Critical Success Factors to Improve the Game Development Process from A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Game Level Layout from Design Specification
EUROGRAPHICS 2014 / B. Lévy and J. Kautz Volume 33 (2014), Number 2 (Guest Editors) Game Level Layout from Design Specification Chongyang Ma∗z Nicholas Vining∗ Sylvain Lefebvrey Alla Sheffer∗ ∗ University of British Columbia y ALICE/INRIA z University of Southern California Abstract The design of video game environments, or levels, aims to control gameplay by steering the player through a sequence of designer-controlled steps, while simultaneously providing a visually engaging experience. Traditionally these levels are painstakingly designed by hand, often from pre-existing building blocks, or space templates. In this paper, we propose an algorithmic approach for automatically laying out game levels from user-specified blocks. Our method allows designers to retain control of the gameplay flow via user-specified level connectivity graphs, while relieving them from the tedious task of manually assembling the building blocks into a valid, plausible layout. Our method produces sequences of diverse layouts for the same input connectivity, allowing for repeated replay of a given level within a visually different, new environment. We support complex graph connectivities and various building block shapes, and are able to compute complex layouts in seconds. The two key components of our algorithm are the use of configuration spaces defining feasible relative positions of building blocks within a layout and a graph-decomposition based layout strategy that leverages graph connectivity to speed up convergence and avoid local minima. Together these two tools quickly steer the solution toward feasible layouts. We demonstrate our method on a variety of real-life inputs, and generate appealing layouts conforming to user specifications. Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object representations 1. -
Video Games: Changing the Way We Think of Home Entertainment
Rochester Institute of Technology RIT Scholar Works Theses 2005 Video games: Changing the way we think of home entertainment Eri Shulga Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Shulga, Eri, "Video games: Changing the way we think of home entertainment" (2005). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Video Games: Changing The Way We Think Of Home Entertainment by Eri Shulga Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Information Technology Rochester Institute of Technology B. Thomas Golisano College of Computing and Information Sciences Copyright 2005 Rochester Institute of Technology B. Thomas Golisano College of Computing and Information Sciences Master of Science in Information Technology Thesis Approval Form Student Name: _ __;E=.;r....;...i S=-h;....;..;u;;;..;..lg;;i..;:a;;...__ _____ Thesis Title: Video Games: Changing the Way We Think of Home Entertainment Thesis Committee Name Signature Date Evelyn Rozanski, Ph.D Evelyn Rozanski /o-/d-os- Chair Prof. Andy Phelps Andrew Phelps Committee Member Anne Haake, Ph.D Anne R. Haake Committee Member Thesis Reproduction Permission Form Rochester Institute of Technology B. Thomas Golisano College of Computing and Information Sciences Master of Science in Information Technology Video Games: Changing the Way We Think Of Home Entertainment L Eri Shulga. hereby grant permission to the Wallace Library of the Rochester Institute of Technofogy to reproduce my thesis in whole or in part. -
Introducing the Game Design Matrix: a Step-By-Step Process for Creating Serious Games
Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-2020 Introducing the Game Design Matrix: A Step-by-Step Process for Creating Serious Games Aaron J. Pendleton Follow this and additional works at: https://scholar.afit.edu/etd Part of the Educational Assessment, Evaluation, and Research Commons, Game Design Commons, and the Instructional Media Design Commons Recommended Citation Pendleton, Aaron J., "Introducing the Game Design Matrix: A Step-by-Step Process for Creating Serious Games" (2020). Theses and Dissertations. 4347. https://scholar.afit.edu/etd/4347 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. INTRODUCING THE GAME DESIGN MATRIX: A STEP-BY-STEP PROCESS FOR CREATING SERIOUS GAMES THESIS Aaron J. Pendleton, Captain, USAF AFIT-ENG-MS-20-M-054 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this document are those of the author and do not reflect the official policy or position of the United States Air Force, the United States Department of Defense or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-20-M-054 INTRODUCING THE GAME DESIGN MATRIX: A STEP-BY-STEP PROCESS FOR CREATING LEARNING OBJECTIVE BASED SERIOUS GAMES THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Cyberspace Operations Aaron J. -
Designing Affective Games with Physiological Input Lennart E
Designing Affective Games with Physiological Input Lennart E. Nacke Regan L. Mandryk University of Saskatchewan University of Saskatchewan 110 Science Place, Saskatoon, SK 110 Science Place, Saskatoon, SK Canada Canada [email protected] [email protected] ABSTRACT information about user emotion [1] and/or cognition [6]) are With the advent of new game controllers, traditional input becoming more popular in desktop software design as well mechanisms for games have changed to include gestural [2]. For human-computer interaction evaluative studies, this interfaces and camera recognition techniques, which are marks a shift from analyses centering on usability to those being further explored with the likes of Sony’s PlayStation that are looking at the full spectrum of user experience Move and Microsoft’s Kinect. Soon these techniques will (UX). These studies focus on human aspects of interaction, include affective input to control game interaction and such as the behavioral, perceptual, emotional, and cognitive mechanics. Thus, it is important to explore which game capabilities of people [5]. designs work best with which affective input technologies, giving special regard to direct and indirect methods. In this In addition to evaluating affective user responses, the use of paper, we discuss some affective measurement techniques a player’s own cognitive and emotional state as input – and development ideas for using these as control known as affective input – is an exciting input possibility mechanisms for affective game design using that has not been fully explored in the context of games [4]. psychophysiological input. Affective input has seen use as a direct method of control in accessibility applications, and as an indirect method of Author Keywords control in biofeedback training for meditation and phobia Affective computing, entertainment computing, treatment. -
Game Design Involving Online Tools
Analyzing a Process of Collaborative Game Design Involving Online Tools Sandra B. Fan1, Brian R. Johnson2, Yun-En Liu1, Tyler S. Robison1, Rolfe R. Schmidt1, Steven L. Tanimoto1 1. Department of Computer Science and Engineering 2. Department of Architecture University of Washington, Seattle, WA 98195, USA 1: {sbfan, yunliu, trobison, rolfe, tanimoto}@cs.uw.edu; 2: [email protected] Abstract collaboration tools for problem solving across a range of disciplines. In particular, we take a state-space- In this study, we explore how problem solving and search approach to modeling the design process, based design can be modeled using state-space-search on the classical AI theory of problem solving. methodology, by engaging in the design of two During each design exercise, we utilized different educational games. Additionally, we wanted to online collaboration tools: our own INFACT system, discover how online communication tools could be Google Wave beta, as well as our CoSolve used to support collaborative design. We used three environment for modeling state-space problem solving, online tools: 1) CoSolve, a collaborative problem- and we developed two games: Go Atom, a chemistry solving environment that we developed, 2) Google game, and Eco-avelli, a climate change game. Wave, a wiki/chat hybrid communication tool, and 3) In Section 2, we will describe the existing INFACT, a discussion forum that we built for use in technologies and the state-space-search design education. We used these tools to design Go Atom, a methodology in more detail. In Sections 3, 4 & 5, we chemistry game, and Eco-avelli, a game that intended will describe our specific design process of creating to demonstrate the politics of climate change. -
Abstract the Goal of This Project Is Primarily to Establish a Collection of Video Games Developed by Companies Based Here In
Abstract The goal of this project is primarily to establish a collection of video games developed by companies based here in Massachusetts. In preparation for a proposal to the companies, information was collected from each company concerning how, when, where, and why they were founded. A proposal was then written and submitted to each company requesting copies of their games. With this special collection, both students and staff will be able to use them as tools for the IMGD program. 1 Introduction WPI has established relationships with Massachusetts game companies since the Interactive Media and Game Development (IMGD) program’s beginning in 2005. With the growing popularity of game development, and the ever increasing numbers of companies, it is difficult to establish and maintain solid relationships for each and every company. As part of this project, new relationships will be founded with a number of greater-Boston area companies in order to establish a repository of local video games. This project will not only bolster any previous relationships with companies, but establish new ones as well. With these donated materials, a special collection will be established at the WPI Library, and will include a number of retail video games. This collection should inspire more people to be interested in the IMGD program here at WPI. Knowing that there are many opportunities locally for graduates is an important part of deciding one’s major. I knew I wanted to do something with the library for this IQP, but I was not sure exactly what I wanted when I first went to establish a project. -
The Role of Architecture in Constructing Gameworlds
Document generated on 09/25/2021 8:46 p.m. Loading The Journal of the Canadian Game Studies Association The Role of Architecture in Constructing Gameworlds: Intertextual Allusions, Metaphorical Representations and Societal Ethics in Dishonored Anthony Zonaga and Marcus Carter Volume 12, Number 20, Fall 2019 Article abstract In this article, we present a close analysis of the role that the steampunk URI: https://id.erudit.org/iderudit/1065898ar industrial Victorian architecture in Dishonored (2012) has in constructing the DOI: https://doi.org/10.7202/1065898ar player’s experience and knowledge of the gameworld. Through various intertextual allusions and metaphorical representations, we argue the See table of contents architecture works as an important storytelling element, contextualizing information that the player learns and conveying information about the game’s main characters, similar to the ways that architecture is utilized in Publisher(s) other visual media such as television and film. In addition, we also argue that the architecture in Dishonored plays a crucial role in conveying to the player Canadian Game Studies Association information about the morals and values of the fictional society, key to the game’s moral-choice gameplay. ISSN 1923-2691 (digital) Explore this journal Cite this article Zonaga, A. & Carter, M. (2019). The Role of Architecture in Constructing Gameworlds: Intertextual Allusions, Metaphorical Representations and Societal Ethics in Dishonored. Loading, 12(20), 71–89. https://doi.org/10.7202/1065898ar Copyright, 2019 Anthony Zonaga, Marcus Carter This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online. -
Inside the Video Game Industry
Inside the Video Game Industry GameDevelopersTalkAbout theBusinessofPlay Judd Ethan Ruggill, Ken S. McAllister, Randy Nichols, and Ryan Kaufman Downloaded by [Pennsylvania State University] at 11:09 14 September 2017 First published by Routledge Th ird Avenue, New York, NY and by Routledge Park Square, Milton Park, Abingdon, Oxon OX RN Routledge is an imprint of the Taylor & Francis Group, an Informa business © Taylor & Francis Th e right of Judd Ethan Ruggill, Ken S. McAllister, Randy Nichols, and Ryan Kaufman to be identifi ed as authors of this work has been asserted by them in accordance with sections and of the Copyright, Designs and Patents Act . All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. Trademark notice : Product or corporate names may be trademarks or registered trademarks, and are used only for identifi cation and explanation without intent to infringe. Library of Congress Cataloging in Publication Data Names: Ruggill, Judd Ethan, editor. | McAllister, Ken S., – editor. | Nichols, Randall K., editor. | Kaufman, Ryan, editor. Title: Inside the video game industry : game developers talk about the business of play / edited by Judd Ethan Ruggill, Ken S. McAllister, Randy Nichols, and Ryan Kaufman. Description: New York : Routledge is an imprint of the Taylor & Francis Group, an Informa Business, [] | Includes index. Identifi ers: LCCN | ISBN (hardback) | ISBN (pbk.) | ISBN (ebk) Subjects: LCSH: Video games industry. -
Design Methods for Democratising Mobile Game Design
Design Methods for Democratising Mobile Game Design Mark J. Nelson Abstract Swen E. Gaudl Playing mobile games is popular among a large and Simon Colton diverse set of players, contrasting sharply with the lim- Rob Saunders ited set of companies and people who design them. We Edward J. Powley would like to democratise mobile game design by ena- Peter Ivey bling players to design games on the same devices they Blanca Pérez Ferrer play them on, without needing to program. Our concept Michael Cook of fluidic games aims to realise this vision by drawing on three design methodologies. The interaction style of The MetaMakers Institute fluidic games is that of casual creators; their end-user Falmouth University design philosophy is adapted from metadesign; and Cornwall, UK their technical implementation is based on parametric metamakersinstitute.com design. In this short article, we discuss how we’ve adapted these three methods to mobile game design, and some open questions that remain in order to em- power end user game design on mobile phones in a way that rises beyond the level of typical user- generated content. Author Keywords Mobile games; casual creators; metadesign; parametric design; end-user creativity; mixed-initiative interfaces. ACM Classification Keywords H.5.m. Information interfaces and presentation: Miscel- laneous Introduction Fluidic Games Our starting point is the observation that mobile games To support on-device casual design, we are developing have attracted a large and diverse set of players, but a what we call fluidic games [5-7]. These blur the line smaller and less diverse set of designers. -
Creating an Interdisciplinary Game Development Minor
Western Michigan University ScholarWorks at WMU Academic Leadership Academy Office ofaculty F Development Spring 4-16-2009 Creating an Interdisciplinary Game Development Minor Karlis Kaugars State University of New York Oneonta, [email protected] Follow this and additional works at: https://scholarworks.wmich.edu/acad_leadership Part of the Higher Education Administration Commons WMU ScholarWorks Citation Kaugars, Karlis, "Creating an Interdisciplinary Game Development Minor" (2009). Academic Leadership Academy. 23. https://scholarworks.wmich.edu/acad_leadership/23 This Poster is brought to you for free and open access by the Office ofaculty F Development at ScholarWorks at WMU. It has been accepted for inclusion in Academic Leadership Academy by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. Creating an Interdisciplinary Game Development Minor Karlis Kaugars Background Contributing Disciplines Current Courses A minor in game Development Though seen by some as a simple diversion, games are a There are currently two game-specific courses offered at A minor in game development would consist of six to eight Business critical form of play for current and future generations. WMU – “CS 5410, Game Programming” and “HNRS 2900 – introductory courses, each from a different department Public Relations Game Producer emphasizing core concepts of the discipline with a focus on how Where previous generations played tag and war, current Management 155, Video Game Design”. The former course focuses on the discipline topics relate to game design. youth engage in Bejeweled and Guitar Hero. The Marketing game engine programming and is targeted towards the senior experience is meaningful, engaging and often highly social level computer science student as a integrative, capstone Each participating department could use an existing course to in nature. -
School of Game Development Program Brochure
School of Game Development STEM certified school academyart.edu SCHOOL OF GAME DEVELOPMENT Contents Program Overview .................................................. 5 What We Teach ......................................................... 7 The School of Game Development Difference ....... 9 Faculty .................................................................... 11 Degree Options ...................................................... 13 Our Facilities ........................................................... 15 Student & Alumni Testimonials ............................ 17 Partnerships .......................................................... 19 Career Paths .......................................................... 21 Additional Learning Experiences ......................... 23 Awards and Accolades ......................................... 25 Online Education .................................................. 27 Academy Life ........................................................ 29 San Francisco ........................................................ 31 Athletics ................................................................ 33 Apply Today .......................................................... 35 3 SCHOOL OF GAME DEVELOPMENT Program Overview We offer two degree tracks—Game Development and Game Programming. Pursue your love for both the art and science of games at the School of Game Development. OUR MISSION WHAT SETS US APART Don’t let the word “game” fool you. The gaming • Learn both the art, (Game Development) and -
Creativity Training Model for Game Design
(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 12, No. 5, 2021 Creativity Training Model for Game Design Raudyah Md Tap1, Nor Azan Mat Zin2, Hafiz Mohd Sarim3, Norizan Mat Diah4 Faculty of Information Science and Technology, The National University of Malaysia, 43600 Bangi, Malaysia1, 2, 3 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia4 Abstract—The popularity of digital games is increasing with a efficient, beneficial, and of quality [3] [4] [5]. Regardless of global market value of RM197.6 billion. However, the game the purpose of the computer games, the fundamental emphasis produced locally still has no impact. One reason is that there is should be on the game design and the design process's creative no emphasis on the game design process in the game development aspect. education program. Games designed have a problem in terms of creativity, and there is still no specific method of training The game design process plays a crucial role in producing creative thinking. This study aims to identify and validate game a good and creative game. According to [6], the process of design's creativity components and develop a Creativity Training game design is divided into two main phases that need to be Model for Game Design (LK2RBPD Model) verified through the emphasized, namely ideation and conceptualization. Ideation Game Design Document Tool (GDD Tool) prototype. This refers to the process of generating creative and innovative research has four main phases: the requirements planning, game design ideas, while conceptualization is to outline the design, development, implementation, and testing phases.