Final Tech Section 1-16

Total Page:16

File Type:pdf, Size:1020Kb

Final Tech Section 1-16 Views, Comments, Opinions 1904 – 2004 : 100 years (and more) of electronics by Dirk J Vermeulen, vice-chairman, SAIEE Historical Section Electronics is generally considered to have started with the application of the valve (vacuum tube in America). The first valve was the thermionic diode and this began to find practical use in 1904. This year has thus been widely associated with the beginning of electronics. Much relevant fundamental work had been engineer of the British Post Office, was the known devices but found that they were done before 1904. In particular in 1895 present and persuaded Edison to part with only suitable for low frequencies. JJ Thompson discovered the electron that is several of these modified lamps so that he In October 1904 he recalled that rectification the whole basis for the subject - but none of could demonstrate the phenomenon to the was associated with the Edison Effect and tried this work had yet lead to a practical outcome. Royal Society in England. one of his modified lamps. It worked and he The origins of the diode can be found in work John Ambrose Fleming, consultant to the developed a series of diodes, seeking a done on the electric lamp by Edison in 1883. Edison Electric Light Company of London, had configuration suitable for wireless telegraphy. The glass envelope of early lamps suffered visited Edison in 1884 and was probably In November 1904 Fleming applied for a from progressive blackening which obscured shown the Edison Effect. Fleming may also patent on his “oscillation valve”, as he named the light to such an extent that lamps were have been present when Preece presented it, and ceded the rights to the Marconi often discarded before the filament failed. his paper to the Royal Society in 1885. In any Company. The term valve was borrowed With DC mains one side of the hairpin-shaped case, Fleming started experimenting with from the mechanical non-return valve which carbon filament projected a clear shadow similar modified lamps and by 1890 had also permitted flow in only one direction. onto the glass. Edison believed that an came to the conclusion that “the space examination of this anomaly might throw between the metal plate and the filament was The company Ediswan produced commercial a one-way street for electricity”. some light on the cause of the problem. quantities of the Fleming valve for use in a Marconi receiver. These were installed aboard He placed an insulated metal screen between several vessels including the sister ships the two sides of the filament and found that a Titanic and Oceanic. The thermionic valve current would flow from the screen to the detector had the advantage of dependable positive terminal but that no such current performance but it was not very sensitive and flowed when it was connected to the negative never gained widespread acceptance. The two side. He also found that a minor increase in rare Fleming valves in the SAIEE collection the filament voltage caused a much greater were donated many years ago to the late rise in the current flowing through the screen. GD Walker, one of the founding members of As the screen was situated in a vacuum and our Historical Interest Group, by a naval officer completely insulated from the filament he was living in South Africa. at a loss to explain this mysterious current. Thermionic valves depended on heated The phenomena became known as the Edison cathodes to produce a supply of electrons that Effect. In October 1883 he took out a patent on were attracted to a positively charged anode. an application which magnified and displayed This resulted in a flow of current. If, however, variations in mains supply voltages. the anode was negatively charged the electrons This was the first electronic device and a unit would be repelled and no current would flow. was installed in Edison’s New York power In the beginning valve cathodes were simple station but it was probably not very successful carbon or metal filaments similar to those as it was not used again. Clearly this was not John Ambrose Fleming developed the thermionic used in light bulbs. In 1903 the German the sort of thing that would have sent Archimides diode radio detector in 1904. physicist, Arthur Wehnelt, investigated streaking through the streets crying “Eureka”. Some time later he became technical advisor thermionic emission from alkaline metal Other urgent demands on his time and to the Marconi Wireless Telegraph Company oxides. He found that these provided a rich money prevented Edison from taking this and began looking for an improved radio supply of electrons at relatively low matter further but in 1884 he asked Professor detector. Being rather deaf, Fleming wished temperatures. Plain filaments had to be raised Houston to describe it at the first meeting of to present the high frequency AC output of the to incandescence to achieve sufficient the American Institute of Electrical Engineers receiver visually using a DC galvanometer. emission and this limited their life and in Philadelphia. William Preece, chief This required a suitable rectifier. He tried all required a lot of power. Elektron Nov/Dec 2004 9 Wehnelt-coated cathodes diminished both Arnold persuaded the company to take the defects and were widely used after the mid- matter further and Western Electric paid de 1920s. Forest $50 000 for the rights to use the audion in telephone applications. This was fortunate In January 1904, Wehnelt patented thermionic as the vacuum tube had now reached the rectifiers with oxide-coated cathodes to hands of a well-motivated company with the produce DC from AC mains. Fleming claimed means to develop its capabilities. They that he had anticipated this use before 1890 assembled a group of competent physicists but neither could claim royalties as there was and engineers to elevate the audion from a little demand for such devices before the 1930s. crude prototype into a practical device. In 1905 the American Lee de Forest A young South African physicist, Dr. Hendrik acquired a Fleming oscillation valve and van der Bijl was included in this team. His had copies made to explore their suitability job was to find out how the audion functioned as radio detectors. He seemed to be and to determine the mathematical impressed with his findings and tried to relationship between its parameters. Van der modify the device sufficiently to circumvent Bijl soon developed a procedure for designing the Marconi/Fleming patent. He audions that remained current throughout the subsequently took out patents on several life of the vacuum tube. variations calling them audions. In later years during protracted legal disputes de In 1914 he conceived the tube used on the Fig. 1: Marconi/Fleming “Oscillation valve” Forest firmly denied that his audions were first successful telephone link between New (diode radio detector). derived from the Fleming valve. York and San Francisco. This was initially designated type M, for mounted, as it was the Eventually de Forest’s work led him to place first tube to be fitted with a plug-in base to a wire grid between the anode and the facilitate replacement. The tube illustrated cathode of a diode. This new three-element (Fig.3) is in our collection and is one of van device functioned particularly well as a radio der Bijl’s prototypes – these were hand-made, detector and was sufficiently novel to justify including the base. The type M was later de Forest’s patent application of January 1907. redesignated 101A. He subsequently The main reason for the success of the grid designed a number of important tubes audion was its ability to amplify but initially including the VT1, VT2 and VT3 for military de Forest was happy to exploit his new audion use during WWI. as a superior wireless detector. In 1920 McGraw-Hill published van der Bijl’s In a large country like the USA long-distance book - this must surely be the first textbook telephone connections were limited by line on electronics. losses. By 1910 the greatest attainable range Soon after this General Smuts invited van using 4 mm diameter copper wires on an der Bijl to return to South Africa to become open wire route was about 1500 km. This scientific advisor to the government. In 1925 was barely a third of the distance from New van der Bijl founded the Electricity Supply York to San Francisco. To stretch this further Commission, or Eskom as it is now known. would require amplifiers and the American Fig. 2: Special de Forest grid audion He also originated several other important (triode). Telephone and Telegraph Company (AT & T) industrial enterprises including Iscor and were looking for a suitable device to do just the Industrial Development Corporation. this. When de Forest heard of this application Van der Bijl is acknowledged as a pioneer he tried, unsuccessfully, to produce an audio of electronics in the USA but his amplifier using his audion. achievements are rarely recognised here, Eventually he had a few tubes made with in his own country. special larger anodes to deliver more power I believe that the word electronics must have and, with help, produced a unit that looked been coined in the mid-1920s because in 1927 promising for telephone use. He sealed it in a a monthly periodical known as Electronics box and demonstrated it to the Western Engineering appeared in the UK. In April 1930 Electric Company, the manufacturing arm of McGraw-Hill also began publishing a AT & T. Unfortunately he was not able to monthly journal called Electronics. convince them that he had a suitable solution. In retrospect it has become clear that the In 1912, with the help of a telephone engineer, diodes which emerged quite humbly in 1904 he gave a second demonstration revealing, started a progression which led to the birth of this time, the amplifying tube.
Recommended publications
  • The Development of the Vacuum Tube Creators
    The Knowledge Bank at The Ohio State University Ohio State Engineer Title: The Development of the Vacuum Tube Creators: Jeffrey, Richard B. Issue Date: May-1928 Publisher: Ohio State University, College of Engineering Citation: Ohio State Engineer, vol. 11, no. 7 (May, 1928), 9-10. URI: http://hdl.handle.net/1811/34260 Appears in Collections: Ohio State Engineer: Volume 11, no. 7 (May, 1928) THE OHIO STATE ENGINEER The Development of the Vacuum Tube By RICHARD B. JEFFREY, '31 The history of the vacuum tube began with the discovery of the Edison Effect. This, like a great many other important discoveries, was an acci- dent. Edison, while experimenting with his in- candescent lamps, had placed more than one fila- output ment in the same bulb, and he noticed that if one of the filaments was held positive with respect to the other a current would flow through the bulb. He also found that this positive element, or, as it is now called, plate, did not have to be hot to sustain this current flow. This phenomenon li—- H was known for some time as a curiosity, but noth- 1 +90 to \35 ing more. Then Fleming, an English experiment- +4-5 er, noticed that if an alternating current were The screen-qrid tube (tetrode). applied to this plate the current would flow only plicated system by making use of the rectifying when the plate was positive. In other words, the properties of a crystal, notably galena. When tube acted as a rectifier, allowing the current to signals were received in this way it was the signal flow in only one direction.
    [Show full text]
  • Basic Electronics
    14 Basic Electronics In this chapter, we lead you through a study of the basics of electronics. After completing the chapter, you should be able to Understand the physical structure of semiconductors. Understand the essence of the diode function. Understand the operation of diodes. Realize the applications of diodes and their use in the design of rectifiers. Understand the physical operation of bipolar junction transistors. Realize the applications of bipolar junction transistors. Understand the physical operation of field-effect transistors. Realize the application of field-effect transistors. Perform rapid analysis of transistor circuits. REFERENCES 1. Giorgio Rizzoni, Principles and Applications of Electrical Engineering, McGraw Hill, 2003. 2. J. R. Cogdel, Foundations of Electronics, Prentice Hall, 1999. 3. Donald A., Neaman, Electronic Circuit Analysis and Design, McGraw Hill, 2001. 4. Sedra/Smith, Microelectronic Circuits, Oxford, 1998. 1 Basic Electronics 2 14.1 INTRODUCTION Electronics is one of the most important fields in existence today. It has greatly influenced everything since early 1900s. Everyone nowadays realize the impact of electronics on our daily life. Table 14-1 shows many important areas with tremendous impact of electronics. Table 14-1 Various Application Areas of Electronics Area Examples of Applications Automotives Electronic ignition system, antiskid braking system, automatic suspension adjustment, performance optimization. Aerospace Airplane controls, spacecrafts, space missiles. Telecommunications Radio, television, telephones, mobile and cellular communications, satellite communications, military communications. Computers Personal computers, mainframe computers, supercomputers, calculators, microprocessors. Instrumentation Measurement equipment such as meters and oscilloscopes, medical equipment such as MRI, X- ray machines, etc. Microelectronics Microelectronic circuits, microelectromechanical systems. Power electronics Converters, Radar Air traffic control, security systems, military systems, police traffic radars.
    [Show full text]
  • 1999-2017 INDEX This Index Covers Tube Collector Through August 2017, the TCA "Data Cache" DVD- ROM Set, and the TCA Special Publications: No
    1999-2017 INDEX This index covers Tube Collector through August 2017, the TCA "Data Cache" DVD- ROM set, and the TCA Special Publications: No. 1 Manhattan College Vacuum Tube Museum - List of Displays .........................1999 No. 2 Triodes in Radar: The Early VHF Era ...............................................................2000 No. 3 Auction Results ....................................................................................................2001 No. 4 A Tribute to George Clark, with audio CD ........................................................2002 No. 5 J. B. Johnson and the 224A CRT.........................................................................2003 No. 6 McCandless and the Audion, with audio CD......................................................2003 No. 7 AWA Tube Collector Group Fact Sheet, Vols. 1-6 ...........................................2004 No. 8 Vacuum Tubes in Telephone Work.....................................................................2004 No. 9 Origins of the Vacuum Tube, with audio CD.....................................................2005 No. 10 Early Tube Development at GE...........................................................................2005 No. 11 Thermionic Miscellany.........................................................................................2006 No. 12 RCA Master Tube Sales Plan, 1950....................................................................2006 No. 13 GE Tungar Bulb Data Manual.................................................................
    [Show full text]
  • UNIT CONVERSION FACTORS Temperature K C 273 C 1.8(F 32
    Source: FUNDAMENTALS OF MICROSYSTEMS PACKAGING UNIT CONVERSION FACTORS Temperature K ϭ ЊC ϩ 273 ЊC ϭ 1.8(ЊF Ϫ 32) ЊR ϭ ЊF ϩ 460 Length 1 m ϭ 1010 A˚ ϭ 3.28 ft ϭ 39.4 in Mass 1 kg ϭ 2.2 lbm Force 1 N ϭ 1 kg-m/s2 ϭ 0.225 lbf Pressure (stress) 1 P ϭ 1 N/m2 ϭ 1.45 ϫ 10Ϫ4 psi Energy 1 J ϭ 1W-sϭ 1 N-m ϭ 1V-C 1Jϭ 0.239 cal ϭ 6.24 ϫ 1018 eV Current 1 A ϭ 1 C/s ϭ 1V/⍀ CONSTANTS Avogadro’s Number 6.02 ϫ 1023 moleϪ1 Gas Constant, R 8.314 J/(mole-K) Boltzmann’s constant, k 8.62 ϫ 10Ϫ5 eV/K Planck’s constant, h 6.63 ϫ 10Ϫ33 J-s Speed of light in a vacuum, c 3 ϫ 108 m/s Electron charge, q 1.6 ϫ 10Ϫ18 C SI PREFIXES giga, G 109 mega, M 106 kilo, k 103 centi, c 10Ϫ2 milli, m 10Ϫ3 micro, ␮ 10Ϫ6 nano, n 10Ϫ9 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. Source: FUNDAMENTALS OF MICROSYSTEMS PACKAGING CHAPTER 1 INTRODUCTION TO MICROSYSTEMS PACKAGING Prof. Rao R. Tummala Georgia Institute of Technology ................................................................................................................. Design Environment IC Thermal Management Packaging Single Materials Chip Opto and RF Functions Discrete Passives Encapsulation IC Reliability IC Assembly Inspection PWB MEMS Board Manufacturing Assembly Test Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies.
    [Show full text]
  • Lee De Forest Claimet\He Got the Idea for His Triode ''Audion" From
    Lee de Forest claimet\he got the idea for his triode h ''audion" from wntching a gas flame bum. John Ambrose Flen#ng thought that story ·~just so much hot air. lreJess telegraphy held excit­ m WIng promise at the beginning of the twentieth century. Peo­ ~With Imagination could seethe po.. tentlal thot 'the rematkoble new technology offered forworlct1Nk:le com­ munfcotion. However, no one could hove predicted the impact that the soon-to-be-developed "osdllotlon volve" ond "oudlon" Wireless-telegra­ phy detector& wauid have on elec­ tronics technology. Backpouncl. Shortly before 1900, · Guglielmo Morconl had formed his own company to develop wireless­ telegraphy technology. He demon­ strated that wireless set-ups on ships eot~ld~messageswlth nearby stations on other ships or on land. t The Marconi Company hOd also j transmitted messages across the EhQ­ Jish Channel. By the end of 1901. Mar­ coni extended the range of his equipmenttospantheAtlan1tcOcean. It was obvlgus. 1hot ~raph ~MeS with subrhatlrie cables and ihelr lnber­ ent flmltations woUld soon disappear, Ships· at sea would no longer be iso­ la1ed. No locatlon on Eorth would. be too remote to send and receive mes­ sages. Clear1y; the opportunity existed tor enormous tiOOnciql gain once Jelio­ ble equlprrient was avoltable. To that end, 1Uned electrical circuits were developed to reduce the band­ width of the signals produced by ,the spark transrnlf'tirs. The resonont clfcults were also used in a receiver to select one signal from omong several trans­ missions. Slm~deslgn principles for resonont ontennas were also being explored and applied, However, the senstflvlty and reUabltlty of the devices used to ctetectthe Wireless signals were still hln­ cterlng the development of commer­ () cial wireless-telegraph nefWorks.
    [Show full text]
  • History of Thethermionic Tube / Valve / Vacuum
    History of theThermionic Tube / Valve / Vacuum Tube – Page 1 The following notes have been assembled by Phil (VK5SRP) from original material and material from several web sites, including Wikipedia for a class run at the North East Radio Club, South Australia January 2016. In electronics, a vacuum tube, an electron tube, or just a tube (North America), or valve (Britain and some other regions) is a device that controls electric current between electrodes in an evacuated container. Vacuum tubes mostly rely on thermionic emission of electrons from a hot filament or a cathode heated by the filament/heater. This type is called a thermionic tube or thermionic valve. A Photo-tube, however, achieves electron emission through the photoelectric effect. Not all electronic circuit valves/electron tubes are vacuum tubes (evacuated). Gas-filled tubes are similar devices containing a gas, typically at low pressure, which exploit phenomena related to electric discharge in gases, usually without a heater. Although thermionic emission was originally reported in 1873 by Frederick Guthrie, it was Thomas Edison's 1883 investigation that spurred future research, the phenomenon thus becoming known as the "Edison effect". Edison patented what he found, but he did not understand the underlying physics, nor did he have an inkling of the potential value of the discovery. It wasn't until the early 20th century that the rectifying property of such a device was utilised, most notably by John Ambrose Fleming, who used the Diode tube to detect (demodulate) radio signals. Lee De Forest's 1906 "Audion" was also developed as a radio detector, and soon led to the development of the Triode tube.
    [Show full text]
  • The Venerable Triode
    The Venerable Triode The very first gain device, the vacuum tube Triode, is still made after more than a hundred years, and while it has been largely replaced by other tubes and the many transistor types, it still remains popular in special industry and audio applications. I have some thoughts on why the Triode remains special for audio amplifiers (apart from sentimental value) that I would like to share. But first, a quick tutorial about Triodes: The earliest Triode was Lee De Forest's 1906 “Audion”. Over a hundred years development has resulted in many Triodes, large and small. The basic design has remained much the same. An evacuated container, usually glass, holds three signal connections, seen in the drawing as the Cathode, Grid and Plate (the Plate is also referred to as the Anode). In addition you see an internal heater, similar to a light bulb filament, which is used to heat the Cathode. Triode operation is simple. Electrons have what's known as “negative electrostatic charge”, and it is understood that “like” charges physically repel each other while opposite charges attract. The Plate is positively charged relative to the Cathode by a battery or other voltage source, and the electrons in the Cathode are attracted to the Plate, but are prevented by a natural tendency to hang out inside the Cathode and avoid the vacuum. This is where the heater comes in. When you make the Cathode very hot, these electrons start jumping around, and many of them have enough energy to leave the surface of the Cathode.
    [Show full text]
  • July 2019 Newsletter GEARS Founded August 13, 1939 News
    July 2019 Newsletter GEARS Founded August 13, 1939 News Field day was a success. This year GARS joined us out at the Masonic Lodge. The weather was very comfortable for a change. While band conditions were difficult at first, they improved by the morning. We haven’t totaled the points yet, however it seems that we did better than last year. We also got coverage from Action News and the Chico Enterprise Record. See photos below. My house was struck by lighting on May 30th, hitting my antenna and traveling down the feed line, through the radios and discharged into the house wiring. Fortunately the fire department put out the fire quickly and minimized damage. I’m off the air until repairs are completed to the house. See photo below. The GEARS/GARS new repeater project is proceeding along. The equipment has been ordered. We are waiting for approval from the US Forest Service before we can begin installation. At our next GEARS meeting Kevin Fullerton WB7SKS will be talking about emergency operations for the Camp Fire. He has some very interesting experiences to tell us about, and suggestions for preparing for emergencies. The Steak Bake is Sep.7th at Wildwood picnic area in Chico at 3:30pm - 7pm. This month our feature article is about Sir John Ambrose Fleming’s invention of the vacuum tube. ‘73 Join GEARS on Facebook Jim Matthews K6EST www.facebook.com For timely ​ [email protected] news and additional information. 530-893-3314 July 2019 Calendar Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7pm GARS Net 7:30pm GEARS Net 7pm Simplex Net 8pm
    [Show full text]
  • 1990-04: Sir Ambrose Fleming
    When 1 Think Back.. by Neville Williams Sir John Ambrose Fleming: He invented radio valves - or did he? Dr/Professor Sir John Ambrose Fleming is remembered primarily as the inventor of the Fleming thermionic, diode and the 'father' of radio valves, which were fundamental to the subsequent development of the industry. Whether or not this is strictly correct is debateable but, either way, Ambrose Fleming made a very considerable contribution to basic electrical and electronic technology. Curiously, one finds scant mention, in patent rights in respect to the ther- relevant textbooks, of Fleming's per- mionic diode; but more about that later! sonal background or his academic ca- Sir John Ambrose Fleming - a gifted reer. Beyond the fact that he was born Fleming the academic scientist of his day. in 1849, the texts to which I had access Curious about Fleming's academic ca- make little or no reference to his birth- reer, I checked through a number of old I have little doubt that the 'rules-of- place, his family or the steps in his ca- reference books in my possession. thumb' we were invited to memorise in reer which led to his ultimate knight- First off, a brief entry in a 60-year old other days were devised by John Am- hood. Pear's encyclopedia indicated that Flem- brose Fleming, the subject of this pre- The British technical writer/consultant ing's involvement with the University sent article. S. Handel comes closest in The Elec- College spanned 40-odd years, from There is no ambiguity, however, tronic Revolution (Penguin Books, UK, 1885 to 1926, by which time he would about the Dr J.A.
    [Show full text]
  • Silver Service ORIGIN Driver Tubes Have Coloured Stickers, Path
    AUDION SILVER NIGHT SPECIAL EDITION AUDION SILVER NIGHT SPECIAL EDITION EXOTICA INTEGRATED VALVE AMPLIFIER £4,150 INTEGRATED VALVE AMPLIFIER £4,150 EXOTICA The Silver Night warmth somehow feels more natural to mean-spiritedness and is overcome Special Edition and is accompanied with masses of by using better and thicker silver has attractive airy detail that is highly extended wiring – as I suspect is the case here. designer lines yet very sweet and free from grain, My appetite is whetted so I play the all placed in a wonderfully inky black Bass With Chorus Aria – Eilt, Ihr and silent backdrop. Angefochtnen Seelen from JS Bach’s St Playing Lorde’s Royals on vinyl via my John Passion conducted by Karl Richter Timestep T-01 MC phono stage (HFC on HDCD. 371) is surprising. This track has really I am now better prepared for my deep bass and I’m expecting the Special expectations to be exceeded. Large Edition Silver Night to stumble, but I’m flowing introductory sweeps of the actually the one that’s wrong-footed. orchestra have excellent breadth Bass is deep and far faster than this and tone and the bass vocal rises design has any right to deliver. A single- majestically with real authority and ended 300B amplifier should, by rights luscious body and weight. The struggle here, but this performance has orchestra doesn’t have massive weight, rasp and plenty of taut bass front-to-back depth, but this criticism detail that doesn’t slouch behind the seems churlish, as this rendition is way higher octaves.
    [Show full text]
  • Frequency Characteristics of the Electron-Tube Oscillation Generator
    FREQUENCY CHARACTERISTICS OF THE ELECTRON—TUBE OSCILLATION GENERATOR BY RAY STUART QUICK B. S. University of California, 1916 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING IN THE GRADUATE SCHOOL OF THE! UNIVERSITY OF ILLINOIS 1919 UNIVERSITY OF ILLINOIS THE GRADUATE SCHOOL I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Hay Stuart 4uick ENTITLED Jgraqstaney Character i st.i cs of the Electron-Tube Oscillation Generator BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF Master of Snionoe in Eleotri nol Engin eering . \Mm Head of Department Recommendation concurred in :! Committee on Final Examination* *Required for doctor's degree but not for master's 1 CONTENTS I INTRODUCTION Page 1. Scope of work 2 2. Historical review. 2 II THEORETICAL DISCUSSION OP PROBLEM 1. General principles of operation. 4 2. Circuits used. 6 3. Work of previous investigators. 6 4. Mathematical solution of circuits. 8 III APPARATUS AND METHODS 1. Electron- tubes used. 13 2. Circuit properties. 13 3. Frenuency determinations. 13 IV DATA AND EXPERIMENTAL RESULTS 1. Observed conditions necessary for constant eurrent and for oscillating eurrent. 36 2. Oscillograms. 36 3. Experimental results. 37 V CONCLUSIONS 1. Comparison of experimental ^nd theoretical results. 45 2. Suggestions as to future work 45 VI BIBLIOGRAPHY 47 2 I INTRODUCTIOU 1. Scope of Work. The development of the electron- tube ( also called three-electrode vacuum tube, vacuum- tube, thermionic amplifier, audion, etc. ) has brought to light many new and interest- ing problems. In using the tube as a source of continuous oscilla- tions it is desirable to be able to predetermine the frequency, wave-form and amplitude characteristics.
    [Show full text]
  • Valve Types and Char
    ‘Technical Shorts’ by Gerry O’Hara, VE7GUH/G8GUH ‘Technical Shorts’ is a series of (fairly) short articles prepared for the Eddystone User Group (EUG) website, each focussing on a technical issue of relevance in repairing, restoring or using Eddystone valve radios. However, much of the content is also applicable to non-Eddystone valve receivers. The articles are the author’s personal opinion, based on his experience and are meant to be of interest or help to the novice or hobbyist – they are not meant to be a definitive or exhaustive treatise on the topic under discussion…. References are provided for those wishing to explore the subjects discussed in more depth. The author encourages feedback and discussion on any topic covered through the EUG forum. Valve Types and Characteristics Introduction The Technical Short on ‘Valve Lore’ deals with using valves in receivers in general terms – their evolution through the years, types and general application in Eddystone receivers, as well as tips on sourcing valves and testing them. The Technical Shorts on ‘Eddystone Circuit Elements’ and ‘Receiver Front-Ends’ take a closer look at how valves are selected and used in particular circuits within Eddystone valve receivers. In preparing these articles, it occurred to me that an insight into some of the basics underlying the selection of a particular valve for an application in a receiver would be useful. In order to do this, some consideration of valve ‘fundamentals’ is necessary and how these influence their application and use in receivers. So here I deal mainly with the basics of valve construction and design and then their electrical parameters and important operating characteristics.
    [Show full text]