Vacuum Tube (Edited from Wikipedia)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Early Years of the Acoustic Phonograph Its Developmental Origins and Fall from Favor 1877-1929
THE EARLY YEARS OF THE ACOUSTIC PHONOGRAPH ITS DEVELOPMENTAL ORIGINS AND FALL FROM FAVOR 1877-1929 by CARL R. MC QUEARY A SENIOR THESIS IN HISTORICAL AMERICAN TECHNOLOGIES Submitted to the General Studies Committee of the College of Arts and Sciences of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of BACHELOR OF GENERAL STUDIES Approved Accepted Director of General Studies March, 1990 0^ Ac T 3> ^"^^ DEDICATION No. 2) This thesis would not have been possible without the love and support of my wife Laura, who has continued to love me even when I had phonograph parts scattered through out the house. Thanks also to my loving parents, who have always been there for me. The Early Years of the Acoustic Phonograph Its developmental origins and fall from favor 1877-1929 "Mary had a little lamb, its fleece was white as snov^. And everywhere that Mary went, the lamb was sure to go." With the recitation of a child's nursery rhyme, thirty-year- old Thomas Alva Edison ushered in a bright new age--the age of recorded sound. Edison's successful reproduction and recording of the human voice was the end result of countless hours of work on his part and represented the culmination of mankind's attempts, over thousands of years, to capture and reproduce the sounds and rhythms of his own vocal utterances as well as those of his environment. Although the industry that Edison spawned continues to this day, the phonograph is much changed, and little resembles the simple acoustical marvel that Edison created. -
Thomas Edison Vs Nikola Tesla THOMAS EDISON VS NIKOLA TESLA
M C SCIENTIFIC RIVALRIES PHERSON AND SCANDALS In the early 1880s, only a few wealthy people had electric lighting in their homes. Everyone else had to use more dangerous lighting, such as gas lamps. Eager companies wanted to be the first to supply electricity to more Americans. The early providers would set the standards—and reap great profits. Inventor THOMAS EDISON already had a leading role in the industry: he had in- vented the fi rst reliable electrical lightbulb. By 1882 his Edison Electric Light Company was distributing electricity using a system called direct current, or DC. But an inventor named NIKOLA TESLA challenged Edison. Tesla believed that an alternating cur- CURRENTS THE OF rent—or AC—system would be better. With an AC system, one power station could deliver electricity across many miles, compared to only about one mile for DC. Each inventor had his backers. Business tycoon George Westinghouse put his money behind Tesla and built AC power stations. Meanwhile, Edison and his DC backers said that AC could easily electrocute people. Edison believed this risk would sway public opinion toward DC power. The battle over which system would become standard became known as the War of the Currents. This book tells the story of that war and the ways in which both kinds of electric power changed the world. READ ABOUT ALL OF THE OF THE SCIENTIFIC RIVALRIES AND SCANDALS BATTLE OF THE DINOSAUR BONES: Othniel Charles Marsh vs Edward Drinker Cope DECODING OUR DNA: Craig Venter vs the Human Genome Project CURRENTS THE RACE TO DISCOVER THE -
Valve Biasing
VALVE AMP BIASING Biased information How have valve amps survived over 30 years of change? Derek Rocco explains why they are still a vital ingredient in music making, and talks you through the mysteries of biasing N THE LAST DECADE WE HAVE a signal to the grid it causes a water as an electrical current, you alter the negative grid voltage by seen huge advances in current to flow from the cathode to will never be confused again. When replacing the resistor I technology which have the plate. The grid is also known as your tap is turned off you get no to gain the current draw required. profoundly changed the way we the control grid, as by varying the water flowing through. With your Cathode bias amplifiers have work. Despite the rise in voltage on the grid you can control amp if you have too much negative become very sought after. They solid-state and digital modelling how much current is passed from voltage on the grid you will stop have a sweet organic sound that technology, virtually every high- the cathode to the plate. This is the electrical current from flowing. has a rich harmonic sustain and profile guitarist and even recording known as the grid bias of your amp This is known as they produce a powerful studios still rely on good ol’ – the correct bias level is vital to the ’over-biased’ soundstage. Examples of these fashioned valves. operation and tone of the amplifier. and the amp are most of the original 1950’s By varying the negative grid will produce Fender tweed amps such as the What is a valve? bias the technician can correctly an unbearable Deluxe and, of course, the Hopefully, a brief explanation will set up your amp for maximum distortion at all legendary Vox AC30. -
Vacuum Tube Theory, a Basics Tutorial – Page 1
Vacuum Tube Theory, a Basics Tutorial – Page 1 Vacuum Tubes or Thermionic Valves come in many forms including the Diode, Triode, Tetrode, Pentode, Heptode and many more. These tubes have been manufactured by the millions in years gone by and even today the basic technology finds applications in today's electronics scene. It was the vacuum tube that first opened the way to what we know as electronics today, enabling first rectifiers and then active devices to be made and used. Although Vacuum Tube technology may appear to be dated in the highly semiconductor orientated electronics industry, many Vacuum Tubes are still used today in applications ranging from vintage wireless sets to high power radio transmitters. Until recently the most widely used thermionic device was the Cathode Ray Tube that was still manufactured by the million for use in television sets, computer monitors, oscilloscopes and a variety of other electronic equipment. Concept of thermionic emission Thermionic basics The simplest form of vacuum tube is the Diode. It is ideal to use this as the first building block for explanations of the technology. It consists of two electrodes - a Cathode and an Anode held within an evacuated glass bulb, connections being made to them through the glass envelope. If a Cathode is heated, it is found that electrons from the Cathode become increasingly active and as the temperature increases they can actually leave the Cathode and enter the surrounding space. When an electron leaves the Cathode it leaves behind a positive charge, equal but opposite to that of the electron. In fact there are many millions of electrons leaving the Cathode. -
INF 3190 Wireless Communications
Department of Informatics Networks and Distributed Systems (ND) group INF 3190 Wireless Communications Özgü Alay [email protected] Simula Research Laboratory Outline • Brief history of wireless • What is wireless communication? • Bottom-down approach – Physical layer : how can we transmit signals in air? – Link layer : multiple access – Wireless impact higher layers? • Wireless Systems – Mobile Broadband Networks – Wifi – Sensor Networks, Adhoc Networks 2 Wireless History • James C Maxwell ( 1831- 1879) laying the theoretical foundation for EM fields with his famous equations • Heinrich Hertz (1857- 1894 ) was the first to demonstrate the wave character of electrical transmission through space (1886). (Note Today the unit Hz reminds us of this discovery). • Radio invented in the 1880s by Marconi • The 1st radio broadcast took place in 1906 when Reginald A Fessenden transmitted voice and music for Christmas. • The invention of electronic vacuum tube in 1906 by Lee De Forest (1873-1961) & Robert Von Lieben (1878 – 1913) helped to reduce the size of sender and receiver . 3 Wireless History cont… • In 1915 , the first wireless voice transmission was set up between New York and San Francisco • The 1st commercial radio station started in 1920 – Note Sender & Receiver still needed huge antennas due to high transmission power. • In 1926, the first telephone in a train was available on the Berlin – Hamburg line • 1928 was the year of many field trials for TV broadcasting. John L Baird ( 1888 – 1946 ) transmitted TV across Atlantic and demonstrated color TV 4 Wireless History cont … • Invention of FM in 1933 by Edwin H Armstrong [ 1890 - 1954 ] . • 1946, Public Mobile in 25 US cities, high power transmitter on large tower. -
The Development of the Vacuum Tube Creators
The Knowledge Bank at The Ohio State University Ohio State Engineer Title: The Development of the Vacuum Tube Creators: Jeffrey, Richard B. Issue Date: May-1928 Publisher: Ohio State University, College of Engineering Citation: Ohio State Engineer, vol. 11, no. 7 (May, 1928), 9-10. URI: http://hdl.handle.net/1811/34260 Appears in Collections: Ohio State Engineer: Volume 11, no. 7 (May, 1928) THE OHIO STATE ENGINEER The Development of the Vacuum Tube By RICHARD B. JEFFREY, '31 The history of the vacuum tube began with the discovery of the Edison Effect. This, like a great many other important discoveries, was an acci- dent. Edison, while experimenting with his in- candescent lamps, had placed more than one fila- output ment in the same bulb, and he noticed that if one of the filaments was held positive with respect to the other a current would flow through the bulb. He also found that this positive element, or, as it is now called, plate, did not have to be hot to sustain this current flow. This phenomenon li—- H was known for some time as a curiosity, but noth- 1 +90 to \35 ing more. Then Fleming, an English experiment- +4-5 er, noticed that if an alternating current were The screen-qrid tube (tetrode). applied to this plate the current would flow only plicated system by making use of the rectifying when the plate was positive. In other words, the properties of a crystal, notably galena. When tube acted as a rectifier, allowing the current to signals were received in this way it was the signal flow in only one direction. -
1999-2017 INDEX This Index Covers Tube Collector Through August 2017, the TCA "Data Cache" DVD- ROM Set, and the TCA Special Publications: No
1999-2017 INDEX This index covers Tube Collector through August 2017, the TCA "Data Cache" DVD- ROM set, and the TCA Special Publications: No. 1 Manhattan College Vacuum Tube Museum - List of Displays .........................1999 No. 2 Triodes in Radar: The Early VHF Era ...............................................................2000 No. 3 Auction Results ....................................................................................................2001 No. 4 A Tribute to George Clark, with audio CD ........................................................2002 No. 5 J. B. Johnson and the 224A CRT.........................................................................2003 No. 6 McCandless and the Audion, with audio CD......................................................2003 No. 7 AWA Tube Collector Group Fact Sheet, Vols. 1-6 ...........................................2004 No. 8 Vacuum Tubes in Telephone Work.....................................................................2004 No. 9 Origins of the Vacuum Tube, with audio CD.....................................................2005 No. 10 Early Tube Development at GE...........................................................................2005 No. 11 Thermionic Miscellany.........................................................................................2006 No. 12 RCA Master Tube Sales Plan, 1950....................................................................2006 No. 13 GE Tungar Bulb Data Manual................................................................. -
7: Society III
A History Of Knowledge What The Victorian Age Knew Chapter 7: Society III Piero Scaruffi (2004) www.scaruffi.com Edited and revised by Chris Hastings (2013) Abolitions • Abolition of slavery in the USA (1861) • Abolition of serfdom in Russia (1861) 2 Democracy • USA: 1865 • France: 1875 • Britain: 1918 • But not for women 3 Puritanism • 1865: The “Salvation Army” • 1873: Anthony Comstock founds the Society for the Suppression of Vice • 1874: The Woman's Christian Temperance Union is founded 4 The Invention Of Childhood • Kate Greenaway (Britain): “Under the Window: Pictures & Rhymes for Children” (1879) 5 Customs • One is a gentleman/lady not by birth but by good manners • The dandy (modeled after Bryan “Beau” Brummell of the 1800s) 6 Private Life Board games of the 1880s 7 Private Life • Moving panoramas: Before cinema and before virtual reality • Robert Baker’s proto-panorama of Edinburgh (1791) • John Banvard: Moving panorama of 1848 • Albert Smith’s panorama of the Mont Blanc, showed more than 2000 times (1852-58) • Moses Gompertz and the Poole brothers’ Myriorama (1890s) Banvard’s panorama 8 Transportation • 1825: Britain inaugurates the first railway in the world • 1840s: Boom of railways in Britain • 1869: The Union and Central Pacific railroads create the first transcontinental railroad • 1885: Gottlieb Daimler and Wilhelm Maybach invent the motorcycle • 1886: Karl Benz builds a gasoline-powered car • 1890: The first electrical subway (London) • 1900: Ferdinand von Zeppelin builds the first rigid dirigible • 1903: Wilbur and Orville -
Tutorial: Adding a Control Grid to a High-Current Electron Gun
Tutorial: adding a control grid to a high-current electron gun Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975 Fax: +1-617-752-9077 E mail: techinfo@fieldp.com Internet: http://www.fieldp.com 1 Recently, I was asked to consider whether a control grid consisting of parallel or crossed wires could be added to an existing space-charge-limited electron gun for beam modulation. I identified two main questions: • Because considerable effort had been invested in the gun design, would it possible to add the grid without significantly changing the macro- scopic beam optics? • What was the contribution to the angular divergence of the beam rel- ative to the focal requirements? With regard to first question, the best approach would be to locate the wire grid at the former position of the cathode surface and to move the cathode a short distance upstream. The grid would be attached to the focus electrode bounding the former cathode surface. Figure 1 is a schematic view of the cathode-grid region. The values of D and Vc should be chosen to generate an electron current density je equal to the space-charge limited design value in the main acceleration gap. In this way, the grid surface would act almost like the original cathode, preserving the gun optics. There are two options to fabricate a grid: 1) parallel wires with spacing W or 2) a crossed grid with square openings with side length W . For a rough estimate, I did not consider the effect of the wire width. -
INDUSTRIAL STRENGTH by MICHAEL RIORDAN
THE INDUSTRIAL STRENGTH by MICHAEL RIORDAN ORE THAN A DECADE before J. J. Thomson discovered the elec- tron, Thomas Edison stumbled across a curious effect, patented Mit, and quickly forgot about it. Testing various carbon filaments for electric light bulbs in 1883, he noticed a tiny current trickling in a single di- rection across a partially evacuated tube into which he had inserted a metal plate. Two decades later, British entrepreneur John Ambrose Fleming applied this effect to invent the “oscillation valve,” or vacuum diode—a two-termi- nal device that converts alternating current into direct. In the early 1900s such rectifiers served as critical elements in radio receivers, converting radio waves into the direct current signals needed to drive earphones. In 1906 the American inventor Lee de Forest happened to insert another elec- trode into one of these valves. To his delight, he discovered he could influ- ence the current flowing through this contraption by changing the voltage on this third electrode. The first vacuum-tube amplifier, it served initially as an improved rectifier. De Forest promptly dubbed his triode the audion and ap- plied for a patent. Much of the rest of his life would be spent in forming a se- ries of shaky companies to exploit this invention—and in an endless series of legal disputes over the rights to its use. These pioneers of electronics understood only vaguely—if at all—that individual subatomic particles were streaming through their devices. For them, electricity was still the fluid (or fluids) that the classical electrodynamicists of the nineteenth century thought to be related to stresses and disturbances in the luminiferous æther. -
Pentodes Connected As Triodes
Pentodes connected as Triodes by Tom Schlangen Pentodes connected as Triodes About the author Tom Schlangen Born 1962 in Cologne / Germany Studied mechanical engineering at RWTH Aachen / Germany Employments as „safety engineering“ specialist and CIO / IT-head in middle-sized companies, now owning and running an IT- consultant business aimed at middle-sized companies Hobby: Electron valve technology in audio Private homepage: www.tubes.mynetcologne.de Private email address: [email protected] Tom Schlangen – ETF 06 2 Pentodes connected as Triodes Reasons for connecting and using pentodes as triodes Why using pentodes as triodes at all? many pentodes, especially small signal radio/TV ones, are still available from huge stock cheap as dirt, because nobody cares about them (especially “TV”-valves), some of them, connected as triodes, can rival even the best real triodes for linearity, some of them, connected as triodes, show interesting characteristics regarding µ, gm and anode resistance, that have no expression among readily available “real” triodes, because it is fun to try and find out. Tom Schlangen – ETF 06 3 Pentodes connected as Triodes How to make a triode out of a tetrode or pentode again? Or, what to do with the “superfluous” grids? All additional grids serve a certain purpose and function – they were added to a basic triode system to improve the system behaviour in certain ways, for example efficiency. We must “disable” the functions of those additional grids in a defined and controlled manner to regain triode characteristics. Just letting them “dangle in vacuum unconnected” will not work – they would charge up uncontrolled in the electron stream, leading to unpredictable behaviour. -
UNIT CONVERSION FACTORS Temperature K C 273 C 1.8(F 32
Source: FUNDAMENTALS OF MICROSYSTEMS PACKAGING UNIT CONVERSION FACTORS Temperature K ϭ ЊC ϩ 273 ЊC ϭ 1.8(ЊF Ϫ 32) ЊR ϭ ЊF ϩ 460 Length 1 m ϭ 1010 A˚ ϭ 3.28 ft ϭ 39.4 in Mass 1 kg ϭ 2.2 lbm Force 1 N ϭ 1 kg-m/s2 ϭ 0.225 lbf Pressure (stress) 1 P ϭ 1 N/m2 ϭ 1.45 ϫ 10Ϫ4 psi Energy 1 J ϭ 1W-sϭ 1 N-m ϭ 1V-C 1Jϭ 0.239 cal ϭ 6.24 ϫ 1018 eV Current 1 A ϭ 1 C/s ϭ 1V/⍀ CONSTANTS Avogadro’s Number 6.02 ϫ 1023 moleϪ1 Gas Constant, R 8.314 J/(mole-K) Boltzmann’s constant, k 8.62 ϫ 10Ϫ5 eV/K Planck’s constant, h 6.63 ϫ 10Ϫ33 J-s Speed of light in a vacuum, c 3 ϫ 108 m/s Electron charge, q 1.6 ϫ 10Ϫ18 C SI PREFIXES giga, G 109 mega, M 106 kilo, k 103 centi, c 10Ϫ2 milli, m 10Ϫ3 micro, 10Ϫ6 nano, n 10Ϫ9 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. Source: FUNDAMENTALS OF MICROSYSTEMS PACKAGING CHAPTER 1 INTRODUCTION TO MICROSYSTEMS PACKAGING Prof. Rao R. Tummala Georgia Institute of Technology ................................................................................................................. Design Environment IC Thermal Management Packaging Single Materials Chip Opto and RF Functions Discrete Passives Encapsulation IC Reliability IC Assembly Inspection PWB MEMS Board Manufacturing Assembly Test Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies.