Modern Mass Spectrometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Introduction to Isotopic Calculations John M
An Introduction to Isotopic Calculations John M. Hayes ([email protected]) Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA, 30 September 2004 Abstract. These notes provide an introduction to: termed isotope effects. As a result of such effects, the • Methods for the expression of isotopic abundances, natural abundances of the stable isotopes of practically • Isotopic mass balances, and all elements involved in low-temperature geochemical • Isotope effects and their consequences in open and (< 200°C) and biological processes are not precisely con- closed systems. stant. Taking carbon as an example, the range of interest is roughly 0.00998 ≤ 13F ≤ 0.01121. Within that range, Notation. Absolute abundances of isotopes are com- differences as small as 0.00001 can provide information monly reported in terms of atom percent. For example, about the source of the carbon and about processes in 13 13 12 13 atom percent C = [ C/( C + C)]100 (1) which the carbon has participated. A closely related term is the fractional abundance The delta notation. Because the interesting isotopic 13 13 fractional abundance of C ≡ F differences between natural samples usually occur at and 13F = 13C/(12C + 13C) (2) beyond the third significant figure of the isotope ratio, it has become conventional to express isotopic abundances These variables deserve attention because they provide using a differential notation. To provide a concrete the only basis for perfectly accurate mass balances. example, it is far easier to say – and to remember – that Isotope ratios are also measures of the absolute abun- the isotope ratios of samples A and B differ by one part dance of isotopes; they are usually arranged so that the per thousand than to say that sample A has 0.3663 %15N more abundant isotope appears in the denominator and sample B has 0.3659 %15N. -
Mass Spectrometry: Quadrupole Mass Filter
Advanced Lab, Jan. 2008 Mass Spectrometry: Quadrupole Mass Filter The mass spectrometer is essentially an instrument which can be used to measure the mass, or more correctly the mass/charge ratio, of ionized atoms or other electrically charged particles. Mass spectrometers are now used in physics, geology, chemistry, biology and medicine to determine compositions, to measure isotopic ratios, for detecting leaks in vacuum systems, and in homeland security. Mass Spectrometer Designs The first mass spectrographs were invented almost 100 years ago, by A.J. Dempster, F.W. Aston and others, and have therefore been in continuous development over a very long period. However the principle of using electric and magnetic fields to accelerate and establish the trajectories of ions inside the spectrometer according to their mass/charge ratio is common to all the different designs. The following description of Dempster’s original mass spectrograph is a simple illustration of these physical principles: The magnetic sector spectrograph PUMP F DD S S3 1 r S2 Fig. 1: Dempster’s Mass Spectrograph (1918). Atoms/molecules are first ionized by electrons emitted from the hot filament (F) and then accelerated towards the entrance slit (S1). The ions then follow a semicircular trajectory established by the Lorentz force in a uniform magnetic field. The radius of the trajectory, r, is defined by three slits (S1, S2, and S3). Ions with this selected trajectory are then detected by the detector D. How the magnetic sector mass spectrograph works: Equating the Lorentz force with the centripetal force gives: qvB = mv2/r (1) where q is the charge on the ion (usually +e), B the magnetic field, m is the mass of the ion and r the radius of the ion trajectory. -
Mass Spectrometer Detectors
Mass Spectrometer Detectors www.sge.com Ion Detectors for Virtually all Mass Spectrometry Applications Electron multipliers are used in a wide range of applications to Figure 2. Secondary Electron Emission detect and measure small signals of ions, electrons or photons. One of the main applications for an electron multiplier is for 6 the detection of ions in a mass spectrometer. ACTIVE FILM Multipliers manufactured by ETP ( a division of SGE Group 5 of Companies) are the result of 15 years experience in 4 supplying high performance electron multipliers for use in mass spectrometry applications. The performance of this 3 unique type of ion detector has seen it become widely used in almost all fields of mass spectrometry (including ICP-MS, 2 GC-MS, LC-MS, TOF and SIMS). 1 An electron multiplier is used to detect the presence of ion Secondary Electron Emissions signals emerging from the mass analyser of a mass 0 spectrometer. It is essentially the "eyes" of the instrument (see 0 100 200 300 400 500 Figure 1). The task of the electron multiplier is to detect Incident Electron Energy (eV) every ion of the selected mass passed by the mass filter. How The average number of secondary electrons emitted from the efficiently the electron multiplier carries out this task surface of an ETP electron multiplier plotted against the represents a potentially limiting factor on the overall system energy of the incident primary electron. sensitivity. Consequently the performance of the electron multiplier can have a major influence on the overall (often referred to as a channel electron multiplier or CEM). -
Development of a Method for Xenon Determination in the Microstructure of High Burn-Up Nuclear Fuel
Diss. ETH No. 17527 Development of a Method for Xenon Determination in the Microstructure of High Burn-up Nuclear Fuel A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the degree of Dr. sc. ETH presented by MATTHIAS ISTVAN HORVATH Dipl. Phys. ETH born 24 August 1974 citizen of Châtillon (FR), Männedorf (ZH) - Switzerland citizen of Hungary accepted on the recommendation of Prof. Dr. D. Günther, examiner Prof. Dr. A. Wokaun, co-examiner Prof. Dr. Ch. Heinrich, co-examiner Dr. Ch. Hellwig, co-examiner 2008 II III Acknowledgements As many major work, this thesis could not have been performed and written, without the help and support of numerous people. This is especially true since this work was carried out at PSI and some experiments also at ETH combining different fields of research. I would like to send a special thank to my thesis advisor, Prof. Dr. Detlef Günther, and my supervisor Dr. Christian Hellwig for their support of my work at ETH and PSI. I am grateful to Dr. Marcel Guillong, with whom I got into the "world of LA-ICP-MS", and who’s experience was a great benefit. I would also to thank the members of the groups of Dr. Ines Günther-Leopold (Isotope and Element Analysis), Dr. Didier Gavillet (Surface and Solid State Materials), Daniel Kuster (Hot Cell Experiments), Dr. Johannes Bertsch (Core Safety Material Behavior) at PSI, and the trace element group of Prof. Dr. Detlef Günther at ETH. Without their support and the possibility using their infrastructure, this thesis could not be realized. -
Microchannel Plate Detectors
Reprinted from Nuclear Instruments and Methods, Vol. 162, 1979, pages 587 to 601 MICROCHANNEL PLATE DETECTORS JOSEPH LADISLAS WIZA 1. Introduction typical. Originally developed as an amplification element for A microchannel plate (MCP) is an array of 104-107 image intensification devices, MCPs have direct sensitivity miniature electron multipliers oriented parallel to one to charged particles and energetic photons which has another (fig. 1); typical channel diameters are in the range extended their usefulness to such diverse fields as X-ray1) 10-100 µm and have length to diameter ratios (α) between and E.U.V.2) astronomy, e-beam fusion studies3) and of 40 and 100. Channel axes are typically normal to, or biased course, nuclear science, where to date most applications at a small angle (~8°) to the MCP input surface. The have capitalized on the superior MCP time resolution channel matrix is usually fabricated from a lead glass, characteristics4-6). treated in such a way as to optimize the secondary emission The MCP is the result of a fortuitous convergence of characteristics of each channel and to render the channel technologies. The continuous dynode electron multiplier walls semiconducting so as to allow charge replenishment was suggested by Farnsworth7) in 1930. Actual from an external voltage source. Thus each channel can be implementation, however, was delayed until the 1960s considered to be a continuous dynode structure which acts when experimental work by Oschepkov et al.8) from the as its own dynode resistor chain. Parallel electrical contact USSR, Goodrich and Wiley9) at the Bendix Research to each channel is provided by the deposition of a metallic Laboratories in the USA, and Adams and Manley10-11) at coating, usually Nichrome or Inconel, on the front and rear the Mullard Research Laboratories in the U.K. -
Structural Amd Analytical Studies by Tandem Mass Spectrometry
STRUCTURAL AMD ANALYTICAL STUDIES BY TANDEM MASS SPECTROMETRY A Thesis submitted by TRACEY MADDEN for the degree of Doctor of Philosophy in the University of London Faculty of Science Department of Pharmaceutical Chemistry The School of Pharmacy University of London ProQuest Number: U556261 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U556261 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 CONTENTS CHAPTER 1: INTRODUCTION 1.1 Tandem Mass Spectrometry ................... 1 REFERENCES ................................. 4 CHAPTER 2: THEORY 2.1 Mass Spectrometry ......................... 5 2.2 Formation of the Molecular Ion ............ 8 2.2.1 Vertical and Adiabatic Ionisation Potentials ......................... 9 2.2.2 Ionisation Efficiency Curve .......... 9 2.2.3 Appearance Energy ................... 10 2.3 Quasi Equilibrium Theory ................. 14 2.4 Fragmentation ............................ 16 2.4.1 Stevenson's Rule .................... 17 2.5 Rearrangement ............................ 19 2.6 Ion Stability ............................ 20 2.6.1 Stable Ions ......................... 20 2.6.2 Unstable Ions ....................... 21 2.6.3 Metastable Ions ..................... 21 2.6.3.1 Kinetic Energy Release ......... 22 2.6.3.2 Metastable Peak Shapes ....... -
Good Practice Guide for Isotope Ratio Mass Spectrometry, FIRMS (2011)
Good Practice Guide for Isotope Ratio Mass Spectrometry Good Practice Guide for Isotope Ratio Mass Spectrometry First Edition 2011 Editors Dr Jim Carter, UK Vicki Barwick, UK Contributors Dr Jim Carter, UK Dr Claire Lock, UK Acknowledgements Prof Wolfram Meier-Augenstein, UK This Guide has been produced by Dr Helen Kemp, UK members of the Steering Group of the Forensic Isotope Ratio Mass Dr Sabine Schneiders, Germany Spectrometry (FIRMS) Network. Dr Libby Stern, USA Acknowledgement of an individual does not indicate their agreement with Dr Gerard van der Peijl, Netherlands this Guide in its entirety. Production of this Guide was funded in part by the UK National Measurement System. This publication should be cited as: First edition 2011 J. F. Carter and V. J. Barwick (Eds), Good practice guide for isotope ratio mass spectrometry, FIRMS (2011). ISBN 978-0-948926-31-0 ISBN 978-0-948926-31-0 Copyright © 2011 Copyright of this document is vested in the members of the FIRMS Network. IRMS Guide 1st Ed. 2011 Preface A few decades ago, mass spectrometry (by which I mean organic MS) was considered a “black art”. Its complex and highly expensive instruments were maintained and operated by a few dedicated technicians and its output understood by only a few academics. Despite, or because, of this the data produced were amongst the “gold standard” of analytical science. In recent years a revolution occurred and MS became an affordable, easy to use and routine technique in many laboratories. Although many (rightly) applaud this popularisation, as a consequence the “black art” has been replaced by a “black box”: SAMPLES GO IN → → RESULTS COME OUT The user often has little comprehension of what goes on “under the hood” and, when “things go wrong”, the inexperienced operator can be unaware of why (or even that) the results that come out do not reflect the sample that goes in. -
Comparison of the Characteristic Mass Fragmentations of Phenethylamines and Tryptamines by Electron Ionization Gas Chromatograph
applied sciences Article Comparison of the Characteristic Mass Fragmentations of Phenethylamines and Tryptamines by Electron Ionization Gas Chromatography Mass Spectrometry, Electrospray and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Bo-Hong Chen, Ju-Tsung Liu, Hung-Ming Chen, Wen-Xiong Chen and Cheng-Huang Lin * Department of Chemistry, National Taiwan Normal University, 88 Sec. 4 Tingchow Road, Taipei 11677, Taiwan; [email protected] (B.-H.C.); [email protected] (J.-T.L.); [email protected] (H.-M.C.); [email protected] (W.-X.C.) * Correspondence: [email protected]; Tel.: +886-2-7734-6170; Fax: +886-2-2932-4249 Received: 18 April 2018; Accepted: 19 June 2018; Published: 22 June 2018 Abstract: Characteristic mass fragmentation of 20 phenethylamine/tryptamine standards were investigated and compared by means of matrix assisted laser desorption/time-of-flight mass spectrometry (MALDI/TOFM), gas chromatography–electron ionization–mass spectrometry (GC-EI/MS) and liquid chromatography–electrospray ionization/mass spectrometry (LC-ESI/MS) + methods. As a result, three characteristic peaks ([M] and fragments from the Cβ-Cα bond breakage) were found to be unique and contained information useful in identifying 2C series compounds based on the GC-EI/MS method. We found that the protonated molecular ion ([M+H]+) and two types of fragments produced from the α-cleavage and β-cleavage processes were useful mass spectral information in the rapid screening and confirmation of phenethylamine and tryptamine derivatives when ESI/MS and MALDI/TOFMS methods were applied. This assay was successfully used to determine samples that contain illicit drugs. Keywords: phenethylamine; tryptamine; MALDI/TOFMS; GC-EI/MS; LC-ESI/MS 1. -
Mass Spectrometer Business Presentation Materials
Mass Spectrometer Business Presentation Materials Hiroto Itoi, Corporate Officer Deputy General Manager of the Analytical & Measuring Instruments Division Shimadzu Corporation Jul. 3, 2018 Contents I. Introduction • Expansion of Mass Spectrometry ………………………………………………………………… p.3 • History of Shimadzu's Growth in Mass Spectrometry …………………………………………… p.5 II. Overview of Mass Spectrometers • Operating Principle, Demand Trends, and Vendors ……………………………………………… p.9 • Mass Spectra ………………………………………………………………………………………… p.10 • Configuration of Mass Spectrometers …………………………………………………………… p.11 • Ionization …………………………………………………………………………………………… p.12 • Mass Separation …………………………………………………………………………………… p.14 III. Shimadzu's Mass Spectrometer Business • Product Type ………………………………………………………………………………………… p.17 • Application Software ………………………………………………………………………………… p.18 • Growth Strategy for Mass Spectrometer Business ……………………………………………… p.19 • Expand/Improve Product Lines …………………………………………………………………… p.20 • Measures to Expand Application Fields …………………………………………………………… p.24 • Measures to Automate Data Processing Using AI ……………………………………………… p.25 IV. Summary • Future Direction ……………………………………………………………………………………… p.26 July 2018 Mass Spectrometer Business Presentation Materials 2 I. Introduction Expansion of Mass Spectrometry (1) Why Mass Spectrometry? Mass spectrometry is able to analyze a wide variety of compounds with high accuracy and high efficiency (simultaneous multicomponent analysis). It offers superior characteristics that are especially beneficial in the following fields, -
Coupling Gas Chromatography to Mass Spectrometry
Coupling Gas Chromatography to Mass Spectrometry Introduction The suite of gas chromatographic detectors includes (roughly in order from most common to the least): the flame ionization detector (FID), thermal conductivity detector (TCD or hot wire detector), electron capture detector (ECD), photoionization detector (PID), flame photometric detector (FPD), thermionic detector, and a few more unusual or VERY expensive choices like the atomic emission detector (AED) and the ozone- or fluorine-induce chemiluminescence detectors. All of these except the AED produce an electrical signal that varies with the amount of analyte exiting the chromatographic column. The AED does that AND yields the emission spectrum of selected elements in the analytes as well. Another GC detector that is also very expensive but very powerful is a scaled down version of the mass spectrometer. When coupled to a GC the detection system itself is often referred to as the mass selective detector or more simply the mass detector. This powerful analytical technique belongs to the class of hyphenated analytical instrumentation (since each part had a different beginning and can exist independently) and is called gas chromatograhy/mass spectrometry (GC/MS). Placed at the end of a capillary column in a manner similar to the other GC detectors, the mass detector is more complicated than, for instance, the FID because of the mass spectrometer's complex requirements for the process of creation, separation, and detection of gas phase ions. A capillary column is required in the chromatograph because the entire MS process must be carried out at very low pressures (~10-5 torr) and in order to meet this requirement a vacuum is maintained via constant pumping using a vacuum pump. -
20.5 Ion Detectors
20.5 Ion Detectors • the Faraday cup neutralizes ions to provide a high-precision measurement • the electron multiplier generates a pulse of current for each ion • the photon multiplier uses conversion dynodes to monitor both positive and negative ions • the two multipliers are capable of fast measurements, thus compatible with TOF or Fourier transform methods 20.5 : 1/4 Faraday Cup slit Ions exiting the analyzer are slowed by Faraday cup a positive potential and impact the ion + grounded electrode. At the electrode beam + they are __________ by electrons that RL travel through the load resistor. This ion suppressor causes a voltage across the load resistor that is measured by a high input impedance voltmeter. The impacted electrode is at an angle so that any secondary ions that are created are _____________ by the grounded wall. Of all ion detectors, the Faraday cup provides the most precise relationship between the number of ions exiting the analyzer and the electrical measurement. It is used in __________ experiments such as isotope dilution. Because very small currents are measured, the Faraday cup cannot be used for experiments involving rapid scanning. 20.5 : 2/4 Electron Multiplier ion beam An electron multiplier is constructed just like a photomultiplier but without 16e- 4e- 3 - a _______________. It has dynodes 10 e RL constructed from a Cu/Be alloy, which dynodes is a good secondary electron emitter. +V The dynode potentials are such that the first is grounded and each subsequent one is 100 V more positive. This makes the voltage measurement a little tricky because one end of the load resistor is connected to positive _____________. -
Contents • Introduction to Proteomics and Mass Spectrometry
Contents • Introduction to Proteomics and Mass spectrometry - What we need to know in our quest to explain life - Fundamental things you need to know about mass spectrometry • Interfaces and ion sources - Electrospray ionization (ESI) - conventional and nanospray - Heated nebulizer atmospheric pressure chemical ionization - Matrix assisted laser desorption • Types of MS analyzers - Magnetic sector - Quadrupole - Time-of-flight - Hybrid - Ion trap In the next step in our quest to explain what is life The human genome project has largely been completed and many other genomes are surrendering to the gene sequencers. However, all this knowledge does not give us the information that is needed to explain how living cells work. To do that, we need to study proteins. In 2002, mass spectrometry has developed to the point where it has the capacity to obtain the "exact" molecular weight of many macromolecules. At the present time, this includes proteins up to 150,000 Da. Proteins of higher molecular weights (up to 500,000 Da) can also be studied by mass spectrometry, but with less accuracy. The paradigm for sequencing of peptides and identification of proteins has changed – because of the availability of the human genome database, peptides can be identified merely by their masses or by partial sequence information, often in minutes, not hours. This new capacity is shifting the emphasis of biomedical research back to the functional aspects of cell biochemistry, the expression of particular sets of genes and their gene products, the proteins of the cell. These are the new goals of the biological scientist: o to know which proteins are expressed in each cell, preferably one cell at a time o to know how these proteins are modified, information that cannot necessarily be deduced from the nucleotide sequence of individual genes.