The Early Years of the Telephone
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Early Years of the Acoustic Phonograph Its Developmental Origins and Fall from Favor 1877-1929
THE EARLY YEARS OF THE ACOUSTIC PHONOGRAPH ITS DEVELOPMENTAL ORIGINS AND FALL FROM FAVOR 1877-1929 by CARL R. MC QUEARY A SENIOR THESIS IN HISTORICAL AMERICAN TECHNOLOGIES Submitted to the General Studies Committee of the College of Arts and Sciences of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of BACHELOR OF GENERAL STUDIES Approved Accepted Director of General Studies March, 1990 0^ Ac T 3> ^"^^ DEDICATION No. 2) This thesis would not have been possible without the love and support of my wife Laura, who has continued to love me even when I had phonograph parts scattered through out the house. Thanks also to my loving parents, who have always been there for me. The Early Years of the Acoustic Phonograph Its developmental origins and fall from favor 1877-1929 "Mary had a little lamb, its fleece was white as snov^. And everywhere that Mary went, the lamb was sure to go." With the recitation of a child's nursery rhyme, thirty-year- old Thomas Alva Edison ushered in a bright new age--the age of recorded sound. Edison's successful reproduction and recording of the human voice was the end result of countless hours of work on his part and represented the culmination of mankind's attempts, over thousands of years, to capture and reproduce the sounds and rhythms of his own vocal utterances as well as those of his environment. Although the industry that Edison spawned continues to this day, the phonograph is much changed, and little resembles the simple acoustical marvel that Edison created. -
Thomas Edison Vs Nikola Tesla THOMAS EDISON VS NIKOLA TESLA
M C SCIENTIFIC RIVALRIES PHERSON AND SCANDALS In the early 1880s, only a few wealthy people had electric lighting in their homes. Everyone else had to use more dangerous lighting, such as gas lamps. Eager companies wanted to be the first to supply electricity to more Americans. The early providers would set the standards—and reap great profits. Inventor THOMAS EDISON already had a leading role in the industry: he had in- vented the fi rst reliable electrical lightbulb. By 1882 his Edison Electric Light Company was distributing electricity using a system called direct current, or DC. But an inventor named NIKOLA TESLA challenged Edison. Tesla believed that an alternating cur- CURRENTS THE OF rent—or AC—system would be better. With an AC system, one power station could deliver electricity across many miles, compared to only about one mile for DC. Each inventor had his backers. Business tycoon George Westinghouse put his money behind Tesla and built AC power stations. Meanwhile, Edison and his DC backers said that AC could easily electrocute people. Edison believed this risk would sway public opinion toward DC power. The battle over which system would become standard became known as the War of the Currents. This book tells the story of that war and the ways in which both kinds of electric power changed the world. READ ABOUT ALL OF THE OF THE SCIENTIFIC RIVALRIES AND SCANDALS BATTLE OF THE DINOSAUR BONES: Othniel Charles Marsh vs Edward Drinker Cope DECODING OUR DNA: Craig Venter vs the Human Genome Project CURRENTS THE RACE TO DISCOVER THE -
Army Radio Communication in the Great War Keith R Thrower, OBE
Army radio communication in the Great War Keith R Thrower, OBE Introduction Prior to the outbreak of WW1 in August 1914 many of the techniques to be used in later years for radio communications had already been invented, although most were still at an early stage of practical application. Radio transmitters at that time were predominantly using spark discharge from a high voltage induction coil, which created a series of damped oscillations in an associated tuned circuit at the rate of the spark discharge. The transmitted signal was noisy and rich in harmonics and spread widely over the radio spectrum. The ideal transmission was a continuous wave (CW) and there were three methods for producing this: 1. From an HF alternator, the practical design of which was made by the US General Electric engineer Ernst Alexanderson, initially based on a specification by Reginald Fessenden. These alternators were primarily intended for high-power, long-wave transmission and not suitable for use on the battlefield. 2. Arc generator, the practical form of which was invented by Valdemar Poulsen in 1902. Again the transmitters were high power and not suitable for battlefield use. 3. Valve oscillator, which was invented by the German engineer, Alexander Meissner, and patented in April 1913. Several important circuits using valves had been produced by 1914. These include: (a) the heterodyne, an oscillator circuit used to mix with an incoming continuous wave signal and beat it down to an audible note; (b) the detector, to extract the audio signal from the high frequency carrier; (c) the amplifier, both for the incoming high frequency signal and the detected audio or the beat signal from the heterodyne receiver; (d) regenerative feedback from the output of the detector or RF amplifier to its input, which had the effect of sharpening the tuning and increasing the amplification. -
Electret Microphone Replacement for a Carbon Insert
The VMARS Newsletter Issue 29 Electret microphone replacement for a carbon insert Colin Guy G4DDI When I found that I had a dud carbon insert in an H33F/PT handset, and I couldn’t find another insert that fitted (the original is about 1” diameter) I looked around for an alternative. Trevor Sanderson’s excellent article “The RAF Microphone” (Radio Bygones issue 79/80) makes reference to the use of electret inserts with an IC preamplifier in telephones and aircraft headsets, but the information given was too scant to make construction of one of these possible without reference to the IC data sheet, and the IC’s are expensive and difficult to obtain. I had a GPO type 21A insert, but the innards of this when dismantled were still too large to fit into the available space. The H33 handset is very slim, and also virtually solid, so there is very little room in which to place a preamplifier. A dig around on the internet turned up the following article written by F. Hueber, originally published in Elektor Electronics December 1994, and is published here with permission from Elektor Electronics magazine, December 1994, copyright Segment B.V., Beek (Lb.), The Netherlands, www.segment.nl. The original article included a pcb layout, but I built mine on a strip of veroboard four tracks wide by about 2” (see photo) and mounted it on the back of the ptt switch. The electret insert was acquired from a scrap telephone and all the rest of the components from TV panels. To save space the rectifier and R12 weren’t included, care being taken to ensure that the polarity was correct. -
Thomas Edison Alexander Graham Bell
The Inventing Game Cut out the images. Cut out the name of the inventor separately. Read out the text as a clue. Can people match the correct name and image? THOMAS EDISON Clue The first great invention developed by (don’t say the name) Thomas Edison was the tin foil phonograph. A prolific producer, Edison is also known for his work with light bulbs, electricity, film and audio devices, and much more. ALEXANDER GRAHAM BELL Clue In 1876, at the age of 29, (don’t say the name) Alexander Graham Bell invented his telephone. Among one of his first innovations after the telephone was the "photophone," a device that enabled sound to be transmitted on a beam of light. GEORGE WASHINGTON CARVER Clue (Don’t say the name) George Washington Carver was an agricultural chemist who invented 300 uses for peanuts and hundreds of more uses for soybeans, pecans, and sweet potatoes. His contributions chang ed the history of agriculture in the south. ELI WHITNEY Clue (Don’t say the name) Eli Whitney invented the cotton gin in 1794. The cotton gin is a machine that separates seeds, hulls, and other unwanted materials from cotton after it has been picked. JOHANNES GUTTENBERG Clue (don’t say the name) Johannes Gutenberg was a German goldsmith and inventor best known for the Gutenberg press, an innovative printing machine that used movable type. JOHN LOGIE BAIRD Clue (don’t say the name) John Logie Baird is remembered as the inventor of mechanical television (an earlier version of television). Baird also patented inventions related to radar and fibre optics. -
The Great Telecom Meltdown for a Listing of Recent Titles in the Artech House Telecommunications Library, Turn to the Back of This Book
The Great Telecom Meltdown For a listing of recent titles in the Artech House Telecommunications Library, turn to the back of this book. The Great Telecom Meltdown Fred R. Goldstein a r techhouse. com Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data Goldstein, Fred R. The great telecom meltdown.—(Artech House telecommunications Library) 1. Telecommunication—History 2. Telecommunciation—Technological innovations— History 3. Telecommunication—Finance—History I. Title 384’.09 ISBN 1-58053-939-4 Cover design by Leslie Genser © 2005 ARTECH HOUSE, INC. 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. International Standard Book Number: 1-58053-939-4 10987654321 Contents ix Hybrid Fiber-Coax (HFC) Gave Cable Providers an Advantage on “Triple Play” 122 RBOCs Took the Threat Seriously 123 Hybrid Fiber-Coax Is Developed 123 Cable Modems -
The Marriage That Almost Was Western Union Has Always Been R.Idiculed for Rejecting the All Telephone
RETROSPECTIVE .Innovation The marriage that almost was Western Union has always been r.idiculed for rejecting the telephone. But what actually happened wasn't so ridiculous after all The hirth of the telephone.,-one hundred years ago railway and illuminating gas to Cambridge, Mass. this month-is a fascinating story of the geJ;Jius and Long intrigued by telegraphy, he decided to do persistence of on.e man. In addition, it is an instruc something about what he called "this monopoly tive demonstration of how an industrial giant, in with its inflated capital which serves its stockhold this case the Western Union Telegraph Co., can ers better than the 'public and whose:rates are ex miss its chance to foster an industry-creating orbitant and prohibiting of many kinds of busi breakthrough-something that has happened again ness." Between 1868 and 1874, he lobbied unceas and again in electronics and other fields. ingly, shuttling back and forth betweep. homes in Between ·1875 and 1879, Western Union's chiefs Boston and Washington. for a private "postal tele engaged in an intricate minuet with Alexander graph company" to be chartered by Congress but Graham Bell and his associates. On more than one with Hubbard and some of his friends among the occasion, the telegraph colossus came excruciating incorporators. As Hubbard envisioned it, the com ly close to absorbing the small group of ~ntre pany would build telegraph lines along the nation's preneurs, That the absorption was finally avoided rail and post roads and contract with the Post was probably the result of a technological gamble Office Department to send telegrams on its wires ~t that simply didn't payoff, as rates roughly half those being charged by Western ••• The place: the ollie of well as a clash of personali Union. -
The Electric Telegraph
To Mark, Karen and Paul CONTENTS page ORIGINS AND DEVELOPMENTS TO 1837 13 Early experiments—Francis Ronalds—Cooke and Wheatstone—successful experiment on the London & Birmingham Railway 2 `THE CORDS THAT HUNG TAWELL' 29 Use on the Great Western and Blackwall railways—the Tawell murder—incorporation of the Electric Tele- graph Company—end of the pioneering stage 3 DEVELOPMENT UNDER THE COMPANIES 46 Early difficulties—rivalry between the Electric and the Magnetic—the telegraph in London—the overhouse system—private telegraphs and the press 4 AN ANALYSIS OF THE TELEGRAPH INDUSTRY TO 1868 73 The inland network—sources of capital—the railway interest—analysis of shareholdings—instruments- working expenses—employment of women—risks of submarine telegraphy—investment rating 5 ACHIEVEMENT IN SUBMARINE TELEGRAPHY I o The first cross-Channel links—the Atlantic cable— links with India—submarine cable maintenance com- panies 6 THE CASE FOR PUBLIC ENTERPRISE 119 Background to the nationalisation debate—public attitudes—the Edinburgh Chamber of Commerce— Frank Ives. Scudamore reports—comparison with continental telegraph systems 7 NATIONALISATION 1868 138 Background to the Telegraph Bill 1868—tactics of the 7 8 CONTENTS Page companies—attitudes of the press—the political situa- tion—the Select Committee of 1868—agreement with the companies 8 THE TELEGRAPH ACTS 154 Terms granted to the telegraph and railway companies under the 1868 Act—implications of the 1869 telegraph monopoly 9 THE POST OFFICE TELEGRAPH 176 The period 87o-1914—reorganisation of the -
INDUSTRIAL STRENGTH by MICHAEL RIORDAN
THE INDUSTRIAL STRENGTH by MICHAEL RIORDAN ORE THAN A DECADE before J. J. Thomson discovered the elec- tron, Thomas Edison stumbled across a curious effect, patented Mit, and quickly forgot about it. Testing various carbon filaments for electric light bulbs in 1883, he noticed a tiny current trickling in a single di- rection across a partially evacuated tube into which he had inserted a metal plate. Two decades later, British entrepreneur John Ambrose Fleming applied this effect to invent the “oscillation valve,” or vacuum diode—a two-termi- nal device that converts alternating current into direct. In the early 1900s such rectifiers served as critical elements in radio receivers, converting radio waves into the direct current signals needed to drive earphones. In 1906 the American inventor Lee de Forest happened to insert another elec- trode into one of these valves. To his delight, he discovered he could influ- ence the current flowing through this contraption by changing the voltage on this third electrode. The first vacuum-tube amplifier, it served initially as an improved rectifier. De Forest promptly dubbed his triode the audion and ap- plied for a patent. Much of the rest of his life would be spent in forming a se- ries of shaky companies to exploit this invention—and in an endless series of legal disputes over the rights to its use. These pioneers of electronics understood only vaguely—if at all—that individual subatomic particles were streaming through their devices. For them, electricity was still the fluid (or fluids) that the classical electrodynamicists of the nineteenth century thought to be related to stresses and disturbances in the luminiferous æther. -
The Otranto-Valona Cable and the Origins of Submarine Telegraphy in Italy
Advances in Historical Studies, 2017, 6, 18-39 http://www.scirp.org/journal/ahs ISSN Online: 2327-0446 ISSN Print: 2327-0438 The Otranto-Valona Cable and the Origins of Submarine Telegraphy in Italy Roberto Mantovani Department of Pure and Applied Sciences (DiSPeA), Physics Laboratory: Urbino Museum of Science and Technology, University of Urbino Carlo Bo, Urbino, Italy How to cite this paper: Mantovani, R. Abstract (2017). The Otranto-Valona Cable and the Origins of Submarine Telegraphy in Italy. This work is born out of the accidental finding, in a repository of the ancient Advances in Historical Studies, 6, 18-39. “Oliveriana Library” in the city of Pesaro (Italy), of a small mahogany box https://doi.org/10.4236/ahs.2017.61002 containing three specimens of a submarine telegraph cable built for the Italian Received: December 22, 2016 government by the Henley Company of London. This cable was used to con- Accepted: March 18, 2017 nect, by means of the telegraph, in 1864, the Ports of Otranto and Avlona (to- Published: March 21, 2017 day Valona, Albania). As a scientific relic, the Oliveriana memento perfectly fits in the scene of that rich chapter of the history of long distance electrical Copyright © 2017 by author and Scientific Research Publishing Inc. communications known as submarine telegraphy. It is known that, thanks to This work is licensed under the Creative the English, the issue of submarine electric communication had an impressive Commons Attribution International development in Europe from the second half of the nineteenth century on. License (CC BY 4.0). Less known is the fact that, in this emerging technology field, Italy before uni- http://creativecommons.org/licenses/by/4.0/ fication was able to carve out a non-negligible role for itself, although primar- Open Access ily political. -
Morse Code (Edited from Wikipedia)
Morse Code (Edited from Wikipedia) SUMMARY Morse code is a method of transmitting text information as a series of on-off tones, lights, or clicks that can be directly understood by a skilled listener or observer without special equipment. It is named for Samuel F. B. Morse, an inventor of the telegraph. The International Morse Code encodes the ISO basic Latin alphabet, some extra Latin letters, the Arabic numerals and a small set of punctuation and procedural signals (prosigns) as standardized sequences of short and long signals called "dots" and "dashes", or "dits" and "dahs", as in amateur radio practice. Because many non-English natural languages use more than the 26 Roman letters, extensions to the Morse alphabet exist for those languages. Each Morse code symbol represents either a text character (letter or numeral) or a prosign and is represented by a unique sequence of dots and dashes. The duration of a dash is three times the duration of a dot. Each dot or dash is followed by a short silence, equal to the dot duration. The letters of a word are separated by a space equal to three dots (one dash), and the words are separated by a space equal to seven dots. The dot duration is the basic unit of time measurement in code transmission. To increase the speed of the communication, the code was designed so that the length of each character in Morse is shorter the more frequently it is used in the language. Thus the most common letter in English, the letter "E", has the shortest code, a single dot. -
Method of Accommodating for Carbon/Electret Telephone Set Variability in Automatic Speaker Verification
Europaisches Patentamt 19 European Patent Office Office europeen des brevets © Publication number: 0 654 781 A2 12 EUROPEAN PATENT APPLICATION @ Application number: 94308231.3 @ Int. CI.6: G10L 5/06 (22) Date of filing : 09.11.94 (So) Priority: 19.11.93 US 155973 @ Inventor: Sachs, Richard M. 64 Sunset Place @ Date of publication of application : Middletown, New Jersey 07748 (US) 24.05.95 Bulletin 95/21 Inventor : Schoeffler, Max S. 17 Kenwood Lane @ Designated Contracting States : Matawan, New Jersey 07747 (US) DE ES FR GB IT (74) Representative : Watts, Christopher Malcolm @ Applicant : AT & T Corp. Kelway, Dr. et al 32 Avenue of the Americas AT&T (UK) Ltd. New York, NY 10013-2412 (US) 5, Mornington Road Woodford Green Essex, IG8 0TU (GB) (S) Method of accommodating for carbon/electret telephone set variability in automatic speaker verification. In verification method of (57) a speaker system, a FIG. 6 compensating for differences in speech sam- ples obtained during registration and those obtained during verification due to the use of VERIFICATION (4-WAY) different types of microphones is provided by ,601 at least of the such that filtering one samples PROMPT the similarities of the two samples are in- creased. The filtered sample is used within the ,604 speaker verification matching process. A two- RECEIVE VERIFICATION way comparison is disclosed in which both a SPEECH SAMPLE verification speech sample and a reference sample are filtered with nonlinear microphone r609 ,606 characteristics such as carbon microphone PRODUCE CARBON characteristics. A is also VERIFICATION FILTER four-way comparison PATTERN SAMPLE disclosed in which patterns produced from un- filtered verification and reference samples and 611 from the filtered verification PRODUCE CARBON patterns produced FILTERED and reference samples are compared to identify VERIFICATION a match.