A Basic Guide to Night Vision Contents

Total Page:16

File Type:pdf, Size:1020Kb

A Basic Guide to Night Vision Contents A BASIC GUIDE TO NIGHT VISION CONTENTS PAGE 1… NIGHT VISION - PAST PRESENT AND FUTURE 3 2… LIGHT AND DARK 3 3… THE IMAGE INTENSIFIER 4 4… THE GENERATION GAME 4 5… EVALUATING THE PERFORMANCE OF A NIGHT VISION SCOPE 6-7 6… APPLICATIONS 7 7… GLOSSARY & TERMINOLOGY 8-10 8… PRECAUTIONS 10 2 1 NIGHT VISION - PAST, PRESENT AND FUTURE People have many requirements to see at night and powerful illumination systems have been around since the first lighthouse went into service at Eddystone Rock in 1698. However, these systems were simply methods of illumination with the obvious, and sometimes very dangerous drawback, that everyone could see the source of the light. For this reason it became vital that a solution be found for military use - a decisive advantage was to be achieved by gaining the ability to see at night without being seen. In 1887, Heinrich Hertz first discovered photoemission, on which night vision technology is based. In 1905, no lesser person than Albert Einstein theoretically explained the principle - the release of electrons from a solid material due to energy put in to it from radiation and light. The breakthrough came about in 1936 when the first Active Infrared system was developed using a silver photocathode. These systems were very bulky and primitive by todays standards, but at the time they represented a major military advantage. Active Infrared systems continued in use until the late 1970’s in some countries, but NATO forces were phasing them out by the late 1960’s. The main drawback of Active Infrared systems was that to operate they required powerful infrared lamps, which meant the range was restricted by the performance of the lamp. In addition, although infrared is not visible to the naked eye (other than a very dull red glow if you are close to the lamp), a major problem would arise during covert operations where both sides were using Active Infrared systems, in that each side could see the light emitted by the others infrared lamp. Therefore, you are back to square one. With the source of the light easily identifiable the system was rendered virtually useless, and probably lethal, as you would only have to shoot at the lamp to take out the person using it. It was at this point that new technology was urgently required and modern Image Intensifiers were developed. The advantage of these systems was that infrared lamps were no longer vital, and for this reason they are referred to as Passive Night Vision devices. However, all Image Intensifiers need some light to work because by their very nature they amplify the avail- able light to give a visible image. If an area is pitch black with no ambient light at all, no Image Intensifier will be able to function. For this reason infrared illuminators still play an important role and will always enhance Image Intensifier performance, but at the expense of losing the covert capability. Night vision ability can also be realised through the use of Thermal Imagers, which perform a similar function to Image Intensifiers, but with the big advantage of being able to operate in zero light conditions as well as fog, smoke, snow, etc., which is not possible with night vision devices. The latest, most sophisticated thermal imaging equipment will locate people or vehicles in trees, build- ings and through a variety of media. Although there are methods to defeat them, doing so can be difficult and expensive. Thermal Imagers obviously detect heat and not light energy and the images they produce are generally less well defined than those of an Image Intensifier. As range increases the subject simply becomes a hot ‘spot’. Although Thermal Imagers have been around for some time, the early devices required a cooling system, which was usually com- pressed gas, and their size and weight restricted them to static observation and surveillance work only. With the development of uncooled solid state models, they have become portable and a potential rival to the Image Intensifier. However, a major drawback to Thermal Imaging is cost, with basic systems starting at around £10,000 and the military/police equipment at many times this. There is one other area of development concerning night vision ability and this centres around the use of computers. Increas- ingly, developments in CCD technology are producing low light images of impressive quality. It is already possible to integrate and ‘build-up’ a visible picture but the problem here is that you do not get a real time image, giving a blurred and distorted picture if your equipment or subject is moving. The technology also already exists where the system gathers whatever information it can on the subject being viewed and in low light conditions where it is information limited, will ‘fill in the holes’ to produce a full, if not completely accurate, image. As for the future, it is certain that technological developments will allow the improvement of all the systems already existing, but it is also likely that systems will be combined and integrated into smaller, more efficient devices where two or more technologies can be alternated at the touch of a button. 2 LIGHT AND DARK We measure the level of light falling on a scene in units called lux. A sunny day can be 10,000 lux, and a bright office about 500 lux. At sunset under a clear sky and in an open area, the level will have fallen to 100 lux. At night, artificial lighting maintains the centres of towns at roughly NATURAL LIGHTING LUMENS/METRE2 (LUX) 10 lux. At this level colours start to lose their brilliance. The brightest moonlight DIRECT SUNLIGHT 1.0 t0 1.3 x 106 (100,000) produces about 0.1 lux and our eyes can then see little colour at all. Starlight 4 levels are less than 0.001 lux. It then becomes difficult to move around with FULL DAYLIGHT 1.0 to 2.0 x 10 (10,000) any confidence because we are only vaguely aware of the largest shapes and OVERCAST DAY 103 (1,000) objects that move. Light levels below this are now uncommon in the developed VERY DARK DAY 102 (100) world, except in the remotest rural areas. TWILIGHT 10 Light consists of small particles of energy called photons. Lower light levels mean DEEP TWILIGHT 1 fewer photons. If a picture contains insufficient photons it will lack information FULL MOON 10-1 (0.1) and be incomplete. We do not usually notice this effect because our eyes and QUARTER MOON 10-2 (0.01) brain have evolved to overcome this. There is an increase in the period over which photons are collected by the eye before the picture information is passed STARLIGHT 10-3 (0.001) to the brain. Rather like setting a slower shutter speed on a camera, the eye slows OVERCAST STARLIGHT 10-4 (0.0001) down to about 1/5th of a second. In addition, the pupil opens wider (fully dilated at 7mm) to let in more light, and a more sensitive set of detectors come APPROXIMATE LEVELS OF NATURAL into use at the rear of the eye. These can only see in black and white, which LIGHTING AT GROUND LEVEL is why we lose our sense of colour in the dark. This whole process is called 3 ‘dark-adaptation’ and takes tens of minutes to acquire fully (generally about 40 minutes), but is lost again by the briefest exposure to any bright light source - even a match. The widespread use of artificial lighting can prevent our eyes from becoming dark-adapted. Our workplaces are lit to regulated levels, we walk along well-lit streets and drive behind powerful headlights. It is unlikely that the inhabitants of towns and cities ever become truly dark-adapted. MOONLIGHT STARLIGHT -3 NO CLOUD (10-1 LUX) NO CLOUD (10 LUX) As darkness falls, there comes a point when we can no longer see 500 L properly and our eyes need help. In developed areas, where there is usually some artificial illumination, this can often be achieved 450 by using good quality low light binoculars, such as 7x50 or 8x56, 400 GROUND LEVE GROUND which simply magnify objects so they become more clearly visible. AT Beyond this, the use of a night scope becomes necessary. 350 When an Image Intensifier is used in really dark conditions the 300 quality of the picture on the phosphor screen drops dramatically. TIVE IRRADIANCE IRRADIANCE TIVE 250 Its overall brightness level falls and individual scintillations, tiny RELA flashes of light, become more clearly visible. Such a picture is said 200 to have become ‘noisy’ and we describe this situation as being ‘information-limited’. The only way to improve any image that 150 shows signs of information-limiting is to increase the number of 100 photons used to create it. 50 A few of the basic problems of seeing at very low light levels are so fundamental to the physical state of darkness that they can 0 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 only ever be overcome by the use of active illumination, be it vis- WAVELENGTH (nm) ible or covert. All generations of Image Intensifiers need light to REPRESENTATIVE SPECTRAL DISTRIBUTION work - they cannot provide a useful image in complete darkness. OF MOONLIGHT/STARLIGHT They are, however, sensitive to infrared (IR) light. In starlight, some 70% of light is in the infrared spectrum. The introduction of semi-covert/covert illumination overcomes this problem and users should consider having some sort of IR illuminator available to assist the Intensifier when climatic or lighting conditions restrict its performance.
Recommended publications
  • Review of Night Vision Technology INVITED PAPER K
    OPTO−ELECTRONICS REVIEW 21(2), 153–181 DOI: 10.2478/s11772−013−0089−3 Review of night vision technology INVITED PAPER K. CHRZANOWSKI*1,2 1Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00–908 Warsaw, Poland 2Inframet, 24 Graniczna Str., Kwirynów, 05–082 Stare Babice, Poland Night vision based on technology of image intensifier tubes is the oldest electro−optical surveillance technology. However, it receives much less attention from international scientific community than thermal imagers or visible/NIR imagers due to se− ries of reasons. This paper presents a review of a modern night vision technology and can help readers to understand sophis− ticated situation on the international night vision market. Keywords: night vision technology, image intensifier tubes. List of abbreviations 1. Introduction ANVIS – aviator night vision imaging system (a term used Humans achieve ability to see at night conditions by using commonly for binocular night vision goggles), several different imaging systems: night vision devices CCD – charge couple device (a technology for constructing (image intensifier systems), thermal imagers, SWIR ima− integrated circuits that use a movement of electrical charge by “shifting” signals between stages within gers, and some more sensitive visible/NIR (CCD/CMOS/ the device one at a time), ICCD/EMCCD) cameras. However, due to historical rea− CCTV – close circuit television (type of visible/NIR cameras sons, night vision technology is usually understood as night used for short range surveillance) vision devices. CMOS – complementary metal−oxide−semiconductor (a tech− Night vision devices (NVDs) are apparently simple sys− nology that uses pairs of p−type and n−type metal tems built from three main blocks: optical objective, image oxide semiconductor field effect transistors for con− intensifier tube, and optical ocular (Fig.
    [Show full text]
  • Microchannel Plate Detectors
    Reprinted from Nuclear Instruments and Methods, Vol. 162, 1979, pages 587 to 601 MICROCHANNEL PLATE DETECTORS JOSEPH LADISLAS WIZA 1. Introduction typical. Originally developed as an amplification element for A microchannel plate (MCP) is an array of 104-107 image intensification devices, MCPs have direct sensitivity miniature electron multipliers oriented parallel to one to charged particles and energetic photons which has another (fig. 1); typical channel diameters are in the range extended their usefulness to such diverse fields as X-ray1) 10-100 µm and have length to diameter ratios (α) between and E.U.V.2) astronomy, e-beam fusion studies3) and of 40 and 100. Channel axes are typically normal to, or biased course, nuclear science, where to date most applications at a small angle (~8°) to the MCP input surface. The have capitalized on the superior MCP time resolution channel matrix is usually fabricated from a lead glass, characteristics4-6). treated in such a way as to optimize the secondary emission The MCP is the result of a fortuitous convergence of characteristics of each channel and to render the channel technologies. The continuous dynode electron multiplier walls semiconducting so as to allow charge replenishment was suggested by Farnsworth7) in 1930. Actual from an external voltage source. Thus each channel can be implementation, however, was delayed until the 1960s considered to be a continuous dynode structure which acts when experimental work by Oschepkov et al.8) from the as its own dynode resistor chain. Parallel electrical contact USSR, Goodrich and Wiley9) at the Bendix Research to each channel is provided by the deposition of a metallic Laboratories in the USA, and Adams and Manley10-11) at coating, usually Nichrome or Inconel, on the front and rear the Mullard Research Laboratories in the U.K.
    [Show full text]
  • European Medical Physics and Engineering Conference
    BULGARIAN SOCIETY OF BIOMEDICAL PHYSICS AND ENGINEERING PPRROOCCEEEEDDIINNGGSS ЕUROPEAN MEDICAL PHYSICS AND ENGINEERING CONFERENCE incorporating XI‐th National Conference of VI‐th European Conference Biomedical Physics and Engineering of Medical Physics 18 – 20 October, 2012 Sofia, Bulgaria Accredited as CPD event for medical physicists by the Endorsed by the European Medical Physics and Engineering Conference, Sofia, October 18‐20, 2012 CO‐ORGANISERS: Nuclear Regulatory Agency Institute of Biophysics and Biomedical Engineering ‐ BAS National Centre of Radiobiology and Radiation Protection Roentgen Foundation ORGANISING COMMITTEE Chairman: Peter Trindev Vice chairman: Athanas Slavchev Secretary: Lubomir Traikov Scientific secretary: Jenia Vassileva Scientific committee members: Alberto Toresin (Italy, EFOMP) Irena Jekova (Bulgaria) Giovanni Bortolan (Italy) Virginia Tsapaki (Greece) Ivo Iliev (Bulgaria) Kristina Bliznakova (Greece) Local organising committee members: Simona Avramova‐Cholakova Ivan Dotsinsky Mikhail Matveev Ana Balabanova Silvia Abarova Borislava Antonova Editorial note The papers in these Proceedings are printed in the content as prepared by the authors. The views expressed remain the responsibility of the authors and not of the Organising Commitee. ISBN 978‐954‐91589‐3‐9 BULGARIAN SOCIETY OF BIOMEDICAL PHYSICS AND ENGINEERING European Medical Physics and Engineering Conference, Sofia, October 18‐20, 2012 TABLE OF CONTENTS PLENARY SESSION Medical Physics Education after the ISCO listing of the profession – Quo Vadis? 8 Slavik Tabakov SIMPOSIUM 1: NEW DEVELOPMENTS IN CANCER TREATMENT Requirements to MRI and MRS data to be applicable for radiation treatment 14 A. Torresin, M.G. Brambilla, P.E. Colombo, M.Minella, A. Monti, A.Moscato REFRESHER COURSES New developments in Radiation Detectors for Medical Imaging 29 I. Kandarakis, G.
    [Show full text]
  • 2002 Military Equipment Export Report)
    Berlin, December 17, 2003 Report by the Government of the Federal Republic of Germany on Its Policy on Exports of Conventional Military Equipment in 2002 (2002 Military Equipment Export Report) Contents S u m m a r y I. The German Control System for Military Equipment Exports 1. The German export control system 2. Application of the “Political Principles” II. German Policy on the Export of Military Equipment in the Multilateral Context 1. Disarmament agreements 2. Arms embargoes 3. Common Foreign and Security Policy (CFSP) in the framework of the EU 4. Framework Agreement concerning Measures to Facilitate the Restructuring and Op- eration of the European Defense Industry 5. Wassenaar Arrangement 6. UN Register of Conventional Arms 7. International discussion on small arms and light weapons III. Licenses for Military Equipment and the Export of War Weapons 1. Licenses for military equipment (war weapons and other military equipment) a) Individual licenses b) Collective export licenses c) Export license denials d) Most important countries of destination e) Individual export licenses broken down by Export List Items . - 2 - f) Export licenses in the years from 1996 to 2002 g) Export licenses for small arms from 1996 to 2002 2. Exports of war weapons a) War weapon exports in reporting year 2002 b) War weapon exports from 1997 to 2002 3. German military equipment exports by international comparison IV. Military Aid V. Criminal Prosecution Statistics and Outline of Preliminary Criminal Proceedings 1. Criminal prosecution statistics 2. Outline of preliminary proceedings under criminal statutes VI. Military Equipment Cooperation VII. Concluding Remarks A n n e x e s Annex 1.
    [Show full text]
  • AN IMAGE INTENSIFIER-SCINTILLATOR DEVICE for DETERMINATION of PROFILES and IMAGES of WEAK BEAMS of IONIZING PARTICLES OR X-Raysf
    NUCLEAR INSTRUMENTS AND METHODS 10 (1961) 348--352; NORTH-HOLLAND PUBLISHING CO. AN IMAGE INTENSIFIER-SCINTILLATOR DEVICE FOR DETERMINATION OF PROFILES AND IMAGES OF WEAK BEAMS OF IONIZING PARTICLES OR X-RAYSf LAWRENCE W. JONES and MARTIN L. PERL Harrison M. Randall Laboratory o/Physics, The University o/Michigan, Ann Arbor, Michigan Received 17 January 1960 An instrument for determining the shape and intensity distri- energy, low intensity, secondary meson and proton beams bution of particle and X-ray beams has been developed using an is given. It is shown that the sensitivity of this instru- image intensifier tube together with a bundle of filaments of ment represents a significant improvement over alternative scintillator. A description of the use of such a device in high techniques. 1. Introduction with a suitable monitor. Weigand 2) has constructed It is possible to construct a monitor for deter- a more elaborate profile monitor consisting of a row mining the intensity profiles of weak beams of high- of scintillation counters connected to an oscil- energy charged particles or X-rays by combining loscope in such a way that the oscilloscope trace filamentary scintillators with an image converter gives beam intensity versus position in one dimen- tube. Such a device, which we will refer to as a sion perpendicular to the beam axis. These methods "Channeled Particle-Image Converter" or CPIC, are inconvenient and of limited resolution. The has been constructed and used by the authors in purpose of the monitor described here is to give a meson beams from the Bevatron. A discussion of two-dimensional presentation of such a beam in- the problems of such monitoring and of existing tensity distribution in weak particle beams.
    [Show full text]
  • Joseph Ladislas Wiza, Microchannel Plate Detectors
    Reprinted from Nuclear Instruments and Methods, Vol. 162, 1979, pages 587 to 601 MICROCHANNEL PLATE DETECTORS JOSEPH LADISLAS WIZA 1. Introduction only by the channel dimensions and spacings; 12 mm diameter channels with 15 mm center-to-center spacings are A microchannel plate (MCP) is an array of 104-107 typical. miniature electron multipliers oriented parallel to one Originally developed as an amplification element for another (fig. 1); typical channel diameters are in the range image intensification devices, MCPs have direct sensitivity 10-100 mm and have length to diameter ratios (a) between to charged particles and energetic photons which has 40 and 100. Channel axes are typically normal to, or biased extended their usefulness to such diverse fields as X-ray1) at a small angle (~8°) to the MCP input surface. The and E.U.V.2) astronomy, e-beam fusion studies3) and of channel matrix is usually fabricated from a lead glass, course, nuclear science, where to date most applications treated in such a way as to optimize the secondary emission have capitalized on the superior MCP time resolution characteristics of each channel and to render the channel characteristics4-6). walls semiconducting so as to allow charge replenishment The MCP is the result of a fortuitous convergence of from an external voltage source. Thus each channel can be technologies. The continuous dynode electron multiplier considered to be a continuous dynode structure which acts was suggested by Farnsworth7) in 1930. Actual as its own dynode resistor chain. Parallel electrical contact implementation, however, was delayed until the 1960s to each channel is provided by the deposition of a metallic when experimental work by Oschepkov et al.8) from the coating, usually Nichrome or Inconel, on the front and rear USSR, Goodrich and Wiley9) at the Bendix Research surfaces of the MCP, which then serve as input and output Laboratories in the USA, and Adams and Manley10-11) at electrodes, respectively.
    [Show full text]
  • Fluoroscopy in Specials: Flat Detector Vs. Image Intensification
    Fluoroscopy in Specials: Flat Detector vs. Image Intensification William R. Geisler M.S. DABR Department of Radiology/Medical Physics Fluoroscopy in Specials: Flat Detector vs. Image Intensification • Acknowledgements: – Perry Juel, SIEMENS – Dean Rindlisbach, PHILIPS – John Rowlands, Univ. Toronto – Phil Rauch, Henry Ford Health System Fluoroscopy in Specials: Digital Flat Detector vs. Image Intensification • Differences and Similarities with image intensification (II) and flat detector (FD) – Brief review II technology – Overview FD technology • Artifacts associated with II and FD Comparison of Image Intensifier and Digital Flat Panel Detector Review II Tube • Vacuum tube • Curvature at input window required to allow focusing of e- and minimize stress from vacuum • Thin (~1 mm) layer of Aluminum at input housing – Attenuates x-rays striking input phosphor • Output phosphor coupled to camera or CCD CsI Input Phosphor/ZnCdS Output Phosphor X-ray Ö Visible Photon Ö e- Ö Visible Photon • X-ray exits patient and interacts with CsI (200 - 400 μm thick for II) • X-ray converted to visible light • light travels along CsI and interacts with photocathode Bushberg 2nd ed fig. 9-3 • photocathode emits e- • 25 – 35 kV accelerates e-sto output phosphor (ZnCdS, < 10 μm) to increase light output Bushberg 2nd ed fig. 9-6 II Gain Factors • Flux Gain (FG) – Increase no. light photons emitted from output phosphor compared to input phosphor; 50 - 100 typical • Minification Gain (MG) – (dia. Input/dia. Output)2 – e.g., 23 cm to 2.5 cm => 85 • Brightness
    [Show full text]
  • Radiation Protection Research and Training Programme 1990-91
    * * Commission of the European Communities radiation protection Radiation protection research and training programme 1990-91 Catalogue of contracts Commission of the European Communities radiation protection Radiation protection research and training programme 1990-91 Catalogue of contracts Edited by: Commission of the European Communities Environment, Consumer Protection and Nuclear Safety Rue de la Loi 200 B-1049 Brussels Directorate-General r ii ./■...!. Science, Research and Development I PAN., i,::? " r c 1991 „ 0 '- - EUR 13387 EN Published by the COMMISSION OF THE EUROPEAN COMMUNITIES Directorate-General Telecommunications, Information Industries and Innovation L-2920 Luxembourg LEGAL NOTICE Neither the Commission of the European Communities nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information Cataloguing data can be found at the end of this publication Luxembourg: Office for Official Publications of the European Communities, 1991 ISBN 92-826-2525-7 Catalogue number: CD-NA-13387-EN-C © ECSC-EEC-EAEC, Brussels • Luxembourg, 1991 Printed in Belgium Preface: The Community Radiation Protection Research and Training Programme was initiated in the framework of the EURATOM TREATY almost 30 years ago. During this time it has undergone major changes in adapting itself to new research needs in relation to the changing demands of radiation protection policies and practices and to new applications of ionizing radiation. The present catalogue of contracts which presents a complete overview of the 1990-1991 Radiation Protection Programme bears witness to this. The Commission now favours multi-partner contracts which allow an even better integration of the work of different institutes into a common goal.
    [Show full text]
  • December 2018
    A Guide To Canada’s Export Control List December 2018 Introduction INTRODUCTION The issuance of export permits under the Export and Import Permits Act (EIPA) is administered by the Trade and Export Controls Bureau of Global Affairs Canada. To assist exporters, the Trade and Export Controls Bureau publishes on its website (www.exportcontrols.gc.ca) important information, such as the Export Controls Handbook, Export Controls Online (EXCOL), Notices to Exporters, Frequently Asked Questions (FAQs), Commodity Codes, and the contact information for the divisions in the Trade and Export Controls Bureau administering export controls for specific items. For information on how to apply for an export permit and additional information on export controls, please refer to our website: www.exportcontrols.gc.ca. For detailed information on export controls, please refer to the Export Controls Handbook: The main reference tool to assist exporters with questions about the administration of Canada’s export controls (except export of logs). The handbook includes how to obtain the necessary permits for the export or transfer of controlled items and how to comply with the requirements of the Export and Import Permits Act and its related regulations. To enquire on the status of an export permit application: Recognized EXCOL users can check the status of an export permit application on-line. Non-recognized users can obtain, from our website (www.exportcontrols.gc.ca), the contact information for the appropriate division responsible for administering the specific control and request a status by providing their export permit application identification (ref ID) number. Export Control List The Regulation establishing Canada’s Export Control List (ECL) can be found at the Department of Justice website at www.laws.justice.gc.ca/eng/regulations.
    [Show full text]
  • Image Intensifier User Guide
    Image Intensifier User Guide This User Manual is intended to provide guidelines for the safe operation of Photek MCP Intensifiers. (Please take particular note of pages 3 and 4). If you require any further details or assistance, please contact Sales or visit: www.photek.co.uk Contents Health and Safety Advice.......................................................................................... 3 High Voltage ..............................................................................................................3 X-Ray Radiation .........................................................................................................3 Storage and Handling ............................................................................................... 3 Operation with an External PSU ................................................................................4 Operation with a Wrap-Around or Flat Pack PSU .....................................................4 Image Intensifiers ..................................................................................................... 5 Introduction ...............................................................................................................5 Mode of Operation ....................................................................................................5 Input Windows ..........................................................................................................5 Spectral Sensitivities of various Photocathodes ........................................................6
    [Show full text]
  • Introduction to Image Intensifier Tubes
    Introduction to Image Intensifier Tubes General The basic principle of image intensification is identical for all different intensifier versions. Fig. 1: Basic principle An image - ultraviolet, visible light, or near infrared - is projected onto the transparent window of the vacuum tube as shown in Fig. 1. The vacuum side of this window carries a sensitive layer called the photocathode. Light radiation causes the emission of electrons from the photocathode into the vacuum which are then accelerated by an applied DC voltage towards a luminescent screen (phosphor screen) situated opposite the photocathode. The screen's phosphor in turn converts high energy electrons back to light (photons), which corresponds to the distribution of the input image radiation but with a flux amplified many times. The terminology "image intensifier" and "image converter" are frequently confused. In par- ticular, image conversion refers to the transfer from an invisible to a visible spectral range, such as image converters used in night vision. On the other hand, image intensifiers which perform as the name suggests often also function as image converters. Image intensifiers are classified in three categories: first, second, and third generation. Each generation has specific advantages and disadvantages. 1 First Generation Image Intensifiers (Intensifier Diodes) Intensifier tubes in this category feature especially high image resolution, a wide dynamic range (the ability to reproduce the ratio between the bright and dark parts of an image), and low noise. They possess moderate gain in the range of some hundreds of Lumens per Lu- men (Im/Im). First generation tubes utilize only a single potential difference to accelerate electrons from the cathode to the anode (screen).
    [Show full text]
  • Charge-Coupled Devices (Ccds) Are Well Suited As Synchrotron X-Ray Detectors
    ^c --/-/ Presented at the 5th National Conference on Synchrotron Radiation Instrumentation, Madison, Wisconsin, June 21-25, 1987 CCD SENSORS IN SYNCHROTRON X-RAY DETECTORS* M. G. Strauss, I. Naday+, I. S. Sherman, M. R. Kraimer E. M. Westbrook and N. J. Zaluzec Argonne National Laboratory cntav Rinmn- n Argonne, Illinois 60439, USA o/uoiu -i/ ABSTRACT DE88 002930 The intense photon flux from advanced synchrotron light sources, such as the 7-Gev synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron x-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm2 can be imaged on a 2 cm2 CCD. With a conversion efficiency of ~1 CCD electron/x-ray photon, a peak saturation capacity of >10e x rays can be obtained. A programmable CCD controller operating at a clock frequency of 2 0 MHz has been developed. The readout rate is 5xlO6 pixels/s and the shift rate in the parallel registers is 106 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode x-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at the rate of ~l frame/s or a complete 3-dimensional data set from a single crystal in ~2 min. * Work supported by the U. S. Department of Energy under Contract W-31-109-Eng-38. + Present address: Central Research Institute for Physics, P. O.
    [Show full text]