Valve Biasing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MI Amplification
MI Amplification Owner’s Manual 1 1. Welcome ....................................................................................................................................... 4 2. Precautions................................................................................................................................... 5 3. Amp Overview .............................................................................................................................. 6 3.1. Preamp.............................................................................................................................................. 6 3.2. Power Amp ....................................................................................................................................... 6 3.3. FX Loops .......................................................................................................................................... 7 3.4. Operating Modes ............................................................................................................................. 7 4. Getting Started ............................................................................................................................. 8 5. The Channels ............................................................................................................................... 9 5.1. Introduction ..................................................................................................................................... 9 5.2. Channel 1 ......................................................................................................................................... -
California Noise: Tinkering with Hardcore and Heavy Metal in Southern California Steve Waksman
ABSTRACT Tinkering has long figured prominently in the history of the electric guitar. During the late 1970s and early 1980s, two guitarists based in the burgeoning Southern California hard rock scene adapted technological tinkering to their musical endeavors. Edward Van Halen, lead guitarist for Van Halen, became the most celebrated rock guitar virtuoso of the 1980s, but was just as noted amongst guitar aficionados for his tinkering with the electric guitar, designing his own instruments out of the remains of guitars that he had dismembered in his own workshop. Greg Ginn, guitarist for Black Flag, ran his own amateur radio supply shop before forming the band, and named his noted independent record label, SST, after the solid state transistors that he used in his own tinkering. This paper explores the ways in which music-based tinkering played a part in the construction of virtuosity around the figure of Van Halen, and the definition of artistic ‘independence’ for the more confrontational Black Flag. It further posits that tinkering in popular music cuts across musical genres, and joins music to broader cultural currents around technology, such as technological enthusiasm, the do-it-yourself (DIY) ethos, and the use of technology for the purposes of fortifying masculinity. Keywords do-it-yourself, electric guitar, masculinity, popular music, technology, sound California Noise: Tinkering with Hardcore and Heavy Metal in Southern California Steve Waksman Tinkering has long been a part of the history of the electric guitar. Indeed, much of the work of electric guitar design, from refinements in body shape to alterations in electronics, could be loosely classified as tinkering. -
The Development of the Vacuum Tube Creators
The Knowledge Bank at The Ohio State University Ohio State Engineer Title: The Development of the Vacuum Tube Creators: Jeffrey, Richard B. Issue Date: May-1928 Publisher: Ohio State University, College of Engineering Citation: Ohio State Engineer, vol. 11, no. 7 (May, 1928), 9-10. URI: http://hdl.handle.net/1811/34260 Appears in Collections: Ohio State Engineer: Volume 11, no. 7 (May, 1928) THE OHIO STATE ENGINEER The Development of the Vacuum Tube By RICHARD B. JEFFREY, '31 The history of the vacuum tube began with the discovery of the Edison Effect. This, like a great many other important discoveries, was an acci- dent. Edison, while experimenting with his in- candescent lamps, had placed more than one fila- output ment in the same bulb, and he noticed that if one of the filaments was held positive with respect to the other a current would flow through the bulb. He also found that this positive element, or, as it is now called, plate, did not have to be hot to sustain this current flow. This phenomenon li—- H was known for some time as a curiosity, but noth- 1 +90 to \35 ing more. Then Fleming, an English experiment- +4-5 er, noticed that if an alternating current were The screen-qrid tube (tetrode). applied to this plate the current would flow only plicated system by making use of the rectifying when the plate was positive. In other words, the properties of a crystal, notably galena. When tube acted as a rectifier, allowing the current to signals were received in this way it was the signal flow in only one direction. -
The EL34 Power Tube HI-'I
The EL34 Power Tube HI-'I .... o.l"r A lp Musical Evaluations of a Classic Design .... A_I . 4.551 Single. Ended EL·84 Stereo Amp ~ _ .... ,���\� . -""" ".. - ...-., p.,.��",-, �. 1""""' -�,�.. � . oPf' ' ".".. ._ '" "'� .,_ "'�•• '" "'� ...- ' ,t\1".' ,w ' � "'\)U'�..,. ,\ 1\ ' ��-;---""\.\. ",.-" " ".,... "", ""�_ " tt"�" ,....-" ...........,...1"'" '�" ""t\1 _,.,.""" ....'" 'r·\ �'� . � ......,. �,,,. � ,..' ",...., \PJOl8'i .... �,�oPf',.,....;:.. O\ �,cl\ ., .... " , � ...,,.. AA �r- . · :::- ,,<,<, ,. ..""'"':k ...0'\1. � ':;: "",;: .. .._ " r ,...,.. _ "" " .-;.,,...""".... ",.... ......,.,.,,, -;;. ,... :;..,� _ """;.... -� . 0 """ " . ,,..,. ,t" ,,'" <""" , .-_,.;.;.''' � .. '''''''-o<f' _ ....;;; .,;::; , -- '" " ,.,...,.. "" .'" ::, ,t"� ��. ...,.,..,.;.;."1"" ''/'''' � _.� "" f"'� . � ' M'''" ' "- """",,; ,.of .,.,..� .. ...,. ' "' 1" '". '_1"""' . .. " ,,,,,,,,,,,,,,,_ f"""";""';..::: .,... " '�,;;.;:' ' ......,,..,..,. _-:: -__':1oPf' ::;;'", --''''"", ""","" ", ' �':::', � ' ""r; """"-"' .''''''''�}.. ,t\1 \ �·, � ot ,;: "" � ,.,. ---� , _.at" � t\JV" �� � 'i"'f'- " .::... .. .... �. , ,�,....,.' .....;. _ ...-:> ".... JC8'I\\ -, \�..- WOl\ """,.""''1"'"- �""'" � '-,�� 6<1\"""- ' ""'..,... � ...... � 6U'." �. - ,t\1 , . _ , "'" 1J>b\"� ��, oPf''' .,..-._ " "" .0. " ..... ���_���\t"�'".. ' ....... "" "",",. N ��:L [\l\'J � ��i y< • D T 0 • , 5 P A G • A N D N D u 5 T • y N • w 5 Beware of FakeNOS Tubes! CE Distribution US Distributor for Electronic Tubes VTV Issue # 1 6 JJ Over the last year or so, we have JJ Electronic, -
Operation, Tetrode, Pentode in the Single-Ended, Class-A
10-76 10. Guitar Amplifiers 10.5.1 Single-ended (class A)-operation, tetrode, pentode In the single-ended, class-A power-stage, one (single) power-tube operates in common- cathode configuration with the output transformer being part of the plate circuit (transformer- coupling). Without AC-drive (“quiescent state”), a stable balance appears – it is called the operating point (OPP). The characteristics shown in Fig. 10.5.2 yield an OPP at 250 V and 48 mA, if a voltage of -7.5 V between (control) grid (g1) and cathode is chosen. This can be done e.g. by using a cathode-resistor of 142 Ω. The cathode-current (the sum of the 48-mA- plate-current and the 5-mA-screen-grid-current) will then generate a positive cathode-voltage of + 7.5 V (relative to ground). With the control-grid at ground-potential (Ug1 = 0) a control- grid-to-cathode-voltage of -7.5 V results (i.e. the control grid is negative vs. the cathode). Fig. 10.5.2: Output characteristics of the EL84, power-stage circuit (single-ended class-A operation). AP = OPP As a drive signal appears (Ug1 ≠ 0), plate-voltage and –current change. As a first approach, it will be sufficient to consider the transformer in the plate-circuit as a large inductance connected in parallel with an ohmic resistor (Chapter 10.6). In this model we have only pure DC flowing through the inductance, and only pure AC flowing through the resistor. With a drive-signal present, the Ua/Ia-point will move along the load-line given in Fig. -
HEADRUSH MODELS LIST ALL MODELS and REAL REFERMENT TABLE Headrush Firmware 2.1.1
HEADRUSH MODELS LIST ALL MODELS AND REAL REFERMENT TABLE Headrush Firmware 2.1.1 AMPLIFIERS MODEL NAME TYPE BASED ON 1 59 TWEED BASS Combo Fender ’59 Bassman 2 59 TWEED DELUXE Combo Fender Tweed Deluxe 59 DELUXE GAIN Fender Tweed Deluxe 3 Combo MOD (Gain Mod) 4 59 TWEED PRINCE Combo Fender ’59 Princeton Fender Deluxe Reverb 5 64 BLACK LUX NORM Combo (Normal) Fender Deluxe Reverb 6 64 BLACK LUX VIB Combo (Vibrato) 7 64 BLACK VIB Combo Fender Vibroverb 8 65 BLACK MINI Combo Fender Champ 6w 9 65 BLACK PRINCE Combo Fender Princeton www.robyrocks.it 12.10.2019 - Roby Rocks 65 BLACK PRINCE 10 Combo Fender Princeton Reverb REV Fender Super Reverb 11 65 BLACK SR Combo “Blackface” Fender Twin Reverb 12 67 BLACK DUO Combo “Blackface” 13 67 BLACK SHIMMER Stack Fender Dual Showman 14 66 AC HI BOOST Combo Vox AC30 Top Boost 66 AC HI BOOST Vox AC30 Top Boost 15 Combo MOD (Mod) 16 66 FLIP BASS Stack Ampeg Portaflex B15-N 17 BLUE LINE BASS Stack Ampeg SVT 300w 69 BLUE LINE Ampeg SVT 300w 18 Stack SCOOP (Scooped) 19 65 J45 Stack Marshall JTM45 Marshall Super Lead Plexi 20 67 PLEXIGAS VARI Stack (Variac Mod) Marshall Super Lead Plexi 21 68 PLEXI EL84 MOD Stack (EL34 tubes mod) www.robyrocks.it 12.10.2019 - Roby Rocks Marshall Super Lead Plexi 22 68 PLEXIGLAS 100W Stack 100W Marshall Super Lead Plexi 23 68 PLEXIGLAS 50W Stack 50W Marshall JCM800 24 82 LEAD 800 100W Stack (Normal) 25 82 LEAD 800 50W Stack Marshall JCM800 50w 82 LEAD 800 BASS Marshall JCM800 (Bass 26 Stack MOD Mod) 82 LEAD 800 27 Stack Marshall JCM800 (Bright) BRIGHT 82 LEAD 800 TS Marshall -
Bias Circuits for RF Devices
Bias Circuits for RF Devices Iulian Rosu, YO3DAC / VA3IUL, http://www.qsl.net/va3iul A lot of RF schematics mention: “bias circuit not shown”; when actually one of the most critical yet often overlooked aspects in any RF circuit design is the bias network. The bias network determines the amplifier performance over temperature as well as RF drive. The DC bias condition of the RF transistors is usually established independently of the RF design. Power efficiency, stability, noise, thermal runway, and ease to use are the main concerns when selecting a bias configuration. A transistor amplifier must possess a DC biasing circuit for a couple of reasons. • We would require two separate voltage supplies to furnish the desired class of bias for both the emitter-collector and the emitter-base voltages. • This is in fact still done in certain applications, but biasing was invented so that these separate voltages could be obtained from but a single supply. • Transistors are remarkably temperature sensitive, inviting a condition called thermal runaway. Thermal runaway will rapidly destroy a bipolar transistor, as collector current quickly and uncontrollably increases to damaging levels as the temperature rises, unless the amplifier is temperature stabilized to nullify this effect. Amplifier Bias Classes of Operation Special classes of amplifier bias levels are utilized to achieve different objectives, each with its own distinct advantages and disadvantages. The most prevalent classes of bias operation are Class A, AB, B, and C. All of these classes use circuit components to bias the transistor at a different DC operating current, or “ICQ”. When a BJT does not have an A.C. -
Tutorial: Adding a Control Grid to a High-Current Electron Gun
Tutorial: adding a control grid to a high-current electron gun Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975 Fax: +1-617-752-9077 E mail: techinfo@fieldp.com Internet: http://www.fieldp.com 1 Recently, I was asked to consider whether a control grid consisting of parallel or crossed wires could be added to an existing space-charge-limited electron gun for beam modulation. I identified two main questions: • Because considerable effort had been invested in the gun design, would it possible to add the grid without significantly changing the macro- scopic beam optics? • What was the contribution to the angular divergence of the beam rel- ative to the focal requirements? With regard to first question, the best approach would be to locate the wire grid at the former position of the cathode surface and to move the cathode a short distance upstream. The grid would be attached to the focus electrode bounding the former cathode surface. Figure 1 is a schematic view of the cathode-grid region. The values of D and Vc should be chosen to generate an electron current density je equal to the space-charge limited design value in the main acceleration gap. In this way, the grid surface would act almost like the original cathode, preserving the gun optics. There are two options to fabricate a grid: 1) parallel wires with spacing W or 2) a crossed grid with square openings with side length W . For a rough estimate, I did not consider the effect of the wire width. -
VACUUM TUBE VALLEY Fall 1995 Price $6.50
Pub/ish«lQuarterly Celebrating the History and QlIOlity of Vocllum Tube Te<lmology luue 2 Vo/LlI7U! I VACUUM TUBE VALLEY Fall 1995 Price $6.50 Magnum SE Amplifier Da\-c Wolze rec.:nrlydesigned and built an SE amp with power and punch. Page 17 ...... Tube Review: EL·34 In one of existence since 1953 and th(Omost popular audio tubes of all time, rhe EL-34 has many variarions and performance characteristics. Page 8 Heath W-6M Heathkit: Early Tube Hi-Fi years. In This Issue .. manufacturer of Heathkit was the largest d�c Ironic kits in the US, alone time, selling over ntbe bldustry News 350 different types of kts. Learn more aboUl Check OUt the latest happen gs i in in the the early days of Heath Hi-Fi. Page 3 world of vacuum tubes. Learn the results of a recent survey of tuhe dislfih mors and sellers conducted by VIV. MU/UlrdEL-34s Harbouroudines the latest Ilem and Eric Early Cinema Sound Views. Page 15 vrv examines an early \xre�ternElectric [heater sound system. Page 24 Guitar Amplifiers Learn about how to get the best guitar tone. Chaclie Kittleson interviews Terry Buddingh, Tube Amp Expert from GuiTdrPi4yer Magazine. Page 20 Heatb w-4AM Tube Matching: Get the best soutuisfrom your amp. Matched tubes arc essential for opti mum performance from push-pull amps. n John Atwood explai s tube matching techniques for the layman. Page 22 Vacuum Tube Valleyis published quarterly for electronic enthusiasts interested in the See (Jur newfiatures in this months colorfv1 past, present and fvture af yocuum tube electronics. -
Chapter 4 BJT BIASING CIRCUIT Introduction – Biasing the Analysis Or Design of a Transistor Amplifier Requires Knowledge of Both the Dc and Ac Response of the System
Chapter 4 BJT BIASING CIRCUIT Introduction – Biasing The analysis or design of a transistor amplifier requires knowledge of both the dc and ac response of the system. In fact, the amplifier increases the strength of a weak signal by transferring the energy from the applied DC source to the weak input ac signal The analysis or design of any electronic amplifier therefore has two components: •The dc portion and •The ac portion During the design stage, the choice of parameters for the required dc levels will affect the ac response. What is biasing circuit? Biasing: Application of dc voltages to establish a fixed level of current and voltage. Purpose of the DC biasing circuit • To turn the device “ON” • To place it in operation in the region of its characteristic where the device operates most linearly . •Proper biasing circuit which it operate in linear region and circuit have centered Q-point or midpoint biased •Improper biasing cause Improper biasing cause •Distortion in the output signal •Produce limited or clipped at output signal Important basic relationship IECB= II + I β = C I B IE =+≅ (β 1) IIBC VVVCB= CE − BE Operating Point •Active or Linear Region Operation Base – Emitter junction is forward biased Base – Collector junction is reverse biased Good operating point •Saturation Region Operation Base – Emitter junction is forward biased Base – Collector junction is forward biased •Cutoff Region Operation Base – Emitter junction is reverse biased BJT Analysis DC AC analysis analysis Calculate gains of the Calculate the DC Q-point amplifier -
A Case Study of the Craft-Made Guitar Industry in the Global Economy
UNIVERSITY OF CALIFORNIA SANTA CRUZ DEMYSTIFYING THE CRAFT PRODUCTION: A CASE STUDY OF THE CRAFT-MADE GUITAR INDUSTRY IN THE GLOBAL ECONOMY A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in SOCIOLOGY by Yi-Chen Liu June 2021 The Dissertation of Yi-Chen Liu is approved: ______________________________________ Professor Steven McKay, chair _______________________________________ Professor Hiroshi Fukurai _______________________________________ Professor Lisbeth Haas ___________________________________ Quentin Williams Vice Provost and Dean of Graduate Studies TABLE OF CONTENTS Table of Contents.........................................................................................................iii List of Figures................................................................................................................v Abstract.......................................................................................................................vii Acknowledgments......................................................................................................viii Chapter One: Why Are Craft-made Guitars So Expensive?........................................1 Chapter Two: How Can a Luthier Create a Value for a Guitar? The Explanations from Political-Economic and Cultural Perspectives...........................................................14 Chapter Three: Case Studies and Methodology. .......................................................38 Chapter Four: Invention -
Push - Pull Audiophile - Output (1608-1650 "A" Series)
Push - Pull Audiophile - Output (1608-1650 "A" Series) PUSH - PULL "EASY HOOK-UP" "CLASSIC" TUBE TYPE - ULTRA-LINEAR OUTPUT TRANSFORMERS • NEW & Improved version of our 1608-1650 series output transformers (re-designed secondaries for easy hook- up of secondary loads) • Designed for push-pull tube output circuits. o • Enclosed (shielded), 4 slot, above chassis Type "X" mounting. • Frequency response 30 Hz. to 30 Khz. at full rated power (+/- 1 db max. - ref. 1 Khz) minimum. Except the Audi 1650E (70 Hz. to 30 Khz. +/- 1 db max. - ref. 1 Khz.) be • Insulated flexible leads 8" min. • All units (except the 1650G) include 40% screen taps for Ultra-Linear operation (if desired). Tu • Typical applications - Push-Pull: triode, Ultra-Linear pentode, and tetrode connected audio output. The 1650G does NOT have primary screen taps and will not support "Ultra-Linear" applications. Audio Dimensions (Inches) Part Primary Max. DC Secondary Wt. Watts E G Number Impedance Per Side Impedance A B C D Lbs. (RMS) +/- 1/16” Slot 1608A 10 8,000 C.T. 100 ma. 4-8-16 2.50 2.75 3.06 2.00 1.69 .203 x .38 2.5 1609A 10 10,000 C.T. 100 ma. 4-8-16 2.50 2.75 3.06 2.00 1.69 .203 x .38 2.5 1615A 15 5,000 C.T. 100 ma. 4-8-16 2.50 3.25 3.06 2.00 2.19 .203 x .38 3.25 1650E 15 8,000 C.T. 100 ma. 4-8-16 2.50 3.25 3.06 2.00 2.50 .203 x .38 3.5 1620A 20 6,600 C.T.