Vacuum -Tube Theory

Total Page:16

File Type:pdf, Size:1020Kb

Vacuum -Tube Theory CHAPTER THREE Vacuum -Tube Theory HE science of radio is based upon one and heptode respectively for tubes having two. of the most versatile developments of the three, four, five, six, and seven elements. twentieth century-the electron tube, or as it is more commonly named, the vacuum tube. MECHANICS OF THE It is the utilization of the unique characteris- tics of the vacuum tube in various circuit ar- VACUUM TUBE rangements which makes possible modern radio The original Edison discovery was that a communication; for that matter, long distance heated filament would give off electrons to a wire communication also owes its efficiency to cold plate in the same evacuated chamber. It the versatility of the vacuum tube. was later discovered that if the plate were This chapter is divided into two main sec- charged positively with respect to the filament, tions. The first is devoted to the basic theory a much larger proportion of the emitted elec- of the vacuum tube and to a discussion of the trons would be attracted to the plate. But, if various types of tubes which have been de- the plate were charged negatively with respect veloped up to the present time. The second to the filament, the electron flow would stop. part discusses the application of the vacuum This valve action meant that the vacuum tube tube to the various circuit arrangements which could be used as a rectifier since it would pass have been developed to utilize its character- current only in one direction. It is this rectify- istics. ing action of the diode which is used almost Brief History of the Vacuum Tube. universally for the production of direct current Thomas Edison is credited with the discovery from alternating current as supplied by the a.c. that an additional wire or plate placed inside mains. a lighted incandescent lamp would acquire a Then, the discovery that additional elements negative charge of electricity. J. A. Fleming could be placed between the cathode and plate undertook the study of the Edison Effect in to control the electron flow in any desired man- 1895, and as a result of his findings in 1904 he ner resulted in the simultaneous development patented the two -electrode tube or diode which of the vacuum tube and improvement of the became known as the Fleming valve. Then, in radio art to make use of the greater capabili- 1906, Lee de Forest discovered that a third ele- ties of the improved tubes. In recent years, ment could be placed between the cathode and however, the improvement of the art has com- plate to control the flow of electrons from monly been first, with improved types of one to the other. This third element was called vacuum tubes being developed as the need for a grid from its physical resemblance to the them arose. grid or grate of a stove. The insertion of the Thermionic Emission. The free electrons grid into the space between the cathode and in any metal are continually in motion at all plate in the diode resulted in the most versatile temperatures. But at ordinary atmospheric of vacuum tubes, the triode. temperatures, these electrons do not have suf- In recent times other elements or grids have ficient energy to penetrate the surface of the been added to the original triode to augment material. It is necessary that some form of ex- the electron flow in a particular manner, or to ternal energy be supplied to the surface for give a particular characteristic to the vacuum emission to take place. When this energy sup- tube. These later types have been called multi - ply is in the form of heat, the result is called element tubes. The names for these multi - thermionic emission; when the energy is in the element tubes are obtained by adding the Greek form of light it is called photo-emission. The prefix for the number of elements to the root phenomena of photo -emission is applied in the -ode: diode, triode, tetrode, pentode, hexode, photo -electric tube, while thermionic emission 53 www.americanradiohistory.com.
Recommended publications
  • The Development of the Vacuum Tube Creators
    The Knowledge Bank at The Ohio State University Ohio State Engineer Title: The Development of the Vacuum Tube Creators: Jeffrey, Richard B. Issue Date: May-1928 Publisher: Ohio State University, College of Engineering Citation: Ohio State Engineer, vol. 11, no. 7 (May, 1928), 9-10. URI: http://hdl.handle.net/1811/34260 Appears in Collections: Ohio State Engineer: Volume 11, no. 7 (May, 1928) THE OHIO STATE ENGINEER The Development of the Vacuum Tube By RICHARD B. JEFFREY, '31 The history of the vacuum tube began with the discovery of the Edison Effect. This, like a great many other important discoveries, was an acci- dent. Edison, while experimenting with his in- candescent lamps, had placed more than one fila- output ment in the same bulb, and he noticed that if one of the filaments was held positive with respect to the other a current would flow through the bulb. He also found that this positive element, or, as it is now called, plate, did not have to be hot to sustain this current flow. This phenomenon li—- H was known for some time as a curiosity, but noth- 1 +90 to \35 ing more. Then Fleming, an English experiment- +4-5 er, noticed that if an alternating current were The screen-qrid tube (tetrode). applied to this plate the current would flow only plicated system by making use of the rectifying when the plate was positive. In other words, the properties of a crystal, notably galena. When tube acted as a rectifier, allowing the current to signals were received in this way it was the signal flow in only one direction.
    [Show full text]
  • 1999-2017 INDEX This Index Covers Tube Collector Through August 2017, the TCA "Data Cache" DVD- ROM Set, and the TCA Special Publications: No
    1999-2017 INDEX This index covers Tube Collector through August 2017, the TCA "Data Cache" DVD- ROM set, and the TCA Special Publications: No. 1 Manhattan College Vacuum Tube Museum - List of Displays .........................1999 No. 2 Triodes in Radar: The Early VHF Era ...............................................................2000 No. 3 Auction Results ....................................................................................................2001 No. 4 A Tribute to George Clark, with audio CD ........................................................2002 No. 5 J. B. Johnson and the 224A CRT.........................................................................2003 No. 6 McCandless and the Audion, with audio CD......................................................2003 No. 7 AWA Tube Collector Group Fact Sheet, Vols. 1-6 ...........................................2004 No. 8 Vacuum Tubes in Telephone Work.....................................................................2004 No. 9 Origins of the Vacuum Tube, with audio CD.....................................................2005 No. 10 Early Tube Development at GE...........................................................................2005 No. 11 Thermionic Miscellany.........................................................................................2006 No. 12 RCA Master Tube Sales Plan, 1950....................................................................2006 No. 13 GE Tungar Bulb Data Manual.................................................................
    [Show full text]
  • Lee De Forest Claimet\He Got the Idea for His Triode ''Audion" From
    Lee de Forest claimet\he got the idea for his triode h ''audion" from wntching a gas flame bum. John Ambrose Flen#ng thought that story ·~just so much hot air. lreJess telegraphy held excit­ m WIng promise at the beginning of the twentieth century. Peo­ ~With Imagination could seethe po.. tentlal thot 'the rematkoble new technology offered forworlct1Nk:le com­ munfcotion. However, no one could hove predicted the impact that the soon-to-be-developed "osdllotlon volve" ond "oudlon" Wireless-telegra­ phy detector& wauid have on elec­ tronics technology. Backpouncl. Shortly before 1900, · Guglielmo Morconl had formed his own company to develop wireless­ telegraphy technology. He demon­ strated that wireless set-ups on ships eot~ld~messageswlth nearby stations on other ships or on land. t The Marconi Company hOd also j transmitted messages across the EhQ­ Jish Channel. By the end of 1901. Mar­ coni extended the range of his equipmenttospantheAtlan1tcOcean. It was obvlgus. 1hot ~raph ~MeS with subrhatlrie cables and ihelr lnber­ ent flmltations woUld soon disappear, Ships· at sea would no longer be iso­ la1ed. No locatlon on Eorth would. be too remote to send and receive mes­ sages. Clear1y; the opportunity existed tor enormous tiOOnciql gain once Jelio­ ble equlprrient was avoltable. To that end, 1Uned electrical circuits were developed to reduce the band­ width of the signals produced by ,the spark transrnlf'tirs. The resonont clfcults were also used in a receiver to select one signal from omong several trans­ missions. Slm~deslgn principles for resonont ontennas were also being explored and applied, However, the senstflvlty and reUabltlty of the devices used to ctetectthe Wireless signals were still hln­ cterlng the development of commer­ () cial wireless-telegraph nefWorks.
    [Show full text]
  • Valve Types and Char
    ‘Technical Shorts’ by Gerry O’Hara, VE7GUH/G8GUH ‘Technical Shorts’ is a series of (fairly) short articles prepared for the Eddystone User Group (EUG) website, each focussing on a technical issue of relevance in repairing, restoring or using Eddystone valve radios. However, much of the content is also applicable to non-Eddystone valve receivers. The articles are the author’s personal opinion, based on his experience and are meant to be of interest or help to the novice or hobbyist – they are not meant to be a definitive or exhaustive treatise on the topic under discussion…. References are provided for those wishing to explore the subjects discussed in more depth. The author encourages feedback and discussion on any topic covered through the EUG forum. Valve Types and Characteristics Introduction The Technical Short on ‘Valve Lore’ deals with using valves in receivers in general terms – their evolution through the years, types and general application in Eddystone receivers, as well as tips on sourcing valves and testing them. The Technical Shorts on ‘Eddystone Circuit Elements’ and ‘Receiver Front-Ends’ take a closer look at how valves are selected and used in particular circuits within Eddystone valve receivers. In preparing these articles, it occurred to me that an insight into some of the basics underlying the selection of a particular valve for an application in a receiver would be useful. In order to do this, some consideration of valve ‘fundamentals’ is necessary and how these influence their application and use in receivers. So here I deal mainly with the basics of valve construction and design and then their electrical parameters and important operating characteristics.
    [Show full text]
  • The Vacuum Tube a “Hollow State” Device
    The Vacuum Tube A “Hollow State” Device Ken Moak KM8AM 22-Feb-18All images are property of their owners 1 What We’ll Cover • In the beginning (One element) • Diode (Two elements) • Triode (Three elements) and more • Tubes today 22-Feb-18 2 We’re still looking for a radio job What’s up guys? www.huyzebladelin.com 22-Feb-18 3 In The Beginning “One Element” 1873: British Professor Frederick Guthrie showed a negatively- charged, red-hot, iron sphere would quickly discharge A positively-charged sphere did not discharge as fast 22-Feb-18 4 In The Beginning “One Element” www.ieeeghn.org 1880: Edison received a patent for an electric lamp using “… a carbon filament or strip coiled and connected to platina contact wires …" 22-Feb-18 5 In The Beginning “One Element” A red hot cathode emits a cloud of electrons www.ieeeghn.org www.r-type.org 22-Feb-18 6 The Diode “Two Elements” • 1883: The Edison Effect - Edison thought his bulbs became dark from carbon atoms from the filament hitting the glass • Tried a second, positively-charged element in the bulb to attract the negative atoms away from hitting the glass • A positive charge relative to the filament caused current flow in the circuit. When reversed, no http://handley.org.uk current flowed 22-Feb-18 7 The Diode “Two Elements” 1904: The Fleming Valve – John Fleming, using some Edison bulbs, observed that if he applied alternating current (AC) to the bulb, only one half of the cycle passed. It was rectifying the AC to produce a pulsed direct current (DC) wb0nni.dakotamade.com yourdictionary.com Science Museum/Science & Society Picture Library 22-Feb-18 8 The Diode “Two Elements” Plate current only flows when plate is positive relative to the cathode http://www.angelfire.com/electronic/funwithtubes/Basics_03_Diodes.html 22-Feb-18 9 The Triode “Three Elements” 1906: Robert von Lieben filed for a patent for a cathode ray tube.
    [Show full text]
  • Birth of the Valve.Indd 68 25/01/2019 08:21 Attention to the Problem of Developing an Eff Cient Receiving Detector
    Feature by Dr Bruce Taylor HB9ANY ● E-mail: [email protected] Birth of the Thermionic Valve n the archives of Marconi’s Dr Bruce Taylor HB9ANY relates how chance, ingenuity Wireless Telegraph Company and confl ict created the technology that dominated radio for November 1904, there is a handwritten letter that communication for half a century. concludes: “I have not mentioned Ithis to anyone yet, as it may become useful”. The letter is signed by the English scientist John Ambrose Fleming and it describes how he had found a method of detecting oscillatory electrical currents in an antenna using a thermionic valve. “It may become useful” was perhaps the understatement of the century! While the saga of the thermionic valve had a large cast, the two principal roles were initially played by Fleming and the American experimenter Lee de Forest. The characters of these two men could hardly have been more different. De Forest was an enterprising inventor but a f amboyant showman unashamedly motivated by a desire for fame, fortune and a luxurious life style. He was lucky in his discoveries, but not in his private life or his somewhat unethical business practices, and he died in 1961 without achieving the f nancial success of which he dreamed. Fleming, on the other hand, was the careful archetypal physicist, methodical in his investigations and A 1915 advertisement by Elmer Cunningham explains that, unlike the de Forest Audion, his AudioTron motivated to earn the esteem and can be bought alone. recognition of his peers for advancing scientif c knowledge. He achieved his aim, he patented the device as a means for The Fleming Diode and was knighted in 1929, but he wasn’t controlling mains voltage but made no In 1899, Fleming had been appointed interested in vigorously exploiting his mention of its rectifying properties, for he scientif c advisor to Marconi and became discoveries and left Marconi and others was promoting DC rather than AC power responsible for the design of part of the to prof t from their commercialisation.
    [Show full text]
  • Radio Eavesdropping of the B.B.C
    SEPTEMBER 1954 VOL. 60 No. 9 .1 to t h o i í t y and 1 so << t p e tt d en f E have now had ample time to study the new there is still another body that comes into the Television Act, which became law just after our last picture : the P.M.G.'s decisions on technical policy issue appeared. The Government's plan for an for both the I.T.A. and B.B.C. will be affected by " additional " television service, though somewhat the recommendations of the Television Advisory involved, is not on the face of it, difficult to under- Committee. stand, though we must admit to doubts as to how Fortunately, there is a good deal of flexibility in some of the details will work out in practice. the Act, and plenty of room for second thoughts. To us, the most interesting section of the Act is The word "may" occurs much more often than that in which the Postmaster -General is given what " shall " and the P.M.G. can make new regulations at appears to be very wide powers over the technical short notice. Throughout all the debates, the activities of the Independent Television Authority. Government has wisely kept to the principle of In this matter, at least, there appears to be little leaving a loophole for subsequent changes. independence and no authority! Of course, it is a It is wrong to shoot the pianist who is doing his fact that in Great Britain the P.M.G.'s power over best, and still worse to shoot him before he has played every form of radio activity is sweeping; he may a single note.
    [Show full text]
  • Valves Revisited
    Valves Revisited by Bengt Grahn, SM0YZI (Low Resolution Sample) RSGB © Radio Society of Great Britain Published by the Radio Society of Great Britain, 3 Abbey Court, Fraser Road, Priory Business Park, Bedford, MK44 3WH. First published 2011 © Radio Society of Great Britain 2011. All rights reserved. No part of this publica- tion may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written agreement of the Radio Society of Great Britain. ISBN 9781 9050 8670 9 Publisher’s note The opinions expressed in this book are those of the author and not necessarily those of the RSGB. While the information presented is believed to be correct, the author, publisher and their agents cannot accept responsibility for consequences arising from any inaccuracies or omissions. Cover design: Kim Meyern Typography, editing and design: Mike Dennison, G3XDV of Emdee Publishing Production: Mark Allgar,RSGB M1MPA ©Printed in Great Britain by Nuffield Press Ltd of Abingdon Contents 1 Evolution of the Valve . 1 2 How does a Valve Work? . 7 3 Characteristics of Valves . 25 4 Connecting Stages Together . 41 5 Tuned Circuits . 53 6 Amplifiers . 69 7 Modulation . 95 8 Receivers . 103 9 The Superhet in Detail . 113 10 Designing a Receiver . .141 11 Hi-fi Amplifiers . .147 12 Construction with Valves . .175 13 The Power Supply . .RSGB . .181 14 Oscillators . .193 15 A Signal Generator . .205 16 Measurements . .223 17 Fault Finding© . .239 18 Transmitters . .249 19 Further Information on the Web . .257 Appendix: European Valve Designations .
    [Show full text]
  • Final Tech Section 1-16
    Views, Comments, Opinions 1904 – 2004 : 100 years (and more) of electronics by Dirk J Vermeulen, vice-chairman, SAIEE Historical Section Electronics is generally considered to have started with the application of the valve (vacuum tube in America). The first valve was the thermionic diode and this began to find practical use in 1904. This year has thus been widely associated with the beginning of electronics. Much relevant fundamental work had been engineer of the British Post Office, was the known devices but found that they were done before 1904. In particular in 1895 present and persuaded Edison to part with only suitable for low frequencies. JJ Thompson discovered the electron that is several of these modified lamps so that he In October 1904 he recalled that rectification the whole basis for the subject - but none of could demonstrate the phenomenon to the was associated with the Edison Effect and tried this work had yet lead to a practical outcome. Royal Society in England. one of his modified lamps. It worked and he The origins of the diode can be found in work John Ambrose Fleming, consultant to the developed a series of diodes, seeking a done on the electric lamp by Edison in 1883. Edison Electric Light Company of London, had configuration suitable for wireless telegraphy. The glass envelope of early lamps suffered visited Edison in 1884 and was probably In November 1904 Fleming applied for a from progressive blackening which obscured shown the Edison Effect. Fleming may also patent on his “oscillation valve”, as he named the light to such an extent that lamps were have been present when Preece presented it, and ceded the rights to the Marconi often discarded before the filament failed.
    [Show full text]
  • THE EDISON EFFECT from the Collection of The
    THE EDISON EFFECT From the collection of the PreTinger i a AJibrary San Francisco, California 2006 THE EDISON EFFECT by VICE ADMIRAL HAROLD G. BOWEN COPYRIGHT 1951, THE THOMAS ALVA EDISON FOUNDATION, INC. Printed in the U. S. A. THE EDISON EFFECT by VICE ADMIRAL HAROLD G. BOWEN Executive Director with a foreword by CHARLES F. KETTERING President published by THE THOMAS ALVA EDISON FOUNDATION, INC. WEST ORANGE, NEW JERSEY table of Contents by Charles F. Kertering Chapter * Discovery of the Edison Effect . 9 Fleming Finds Application for the 2 Edison Effect ......... 75 ^m DeForest Invents the Audion .... 25 The Industrial Research Laboratories Take Charge ......... 28 The Electron ..... ..... 39 The Edison Method ....... 56 Index ...... 66 by Charles F. Kettering When Thomas A. Edison discovered that, by inserting a straight wire into an incandescent light bulb, he could pull a current of electricity out of a vacuum, he did more than discover the Edison Effect; he discovered an inexhaustible source of free electrons. It is this inexhaustible source of free electrons which is most responsible for the enormous strides made in telephony, radio, phonography, radar, and television, to name just a few of the many branches of electronics based on free electrons. This discovery was so far ahead of any related development in electrical engineering that it was years before it was utilized and much later before its full significance was appreciated. True, Edison discovered this natural phenomenon by accident ' when he was looking for something else, but accidental discoveries have rescued or added to the lustre of many a famous name.
    [Show full text]
  • Vacuum Science & Technology Time Line, 1500–1799
    Vacuum Science & Technology Time Line, 1500–1799 Time Line Color Code Key Related scientific developments Anders Celsius Vacuum devices (1701-1744) Radio & electronics Mayow Apparatus ca. 1669 suggests new temperature Otto von Guericke scale. This scale is revised Historical events Magdeberg hemisphere John Mayow (1641-1679) Rene Descartes in 1745 by Carl von Linn¾ (1707-1778) Vacuum gauges demonstration suggests that air may be (1596-1650) 1654 made up of two different gases 1742 Vacuum pumps in his Principa Philosophiae Experiments by Richard 1674 suggests that a vacuum Captions Townley (1628-1707) and Jakob Hermann cannot exist Vacuum device manufacturing Henry Power (1623-1668) (1678-1733) 1644 establish PV law for expansion postulates that pressure is (later called Boyle’s Law or proportional to density and Marriotte’s Law) to the square of the average Ferdinand II, 1660 velocity of the particles Grand Duke of Tuscany, in motion invents liquid-in-glass 1716 thermometer In response to Boyle’s ideas, 1641 Franciscu Linus (1595-1675) Otto von Guericke’s suggest the properties of a air pump vacuum is due to invisible thread-like Hero of Alexandria writes 1672 “funiculus” that strive to hold Pneumatias summarizing nearby objects together what is then known about Evangelista Torricelli 1660 syphons, pumps, etc. (1608-1647) Johannes van Helmont ~150 B.C.E. Substitutes mercury for George Ernts Stahl defines “gas” (Flemish = chaos) water in overhead pump introduces idea of to mean an air-like substance 1644 phlogiston as the 1620 agent of
    [Show full text]
  • EE 230 Lecture 9
    EE 230 Lecture 9 Amplifiers and Feedback The History of Vaccum Tubes or Electron Tubes http://inventors.about.com/library/inventors/blvacuumtubes.htm Inventors Welcome to About.com What is About.com? Related Topics I'm Mary Bellis, your Guide to Inventors. If this Google search is not what you Agreements, Forms,... were looking for, you may want to see our other popular topics, such as Famous Inventions Inventing 101 - Beginners, Patent Trademark Copyright, or Marketing and Famous Inventors Business. Technology Timelin... FREE Inventors Newsletter Enter email address The History of Vacuum Tubes Electron Tubes - History of the Electron Tube Highlights By Mary Bellis In 1875, American, G.R. Carey invented the phototube. In 1878, Englishman Sir William Crookes invented the 'Crookes tube', an early prototype of cathode-ray tube. In 1895, German, Wilhelm Roengten invented an early prototype Xray tube. In 1897, German, Karl Ferdinand Braun invents the cathode ray tube oscilloscope. In 1904, John Ambrose Fleming invented the first practical electron tube called the 'Fleming Valve'. Leming invents the vacuum tube diode. In 1906, Lee de Forest invented the audion later called the triode, an improvement on the 'Fleming Valve' tube. In 1913, William D. Coolidge invented the 'Coolidge Tube', the first practical Xray tube. In 1920, RCA began the first commercial electron tube manufacturing. In 1921, American Albert Hull invented the magnetron electronic vacuum tube . In 1922, Philo T. Farnsworth develops the first tube scanning system for television. In 1923, Vladimir K Zworykin invented the iconoscope or the cathode-ray tube and the kinescope In 1926, Hull and Williams co-invented the tetrode electronic vacuum tube.
    [Show full text]