Joseph Ladislas Wiza, Microchannel Plate Detectors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review of Night Vision Technology INVITED PAPER K
OPTO−ELECTRONICS REVIEW 21(2), 153–181 DOI: 10.2478/s11772−013−0089−3 Review of night vision technology INVITED PAPER K. CHRZANOWSKI*1,2 1Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00–908 Warsaw, Poland 2Inframet, 24 Graniczna Str., Kwirynów, 05–082 Stare Babice, Poland Night vision based on technology of image intensifier tubes is the oldest electro−optical surveillance technology. However, it receives much less attention from international scientific community than thermal imagers or visible/NIR imagers due to se− ries of reasons. This paper presents a review of a modern night vision technology and can help readers to understand sophis− ticated situation on the international night vision market. Keywords: night vision technology, image intensifier tubes. List of abbreviations 1. Introduction ANVIS – aviator night vision imaging system (a term used Humans achieve ability to see at night conditions by using commonly for binocular night vision goggles), several different imaging systems: night vision devices CCD – charge couple device (a technology for constructing (image intensifier systems), thermal imagers, SWIR ima− integrated circuits that use a movement of electrical charge by “shifting” signals between stages within gers, and some more sensitive visible/NIR (CCD/CMOS/ the device one at a time), ICCD/EMCCD) cameras. However, due to historical rea− CCTV – close circuit television (type of visible/NIR cameras sons, night vision technology is usually understood as night used for short range surveillance) vision devices. CMOS – complementary metal−oxide−semiconductor (a tech− Night vision devices (NVDs) are apparently simple sys− nology that uses pairs of p−type and n−type metal tems built from three main blocks: optical objective, image oxide semiconductor field effect transistors for con− intensifier tube, and optical ocular (Fig. -
Mass Spectrometer Detectors
Mass Spectrometer Detectors www.sge.com Ion Detectors for Virtually all Mass Spectrometry Applications Electron multipliers are used in a wide range of applications to Figure 2. Secondary Electron Emission detect and measure small signals of ions, electrons or photons. One of the main applications for an electron multiplier is for 6 the detection of ions in a mass spectrometer. ACTIVE FILM Multipliers manufactured by ETP ( a division of SGE Group 5 of Companies) are the result of 15 years experience in 4 supplying high performance electron multipliers for use in mass spectrometry applications. The performance of this 3 unique type of ion detector has seen it become widely used in almost all fields of mass spectrometry (including ICP-MS, 2 GC-MS, LC-MS, TOF and SIMS). 1 An electron multiplier is used to detect the presence of ion Secondary Electron Emissions signals emerging from the mass analyser of a mass 0 spectrometer. It is essentially the "eyes" of the instrument (see 0 100 200 300 400 500 Figure 1). The task of the electron multiplier is to detect Incident Electron Energy (eV) every ion of the selected mass passed by the mass filter. How The average number of secondary electrons emitted from the efficiently the electron multiplier carries out this task surface of an ETP electron multiplier plotted against the represents a potentially limiting factor on the overall system energy of the incident primary electron. sensitivity. Consequently the performance of the electron multiplier can have a major influence on the overall (often referred to as a channel electron multiplier or CEM). -
Microchannel Plate Detectors
Reprinted from Nuclear Instruments and Methods, Vol. 162, 1979, pages 587 to 601 MICROCHANNEL PLATE DETECTORS JOSEPH LADISLAS WIZA 1. Introduction typical. Originally developed as an amplification element for A microchannel plate (MCP) is an array of 104-107 image intensification devices, MCPs have direct sensitivity miniature electron multipliers oriented parallel to one to charged particles and energetic photons which has another (fig. 1); typical channel diameters are in the range extended their usefulness to such diverse fields as X-ray1) 10-100 µm and have length to diameter ratios (α) between and E.U.V.2) astronomy, e-beam fusion studies3) and of 40 and 100. Channel axes are typically normal to, or biased course, nuclear science, where to date most applications at a small angle (~8°) to the MCP input surface. The have capitalized on the superior MCP time resolution channel matrix is usually fabricated from a lead glass, characteristics4-6). treated in such a way as to optimize the secondary emission The MCP is the result of a fortuitous convergence of characteristics of each channel and to render the channel technologies. The continuous dynode electron multiplier walls semiconducting so as to allow charge replenishment was suggested by Farnsworth7) in 1930. Actual from an external voltage source. Thus each channel can be implementation, however, was delayed until the 1960s considered to be a continuous dynode structure which acts when experimental work by Oschepkov et al.8) from the as its own dynode resistor chain. Parallel electrical contact USSR, Goodrich and Wiley9) at the Bendix Research to each channel is provided by the deposition of a metallic Laboratories in the USA, and Adams and Manley10-11) at coating, usually Nichrome or Inconel, on the front and rear the Mullard Research Laboratories in the U.K. -
European Medical Physics and Engineering Conference
BULGARIAN SOCIETY OF BIOMEDICAL PHYSICS AND ENGINEERING PPRROOCCEEEEDDIINNGGSS ЕUROPEAN MEDICAL PHYSICS AND ENGINEERING CONFERENCE incorporating XI‐th National Conference of VI‐th European Conference Biomedical Physics and Engineering of Medical Physics 18 – 20 October, 2012 Sofia, Bulgaria Accredited as CPD event for medical physicists by the Endorsed by the European Medical Physics and Engineering Conference, Sofia, October 18‐20, 2012 CO‐ORGANISERS: Nuclear Regulatory Agency Institute of Biophysics and Biomedical Engineering ‐ BAS National Centre of Radiobiology and Radiation Protection Roentgen Foundation ORGANISING COMMITTEE Chairman: Peter Trindev Vice chairman: Athanas Slavchev Secretary: Lubomir Traikov Scientific secretary: Jenia Vassileva Scientific committee members: Alberto Toresin (Italy, EFOMP) Irena Jekova (Bulgaria) Giovanni Bortolan (Italy) Virginia Tsapaki (Greece) Ivo Iliev (Bulgaria) Kristina Bliznakova (Greece) Local organising committee members: Simona Avramova‐Cholakova Ivan Dotsinsky Mikhail Matveev Ana Balabanova Silvia Abarova Borislava Antonova Editorial note The papers in these Proceedings are printed in the content as prepared by the authors. The views expressed remain the responsibility of the authors and not of the Organising Commitee. ISBN 978‐954‐91589‐3‐9 BULGARIAN SOCIETY OF BIOMEDICAL PHYSICS AND ENGINEERING European Medical Physics and Engineering Conference, Sofia, October 18‐20, 2012 TABLE OF CONTENTS PLENARY SESSION Medical Physics Education after the ISCO listing of the profession – Quo Vadis? 8 Slavik Tabakov SIMPOSIUM 1: NEW DEVELOPMENTS IN CANCER TREATMENT Requirements to MRI and MRS data to be applicable for radiation treatment 14 A. Torresin, M.G. Brambilla, P.E. Colombo, M.Minella, A. Monti, A.Moscato REFRESHER COURSES New developments in Radiation Detectors for Medical Imaging 29 I. Kandarakis, G. -
Characterization of Morphological and Chemical Properties of Scandium Containing
Characterization of Morphological and Chemical Properties of Scandium Containing Cathode Materials A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Michael V. Mroz May 2020 © 2020 Michael V. Mroz. All Rights Reserved. 2 This dissertation titled Characterization of Morphological and Chemical Properties of Scandium Containing Cathode Materials by MICHAEL V. MROZ has been approved for the Department of Physics and Astronomy and the College of Arts and Sciences by Martin E. Kordesch Professor of Physics and Astronomy Florenz Plassmann Dean, College of Arts and Sciences 3 ABSTRACT MROZ, MICHAEL V., Ph.D., May 2020, Physics and Astronomy Characterization of Morphological and Chemical Properties of Scandium Containing Cathode Materials Director of Dissertation: Martin E. Kordesch Understanding thermionic cathodes is crucial for the future development of communication technologies operating at the terahertz frequency. Model cathode systems were characterized using multiple experimental techniques. These included Low Energy Electron Microscopy, X-Ray Photoemission Spectroscopy, and Auger Electron Spectroscopy. This was done to determine the mechanisms by which tungsten, barium, scandium, and oxygen may combine in order to achieve high current densities via thermionic emission. Barium and scandium films are found to dewet from the tungsten surfaces studied, and not diffuse out from bulk sources. The dewetted droplets were found to contribute the most to thermal emission. Barium oxide and scandium oxide are also found to react desorb from the emitting surface at lower temperatures then the metals themselves. The function of scandium in scandate cathodes was determined to act as an inhibitor to oxide formation. -
Modern Mass Spectrometry
Modern Mass Spectrometry MacMillan Group Meeting 2005 Sandra Lee Key References: E. Uggerud, S. Petrie, D. K. Bohme, F. Turecek, D. Schröder, H. Schwarz, D. Plattner, T. Wyttenbach, M. T. Bowers, P. B. Armentrout, S. A. Truger, T. Junker, G. Suizdak, Mark Brönstrup. Topics in Current Chemistry: Modern Mass Spectroscopy, pp. 1-302, 225. Springer-Verlag, Berlin, 2003. Current Topics in Organic Chemistry 2003, 15, 1503-1624 1 The Basics of Mass Spectroscopy ! Purpose Mass spectrometers use the difference in mass-to-charge ratio (m/z) of ionized atoms or molecules to separate them. Therefore, mass spectroscopy allows quantitation of atoms or molecules and provides structural information by the identification of distinctive fragmentation patterns. The general operation of a mass spectrometer is: "1. " create gas-phase ions "2. " separate the ions in space or time based on their mass-to-charge ratio "3. " measure the quantity of ions of each mass-to-charge ratio Ionization sources ! Instrumentation Chemical Ionisation (CI) Atmospheric Pressure CI!(APCI) Electron Impact!(EI) Electrospray Ionization!(ESI) SORTING DETECTION IONIZATION OF IONS OF IONS Fast Atom Bombardment (FAB) Field Desorption/Field Ionisation (FD/FI) Matrix Assisted Laser Desorption gaseous mass ion Ionisation!(MALDI) ion source analyzer transducer Thermospray Ionisation (TI) Analyzers quadrupoles vacuum signal Time-of-Flight (TOF) pump processor magnetic sectors 10-5– 10-8 torr Fourier transform and quadrupole ion traps inlet Detectors mass electron multiplier spectrum Faraday cup Ionization Sources: Classical Methods ! Electron Impact Ionization A beam of electrons passes through a gas-phase sample and collides with neutral analyte molcules (M) to produce a positively charged ion or a fragment ion. -
2002 Military Equipment Export Report)
Berlin, December 17, 2003 Report by the Government of the Federal Republic of Germany on Its Policy on Exports of Conventional Military Equipment in 2002 (2002 Military Equipment Export Report) Contents S u m m a r y I. The German Control System for Military Equipment Exports 1. The German export control system 2. Application of the “Political Principles” II. German Policy on the Export of Military Equipment in the Multilateral Context 1. Disarmament agreements 2. Arms embargoes 3. Common Foreign and Security Policy (CFSP) in the framework of the EU 4. Framework Agreement concerning Measures to Facilitate the Restructuring and Op- eration of the European Defense Industry 5. Wassenaar Arrangement 6. UN Register of Conventional Arms 7. International discussion on small arms and light weapons III. Licenses for Military Equipment and the Export of War Weapons 1. Licenses for military equipment (war weapons and other military equipment) a) Individual licenses b) Collective export licenses c) Export license denials d) Most important countries of destination e) Individual export licenses broken down by Export List Items . - 2 - f) Export licenses in the years from 1996 to 2002 g) Export licenses for small arms from 1996 to 2002 2. Exports of war weapons a) War weapon exports in reporting year 2002 b) War weapon exports from 1997 to 2002 3. German military equipment exports by international comparison IV. Military Aid V. Criminal Prosecution Statistics and Outline of Preliminary Criminal Proceedings 1. Criminal prosecution statistics 2. Outline of preliminary proceedings under criminal statutes VI. Military Equipment Cooperation VII. Concluding Remarks A n n e x e s Annex 1. -
AN IMAGE INTENSIFIER-SCINTILLATOR DEVICE for DETERMINATION of PROFILES and IMAGES of WEAK BEAMS of IONIZING PARTICLES OR X-Raysf
NUCLEAR INSTRUMENTS AND METHODS 10 (1961) 348--352; NORTH-HOLLAND PUBLISHING CO. AN IMAGE INTENSIFIER-SCINTILLATOR DEVICE FOR DETERMINATION OF PROFILES AND IMAGES OF WEAK BEAMS OF IONIZING PARTICLES OR X-RAYSf LAWRENCE W. JONES and MARTIN L. PERL Harrison M. Randall Laboratory o/Physics, The University o/Michigan, Ann Arbor, Michigan Received 17 January 1960 An instrument for determining the shape and intensity distri- energy, low intensity, secondary meson and proton beams bution of particle and X-ray beams has been developed using an is given. It is shown that the sensitivity of this instru- image intensifier tube together with a bundle of filaments of ment represents a significant improvement over alternative scintillator. A description of the use of such a device in high techniques. 1. Introduction with a suitable monitor. Weigand 2) has constructed It is possible to construct a monitor for deter- a more elaborate profile monitor consisting of a row mining the intensity profiles of weak beams of high- of scintillation counters connected to an oscil- energy charged particles or X-rays by combining loscope in such a way that the oscilloscope trace filamentary scintillators with an image converter gives beam intensity versus position in one dimen- tube. Such a device, which we will refer to as a sion perpendicular to the beam axis. These methods "Channeled Particle-Image Converter" or CPIC, are inconvenient and of limited resolution. The has been constructed and used by the authors in purpose of the monitor described here is to give a meson beams from the Bevatron. A discussion of two-dimensional presentation of such a beam in- the problems of such monitoring and of existing tensity distribution in weak particle beams. -
Sensors, Signals and Noise
Sensors, Signals and Noise COURSE OUTLINE • Introduction • Signals and Noise • Filtering • Sensors: PD4 - PhotoMultiplier Tubes PMT Sergio Cova – SENSORS SIGNALS AND NOISE Photodetectors 4 - PD4 rv 2014/12/22 1 Photo Multiplier Tubes (PMT) Photodetectors that overcome the circuit noise Secondary Electron Emission in Vacuum and Current Amplification by a Dynode Chain Photo Multiplier Tubes (PMT): basic device structure and current gain Statistical nature of the current multiplier and related effects Dynamic response of PMTs Signal-to-Noise Ratio and Minimum Measurable Signal Advanced PMT device structures APPENDIX 1: Secondary Emission Statistics and Dynode Gain Distribution APPENDIX 2: Understanding the PMT Dynamic Response Sergio Cova – SENSORS SIGNALS AND NOISE Photodetectors 4 - PD4 rv 2014/12/22 2 Circuit Noise limits the sensitivity of photodiodes ... VACUUM TUBE PHOTODIODE ELECTRONICS LOAD Detector Noise Circuit Noise : (Dark-Current) very much higher than Detector Noise, sets the limit to minimum detected signal Detector Signal (current at photocathode and anode): just one electron per detected photon! Sergio Cova – SENSORS SIGNALS AND NOISE Photodetectors 4 - PD4 rv 2014/12/22 3 … but an Electron Multiplier Overcomes the Circuit Noise VACUUM TUBE PHOTODETECTOR ELECTRONICS LOAD G >10 3 Electron Multiplier process NOT circuit Circuit Noise Primary Detector Noise (cathode Dark-Current) • Primary Signal (photocathode current): one electron per detected photon • Output (anode) current: G >10 3 electrons per primary electron -
Photomultiplier Tubes 1)-5)
CHAPTER 2 BASIC PRINCIPLES OF PHOTOMULTIPLIER TUBES 1)-5) A photomultiplier tube is a vacuum tube consisting of an input window, a photocathode, focusing electrodes, an electron multiplier and an anode usu- ally sealed into an evacuated glass tube. Figure 2-1 shows the schematic construction of a photomultiplier tube. FOCUSING ELECTRODE SECONDARY ELECTRON LAST DYNODE STEM PIN VACUUM (~10P-4) DIRECTION e- OF LIGHT FACEPLATE STEM ELECTRON MULTIPLIER ANODE (DYNODES) PHOTOCATHODE THBV3_0201EA Figure 2-1: Construction of a photomultiplier tube Light which enters a photomultiplier tube is detected and produces an output signal through the following processes. (1) Light passes through the input window. (2) Light excites the electrons in the photocathode so that photoelec- trons are emitted into the vacuum (external photoelectric effect). (3) Photoelectrons are accelerated and focused by the focusing elec- trode onto the first dynode where they are multiplied by means of secondary electron emission. This secondary emission is repeated at each of the successive dynodes. (4) The multiplied secondary electrons emitted from the last dynode are finally collected by the anode. This chapter describes the principles of photoelectron emission, electron tra- jectory, and the design and function of electron multipliers. The electron multi- pliers used for photomultiplier tubes are classified into two types: normal dis- crete dynodes consisting of multiple stages and continuous dynodes such as mi- crochannel plates. Since both types of dynodes differ considerably in operating principle, photomultiplier tubes using microchannel plates (MCP-PMTs) are separately described in Chapter 10. Furthermore, electron multipliers for vari- ous particle beams and ion detectors are discussed in Chapter 12. -
Fluoroscopy in Specials: Flat Detector Vs. Image Intensification
Fluoroscopy in Specials: Flat Detector vs. Image Intensification William R. Geisler M.S. DABR Department of Radiology/Medical Physics Fluoroscopy in Specials: Flat Detector vs. Image Intensification • Acknowledgements: – Perry Juel, SIEMENS – Dean Rindlisbach, PHILIPS – John Rowlands, Univ. Toronto – Phil Rauch, Henry Ford Health System Fluoroscopy in Specials: Digital Flat Detector vs. Image Intensification • Differences and Similarities with image intensification (II) and flat detector (FD) – Brief review II technology – Overview FD technology • Artifacts associated with II and FD Comparison of Image Intensifier and Digital Flat Panel Detector Review II Tube • Vacuum tube • Curvature at input window required to allow focusing of e- and minimize stress from vacuum • Thin (~1 mm) layer of Aluminum at input housing – Attenuates x-rays striking input phosphor • Output phosphor coupled to camera or CCD CsI Input Phosphor/ZnCdS Output Phosphor X-ray Ö Visible Photon Ö e- Ö Visible Photon • X-ray exits patient and interacts with CsI (200 - 400 μm thick for II) • X-ray converted to visible light • light travels along CsI and interacts with photocathode Bushberg 2nd ed fig. 9-3 • photocathode emits e- • 25 – 35 kV accelerates e-sto output phosphor (ZnCdS, < 10 μm) to increase light output Bushberg 2nd ed fig. 9-6 II Gain Factors • Flux Gain (FG) – Increase no. light photons emitted from output phosphor compared to input phosphor; 50 - 100 typical • Minification Gain (MG) – (dia. Input/dia. Output)2 – e.g., 23 cm to 2.5 cm => 85 • Brightness -
A Basic Guide to Night Vision Contents
A BASIC GUIDE TO NIGHT VISION CONTENTS PAGE 1… NIGHT VISION - PAST PRESENT AND FUTURE 3 2… LIGHT AND DARK 3 3… THE IMAGE INTENSIFIER 4 4… THE GENERATION GAME 4 5… EVALUATING THE PERFORMANCE OF A NIGHT VISION SCOPE 6-7 6… APPLICATIONS 7 7… GLOSSARY & TERMINOLOGY 8-10 8… PRECAUTIONS 10 2 1 NIGHT VISION - PAST, PRESENT AND FUTURE People have many requirements to see at night and powerful illumination systems have been around since the first lighthouse went into service at Eddystone Rock in 1698. However, these systems were simply methods of illumination with the obvious, and sometimes very dangerous drawback, that everyone could see the source of the light. For this reason it became vital that a solution be found for military use - a decisive advantage was to be achieved by gaining the ability to see at night without being seen. In 1887, Heinrich Hertz first discovered photoemission, on which night vision technology is based. In 1905, no lesser person than Albert Einstein theoretically explained the principle - the release of electrons from a solid material due to energy put in to it from radiation and light. The breakthrough came about in 1936 when the first Active Infrared system was developed using a silver photocathode. These systems were very bulky and primitive by todays standards, but at the time they represented a major military advantage. Active Infrared systems continued in use until the late 1970’s in some countries, but NATO forces were phasing them out by the late 1960’s. The main drawback of Active Infrared systems was that to operate they required powerful infrared lamps, which meant the range was restricted by the performance of the lamp.