Gas Discharge Fundamentals

Fall, 2017

Kyoung-Jae Chung

Department of Nuclear Engineering Seoul National University Thermionic emission

๏ฌ Theoretically, the current density, , of emitted from a at an absolute temperature, (K), is given by: ๐ฝ๐ฝ๐‘’๐‘’ = / ๐‘‡๐‘‡ Richardson-Dushman equation 2 โˆ’๐‘’๐‘’๐œ‘๐œ‘ ๐‘˜๐‘˜๐‘˜๐‘˜ Work function (eV) ๐‘’๐‘’ ๏ฌ Schottky๐ฝ๐ฝ effect๐ด๐ด๐‘‡๐‘‡ ๐‘’๐‘’(field enhanced thermionic emission): For a constant temperature, the current still slowly increases with the applied extraction potential by lowering the surface barrier.

= exp 4 2 ๐‘’๐‘’ ๐‘’๐‘’ ๐‘’๐‘’๐‘’๐‘’ ๐ฝ๐ฝ ๐ด๐ด๐‘‡๐‘‡ โˆ’ ๐œ‘๐œ‘ โˆ’ 0 ๏ฌ Space charge limited current๐‘˜๐‘˜๐‘˜๐‘˜ : When๐œ‹๐œ‹ ๐œ€๐œ€the external electric field is not sufficiently high, the emitted current density is limited by space charge. The space charge limited current is determined by the extraction voltage and independent of the cathode current. ๏ฌ Emission (source) limited current: When the external electric field is sufficiently high, the saturation emission electron current is determined by the cathode temperature.

2/29 Radiation Source Engineering, Fall 2017 Secondary electron emission (SEE)

๏ฌ Electrons, or neutral cause secondary electron emission through different physical processes. ๏ฌ The secondary electron emission is described by the secondary emission coefficient, , which is defined as the number of secondaries produced per an incident primary for normal incidence. = ๐›พ๐›พ ๏ฌ Since depends on the state of the surface, e.g. depending on the ๐‘›๐‘›๐‘’๐‘’ ๐›พ๐›พ surface film, there is an extremely wide variation in the measured values. ๐‘›๐‘›๐‘๐‘ ๐›พ๐›พ SEE by impact ( )

๐‘–๐‘– ๐›พ๐›พ SEE by electron impact ( )

๐›พ๐›พ๐‘’๐‘’

3/29 Radiation Source Engineering, Fall 2017 Secondary electron emission (SEE)

๏ฌ The coefficient of the secondary emission for a proton incident on a gold-plated tungsten filament with an of 1.6-15 keV is given by

= (1.06 ยฑ 0.01) / Ep is the proton energy in keV 1 2 ๏ฌ The dependence๐›พ๐›พ๐‘–๐‘– of SEE๐ธ๐ธ on๐‘๐‘ the incidence angle is given approximately by a sec law. ๏ฌ SEE for an ion of a diatomic molecule is ๐œƒ๐œƒ about double of that for an atomic ion with half the energy of the molecular ion. ๏ฌ The energy distribution of the secondary electrons is almost Maxwellian. The mean energy of secondary electrons is about 5 eV. The majority of electrons have less than 20 eV. ๏ฌ The angular distribution of the secondary electrons approximates a cosine law.

4/29 Radiation Source Engineering, Fall 2017 Surface ionization (thermal ionization)

๏ฌ When an atom or molecule is adsorbed on a metal surface for a time long enough to reach thermodynamic equilibrium, the valence electron level of the adsorbed atom is sufficiently broadened and surface work function is modified, resulting in the valence electron moving between the adsorbed atom and the surface. ๏ฌ When the surface temperature is hot enough to desorb the particles, the evaporated particles can be in the state of ions (positive of negative) or neutrals. This ionization phenomenon is called the positive or negative surface ionization. ๏ฌ For a thermodynamic equilibrium process, the degree of positive surface ionization ( ) as a function of surface temperature is given by the Saha- Langmuir equation: ๐›ผ๐›ผ ( ) = = exp = exp ๐‘–๐‘– ๐‘›๐‘›๐‘–๐‘– ๐‘’๐‘’ ๐‘ˆ๐‘ˆ๐‘–๐‘– โˆ’ ๐œ‘๐œ‘ ๐‘Š๐‘Š โˆ’ ๐ธ๐ธ ๏ฌ ๐›ผ๐›ผ ๐บ๐บ โˆ’ ๐บ๐บ Lowering of๐‘›๐‘› ๐ด๐ดionization potential๐‘˜๐‘˜๐‘˜๐‘˜ by external electric๐‘˜๐‘˜๐‘˜๐‘˜ field similar to Schottky effect:

= exp 4 ๐‘’๐‘’ ๐‘’๐‘’๐‘’๐‘’ ๐›ผ๐›ผ ๐บ๐บ โˆ’ ๐‘ˆ๐‘ˆ๐‘–๐‘– โˆ’ ๐œ‘๐œ‘ โˆ’ ๐‘˜๐‘˜๐‘˜๐‘˜ ๐œ‹๐œ‹๐œ€๐œ€0 5/29 Radiation Source Engineering, Fall 2017 Surface ionization

๏ฌ The surface ionization efficiency ( ) is given by: 1 1 = = = ๐›ฝ๐›ฝ= + 1 + 1 ( ) ๐‘›๐‘›๐‘–๐‘– ๐‘›๐‘›๐‘–๐‘– 1 + exp ๐›ฝ๐›ฝ โˆ’1 ๐‘›๐‘› ๐‘›๐‘›๐‘–๐‘– ๐‘›๐‘›๐ด๐ด ๐›ผ๐›ผ ๐‘’๐‘’ ๐‘ˆ๐‘ˆ๐‘–๐‘– โˆ’ ๐œ‘๐œ‘ ๏ฌ For < and 1, ๐บ๐บ ๐‘˜๐‘˜๐‘˜๐‘˜ ( ) ๐œ‘๐œ‘ ๐‘ˆ๐‘ˆ=๐‘–๐‘– ๐›ผ๐›ผ โ‰ช = exp For 1 ๐‘’๐‘’ ๐‘ˆ๐‘ˆ๐‘–๐‘– โˆ’ ๐œ‘๐œ‘ ๐‘›๐‘›๐‘–๐‘– ๐›ฝ๐›ฝ๐‘›๐‘› โ‰ˆ ๐›ผ๐›ผ๐‘›๐‘› ๐‘›๐‘›๐บ๐บ โˆ’ ๐›ผ๐›ผ โ‰ช ๏ฌ For > and ( ) , the majority๐‘˜๐‘˜๐‘˜๐‘˜ of evaporated atoms will be ionized ( 1) ๐œ‘๐œ‘ ๐‘ˆ๐‘ˆ๐‘–๐‘– ๐‘’๐‘’ ๐œ‘๐œ‘ โˆ’ ๐‘ˆ๐‘ˆ๐‘–๐‘– โ‰ซ ๐‘˜๐‘˜๐‘˜๐‘˜ 1 ๐›ฝ๐›ฝ โ‰ˆ For ๐‘›๐‘›๐‘–๐‘– โ‰ˆ ๐‘›๐‘› ๐›ผ๐›ผ โ‰ซ

6/29 Radiation Source Engineering, Fall 2017 Collision parameters

๏ฌ Let be the number of incident particles per unit volume at that undergo an โ€œinteractionโ€ with the target particles within a differential distance , removing them๐‘‘๐‘‘ ๐‘‘๐‘‘from the incident beam. Clearly, is proportional to , ๐‘ฅ๐‘ฅ , and for infrequent collisions within . ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘›๐‘› ๐‘›๐‘›๐‘”๐‘” ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐‘”๐‘” ๐‘”๐‘” ๏ฌ The collided๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ flux:๐œŽ๐œŽ๐‘›๐‘›๐‘›๐‘› ๐‘‘๐‘‘๐‘‘๐‘‘ (x) = 1 ๐‘‘๐‘‘/ ๐šช๐šช โˆ’๐œŽ๐œŽ๐šช๐šช๐‘›๐‘› ๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’๐‘ฅ๐‘ฅ ๐œ†๐œ† ฮ“ ฮ“10 โˆ’ ๐‘’๐‘’ ๏ฌ Mean free path: =

ฮป ๐‘›๐‘›๐‘”๐‘”๐œŽ๐œŽ ๏ฌ Mean collision time: = ๐œ†๐œ† ๐œ๐œ ๏ฌ Collision frequency: = ๐‘ฃ๐‘ฃ =

๐œˆ๐œˆ ๐‘›๐‘›๐‘”๐‘”๐œŽ๐œŽ๐‘ฃ๐‘ฃ ๐‘›๐‘›๐‘”๐‘”๐พ๐พ ๏ฌ Rate constant: =

๐พ๐พ ๐œŽ๐œŽ๐‘ฃ๐‘ฃ 7/29 Radiation Source Engineering, Fall 2017 Elastic and inelastic collisions

๏ฌ Collisions conserve momentum and energy: the total momentum and energy of the colliding particles after collision are equal to that before collision. ๏ฌ Electrons and fully stripped ions possess only kinetic energy. Atoms and partially stripped ions have internal energy level structures and can be excited, de- excited, or ionized, corresponding to changes in potential energy. ๏ฌ It is the total energy, which is the sum of the kinetic and potential energy, that is conserved in a collision.

๏ฌ Elastic: the sum of kinetic energies of the collision partners are conserved. ๏ฌ Inelastic: the sum of kinetic energies are not conserved. ionization and excitation. the sum of kinetic energies after collision is less than that before collision. ๏ฌ Super-elastic: the sum of kinetic energies are increased after collision. de- excitation.

8/29 Radiation Source Engineering, Fall 2017 Elastic collision: energy transfer

, โ€ฒ ๐‘š๐‘š1 ๐‘ฃ๐‘ฃ1

1 , , = 0 ๐œƒ๐œƒ ๐œƒ๐œƒ2 , ๐‘š๐‘š1 ๐‘ฃ๐‘ฃ1 ๐‘š๐‘š2 ๐‘ฃ๐‘ฃ2 ๏ฌ The conservation of momentum and energy gives โ€ฒ ๐‘š๐‘š2 ๐‘ฃ๐‘ฃ2 '' '' mv11๏€ฝ๏€ซ mv 11cos๏ฑ 1 mv 22 cos ๏ฑ 2 0 ๏€ฝ๏€ญmv11 sin ๏ฑ๏ฑ 1 mv 22 sin 2 1 11 mv2 ๏€ฝ๏€ซ mv'2 mv'2 211 22 11 22

11'2 2 4mm12 2 ๏ฌ Eliminate and , then mv22 ๏€ฝ mv11 2 cos ๏ฑ2 2 2(mm๏€ซ ) โ€ฒ 12 1 1 ๐‘ฃ๐‘ฃ ๐œƒ๐œƒ 4mm ๏บ๏ฑ๏€ฝ 12 cos2 ๏ฌ The fraction of energy lost by the projectile: L 2 2 ()mm12๏€ซ

9/29 Radiation Source Engineering, Fall 2017 Energy transfer by elastic collision

๏ฌ Energy transfer rate (averaging over scattering angle)

4 2 = cos = + + ๐‘š๐‘š1๐‘š๐‘š2 2 ๐‘š๐‘š1๐‘š๐‘š2 ๐œ๐œ๐ฟ๐ฟ 2 ๐œƒ๐œƒ2 2 ๐‘š๐‘š1 ๐‘š๐‘š2 ๐‘š๐‘š1 ๐‘š๐‘š2 ๏ฌ Electron-electron collision ( = ) : effective energy transfer

2 1 1 2 = =๐‘š๐‘š ๐‘š๐‘š : Quickly thermalized + 2 ๐‘š๐‘š1๐‘š๐‘š2 ๐ฟ๐ฟ 2 ๐œ๐œ 1 2 ๏ฌ Electron-ion or๐‘š๐‘š electron๐‘š๐‘š -neutral collision ( )

2 2 1 2 = 10 ๐‘š๐‘š โ‰ช: Hard๐‘š๐‘š to be thermalized + ๐‘š๐‘š1๐‘š๐‘š2 ๐‘š๐‘š1 โˆ’4 ๐ฟ๐ฟ 2 ๐œ๐œ 1 2 โ‰ˆ 2 โ‰ˆ ๏ฌ Therefore, in weakly๐‘š๐‘š ๐‘š๐‘š ionized๐‘š๐‘š plasma

: Non-equilibrium

๐‘‡๐‘‡๐‘’๐‘’ โ‰ซ ๐‘‡๐‘‡๐‘–๐‘– โ‰ˆ ๐‘‡๐‘‡๐‘›๐‘› Table tennis ball (2.5 g) Bowling ball (10 lb.)

10/29 Radiation Source Engineering, Fall 2017 Actual velocity dependence of elastic e-n collision

๏ฌ Probability of collision: the average number of collisions in 1 cm of path through a gas at 1 Torr at 273K

๏ฎel ๏€ฝ vp0 Pc

Hard-sphere-like

~1/v polarization scattering dominant ~1/v polarization scattering dominant

Ramsauer effect: quantum mechanical wave diffraction of the electron around the atom at low energy

11/29 Radiation Source Engineering, Fall 2017 Inelastic collision

๏ฌ Inelastic collision: the sum of kinetic energies are not conserved. Where is the lost energy? ๏ƒ  transferred to internal energy (ionization, excitation, dissociation) - Atomic gases : electronic transition - Molecules : excitation of rotational and vibrational states

, โ€ฒ ๐‘š๐‘š1 ๐‘ฃ๐‘ฃ1

1 , , = 0 ๐œƒ๐œƒ 2 ๐œƒ๐œƒ , , ๐‘š๐‘š1 ๐‘ฃ๐‘ฃ1 ๐‘š๐‘š2 ๐‘ฃ๐‘ฃ2 โ€ฒ ๐‘š๐‘š2 ๐‘ฃ๐‘ฃ2 โˆ†๐‘ˆ๐‘ˆ โ€ข Find , Hint: = 0

๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š โˆ†๐‘ˆ๐‘ˆ โˆ†๐‘ˆ๐‘ˆ โ€ฒ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž โˆ†๐‘ˆ๐‘ˆ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐‘‘๐‘‘๐‘ฃ๐‘ฃ2 12/29 Radiation Source Engineering, Fall 2017 Inelastic collision

๏ฌ The maximum obtainable internal energy

= = cos 1 + ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š 2 2 ๐ฟ๐ฟ 2โˆ†๐‘ˆ๐‘ˆ ๐‘š๐‘š 2 ๐œ๐œ 2 1 2 ๐œƒ๐œƒ ๐‘š๐‘š1๐‘ฃ๐‘ฃ1 ๐‘š๐‘š ๐‘š๐‘š ๏ฌ = 1 m1 << m2 + ๐‘š๐‘š2 ๐œ๐œ โ‰ˆ ๏ƒ  Almost all electron energy๐‘š๐‘š1 ๐‘š๐‘š may2 be transferred to the internal energy of the heavy

๏ฌ = 0 m1 >> m2 + ๐‘š๐‘š2 ๐œ๐œ โ‰ˆ ๐‘š๐‘š1 ๐‘š๐‘š2 1 ๏ฌ m = m = 1 2 + 2 ๐‘š๐‘š2 ๐œ๐œ โ‰ˆ ๏ƒ  When using H+ ions ๐‘š๐‘što1 ionize๐‘š๐‘š2 hydrogen atoms, the minimum required H+ energy is double the ionization energy for atomic hydrogen.

13/29 Radiation Source Engineering, Fall 2017 Photon induced ionization

๏ฌ Photo-ionization hฮฝ + A โ†’ e + A+ The physical process in which an incident photon ejects one or more electrons from an atom, ion or molecule. This is essentially the same process that occurs with the with metals. To provide the ionization, the photo wavelength should be usually less than 1000 ร…, which is ultraviolet radiation.

12,400 < ( ) ๐œ†๐œ† โ„ซ . =๐ผ๐ผ ๐‘’๐‘’๐‘’๐‘’

๐พ๐พ ๐ธ๐ธ โ„Ž๐œˆ๐œˆ โˆ’ ๐ผ๐ผ

14/29 Radiation Source Engineering, Fall 2017 Electron induced ionization

๏ฌ Electron impact ionization e + A โ†’ e + e + A+ Electrons with sufficient energy (> 10 eV) can remove an electron from an atom and produce one extra electron and an ion. Thomson cross section:

15/29 Radiation Source Engineering, Fall 2017 Recombination of charged particles

๏ฌ Radiative recombination e + A+ โ†’ A + hฮฝ

๏ฌ Electron-ion recombination e + A+ + A โ†’ A* + A For electron-ion recombination, a third-body must be involved to conserve the energy and momentum conservation. Abundant neutral species or reactor walls are ideal third-bodies. This recombination process typically results in excited neutrals.

16/29 Radiation Source Engineering, Fall 2017 Diffusion and mobility

๏ฌ The fluid equation of motion including collisions

= + = ๐‘‘๐‘‘๐’–๐’– ๐œ•๐œ•๐’–๐’– ๐‘š๐‘š๐‘š๐‘š ๐‘š๐‘š๐‘š๐‘š ๐’–๐’– ๏ฟฝ ๐œต๐œต ๐’–๐’– ๐‘ž๐‘ž๐‘ž๐‘ž๐‘ฌ๐‘ฌ โˆ’ ๐œต๐œต๐‘๐‘ โˆ’ ๐‘š๐‘š๐‘š๐‘š๐œˆ๐œˆ๐‘š๐‘š๐’–๐’– ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œ•๐œ•๐œ•๐œ• ๏ฌ In steady-state, for isothermal plasmas 1 1 = =

๐’–๐’– ๐‘š๐‘š ๐‘ž๐‘ž๐‘ž๐‘ž๐‘ฌ๐‘ฌ โˆ’ ๐œต๐œต๐‘๐‘ ๐‘š๐‘š ๐‘ž๐‘ž๐‘ž๐‘ž๐‘ฌ๐‘ฌ โˆ’ ๐‘˜๐‘˜๐‘˜๐‘˜๐œต๐œต๐‘›๐‘› = ๐‘š๐‘š๐‘š๐‘š๐œˆ๐œˆ = ยฑ๐‘š๐‘š๐‘š๐‘š๐œˆ๐œˆ ๐‘ž๐‘ž ๐‘˜๐‘˜๐‘˜๐‘˜ ๐œต๐œต๐‘›๐‘› ๐œต๐œต๐‘›๐‘› ๐‘ฌ๐‘ฌ โˆ’ Drift๐œ‡๐œ‡๐‘ฌ๐‘ฌ โˆ’ Diffusion๐ท๐ท ๐‘š๐‘š๐œˆ๐œˆ๐‘š๐‘š ๐‘š๐‘š๐œˆ๐œˆ๐‘š๐‘š ๐‘›๐‘› ๐‘›๐‘› ๏ฌ In terms of particle flux = Einstein relation = = ยฑ ๐‘ž๐‘ž ๐ท๐ท ๐œ‡๐œ‡ โˆถ ๐‘˜๐‘˜๐‘˜๐‘˜ ๐šช๐šช ๐‘›๐‘›๐’–๐’– ๐‘›๐‘›๐œ‡๐œ‡๐‘ฌ๐‘ฌ โˆ’ ๐ท๐ท๐œต๐œต๐‘›๐‘› = Mobility = Diffusion coefficient ๐‘ž๐‘ž ๐‘˜๐‘˜๐‘˜๐‘˜ ๐œ‡๐œ‡ โˆถ ๐ท๐ท โˆถ ๐‘š๐‘š๐œˆ๐œˆ๐‘š๐‘š ๐‘š๐‘š๐œˆ๐œˆ๐‘š๐‘š 17/29 Radiation Source Engineering, Fall 2017 Ambipolar diffusion

๏ฌ The flux of electrons and ions out of any region must be equal such that charge does not build up. Since the electrons are lighter, and would tend to flow out faster in an unmagnetized plasma, an electric field must spring up to maintain the local flux balance.

= + =

๏ฌ Ambipolar๐›ค๐›ค๐‘–๐‘– ๐‘›๐‘› electric๐œ‡๐œ‡๐‘–๐‘–๐ธ๐ธ โˆ’ ๐ท๐ท field๐‘–๐‘–๐›ป๐›ป๐›ป๐›ป for = ๐›ค๐›ค๐‘’๐‘’ โˆ’๐‘›๐‘›๐œ‡๐œ‡๐‘’๐‘’๐ธ๐ธ โˆ’ ๐ท๐ท๐‘’๐‘’๐›ป๐›ป๐›ป๐›ป

๐‘–๐‘– ๐‘’๐‘’ = ฮ“ ฮ“ + ๐ท๐ท๐‘–๐‘– โˆ’ ๐ท๐ท๐‘’๐‘’ ๐›ป๐›ป๐›ป๐›ป ๐ธ๐ธ ๏ฌ The common๐œ‡๐œ‡๐‘–๐‘– ๐œ‡๐œ‡ particle๐‘’๐‘’ ๐‘›๐‘› flux + = = + ๐œ‡๐œ‡๐‘’๐‘’๐ท๐ท๐‘–๐‘– ๐œ‡๐œ‡๐‘–๐‘–๐ท๐ท๐‘’๐‘’ ฮ“ โˆ’ ๐›ป๐›ป๐›ป๐›ป โˆ’๐ท๐ท๐‘Ž๐‘Ž๐›ป๐›ป๐›ป๐›ป ๏ฌ The ambipolar๐œ‡๐œ‡๐‘–๐‘– diffusion๐œ‡๐œ‡๐‘’๐‘’ coefficient for weakly ionized plasmas + T = + 1 + ~ T ๐‘’๐‘’ ๐‘–๐‘– + ๐‘–๐‘– ๐‘’๐‘’ ๐‘–๐‘– Te ๐‘Ž๐‘Ž ๐œ‡๐œ‡ ๐ท๐ท ๐œ‡๐œ‡ ๐ท๐ท ๐‘–๐‘– ๐œ‡๐œ‡ ๐‘’๐‘’ ๐‘–๐‘– ๐‘–๐‘– e ๐ท๐ท ๐‘–๐‘– ๐‘’๐‘’ โ‰ˆ ๐ท๐ท ๐‘’๐‘’ ๐ท๐ท โ‰ˆ ๐ท๐ท i ๐œ‡๐œ‡ 18/29 ๐œ‡๐œ‡ ๐œ‡๐œ‡ Radiation๐œ‡๐œ‡ Source Engineering, Fall 2017 Diffusion across a magnetic field

๏ฌ The perpendicular component of the force equation for either species

0 = ( + ร— )

๏ฌ In terms๐‘ž๐‘ž of๐‘ž๐‘ž ๐‘ฌ๐‘ฌthe rectangular๐’–๐’–โŠฅ ๐‘ฉ๐‘ฉ0 โˆ’ components๐‘˜๐‘˜๐‘˜๐‘˜๐œต๐œต๐‘›๐‘› โˆ’ ๐‘š๐‘š๐‘š๐‘š๐œˆ๐œˆ๐‘š๐‘š๐’–๐’–โŠฅ

= + = ยฑ + ๐œ•๐œ•๐œ•๐œ• ๐ท๐ท ๐œ•๐œ•๐œ•๐œ• ๐œ”๐œ”๐‘๐‘ ๐‘š๐‘š๐‘š๐‘š๐œˆ๐œˆ๐‘š๐‘š๐‘ข๐‘ข๐‘ฅ๐‘ฅ ๐‘ž๐‘ž๐‘ž๐‘ž๐ธ๐ธ๐‘ฅ๐‘ฅ โˆ’ ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘ž๐‘ž๐‘ž๐‘ž๐‘ข๐‘ข๐‘ฆ๐‘ฆ๐ต๐ต0 ๐‘ข๐‘ข๐‘ฅ๐‘ฅ ๐œ‡๐œ‡๐ธ๐ธ๐‘ฅ๐‘ฅ โˆ’ ๐‘ข๐‘ข๐‘ฆ๐‘ฆ = ๐œ•๐œ•๐œ•๐œ• = ยฑ ๐‘›๐‘› ๐œ•๐œ•๐œ•๐œ• ๐œˆ๐œˆ๐‘š๐‘š ๐‘๐‘ ๐‘š๐‘š ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ•๐œ•๐œ•๐œ• ๐‘ฅ๐‘ฅ 0 ๐ท๐ท ๐œ•๐œ•๐œ•๐œ• ๐œ”๐œ” ๐‘š๐‘š๐‘š๐‘š๐œˆ๐œˆ ๐‘ข๐‘ข ๐‘ž๐‘ž๐‘ž๐‘ž๐ธ๐ธ โˆ’ ๐‘˜๐‘˜๐‘˜๐‘˜ โˆ’ ๐‘ž๐‘ž๐‘ž๐‘ž๐‘ข๐‘ข ๐ต๐ต ๐‘ข๐‘ข๐‘ฆ๐‘ฆ ๐œ‡๐œ‡๐ธ๐ธ๐‘ฆ๐‘ฆ โˆ’ โˆ’ ๐‘ข๐‘ข๐‘ฅ๐‘ฅ ๏ฌ In terms of the rectangular๐œ•๐œ• components๐‘ฆ๐‘ฆ ๐‘›๐‘› ๐œ•๐œ•๐‘ฆ๐‘ฆ ๐œˆ๐œˆ๐‘š๐‘š 1 1 + = ยฑ + 2 ๐ท๐ท ๐œ•๐œ•๐œ•๐œ• 2 ๐ธ๐ธ๐‘ฆ๐‘ฆ 2 ๐‘˜๐‘˜๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ• ๐œ”๐œ”๐‘๐‘๐œ๐œ๐‘š๐‘š ๐‘ข๐‘ข๐‘ฅ๐‘ฅ ๐œ‡๐œ‡๐ธ๐ธ๐‘ฅ๐‘ฅ โˆ’ ๐œ”๐œ”๐‘๐‘๐œ๐œ๐‘š๐‘š โˆ’ ๐œ”๐œ”๐‘๐‘๐œ๐œ๐‘š๐‘š 1 1 + = ยฑ ๐‘›๐‘› ๐œ•๐œ•๐œ•๐œ• + ๐ต๐ต0 + ๐‘ž๐‘ž๐ต๐ต0 ๐‘›๐‘› ๐œ•๐œ•๐‘ฆ๐‘ฆ 2 ๐ท๐ท ๐œ•๐œ•๐œ•๐œ• 2 ๐ธ๐ธ๐‘ฅ๐‘ฅ 2 ๐‘˜๐‘˜๐‘˜๐‘˜ ๐œ•๐œ•๐œ•๐œ• ๐œ”๐œ”๐‘๐‘๐œ๐œ๐‘š๐‘š ๐‘ข๐‘ข๐‘ฆ๐‘ฆ ๐œ‡๐œ‡๐ธ๐ธ๐‘ฆ๐‘ฆ โˆ’ ๐œ”๐œ”๐‘๐‘๐œ๐œ๐‘š๐‘š ๐œ”๐œ”๐‘๐‘๐œ๐œ๐‘š๐‘š where, 1/ ๐‘›๐‘› ๐œ•๐œ•๐‘ฆ๐‘ฆ ๐ต๐ต0 ๐‘ž๐‘ž๐ต๐ต0 ๐‘›๐‘› ๐œ•๐œ•๐‘ฅ๐‘ฅ

๐œ๐œ๐‘š๐‘š โ‰ก ๐œˆ๐œˆ๐‘š๐‘š 19/29 Radiation Source Engineering, Fall 2017 Perpendicular mobility and diffusion coefficient

๏ฌ In vector form ExB drift Diamagnetic drift + ร— = ยฑ + = 1 + ( ) ๐œต๐œต๐‘›๐‘› ๐’–๐’–๐ธ๐ธ ๐’–๐’–๐ท๐ท ๐‘ฌ๐‘ฌ ๐‘ฉ๐‘ฉ0 ๐’–๐’–โŠฅ ๐œ‡๐œ‡โŠฅ๐‘ฌ๐‘ฌ โˆ’ ๐ท๐ทโŠฅ โˆ’2 ๐’–๐’–๐ธ๐ธ 2 where, ๐‘›๐‘› ๐œ”๐œ”๐‘๐‘๐œ๐œ๐‘š๐‘š ๐ต๐ต0 ร— = = = ๐‘˜๐‘˜๐‘˜๐‘˜ ๐œต๐œต๐‘›๐‘› ๐‘ฉ๐‘ฉ0 1 + 1 + ๐’–๐’–๐ท๐ท โˆ’ 2 ๐œ‡๐œ‡ ๐ท๐ท 0 โŠฅ 2 โŠฅ 2 ๐‘ž๐‘ž๐ต๐ต ๐‘›๐‘› ๐œ‡๐œ‡ ๐‘๐‘ ๐‘š๐‘š ๐ท๐ท ๏ฌ The mobility and๐œ”๐œ” ๐œ๐œ diffusion fluxes perpendicular๐œ”๐œ”๐‘๐‘ ๐œ๐œto๐‘š๐‘š the field exist only in the presence of collisions, and are slowed by the presence of the magnetic field. 1 ๏ฌ Note that = ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘˜๐‘˜๐‘˜๐‘˜๐œˆ๐œˆ๐‘š๐‘š ๐‘˜๐‘˜๐‘˜๐‘˜ โŠฅ 2 2 โˆฅ ๐ท๐ท โ‰ˆ ๐‘š๐‘š ๐‘๐‘ ๐‘š๐‘š ๐‘๐‘ ๐ท๐ท โ‰ˆ ๐‘š๐‘š ๏ฌ Cross-field ambipolar diffusion๐‘š๐‘š๐œˆ๐œˆ ๐œ”๐œ” coefficient๐œ๐œ ๐‘š๐‘š ๐œ”๐œ”(with assumption of๐‘š๐‘š no๐œˆ๐œˆ loss along B)

+ 1 + + ๐œ‡๐œ‡โŠฅ๐‘–๐‘–๐ท๐ทโŠฅ๐‘’๐‘’ ๐œ‡๐œ‡โŠฅ๐‘’๐‘’๐ท๐ทโŠฅ๐‘–๐‘– ๐‘‡๐‘‡๐‘–๐‘– ๐ท๐ทโŠฅ๐‘Ž๐‘Ž โ‰ˆ โ‰ˆ ๐ท๐ทโŠฅ๐‘’๐‘’ ๐œ‡๐œ‡โŠฅ๐‘–๐‘– ๐œ‡๐œ‡โŠฅ๐‘’๐‘’ ๐‘‡๐‘‡๐‘’๐‘’ 20/29 Radiation Source Engineering, Fall 2017 Formation of plasma sheaths

๏ฌ Plasma sheath: the non-neutral potential region between the plasma and the wall caused by the balanced flow of particles with different mobility such as electrons and ions.

21/29 Radiation Source Engineering, Fall 2017 Plasma-sheath structure

22/29 Radiation Source Engineering, Fall 2017 Collisionless sheath

๏ฌ Ion energy & flux conservations (no collision) 1 1 ( ) + ( ) = = 2 2 2 2 ๐‘€๐‘€๐‘ข๐‘ข ๐‘ฅ๐‘ฅ ๐‘’๐‘’ฮฆ ๐‘ฅ๐‘ฅ ๐‘€๐‘€๐‘ข๐‘ข๐‘ ๐‘  ๐‘›๐‘›๐‘–๐‘– ๐‘ฅ๐‘ฅ ๐‘ข๐‘ข ๐‘ฅ๐‘ฅ ๐‘›๐‘›๐‘–๐‘–๐‘ ๐‘ ๐‘ข๐‘ข๐‘ ๐‘  ๏ฌ Ion density profile

( ) / = 1 โˆ’1 2 2๐‘’๐‘’ฮฆ ๐‘ฅ๐‘ฅ ๐‘›๐‘›๐‘–๐‘– ๐‘ฅ๐‘ฅ ๐‘›๐‘›๐‘–๐‘–๐‘ ๐‘  โˆ’ 2 ๏ฌ Electron density profile๐‘€๐‘€๐‘ข๐‘ข๐‘ ๐‘  ( ) ( ) = exp T ฮฆ ๐‘ฅ๐‘ฅ ๐‘›๐‘›๐‘’๐‘’ ๐‘ฅ๐‘ฅ ๐‘›๐‘›๐‘’๐‘’๐‘ ๐‘  ๏ฌ Setting = e

๐‘›๐‘›๐‘’๐‘’๐‘’๐‘’ ๐‘›๐‘›๐‘–๐‘–๐‘–๐‘– โ‰ก ๐‘›๐‘›๐‘ ๐‘  / = exp 1 2 T โˆ’1 2 ๐‘‘๐‘‘ ฮฆ ๐‘’๐‘’๐‘›๐‘›๐‘ ๐‘  ฮฆ ฮฆ 2 where, 0 e โˆ’ โˆ’ ๐‘ ๐‘  ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œ–๐œ– โ„ฐ 1 2 23/29 Radiation Source Engineering, Fall 2017๐‘’๐‘’โ„ฐ๐‘ ๐‘  โ‰ก 2 ๐‘€๐‘€๐‘ข๐‘ข๐‘ ๐‘  Bohm sheath criterion

๏ฌ Multiplying the sheath equation by / and integrating over

๐‘‘๐‘‘ฮฆ ๐‘‘๐‘‘๐‘‘๐‘‘ / ๐‘ฅ๐‘ฅ = exp 1 ฮฆ ฮฆ T โˆ’1 2 ๐‘‘๐‘‘ฮฆ ๐‘‘๐‘‘ ๐‘‘๐‘‘ฮฆ ๐‘’๐‘’๐‘›๐‘›๐‘ ๐‘  ๐‘‘๐‘‘ฮฆ ฮฆ ฮฆ ๏ฟฝ0 ๐‘‘๐‘‘๐‘‘๐‘‘ 0 ๏ฟฝ0 e โˆ’ โˆ’ ๐‘ ๐‘  ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฌ Cancelling๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘ ๐‘‘๐‘‘ โ€™s๐‘‘๐‘‘๐‘‘๐‘‘and integrating๐œ€๐œ€ with๐‘‘๐‘‘๐‘‘๐‘‘ respect to โ„ฐ

1 ๐‘‘๐‘‘๐‘‘๐‘‘ ฮฆ / = T exp T + 2 1 2 0 2 2 T 1 2 ๐‘‘๐‘‘ฮฆ ๐‘’๐‘’๐‘›๐‘›๐‘ ๐‘  ฮฆ ฮฆ e โˆ’ e โ„ฐ๐‘ ๐‘  โˆ’ โˆ’ โ„ฐ๐‘ ๐‘  โ‰ฅ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐œ€๐œ€0 e โ„ฐ๐‘ ๐‘  1 T 2 2 2 e โ„ฐ๐‘ ๐‘  โ‰ก ๐‘€๐‘€๐‘ข๐‘ข๐‘ ๐‘  โ‰ฅ ๏ฌ Bohm sheath criterion๐‘’๐‘’

T / / 1 2 1 2 (Bohm speed) ๐‘’๐‘’ e ๐‘˜๐‘˜๐‘‡๐‘‡๐‘’๐‘’ ๐‘ข๐‘ข๐‘ ๐‘  โ‰ฅ โ‰ก โ‰ก ๐‘ข๐‘ข๐ต๐ต ๐‘€๐‘€ ๐‘€๐‘€ 24/29 Radiation Source Engineering, Fall 2017 Presheath

๏ฌ To give the ions the directed velocity , there must be a finite electric field in the plasma over some region, typically much wider than the sheath, called the ๐ต๐ต presheath. ๐‘ข๐‘ข ๏ฌ At the sheathโ€“presheath interface there is a transition from subsonic ( < ) to supersonic ( > ) ion flow, where the condition of charge neutrality must ๐‘–๐‘– ๐ต๐ต break down. ๐‘ข๐‘ข ๐‘ข๐‘ข ๐‘ข๐‘ข๐‘–๐‘– ๐‘ข๐‘ข๐ต๐ต ๏ฌ The potential drop across a collisionless presheath, which accelerates the ions to the Bohm velocity, is given by 1 T where, is the plasma potential with respect to the = = 2 2 potential at the sheathโ€“presheath edge 2 e ๐‘๐‘ ๐ต๐ต ๐‘’๐‘’ ๐‘๐‘ ฮฆ ๏ฌ The spatial๐‘€๐‘€๐‘ข๐‘ข variation๐‘’๐‘’ฮฆ of the potential ( ) in a collisional presheath (Riemann)

1 1 2 ๐‘๐‘ exp = ฮฆ ๐‘ฅ๐‘ฅ 2 2 T T ฮฆ๐‘๐‘ ฮฆ๐‘๐‘ ๐‘ฅ๐‘ฅ ๏ฌ โˆ’ โˆ’ The ratio of the densitye ate the๐œ†๐œ† ๐‘–๐‘–sheath edge to that in the plasma = / 0.61 โˆ’ฮฆ๐‘๐‘ Te ๐‘ ๐‘  ๐‘๐‘ ๐‘๐‘ 25/29 ๐‘›๐‘› ๐‘›๐‘› ๐‘’๐‘’ โ‰ˆ Radiation๐‘›๐‘› Source Engineering, Fall 2017 Sheath potential at a floating Wall

๏ฌ Ion flux =

๏ฌ Electronฮ“๐‘–๐‘– ๐‘›๐‘› ๐‘ ๐‘ flux๐‘ข๐‘ข๐ต๐ต 1 1 a few = = exp 4 4 T ๐œ†๐œ†๐ท๐ท๐ท๐ท ฮฆ๐‘ค๐‘ค ฮ“๐‘’๐‘’ ๐‘›๐‘›๐‘’๐‘’๐‘’๐‘’๐‘ฃ๐‘ฃ๐‘’๐‘’ฬ… ๐‘›๐‘›๐‘ ๐‘ ๐‘ฃ๐‘ฃ๐‘’๐‘’ฬ… ๏ฌ Ion flux = electron flux for a floatinge wall

T / 1 T / = exp 1 2 4 1 2 T ๐‘’๐‘’ e 8๐‘’๐‘’ e ฮฆ๐‘ค๐‘ค ๐‘›๐‘›๐‘ ๐‘  ๐‘›๐‘›๐‘ ๐‘  ๏ฌ Wall potential๐‘€๐‘€ ๐œ‹๐œ‹๐‘š๐‘š e

T = ln 2.8T for hydrogen and 4.7T for argon 2e 2 ๐‘€๐‘€ ๐‘ค๐‘ค e ๐‘ค๐‘ค e ฮฆ๐‘ค๐‘ค โˆ’ ฮฆ โ‰ˆ โˆ’ ฮฆ โ‰ˆ โˆ’ ๐œ‹๐œ‹๐‘š๐‘š T T ๏ฌ Ion bombarding energy = + = 1 + ln 2 2 2 ๐‘’๐‘’ e ๐‘’๐‘’ e ๐‘€๐‘€ โ„ฐ๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– ๐‘’๐‘’ ฮฆ๐‘ค๐‘ค 26/29 Radiation Source Engineering, Fall 2017 ๐œ‹๐œ‹๐‘š๐‘š High-voltage sheath: matrix sheath

๏ฌ The potential in high-voltage sheaths is highly negative with respect to the plasmaโ€“sheath edge; hence ~ / 0 and only ions are present in the sheath. ฮฆ ฮฆ Te ๐‘›๐‘›๐‘’๐‘’ ๐‘›๐‘›๐‘ ๐‘ ๐‘’๐‘’ โ†’ ๏ฌ The simplest high-voltage sheath, with a uniform ion density, is known as a matrix sheath (not self-consistent in steady-state). ๏ฌ Poissonโ€™s eq.

= = 2 22 ๐‘‘๐‘‘ ฮฆ ๐‘’๐‘’๐‘›๐‘›๐‘ ๐‘  ๐‘’๐‘’๐‘›๐‘›๐‘ ๐‘  ๐‘ฅ๐‘ฅ 2 โˆ’ ฮฆ โˆ’ ๏ฌ Setting๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐œ–๐œ–0 at = , we obtain the๐œ–๐œ– matrix0 sheath thickness / ฮฆ2 โˆ’๐‘‰๐‘‰0 ๐‘ฅ๐‘ฅ ๐‘ ๐‘  = 1 2 ๐œ–๐œ–0๐‘‰๐‘‰0 ๐‘ ๐‘  ๏ฌ In terms of๐‘’๐‘’๐‘›๐‘› the๐‘ ๐‘  electron Debye length at the sheath edge 2 / = where, = T / / T 1 2 0 1 2 ๐ท๐ท๐ท๐ท ๐‘‰๐‘‰ ๐ท๐ท๐ท๐ท 0 e ๐‘ ๐‘  ๐‘ ๐‘  ๐œ†๐œ† e ๐œ†๐œ† ๐œ–๐œ– ๐‘’๐‘’๐‘›๐‘› 27/29 Radiation Source Engineering, Fall 2017 High-voltage sheath: space-charge-limited current

๏ฌ In the limit that the initial ion energy is small compared to the potential, the ion energy and flux conservation equations reduce to ๐‘ ๐‘  1 โ„ฐ ( ) = ( ) / 2 2 = ๐‘€๐‘€๐‘ข๐‘ข ๐‘ฅ๐‘ฅ =โˆ’๐‘’๐‘’ฮฆ ๐‘ฅ๐‘ฅ โˆ’1 2 ๐ฝ๐ฝ0 2๐‘’๐‘’ฮฆ ๐‘›๐‘› ๐‘ฅ๐‘ฅ โˆ’ ๏ฌ Poissonโ€™s๐‘’๐‘’๐‘’๐‘’ ๐‘ฅ๐‘ฅ ๐‘ข๐‘ข ๐‘ฅ๐‘ฅeq. ๐ฝ๐ฝ0 ๐‘’๐‘’ ๐‘€๐‘€ / = ( ) = 2 โˆ’1 2 ๐‘‘๐‘‘ ฮฆ ๐‘’๐‘’ ๐ฝ๐ฝ0 2๐‘’๐‘’ฮฆ 2 โˆ’ ๐‘›๐‘›๐‘–๐‘– โˆ’ ๐‘›๐‘›๐‘’๐‘’ โˆ’ โˆ’ ๏ฌ Multiplying๐‘‘๐‘‘๐‘ฅ๐‘ฅ by๐œ–๐œ–0 / and integrating๐œ–๐œ–0 ๐‘€๐‘€ twice from 0 to / / 3 = 0 / = ๐‘‘๐‘‘ฮฆ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ฅ๐‘ฅ B.C. 2 1 2 โˆ’1 4 ๐‘‘๐‘‘ฮฆ 3 4 ๐ฝ๐ฝ0 2๐‘’๐‘’ ๏ฟฝ โˆ’ฮฆ ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ฅ๐‘ฅ=0 ๏ฌ Letting = ๐œ–๐œ–0 at =๐‘€๐‘€ and solving for , we obtain 0 / / 0 4ฮฆ โˆ’๐‘‰๐‘‰ ๐‘ฅ๐‘ฅ ๐‘ ๐‘  Child law:๐ฝ๐ฝ = 9 1 2 3 2 Space-charge-limited current in a plane diode 2๐‘’๐‘’ ๐‘‰๐‘‰0 ๐ฝ๐ฝ0 ๐œ–๐œ–0 2 28/29 ๐‘€๐‘€ ๐‘ ๐‘  Radiation Source Engineering, Fall 2017 High-voltage sheath: Child law sheath

๏ฌ For a plasma = / / 4 ๐ฝ๐ฝ0 ๐‘’๐‘’๐‘›๐‘›๐‘ ๐‘ ๐‘ข๐‘ข๐ต๐ต = 9 1 2 3 2 2๐‘’๐‘’ ๐‘‰๐‘‰0 ๐‘’๐‘’๐‘›๐‘›๐‘ ๐‘ ๐‘ข๐‘ข๐ต๐ต ๐œ–๐œ–0 2 ๐‘€๐‘€ ๐‘ ๐‘  2 T / 2 / 2 2 / ๏ฌ Child law sheath = 1 2 3 4 = 3 4 3 0 e T 0 3 T 0 ๐œ–๐œ– ๐‘‰๐‘‰ ๐ท๐ท๐ท๐ท ๐‘‰๐‘‰ ๐‘ ๐‘  ๐‘ ๐‘  e ๐œ†๐œ† e ๏ฌ Potential, electric field and density๐‘’๐‘’๐‘›๐‘› within the sheath / 4 / 4 / = = = 4 3 3 1 3 9 โˆ’2 3 ๐‘ฅ๐‘ฅ ๐‘‰๐‘‰0 ๐‘ฅ๐‘ฅ ๐œ–๐œ–0 ๐‘‰๐‘‰0 ๐‘ฅ๐‘ฅ ๏ฌ Assumingฮฆ โˆ’๐‘‰๐‘‰0 that an ion enters๐ธ๐ธ the sheath with initial๐‘›๐‘› velocity 2 0 = 0 ๐‘ ๐‘  ๐‘ ๐‘  ๐‘ ๐‘  ๐‘’๐‘’ ๐‘ ๐‘  ๐‘ ๐‘  / = where, is the characteristic ion velocity๐‘ข๐‘ข in the sheath 2 3 / ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘ฅ๐‘ฅ 0 ๏ฌ ๐‘ฃ๐‘ฃ0 ๐‘ฃ๐‘ฃ Ion๐‘‘๐‘‘ ๐‘‘๐‘‘transit time๐‘ ๐‘  across the sheath = 1 2 2๐‘’๐‘’๐‘‰๐‘‰0 = = ๐‘ฃ๐‘ฃ0 3 ๐‘€๐‘€ ๐‘ฅ๐‘ฅ ๐‘ก๐‘ก ๐‘ฃ๐‘ฃ0๐‘ก๐‘ก 3๐‘ ๐‘  ๐œ๐œ๐‘–๐‘– 29/29 ๐‘ ๐‘  3๐‘ ๐‘  Radiation Source Engineering,๐‘ฃ๐‘ฃ0 Fall 2017