The Development of the Vacuum Tube Creators

Total Page:16

File Type:pdf, Size:1020Kb

The Development of the Vacuum Tube Creators The Knowledge Bank at The Ohio State University Ohio State Engineer Title: The Development of the Vacuum Tube Creators: Jeffrey, Richard B. Issue Date: May-1928 Publisher: Ohio State University, College of Engineering Citation: Ohio State Engineer, vol. 11, no. 7 (May, 1928), 9-10. URI: http://hdl.handle.net/1811/34260 Appears in Collections: Ohio State Engineer: Volume 11, no. 7 (May, 1928) THE OHIO STATE ENGINEER The Development of the Vacuum Tube By RICHARD B. JEFFREY, '31 The history of the vacuum tube began with the discovery of the Edison Effect. This, like a great many other important discoveries, was an acci- dent. Edison, while experimenting with his in- candescent lamps, had placed more than one fila- output ment in the same bulb, and he noticed that if one of the filaments was held positive with respect to the other a current would flow through the bulb. He also found that this positive element, or, as it is now called, plate, did not have to be hot to sustain this current flow. This phenomenon li—- H was known for some time as a curiosity, but noth- 1 +90 to \35 ing more. Then Fleming, an English experiment- +4-5 er, noticed that if an alternating current were The screen-qrid tube (tetrode). applied to this plate the current would flow only plicated system by making use of the rectifying when the plate was positive. In other words, the properties of a crystal, notably galena. When tube acted as a rectifier, allowing the current to signals were received in this way it was the signal flow in only one direction. This tube that Flem- current itself that energified the telephones. ing made was called the "Fleming Valve" and From this it was only a lgical step to the utiliza- was the forerunner of all our present day multiple tion of the Fleming valve in place of the crystal. element tubes. In fact, in England a vacuum It was a more efficient rectifier. tube is still called a "valve." Then Lee DeForest began experimenting and It was not long until this Fleming valve was he introduced the third element, the grid. If the being used commercially as a rectifier to trans- vacuum tube is the heart of the radio industry, form alternating current to direct, and various the grid is the heart of the vacuum tube. It is improvements were added to it until the modern the valve that controls the action of the tube. rectifier tubes were evolved. Among the mosi DeForest found that if the signal was introduced important improvements were the substitution of between the grid and the filament, and the fila- a metalic filament for the carbon one, and the ment and plate were energized by the proper bat- introduction of certain gasses into the vacuum to teries, then the signal obtained between the plate increase the conductivity of the tube. and the filament would be several times input to These diodes or two-element tubes are men- the grid. It was here that the amplifying action tioned because no account of vacuum tube develop- of the tube appeared. For many years the vac- ment would be complete without them, but this uum tube was used in radio solely as a detector, paper is more concerned with the more compli- and its development as an amplifier was left to cated tubes used first in telephony and now form- the telephone companies. ing the very heart of radio communication. These With the popularization of the telephone and were, until very recently, all triodes, or three- its increasing use for long distance calls the drop element tubes, but lately a tetrode has been intro- in the line became very troublesome. It was dif- duced, of which more will be said later. ficult to overcome this trouble, but the invention The first application of vacuum tubes to radio, of the vacuum tube showed the way out. Its or "wireless" as it was then called, was in the amplifying property was made use of and devel- detection of signals. When Marconi invented his oped by the telephone engineers nad then this wireless he used at first a "coherer," a glass tube improved tube was again applied to radio. filled with metal filings, to detect the signals. Here the development of the vacuum tube This acted like a relay, and the current to work seemed to stop. For years there was really only the telephones came from a local battery. Then one type of tube. It was made in different models it was found possible to do away with this com- for different battery voltages, but that was about the only difference between the models. During this period the methods of operating and the cir- cuits were greatly improved, but so much atten- output tion was paid to this end of the problem that tubes were forgotten. Then the tide began to turn, until now circuits are forgotten in the rush of new tubes. The first improvement to come was the thori- ated filament, closely followed by the high vac- uum. It was found that by covering the ordinary tungsten filament with a coating of thorium oxide the efficiency could be greatly increased and the W +4-5 to 135 current consumption lowered. That is why mod- Fundamental triode circuit. ern tubes do not light up as brightly as an electric MAY, 1928 10 THE OHIO STATE ENGINEER light bulb. This coating of thorium oxide makes may be operated directly from the power mains, it unnecessary to heat them so hot, and thus in- and thus all batteries are eliminated. creases the life of the tube. The high vacuum Late in 1927 a tube was introduced to this coun- came as the result of the invention of better try which may truly be called the greatest single pumps for evacuating the tubes. The pumps most step in the development of radio since Hertz's generally used now use mercury and operate in a first experiments. This was the screen-grid tube. manner very similar to that of the small suction It is almost safe to predict that it will bring the pumps used in a chemistry laboratory which are most revolutionary changes radio has ever known. attached to the water pipes. In addition to using The operation of this tube cannot be explained these high power pumps, they introduce into each completely without a rather technical discussion. tube certain substances which combine with any The great obstacle to high amplification with ordi- air which may be left in the tube. The high vac- nary tubes has been the difficulty in controlling uum makes a tube quieter in operation and allows oscillation, which results in squeals. It is caused the use of higher plate voltages. A high vacuum mainly by the short distance between the plate tube is spoken of as a "hard" tube and makes a and grid. In the screen-grid tube the plate is better amplifier than a "soft" one. entirely surrounded by a second grid, called the About 1925 the special purpose tubes began to screen-grid. This is connected to the battery that make their appearance. Before this all tubes had supplies the plate. The effect of this screen-grid been about alike, and one kind was used through- being between the plate and the control grid is the out a set. This was not a very good arrangement, same as if the plate and control grid were several for a tube that is designed for a detector will not feet apart. The oscillation from thsi source is make a good amplifier, and one designed for high almost entirely stopped. This results in much amplification will not make a good output tube, higher effiicency. It is interesting to compare and so on. Obviously it was not possible to de- the results obtained with this tube with those of sign one model that could be used everywhere. the older tubes. The screen-grid tube, 222, gives So the special purpose tubes began to appear. an amplification at broadcasting wavelengths of Their characteristics are too complicated to be from 25 to 50, the older type, the 201A, gives dealt with here; they make their appearance in about 8 at all wavelengths. On very high wave- the form of special detectors, output tubes, high lengths the 222 may give an amplification as high mu tubes, (mu is a symbol for amplification), as 200, but this is unusual. The 222 may also radio frequency tubes, and in many other forms. be used in a voice amplificer, when it amplifies about 35, in this connection the 210A never gives And now comes one of the two truly great more than 8. The 222 also uses much less cur- changes in the vacuum tube, the A. C. tube. Since rent, about half as much as the other type, and the invention of the first audion, men have may under certain conditions be used as an A. C. dreamed of operating receivers direct from the tube. At the time of writing this account no power mains, but the great obstacle was the diffi- quotation could be obtained on the price of these culty in eliminating the hum. With the introduc- tubes, but even though the price may be high, tion of the so called "B battery eliminator" a few they will probably cut the cost of operating a set years ago, part of this dream was realized, but by giving better results with fewer tubes. the filament heating presented a greater problem. Several methods for heating the filaments from the power mains were introduced, but were, in general, unsuccessful.
Recommended publications
  • Valve Biasing
    VALVE AMP BIASING Biased information How have valve amps survived over 30 years of change? Derek Rocco explains why they are still a vital ingredient in music making, and talks you through the mysteries of biasing N THE LAST DECADE WE HAVE a signal to the grid it causes a water as an electrical current, you alter the negative grid voltage by seen huge advances in current to flow from the cathode to will never be confused again. When replacing the resistor I technology which have the plate. The grid is also known as your tap is turned off you get no to gain the current draw required. profoundly changed the way we the control grid, as by varying the water flowing through. With your Cathode bias amplifiers have work. Despite the rise in voltage on the grid you can control amp if you have too much negative become very sought after. They solid-state and digital modelling how much current is passed from voltage on the grid you will stop have a sweet organic sound that technology, virtually every high- the cathode to the plate. This is the electrical current from flowing. has a rich harmonic sustain and profile guitarist and even recording known as the grid bias of your amp This is known as they produce a powerful studios still rely on good ol’ – the correct bias level is vital to the ’over-biased’ soundstage. Examples of these fashioned valves. operation and tone of the amplifier. and the amp are most of the original 1950’s By varying the negative grid will produce Fender tweed amps such as the What is a valve? bias the technician can correctly an unbearable Deluxe and, of course, the Hopefully, a brief explanation will set up your amp for maximum distortion at all legendary Vox AC30.
    [Show full text]
  • 1999-2017 INDEX This Index Covers Tube Collector Through August 2017, the TCA "Data Cache" DVD- ROM Set, and the TCA Special Publications: No
    1999-2017 INDEX This index covers Tube Collector through August 2017, the TCA "Data Cache" DVD- ROM set, and the TCA Special Publications: No. 1 Manhattan College Vacuum Tube Museum - List of Displays .........................1999 No. 2 Triodes in Radar: The Early VHF Era ...............................................................2000 No. 3 Auction Results ....................................................................................................2001 No. 4 A Tribute to George Clark, with audio CD ........................................................2002 No. 5 J. B. Johnson and the 224A CRT.........................................................................2003 No. 6 McCandless and the Audion, with audio CD......................................................2003 No. 7 AWA Tube Collector Group Fact Sheet, Vols. 1-6 ...........................................2004 No. 8 Vacuum Tubes in Telephone Work.....................................................................2004 No. 9 Origins of the Vacuum Tube, with audio CD.....................................................2005 No. 10 Early Tube Development at GE...........................................................................2005 No. 11 Thermionic Miscellany.........................................................................................2006 No. 12 RCA Master Tube Sales Plan, 1950....................................................................2006 No. 13 GE Tungar Bulb Data Manual.................................................................
    [Show full text]
  • Tutorial: Adding a Control Grid to a High-Current Electron Gun
    Tutorial: adding a control grid to a high-current electron gun Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975 Fax: +1-617-752-9077 E mail: techinfo@fieldp.com Internet: http://www.fieldp.com 1 Recently, I was asked to consider whether a control grid consisting of parallel or crossed wires could be added to an existing space-charge-limited electron gun for beam modulation. I identified two main questions: • Because considerable effort had been invested in the gun design, would it possible to add the grid without significantly changing the macro- scopic beam optics? • What was the contribution to the angular divergence of the beam rel- ative to the focal requirements? With regard to first question, the best approach would be to locate the wire grid at the former position of the cathode surface and to move the cathode a short distance upstream. The grid would be attached to the focus electrode bounding the former cathode surface. Figure 1 is a schematic view of the cathode-grid region. The values of D and Vc should be chosen to generate an electron current density je equal to the space-charge limited design value in the main acceleration gap. In this way, the grid surface would act almost like the original cathode, preserving the gun optics. There are two options to fabricate a grid: 1) parallel wires with spacing W or 2) a crossed grid with square openings with side length W . For a rough estimate, I did not consider the effect of the wire width.
    [Show full text]
  • Pentodes Connected As Triodes
    Pentodes connected as Triodes by Tom Schlangen Pentodes connected as Triodes About the author Tom Schlangen Born 1962 in Cologne / Germany Studied mechanical engineering at RWTH Aachen / Germany Employments as „safety engineering“ specialist and CIO / IT-head in middle-sized companies, now owning and running an IT- consultant business aimed at middle-sized companies Hobby: Electron valve technology in audio Private homepage: www.tubes.mynetcologne.de Private email address: [email protected] Tom Schlangen – ETF 06 2 Pentodes connected as Triodes Reasons for connecting and using pentodes as triodes Why using pentodes as triodes at all? many pentodes, especially small signal radio/TV ones, are still available from huge stock cheap as dirt, because nobody cares about them (especially “TV”-valves), some of them, connected as triodes, can rival even the best real triodes for linearity, some of them, connected as triodes, show interesting characteristics regarding µ, gm and anode resistance, that have no expression among readily available “real” triodes, because it is fun to try and find out. Tom Schlangen – ETF 06 3 Pentodes connected as Triodes How to make a triode out of a tetrode or pentode again? Or, what to do with the “superfluous” grids? All additional grids serve a certain purpose and function – they were added to a basic triode system to improve the system behaviour in certain ways, for example efficiency. We must “disable” the functions of those additional grids in a defined and controlled manner to regain triode characteristics. Just letting them “dangle in vacuum unconnected” will not work – they would charge up uncontrolled in the electron stream, leading to unpredictable behaviour.
    [Show full text]
  • Lee De Forest Claimet\He Got the Idea for His Triode ''Audion" From
    Lee de Forest claimet\he got the idea for his triode h ''audion" from wntching a gas flame bum. John Ambrose Flen#ng thought that story ·~just so much hot air. lreJess telegraphy held excit­ m WIng promise at the beginning of the twentieth century. Peo­ ~With Imagination could seethe po.. tentlal thot 'the rematkoble new technology offered forworlct1Nk:le com­ munfcotion. However, no one could hove predicted the impact that the soon-to-be-developed "osdllotlon volve" ond "oudlon" Wireless-telegra­ phy detector& wauid have on elec­ tronics technology. Backpouncl. Shortly before 1900, · Guglielmo Morconl had formed his own company to develop wireless­ telegraphy technology. He demon­ strated that wireless set-ups on ships eot~ld~messageswlth nearby stations on other ships or on land. t The Marconi Company hOd also j transmitted messages across the EhQ­ Jish Channel. By the end of 1901. Mar­ coni extended the range of his equipmenttospantheAtlan1tcOcean. It was obvlgus. 1hot ~raph ~MeS with subrhatlrie cables and ihelr lnber­ ent flmltations woUld soon disappear, Ships· at sea would no longer be iso­ la1ed. No locatlon on Eorth would. be too remote to send and receive mes­ sages. Clear1y; the opportunity existed tor enormous tiOOnciql gain once Jelio­ ble equlprrient was avoltable. To that end, 1Uned electrical circuits were developed to reduce the band­ width of the signals produced by ,the spark transrnlf'tirs. The resonont clfcults were also used in a receiver to select one signal from omong several trans­ missions. Slm~deslgn principles for resonont ontennas were also being explored and applied, However, the senstflvlty and reUabltlty of the devices used to ctetectthe Wireless signals were still hln­ cterlng the development of commer­ () cial wireless-telegraph nefWorks.
    [Show full text]
  • Eimac Care and Feeding of Tubes Part 3
    SECTION 3 ELECTRICAL DESIGN CONSIDERATIONS 3.1 CLASS OF OPERATION Most power grid tubes used in AF or RF amplifiers can be operated over a wide range of grid bias voltage (or in the case of grounded grid configuration, cathode bias voltage) as determined by specific performance requirements such as gain, linearity and efficiency. Changes in the bias voltage will vary the conduction angle (that being the portion of the 360° cycle of varying anode voltage during which anode current flows.) A useful system has been developed that identifies several common conditions of bias voltage (and resulting anode current conduction angle). The classifications thus assigned allow one to easily differentiate between the various operating conditions. Class A is generally considered to define a conduction angle of 360°, class B is a conduction angle of 180°, with class C less than 180° conduction angle. Class AB defines operation in the range between 180° and 360° of conduction. This class is further defined by using subscripts 1 and 2. Class AB1 has no grid current flow and class AB2 has some grid current flow during the anode conduction angle. Example Class AB2 operation - denotes an anode current conduction angle of 180° to 360° degrees and that grid current is flowing. The class of operation has nothing to do with whether a tube is grid- driven or cathode-driven. The magnitude of the grid bias voltage establishes the class of operation; the amount of drive voltage applied to the tube determines the actual conduction angle. The anode current conduction angle will determine to a great extent the overall anode efficiency.
    [Show full text]
  • History of Thethermionic Tube / Valve / Vacuum
    History of theThermionic Tube / Valve / Vacuum Tube – Page 1 The following notes have been assembled by Phil (VK5SRP) from original material and material from several web sites, including Wikipedia for a class run at the North East Radio Club, South Australia January 2016. In electronics, a vacuum tube, an electron tube, or just a tube (North America), or valve (Britain and some other regions) is a device that controls electric current between electrodes in an evacuated container. Vacuum tubes mostly rely on thermionic emission of electrons from a hot filament or a cathode heated by the filament/heater. This type is called a thermionic tube or thermionic valve. A Photo-tube, however, achieves electron emission through the photoelectric effect. Not all electronic circuit valves/electron tubes are vacuum tubes (evacuated). Gas-filled tubes are similar devices containing a gas, typically at low pressure, which exploit phenomena related to electric discharge in gases, usually without a heater. Although thermionic emission was originally reported in 1873 by Frederick Guthrie, it was Thomas Edison's 1883 investigation that spurred future research, the phenomenon thus becoming known as the "Edison effect". Edison patented what he found, but he did not understand the underlying physics, nor did he have an inkling of the potential value of the discovery. It wasn't until the early 20th century that the rectifying property of such a device was utilised, most notably by John Ambrose Fleming, who used the Diode tube to detect (demodulate) radio signals. Lee De Forest's 1906 "Audion" was also developed as a radio detector, and soon led to the development of the Triode tube.
    [Show full text]
  • Valve Types and Char
    ‘Technical Shorts’ by Gerry O’Hara, VE7GUH/G8GUH ‘Technical Shorts’ is a series of (fairly) short articles prepared for the Eddystone User Group (EUG) website, each focussing on a technical issue of relevance in repairing, restoring or using Eddystone valve radios. However, much of the content is also applicable to non-Eddystone valve receivers. The articles are the author’s personal opinion, based on his experience and are meant to be of interest or help to the novice or hobbyist – they are not meant to be a definitive or exhaustive treatise on the topic under discussion…. References are provided for those wishing to explore the subjects discussed in more depth. The author encourages feedback and discussion on any topic covered through the EUG forum. Valve Types and Characteristics Introduction The Technical Short on ‘Valve Lore’ deals with using valves in receivers in general terms – their evolution through the years, types and general application in Eddystone receivers, as well as tips on sourcing valves and testing them. The Technical Shorts on ‘Eddystone Circuit Elements’ and ‘Receiver Front-Ends’ take a closer look at how valves are selected and used in particular circuits within Eddystone valve receivers. In preparing these articles, it occurred to me that an insight into some of the basics underlying the selection of a particular valve for an application in a receiver would be useful. In order to do this, some consideration of valve ‘fundamentals’ is necessary and how these influence their application and use in receivers. So here I deal mainly with the basics of valve construction and design and then their electrical parameters and important operating characteristics.
    [Show full text]
  • Unusual Tubes
    Unusual Tubes Tom Duncan, KG4CUY March 8, 2019 Tubes On Hand GAS-FILLED HIGH-VACUUM • Neon Lamp (NE-51) • Photomultiplier • Cold-cathode Voltage (931A) Regulator (0B2) • Magic Eye (1629) • Hot-cathode Thyratron • Low-voltage (12DY8) (884) • Space Charge (12K5) 2 Timeline of Related Events 1876, 1902 William Crookes Cathode Rays, Glow Discharge 1887 [1921] Hertz, Einstein Photoelectric Effect 1897 [1906] J. J. Thomson Electron identified 1920 Daniel Moore (GE) Voltage Regulator 1923 Joseph Slepian Secondary Emission (Westinghouse) 1928 Albert Hull, Irving Thyratron Langmuir (GE) [1928] Owen Richardson Thermionic Emission 1936 Vladimir Zworykin Photomultiplier (RCA) 1937 Allen DuMont Magic Eye 3 Neon Bulbs • Based on glow-discharge (coronal discharge) effect noticed by William Crookes around 1902. • Exhibit a negative incremental resistance over part of the operating range. • Light-sensitive: photo-ionization causes the ionization voltage to decrease with illumination (not generally a desirable characteristic). • Used as indicators , voltage regulators, relaxation oscillators , and the larger ones for illumination . 4 Neon Lamp/VR Tube Curves 80 Normal Abnormal Glow Glow 70 60 Townsend Discharge 50 Negative Resistance 40 Region 30 Volts across Device across Volts 20 10 Conduction Destroys Lamp Destroys Arc Conduction Arc Chart details (coronal) Glow depend on -5 element 10 -20 10 -15 10 -10 10 1 geometry and Current through Device (A) gas mixture. 5 Cold-Cathode Voltage Regulator Tubes • Very similar to neon bulbs: attention paid to increasing current-carrying capability and ensuring a constant forward voltage. • Gas sometimes includes radio-isotopes to reduce sensitivity to photo-ionization. • Developed at General Electric Research Labs by Daniel Moore around 1920.
    [Show full text]
  • 4%. 44 Patented Feb
    Feb. 18, 1947. A. M. SKELLETT 2,415,855 RANGE INDICATOR Filed July 26, 1944 A3 rawsurrea AaAMEWOca? off7 (P/G 2) WVEWTOR a- A.MSEZLA-77 4%. 44 Patented Feb. 18, 1947 2,415,855 UNITED STATES PATENT office 2,415,855 RANGE ENDICATOR Albert M. Skellett, Madison, N.J., assignor to Bell Telephone Laboratories, Encorporated, New York, N.Y., a corporation of New York Application July 26, 1944, Serial No. 546,630 Claims. (C. 6-15) 2 This invention relates primarily to object locat unit is a measure of the distance to the target ing and distance measuring systems of the pulse producing this echo. This arrangement, however, reflection type and more particularly to a circuit is subject to a number of disadvantages. The for producing a distinctive visible indication area on the screen of the cathode ray tube that when a pulse produced by reflection from a tar is used for the indication of the particular echo get is in Synchronous relationship with a pulse which is being aligned with the marker pulse is produced a controllable and measurable length of not over a square centimeter or two and to pro time after the radiated pulse producing the re duce this the cathode-ray tube is usually accom flection. panied by a power supply which produces thou The invention is particularly applicable to and O sands of volts and by sweep and other, cathode will be described by way of example in connec ray tube auxiliary circuits. The present inven tion with a pulse reflection type system employ tion, in One of its primary aspects, is concerned ing radio Waves, commonly called a radar System, with the provision of a precision range measuring but it is applicable as well to pulse reflection sys equipment which does not require a cathode-ray tens employing other types of waves, as, for ex 5 Oscilloscope and its accompanying auxiliary, ap anple, Sound ranging systems employing com paratus and circuits.
    [Show full text]
  • The Vacuum Tube a “Hollow State” Device
    The Vacuum Tube A “Hollow State” Device Ken Moak KM8AM 22-Feb-18All images are property of their owners 1 What We’ll Cover • In the beginning (One element) • Diode (Two elements) • Triode (Three elements) and more • Tubes today 22-Feb-18 2 We’re still looking for a radio job What’s up guys? www.huyzebladelin.com 22-Feb-18 3 In The Beginning “One Element” 1873: British Professor Frederick Guthrie showed a negatively- charged, red-hot, iron sphere would quickly discharge A positively-charged sphere did not discharge as fast 22-Feb-18 4 In The Beginning “One Element” www.ieeeghn.org 1880: Edison received a patent for an electric lamp using “… a carbon filament or strip coiled and connected to platina contact wires …" 22-Feb-18 5 In The Beginning “One Element” A red hot cathode emits a cloud of electrons www.ieeeghn.org www.r-type.org 22-Feb-18 6 The Diode “Two Elements” • 1883: The Edison Effect - Edison thought his bulbs became dark from carbon atoms from the filament hitting the glass • Tried a second, positively-charged element in the bulb to attract the negative atoms away from hitting the glass • A positive charge relative to the filament caused current flow in the circuit. When reversed, no http://handley.org.uk current flowed 22-Feb-18 7 The Diode “Two Elements” 1904: The Fleming Valve – John Fleming, using some Edison bulbs, observed that if he applied alternating current (AC) to the bulb, only one half of the cycle passed. It was rectifying the AC to produce a pulsed direct current (DC) wb0nni.dakotamade.com yourdictionary.com Science Museum/Science & Society Picture Library 22-Feb-18 8 The Diode “Two Elements” Plate current only flows when plate is positive relative to the cathode http://www.angelfire.com/electronic/funwithtubes/Basics_03_Diodes.html 22-Feb-18 9 The Triode “Three Elements” 1906: Robert von Lieben filed for a patent for a cathode ray tube.
    [Show full text]
  • Vacuum -Tube Theory
    CHAPTER THREE Vacuum -Tube Theory HE science of radio is based upon one and heptode respectively for tubes having two. of the most versatile developments of the three, four, five, six, and seven elements. twentieth century-the electron tube, or as it is more commonly named, the vacuum tube. MECHANICS OF THE It is the utilization of the unique characteris- tics of the vacuum tube in various circuit ar- VACUUM TUBE rangements which makes possible modern radio The original Edison discovery was that a communication; for that matter, long distance heated filament would give off electrons to a wire communication also owes its efficiency to cold plate in the same evacuated chamber. It the versatility of the vacuum tube. was later discovered that if the plate were This chapter is divided into two main sec- charged positively with respect to the filament, tions. The first is devoted to the basic theory a much larger proportion of the emitted elec- of the vacuum tube and to a discussion of the trons would be attracted to the plate. But, if various types of tubes which have been de- the plate were charged negatively with respect veloped up to the present time. The second to the filament, the electron flow would stop. part discusses the application of the vacuum This valve action meant that the vacuum tube tube to the various circuit arrangements which could be used as a rectifier since it would pass have been developed to utilize its character- current only in one direction. It is this rectify- istics. ing action of the diode which is used almost Brief History of the Vacuum Tube.
    [Show full text]