Modern Vacuum Tube Amplifier
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 7: AC Transistor Amplifiers
Chapter 7: Transistors, part 2 Chapter 7: AC Transistor Amplifiers The transistor amplifiers that we studied in the last chapter have some serious problems for use in AC signals. Their most serious shortcoming is that there is a “dead region” where small signals do not turn on the transistor. So, if your signal is smaller than 0.6 V, or if it is negative, the transistor does not conduct and the amplifier does not work. Design goals for an AC amplifier Before moving on to making a better AC amplifier, let’s define some useful terms. We define the output range to be the range of possible output voltages. We refer to the maximum and minimum output voltages as the rail voltages and the output swing is the difference between the rail voltages. The input range is the range of input voltages that produce outputs which are not at either rail voltage. Our goal in designing an AC amplifier is to get an input range and output range which is symmetric around zero and ensure that there is not a dead region. To do this we need make sure that the transistor is in conduction for all of our input range. How does this work? We do it by adding an offset voltage to the input to make sure the voltage presented to the transistor’s base with no input signal, the resting or quiescent voltage , is well above ground. In lab 6, the function generator provided the offset, in this chapter we will show how to design an amplifier which provides its own offset. -
Power Electronics
Diodes and Transistors Semiconductors • Semiconductor devices are made of alternating layers of positively doped material (P) and negatively doped material (N). • Diodes are PN or NP, BJTs are PNP or NPN, IGBTs are PNPN. Other devices are more complex Diodes • A diode is a device which allows flow in one direction but not the other. • When conducting, the diodes create a voltage drop, kind of acting like a resistor • There are three main types of power diodes – Power Diode – Fast recovery diode – Schottky Diodes Power Diodes • Max properties: 1500V, 400A, 1kHz • Forward voltage drop of 0.7 V when on Diode circuit voltage measurements: (a) Forward biased. (b) Reverse biased. Fast Recovery Diodes • Max properties: similar to regular power diodes but recover time as low as 50ns • The following is a graph of a diode’s recovery time. trr is shorter for fast recovery diodes Schottky Diodes • Max properties: 400V, 400A • Very fast recovery time • Lower voltage drop when conducting than regular diodes • Ideal for high current low voltage applications Current vs Voltage Characteristics • All diodes have two main weaknesses – Leakage current when the diode is off. This is power loss – Voltage drop when the diode is conducting. This is directly converted to heat, i.e. power loss • Other problems to watch for: – Notice the reverse current in the recovery time graph. This can be limited through certain circuits. Ways Around Maximum Properties • To overcome maximum voltage, we can use the diodes in series. Here is a voltage sharing circuit • To overcome maximum current, we can use the diodes in parallel. -
Vacuum Tube Theory, a Basics Tutorial – Page 1
Vacuum Tube Theory, a Basics Tutorial – Page 1 Vacuum Tubes or Thermionic Valves come in many forms including the Diode, Triode, Tetrode, Pentode, Heptode and many more. These tubes have been manufactured by the millions in years gone by and even today the basic technology finds applications in today's electronics scene. It was the vacuum tube that first opened the way to what we know as electronics today, enabling first rectifiers and then active devices to be made and used. Although Vacuum Tube technology may appear to be dated in the highly semiconductor orientated electronics industry, many Vacuum Tubes are still used today in applications ranging from vintage wireless sets to high power radio transmitters. Until recently the most widely used thermionic device was the Cathode Ray Tube that was still manufactured by the million for use in television sets, computer monitors, oscilloscopes and a variety of other electronic equipment. Concept of thermionic emission Thermionic basics The simplest form of vacuum tube is the Diode. It is ideal to use this as the first building block for explanations of the technology. It consists of two electrodes - a Cathode and an Anode held within an evacuated glass bulb, connections being made to them through the glass envelope. If a Cathode is heated, it is found that electrons from the Cathode become increasingly active and as the temperature increases they can actually leave the Cathode and enter the surrounding space. When an electron leaves the Cathode it leaves behind a positive charge, equal but opposite to that of the electron. In fact there are many millions of electrons leaving the Cathode. -
Notes for Lab 1 (Bipolar (Junction) Transistor Lab)
ECE 327: Electronic Devices and Circuits Laboratory I Notes for Lab 1 (Bipolar (Junction) Transistor Lab) 1. Introduce bipolar junction transistors • “Transistor man” (from The Art of Electronics (2nd edition) by Horowitz and Hill) – Transistors are not “switches” – Base–emitter diode current sets collector–emitter resistance – Transistors are “dynamic resistors” (i.e., “transfer resistor”) – Act like closed switch in “saturation” mode – Act like open switch in “cutoff” mode – Act like current amplifier in “active” mode • Active-mode BJT model – Collector resistance is dynamically set so that collector current is β times base current – β is assumed to be very high (β ≈ 100–200 in this laboratory) – Under most conditions, base current is negligible, so collector and emitter current are equal – β ≈ hfe ≈ hFE – Good designs only depend on β being large – The active-mode model: ∗ Assumptions: · Must have vEC > 0.2 V (otherwise, in saturation) · Must have very low input impedance compared to βRE ∗ Consequences: · iB ≈ 0 · vE = vB ± 0.7 V · iC ≈ iE – Typically, use base and emitter voltages to find emitter current. Finish analysis by setting collector current equal to emitter current. • Symbols – Arrow represents base–emitter diode (i.e., emitter always has arrow) – npn transistor: Base–emitter diode is “not pointing in” – pnp transistor: Emitter–base diode “points in proudly” – See part pin-outs for easy wiring key • “Common” configurations: hold one terminal constant, vary a second, and use the third as output – common-collector ties collector -
ECE 255, MOSFET Basic Configurations
ECE 255, MOSFET Basic Configurations 8 March 2018 In this lecture, we will go back to Section 7.3, and the basic configurations of MOSFET amplifiers will be studied similar to that of BJT. Previously, it has been shown that with the transistor DC biased at the appropriate point (Q point or operating point), linear relations can be derived between the small voltage signal and current signal. We will continue this analysis with MOSFETs, starting with the common-source amplifier. 1 Common-Source (CS) Amplifier The common-source (CS) amplifier for MOSFET is the analogue of the common- emitter amplifier for BJT. Its popularity arises from its high gain, and that by cascading a number of them, larger amplification of the signal can be achieved. 1.1 Chararacteristic Parameters of the CS Amplifier Figure 1(a) shows the small-signal model for the common-source amplifier. Here, RD is considered part of the amplifier and is the resistance that one measures between the drain and the ground. The small-signal model can be replaced by its hybrid-π model as shown in Figure 1(b). Then the current induced in the output port is i = −gmvgs as indicated by the current source. Thus vo = −gmvgsRD (1.1) By inspection, one sees that Rin = 1; vi = vsig; vgs = vi (1.2) Thus the open-circuit voltage gain is vo Avo = = −gmRD (1.3) vi Printed on March 14, 2018 at 10 : 48: W.C. Chew and S.K. Gupta. 1 One can replace a linear circuit driven by a source by its Th´evenin equivalence. -
Tube Condenser Microphone T-47 &
Condenser Microphones TUBE CONDENSER MICROPHONE T-47 & T-1 Vacuum Tube Condenser Microphone Professional, large-diaphragm, tube condenser microphone for unsurpassed audio quality Hand-selected 12AX7 vacuum tube for exceptional warmth and vintage sound The Ultimate Recording Mic? Classic Tube Sound Ideal as main and support microphone for studio and Since the early days of recording, The sound of tubes is undeniably live applications sound engineers have been searching rich and smooth. At the heart of for the best-sounding mics for each of these mics is a hand-selected Cardioid pickup pattern for recording acoustic instruments and 12AX7 tube, which has been specifically outstanding sound source separation the human voice. The resounding designed to give these microphones and feedback rejection choice of professional recordists their incredible sonic character. around the globe has been the tube One advantage tube condensers have Pressure-gradient transducer with condenser microphone. Why? Because over their solid-state counterparts is they shock-mounted capsule nothing compares to the sound captured are not subject to the rapid rise of odd- Perfect for vocals and by a good tube condenser microphone order harmonics, which the ear perceives acoustic instruments — so open, warm and full of character. as highly unmusical. Even when subjected to high sound pressure levels, Switchable low-frequency roll-off But tube mics can wipe out a the T-1 and T-47 mics react in much the home-recording budget faster than same way the human ear does. 20 dB input attenuation (T-1 only) you can say “phantom power supply”. That’s why we’re so very proud to present T-1 and T-47 Have a Sensitive Side External power supply with 30 ft. -
6 Insulated-Gate Field-Effect Transistors
Chapter 6 INSULATED-GATE FIELD-EFFECT TRANSISTORS Contents 6.1 Introduction ......................................301 6.2 Depletion-type IGFETs ...............................302 6.3 Enhancement-type IGFETs – PENDING .....................311 6.4 Active-mode operation – PENDING .......................311 6.5 The common-source amplifier – PENDING ...................312 6.6 The common-drain amplifier – PENDING ....................312 6.7 The common-gate amplifier – PENDING ....................312 6.8 Biasing techniques – PENDING ..........................312 6.9 Transistor ratings and packages – PENDING .................312 6.10 IGFET quirks – PENDING .............................313 6.11 MESFETs – PENDING ................................313 6.12 IGBTs ..........................................313 *** INCOMPLETE *** 6.1 Introduction As was stated in the last chapter, there is more than one type of field-effect transistor. The junction field-effect transistor, or JFET, uses voltage applied across a reverse-biased PN junc- tion to control the width of that junction’s depletion region, which then controls the conduc- tivity of a semiconductor channel through which the controlled current moves. Another type of field-effect device – the insulated gate field-effect transistor, or IGFET – exploits a similar principle of a depletion region controlling conductivity through a semiconductor channel, but it differs primarily from the JFET in that there is no direct connection between the gate lead 301 302 CHAPTER 6. INSULATED-GATE FIELD-EFFECT TRANSISTORS and the semiconductor material itself. Rather, the gate lead is insulated from the transistor body by a thin barrier, hence the term insulated gate. This insulating barrier acts like the di- electric layer of a capacitor, and allows gate-to-source voltage to influence the depletion region electrostatically rather than by direct connection. In addition to a choice of N-channel versus P-channel design, IGFETs come in two major types: enhancement and depletion. -
INDUSTRIAL STRENGTH by MICHAEL RIORDAN
THE INDUSTRIAL STRENGTH by MICHAEL RIORDAN ORE THAN A DECADE before J. J. Thomson discovered the elec- tron, Thomas Edison stumbled across a curious effect, patented Mit, and quickly forgot about it. Testing various carbon filaments for electric light bulbs in 1883, he noticed a tiny current trickling in a single di- rection across a partially evacuated tube into which he had inserted a metal plate. Two decades later, British entrepreneur John Ambrose Fleming applied this effect to invent the “oscillation valve,” or vacuum diode—a two-termi- nal device that converts alternating current into direct. In the early 1900s such rectifiers served as critical elements in radio receivers, converting radio waves into the direct current signals needed to drive earphones. In 1906 the American inventor Lee de Forest happened to insert another elec- trode into one of these valves. To his delight, he discovered he could influ- ence the current flowing through this contraption by changing the voltage on this third electrode. The first vacuum-tube amplifier, it served initially as an improved rectifier. De Forest promptly dubbed his triode the audion and ap- plied for a patent. Much of the rest of his life would be spent in forming a se- ries of shaky companies to exploit this invention—and in an endless series of legal disputes over the rights to its use. These pioneers of electronics understood only vaguely—if at all—that individual subatomic particles were streaming through their devices. For them, electricity was still the fluid (or fluids) that the classical electrodynamicists of the nineteenth century thought to be related to stresses and disturbances in the luminiferous æther. -
The Tube Sound and Tube Emulators
ERIC K. PRITCHARD The Tube Sound and Tube Emulators $0 RE TUBES MAGIC? IS THERE really a difference be- tween tubes and tran- I ea sistors? Some hear the warmthA and appreciate the full body of the tube sound, and others deride the thought. Is the magic of I. I. - the tube sound more than mere / ea nostalgia? A recording engineer, ....„1 .4,Aa. e1 00 14 •111 Russell 0. Hamm, could hear the Relative lame Level itoletive ler.a Level difference. Determined to find and Figure 1.Distortion components explain the difference, he began Figure 3.Distortion components for two-stage triode amplifier. testing microphone preamplifiers for multi-stage capacitor-coupled of various technologies. His fa- transistor amplifier. mous paper, "Tubes Versus Tran- sistors—Is There an Audible Dif- ference?" [1], shows that the 10 harmonic structures in overdrive 3 re N I 3 r• conditions for different technolo- gies are quite different, almost like 20 10 fingerprints. I. -___.......i..4_7" More recently, an electronics en- 14 ea gineer, Eric Pritchard, started Relative brat Level - 14 down the circuitous path to bring Retellv• tepee Leve1 Figure 2..Distortion components the two worlds together and to give Figure 4.Distortion components for two-stage pentode amplifier.. solid state the character of tubes. for multistage transformer- The elusive tube sound has finally coupled transistor amplifier. succumbed to an intensive re- search and development program TUBES AND THE TUBE that has produced solid-state tube SOUND emulators and tube emulator cir- In retrospect, the tube has many cuits [2]. The effort began nearly 3 re f technically superior aspects, it is seven years ago with the search for fairly linear, its operational pa- / a solid state guitar amplifier that rameters do not vary badly, at least / sounded like tubes. -
Cutting Edge
CuttingTHE Edge Electronically reprinted from December 2007 MASTERPIECE! Audio Research 610T Monoblock Power Amplifier Jonathan Valin t is a little sobering to look back to 1973 and the first pieces of Audio Research gear II heard—the SP-3 preamp and D75 amp powering Magneplanar I-Us in a stereo demo that, for me, has never been bettered or forgotten— and then to consider how consistently and naturally all the subsequent ARC gear I’ve heard, and I’ve heard a lot, has been voiced. From the start, ARC components had a sound that was uniquely, indelibly, addictively “right.” ARC’s designer and founder William Zane Johnson called this sound “high definition,” a trademark that still appears on the faceplate of each and every ARC component. And even in 1973 his creations were astonishingly high in definition; indeed, their standard-setting resolution, lifelike size, bloom, and airy brightness, and exceptionally low levels of tube-like coloration were a large part of what set them apart from the darker, thicker, blatantly euphonic sound of the tube preamps and amps that preceded them. Not that everyone preferred high definition tube sound. There were those, then, and are those, now, who thought and think that tubes should invariably make music sweet, round, and rosy, that prettifying sources is the vacuum tube’s job in life—the very thing that sets it apart from the crisp, clean, “neutral” presentation of the transistor. Johnson never bought into this model. Indeed, it was the superior accuracy and neutrality of transistor electronics—which in the late 60s and early 70s were even more in the ascendant than they are today—that inspired him to outdo solid-state at its own game. -
Lee De Forest Claimet\He Got the Idea for His Triode ''Audion" From
Lee de Forest claimet\he got the idea for his triode h ''audion" from wntching a gas flame bum. John Ambrose Flen#ng thought that story ·~just so much hot air. lreJess telegraphy held excit m WIng promise at the beginning of the twentieth century. Peo ~With Imagination could seethe po.. tentlal thot 'the rematkoble new technology offered forworlct1Nk:le com munfcotion. However, no one could hove predicted the impact that the soon-to-be-developed "osdllotlon volve" ond "oudlon" Wireless-telegra phy detector& wauid have on elec tronics technology. Backpouncl. Shortly before 1900, · Guglielmo Morconl had formed his own company to develop wireless telegraphy technology. He demon strated that wireless set-ups on ships eot~ld~messageswlth nearby stations on other ships or on land. t The Marconi Company hOd also j transmitted messages across the EhQ Jish Channel. By the end of 1901. Mar coni extended the range of his equipmenttospantheAtlan1tcOcean. It was obvlgus. 1hot ~raph ~MeS with subrhatlrie cables and ihelr lnber ent flmltations woUld soon disappear, Ships· at sea would no longer be iso la1ed. No locatlon on Eorth would. be too remote to send and receive mes sages. Clear1y; the opportunity existed tor enormous tiOOnciql gain once Jelio ble equlprrient was avoltable. To that end, 1Uned electrical circuits were developed to reduce the band width of the signals produced by ,the spark transrnlf'tirs. The resonont clfcults were also used in a receiver to select one signal from omong several trans missions. Slm~deslgn principles for resonont ontennas were also being explored and applied, However, the senstflvlty and reUabltlty of the devices used to ctetectthe Wireless signals were still hln cterlng the development of commer () cial wireless-telegraph nefWorks. -
Genuine Sound
www.lewitt-audio.com EMPHASIZE THE GENUINE IN YOUR SOUND. LCT 940 LCT 940 Introduction Thank you that you have opted for a LEWITT product. In this operating manual you will learn more about your LEWITT microphone, its handling and its proper usage. With the LCT Authentica Series, LEWITT introduces a new generation of highly versatile wired condenser microphones that all aim for setting new benchmarks of technology, sound quality and user-friendliness in both professional studio recording and onstage use. The microphones of the LCT Authentica Series stand for unaltered sound and innovative features: llluminated Settings, Noiseless Push Buttons, Automatic Attenuation with Clip Detection and History all ensure error-free sonic perfection and peerless ease of use for today’s demanding recording artists and engineers. Day after day, be it for live acts, in home studios or in professional studio productions. LEWITT wishes you a lot of fun and success with this product! 02 LCT 940 The product Sound professionals naturally rely on a set of different high-end microphones in order to get the best out of their sound. But changing microphones and adjusting settings takes valuable time, the creative flow of a session is interrupted. With its new Authentica series flagship LCT 940, LEWITT now introduces a microphone that will revolutionize modern studio recording procedures and help engineers and artists to react more quickly to a desired change of style and sound. The LCT 940 combines the specific characteristics of a premium large-diaphragm FET condenser microphone and a top-notch tube microphone in one housing. Basically, users can choose between the two main settings "FET" and "Tube".