Work function (eV) Schottky effect (field enhanced thermionic emission): For a constant temperature, the current still slowly increases with the applied extraction potential by lowering the surface barrier. = exp 4 2 − − 0 Space charge limited current : When the external electric field is not sufficiently high, the emitted electron current density is limited by space charge. The space charge limited current is determined by the extraction voltage and independent of the cathode current. Emission (source) limited current: When the external electric field is sufficiently high, the saturation emission electron current is determined by the cathode temperature. 2/29 Radiation Source Engineering, Fall 2017 Secondary electron emission (SEE) Electrons, ions or neutral particles cause secondary electron emission through different physical processes. The secondary electron emission is described by the secondary emission coefficient, , which is defined as the number of secondaries produced per an incident primary for normal incidence. = Since depends on the state of the surface, e.g. depending on the surface film, there is an extremely wide variation in the measured values. SEE by ion impact ( ) SEE by electron impact ( ) 3/29 Radiation Source Engineering, Fall 2017 Secondary electron emission (SEE) The coefficient of the secondary emission for a proton incident on a gold-plated tungsten filament with an energy of 1.6-15 keV is given by = (1.06 ± 0.01) / Ep is the proton energy in keV 1 2 The dependence of SEE on the incidence angle is given approximately by a sec law. -
Ultrafast Secondary Emission 2D X-Ray Imaging Detectors
TRNT _^______—J WIS-91/74/Oct.-PH Ultrafast Secondary Emission 2D X-ray Imaging Detectors A. Akkerman,1 A. Breskin, R. Chechik,2 V. Elkind, I. FVumkin3 and I. Gibrekhterman The Weizmann Institute of Science 76100 Rehovot, Israel Presented at the European Workshop on X-ray Detectors for Synchrotron Radiation Sources Aussois, France, September 30-October 4, 1991 Also Soreq Research Center, Yavne, Israel The Hettie H. Heinemann Research Fellow Technion. Haifa, Israel Ultra fast Secondary Emission 2D X-ray Imaging Detectors A. Akkerman,1 A. Breskin, R. Chechik,2 V. Elkind, I. Frumkin3 and I. Gibrekhterman The Weizmann Institute of Science 76100 Rehovot, Israel Abstract We describe a new method for subnanosecond, parallax-tree, high accuracy X-ray imaging at high photon flux. X-rays are ronverted in thin Csl layers. Secondary emitted electrons are amplified in multistage electron multipliers, operating at low gas pressures (10-40 Torr). Introduction Fast and accurate large area X-ray imaging is requested in many applications in basic and applied re search. Examples are particle identification with Transition Radiation, plasma diagnostics, medical or indus trial radiography and X-ray diffraction experiments with high luminosity Synchrotron Radiation Sources. Gaseous wire chambers, traditionally used for X-ray imaging1' over a large area, are often too slow (100 ns typical resolution) and suffer from parallax errors in localization, due to different photon absorption depths in the detection volume. Space charge effects limit the counting rate of traditional gaseous detectors. Re cently developed gaseous ji-strip detectors2* are also based on photon conversion in the gas, and therefore suffer from the same limitations. -
Lee De Forest Claimet\He Got the Idea for His Triode ''Audion" From
Lee de Forest claimet\he got the idea for his triode h ''audion" from wntching a gas flame bum. John Ambrose Flen#ng thought that story ·~just so much hot air. lreJess telegraphy held excit m WIng promise at the beginning of the twentieth century. Peo ~With Imagination could seethe po.. tentlal thot 'the rematkoble new technology offered forworlct1Nk:le com munfcotion. However, no one could hove predicted the impact that the soon-to-be-developed "osdllotlon volve" ond "oudlon" Wireless-telegra phy detector& wauid have on elec tronics technology. Backpouncl. Shortly before 1900, · Guglielmo Morconl had formed his own company to develop wireless telegraphy technology. He demon strated that wireless set-ups on ships eot~ld~messageswlth nearby stations on other ships or on land. t The Marconi Company hOd also j transmitted messages across the EhQ Jish Channel. By the end of 1901. Mar coni extended the range of his equipmenttospantheAtlan1tcOcean. It was obvlgus. 1hot ~raph ~MeS with subrhatlrie cables and ihelr lnber ent flmltations woUld soon disappear, Ships· at sea would no longer be iso la1ed. No locatlon on Eorth would. be too remote to send and receive mes sages. Clear1y; the opportunity existed tor enormous tiOOnciql gain once Jelio ble equlprrient was avoltable. To that end, 1Uned electrical circuits were developed to reduce the band width of the signals produced by ,the spark transrnlf'tirs. The resonont clfcults were also used in a receiver to select one signal from omong several trans missions. Slm~deslgn principles for resonont ontennas were also being explored and applied, However, the senstflvlty and reUabltlty of the devices used to ctetectthe Wireless signals were still hln cterlng the development of commer () cial wireless-telegraph nefWorks. -
Photo-Detection
EDIT EDIT Photo-detection Photo-detection Principles, Performance and Limitations Nicoleta Dinu (LAL Orsay) Thierry Gys (CERN) Christian Joram (CERN) Samo Korpar (Univ. of Maribor and JSI Ljubljana) Yuri Musienko (Fermilab/INR) Veronique Puill (LAL, Orsay) Dieter Renker (TU Munich) EDIT 2011 N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 1 EDIT EDIT Photo-detection OUTLINE • Basics • Requirements on photo-detectors • Photosensitive materials • ‘Family tree’ of photo-detectors • Detector types • Applications EDIT 2011 N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 2 EDIT EDIT Photo-detection Basics 1. Photoelectric effect 2. Solids, liquids, gaseous materials 3. Internal vs. external photo-effect, electron affinity 4. Photo-detection as a multi-step process 5. The human eye as a photo-detector EDIT 2011 N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 3 Basics of photon detection EDIT Photo-detection Purpose: Convert light into detectable electronic signal (we are not covering photographic emulsions!) Principle: • Use photoelectric effect to ‘convert’ photons (g) to photoelectrons (pe) A. Einstein. Annalen der Physik 17 (1905) 132–148. • Details depend on the type of the photosensitive material (see below). • Photon detection involves often materials like K, Na, Rb, Cs (alkali metals). They have the smallest electronegativity highest tendency to release electrons. • Most photo-detectors make use of solid or gaseous photosensitive materials. • Photo-effect can in principle also be observed from liquids. EDIT 2011 N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 4 Basics of photon detection EDIT EDIT Photo-detection Solid materials (usually semiconductors) Multi-step process: semiconductor vacuum e- 1. -
Sensors, Signals and Noise
Sensors, Signals and Noise COURSE OUTLINE • Introduction • Signals and Noise • Filtering • Sensors: PD4 - PhotoMultiplier Tubes PMT Sergio Cova – SENSORS SIGNALS AND NOISE Photodetectors 4 - PD4 rv 2014/12/22 1 Photo Multiplier Tubes (PMT) Photodetectors that overcome the circuit noise Secondary Electron Emission in Vacuum and Current Amplification by a Dynode Chain Photo Multiplier Tubes (PMT): basic device structure and current gain Statistical nature of the current multiplier and related effects Dynamic response of PMTs Signal-to-Noise Ratio and Minimum Measurable Signal Advanced PMT device structures APPENDIX 1: Secondary Emission Statistics and Dynode Gain Distribution APPENDIX 2: Understanding the PMT Dynamic Response Sergio Cova – SENSORS SIGNALS AND NOISE Photodetectors 4 - PD4 rv 2014/12/22 2 Circuit Noise limits the sensitivity of photodiodes ... VACUUM TUBE PHOTODIODE ELECTRONICS LOAD Detector Noise Circuit Noise : (Dark-Current) very much higher than Detector Noise, sets the limit to minimum detected signal Detector Signal (current at photocathode and anode): just one electron per detected photon! Sergio Cova – SENSORS SIGNALS AND NOISE Photodetectors 4 - PD4 rv 2014/12/22 3 … but an Electron Multiplier Overcomes the Circuit Noise VACUUM TUBE PHOTODETECTOR ELECTRONICS LOAD G >10 3 Electron Multiplier process NOT circuit Circuit Noise Primary Detector Noise (cathode Dark-Current) • Primary Signal (photocathode current): one electron per detected photon • Output (anode) current: G >10 3 electrons per primary electron