Principles of Game Design
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Game Level Layout from Design Specification
EUROGRAPHICS 2014 / B. Lévy and J. Kautz Volume 33 (2014), Number 2 (Guest Editors) Game Level Layout from Design Specification Chongyang Ma∗z Nicholas Vining∗ Sylvain Lefebvrey Alla Sheffer∗ ∗ University of British Columbia y ALICE/INRIA z University of Southern California Abstract The design of video game environments, or levels, aims to control gameplay by steering the player through a sequence of designer-controlled steps, while simultaneously providing a visually engaging experience. Traditionally these levels are painstakingly designed by hand, often from pre-existing building blocks, or space templates. In this paper, we propose an algorithmic approach for automatically laying out game levels from user-specified blocks. Our method allows designers to retain control of the gameplay flow via user-specified level connectivity graphs, while relieving them from the tedious task of manually assembling the building blocks into a valid, plausible layout. Our method produces sequences of diverse layouts for the same input connectivity, allowing for repeated replay of a given level within a visually different, new environment. We support complex graph connectivities and various building block shapes, and are able to compute complex layouts in seconds. The two key components of our algorithm are the use of configuration spaces defining feasible relative positions of building blocks within a layout and a graph-decomposition based layout strategy that leverages graph connectivity to speed up convergence and avoid local minima. Together these two tools quickly steer the solution toward feasible layouts. We demonstrate our method on a variety of real-life inputs, and generate appealing layouts conforming to user specifications. Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object representations 1. -
The Design, Play, and Experience Framework Brian M. Winn Games
The Design, Play, and Experience Framework Brian M. Winn Games for Entertainment and Learning (GEL) Lab Dept. of Telecommunication, Information Studies, and Media Michigan State University 253 Communication Arts & Sciences Building East Lansing, MI 48824 517-353-5497 (voice) 517-353-5498 (fax) [email protected] (email) The Design, Play, and Experience Framework ABSTRACT This chapter introduces a framework for the design of serious games for learning, called the Design, Play, and Experience framework. The author argues that the great potential of serious games will not be realized without a formal design approach. To that end, the author presents and thoroughly explains the Design, Play, and Experience framework which provides a formal approach to designing the learning, storytelling, gameplay, user experience, and technology components of a serious game. The author concludes by detailing how the framework provides a common language to discuss serious game design, a methodology to analyze a design, and a process to design a serious game for learning. INTRODUCTION The serious games movement asserts that the game medium can serve many functions, and a sole focus on entertainment significantly undersells its potential (Jenkins, 2006). Serious games have a purpose beyond entertainment, including (but not limited to) learning, health, advertising, and social change (Sawyer, 2002; Prensky, 2001). Some serious games are thought to provide stealth learning as players are focused not on learning but on playing (Shreve, 2005). Serious game design is a relatively new discipline. As such, there is a lack of a common language and a lack of standard practices for designing serious games. To date, serious game development teams have utilized a diverse mix of game design and instructional design methodologies to help realize their designs, but often without a unifying framework to bring these diverse perspectives together. -
Mobile Exergaming for Health—Effects of a Serious Game Application for Smartphones on Physical Activity and Exercise Adherence
Höchsmann et al. Trials (2017) 18:103 DOI 10.1186/s13063-017-1853-3 STUDY PROTOCOL Open Access Mobile Exergaming for Health—Effects of a serious game application for smartphones on physical activity and exercise adherence in type 2 diabetes mellitus—study protocol for a randomized controlled trial Christoph Höchsmann1, Steffen P. Walz2, Juliane Schäfer1, Jussi Holopainen3, Henner Hanssen1 and Arno Schmidt-Trucksäss1* Abstract Background: Exergaming is a novel approach to increase motivation for regular physical activity (PA) among sedentary individuals such as patients with type 2 diabetes mellitus (T2DM). Because existing exergames do not offer fitness-level adjusted, individualized workouts and are normally stationary (TV bound), thus not enabling PA anywhere and at any time, we developed a smartphone-based, game-like software application (MOBIGAME) specifically designed for middle-aged T2DM patients to induce a healthier, more active lifestyle as part of successful T2DM treatment and management. In a randomized controlled trial we aim to examine whether our smartphone-based game application can lead to increases in daily PA in T2DM patients that are persistent in the mid to long term and whether these increases are greater than those in a control group. Methods: This study is designed as a randomized controlled trial. We plan to recruit a total of 42 T2DM patients [45-70 years, body mass index (BMI) ≥25 kg/m2, low daily PA, regular smartphone use]. The experimental intervention (duration 24 weeks) includes individualized multidimensional home-based exercise and daily PA promotion administered through MOBIGAME. The control intervention consists of a one-time standard lifestyle counseling including the promotion of baseline activities. -
DVD/Video Game Entertainment System
DVD/Video Game Entertainment System Owner's Manual wireless input .mp3 RES R integrated SURROUND SOUND VIDEOGAMES s SATELLITE Table of Contents Getting Started ......................................................................................................................................................................................................................... 4 Switching On, Lowering and Adjusting the Screen, Finding the Remote Control Buttons You Need, Listening Over the Vehicle Speakers Introduction .............................................................................................................................................................................................................................. 6 Discs Played ............................................................................................................................................................................................................................ 7 Changing Display Settings, Using the Dome Lights ................................................................................................................................................................ 8 Using the Remote Control ........................................................................................................................................................................................................ 9 Basic Remote Control Buttons ............................................................................................................................................................................................. -
Creating a Social Serious Game an Interdisciplinary Experience Among Computer Scientists and Artists from UNLP Faculties
ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions Creating a Social Serious Game An interdisciplinary experience among computer scientists and artists from UNLP Faculties Javier F. Díaz, Laura A. Fava, Luciano J. Nomdedeu Carlos Pinto, Yanina Hualde, Leo Bolzicco, Research Laboratory on New Information Technology - Vicente Bastos Mendes Da Silva LINTI- Multimedia Department Informatics Faculty, La Plata National University, Fine Arts Faculty, La Plata National University Buenos Aires, Argentina La Plata, Buenos Aires, Argentina [email protected], [email protected], [email protected], [email protected], [email protected] [email protected], [email protected] Abstract—This article describes the interdisciplinary work social behavior, increased social skills, and provide an carried out by teachers and students of the Faculties of Fine Arts attractive place to play, a significant space to transmit and and Informatics in La Plata city, to develop a serious game for acquire knowledge. social networks related with Argentine native peoples. The game In Argentina, there are nearly one thousand communities presented is a serious video game, innovative for social sciences, established in different parts of the country with a self- which promotes more effective learning processes than traditional methods, adding to social networks the ability to recognized native population which is 2.38% of the total transmit knowledge, besides favoring socialization, cooperation national population, -
Non-Serious Serious Games
Press Start Non-Serious Serious Games Non-Serious Serious Games Matthew Hudson Toshiba Design Center Abstract Serious games have been shown to promote behavioural change and impart skills to players, and non-serious games have proven to have numerous benefits. This paper argues that non-serious digital games played in a ‘clan’ or online community setting can lead to similar real world benefits to serious games. This paper reports the outcomes from an ethnographic study and the analysis of user generated data from an online gaming clan. The outcomes support previous research which shows that non-serious games can be a setting for improved social well- being, second language learning, and self-esteem/confidence building. In addition this paper presents the novel results that play within online game communities can impart benefits to players, such as treating a fear of public speaking. This paper ultimately argues that communities of Gamers impart ‘serious’ benefits to their members. Keywords Online communities; digital games; clan; social play; serious games; non-serious games Press Start 2016 | Volume 3 | Issue 2 ISSN: 2055-8198 URL: http://press-start.gla.ac.uk Press Start is an open access student journal that publishes the best undergraduate and postgraduate research, essays and dissertations from across the multidisciplinary subject of game studies. Press Start is published by HATII at the University of Glasgow. Hudson Non-Serious Serious Games Introduction Serious games have been shown to promote behavioural change and impart skills to players (Lampton et al. 2006, Wouters et al. 2009), and non-serious games have been shown to have numerous benefits (Granic et al. -
Stock Market Game DECA Competition
KNOWLEDGE AND SKILLS DEVELOPED Participants will demonstrate knowledge and skills needed STOCK MARKET GAME to address the components of the project as described in the STOCK MARKET GAME SMG content outline and evaluation forms. Participants in the SIFMA Foundation Stock Market Game develop and manage a virtual investment Participants will also develop portfolio of stocks, bonds, and mutual funds. The Stock Market Game is conducted via the internet many 21st Century Skills, in the and allows DECA members to test their knowledge and skills against other DECA members in an online following categories, desired competition. Each participating team manages all aspects of the portfolio including asset selection, buying by today’s employers: and selling. The goal of the competition is to increase the value of the portfolio. • Communication and During the course of the Stock Market Game, participants will: Collaboration • develop investment strategies based on expectations of growth, diversification and stability • attempt to avoid the pitfalls of market decline, mergers and overextension • Creativity and Innovation • Critical Thinking and EVENT OVERVIEW Problem Solving It is the responsibility of the advisor and participating teams to familiarize themselves with the Rules of The • Flexibility and Adaptability Stock Market Game. Rules are accessible through a link on the home pages of the team portfolio and in the Teacher Support Center. • Information Literacy In addition to the general rules of the Stock Market Game, DECA advisors and their teams should be aware of • Initiative and Self-direction the following: • Leadership and • This event consists of a written document describing the investment project and the oral presentation. -
Introducing the Game Design Matrix: a Step-By-Step Process for Creating Serious Games
Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-2020 Introducing the Game Design Matrix: A Step-by-Step Process for Creating Serious Games Aaron J. Pendleton Follow this and additional works at: https://scholar.afit.edu/etd Part of the Educational Assessment, Evaluation, and Research Commons, Game Design Commons, and the Instructional Media Design Commons Recommended Citation Pendleton, Aaron J., "Introducing the Game Design Matrix: A Step-by-Step Process for Creating Serious Games" (2020). Theses and Dissertations. 4347. https://scholar.afit.edu/etd/4347 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. INTRODUCING THE GAME DESIGN MATRIX: A STEP-BY-STEP PROCESS FOR CREATING SERIOUS GAMES THESIS Aaron J. Pendleton, Captain, USAF AFIT-ENG-MS-20-M-054 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this document are those of the author and do not reflect the official policy or position of the United States Air Force, the United States Department of Defense or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-20-M-054 INTRODUCING THE GAME DESIGN MATRIX: A STEP-BY-STEP PROCESS FOR CREATING LEARNING OBJECTIVE BASED SERIOUS GAMES THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Cyberspace Operations Aaron J. -
Serious Games and Gamification, 2 Credits, Fall 2018 1 GEORGE MASON UNIVERSITY COLLEGE of EDUCATION and HUMAN DEVE
GEORGE MASON UNIVERSITY COLLEGE OF EDUCATION AND HUMAN DEVELOPMENT GRADUATE SCHOOL OF EDUCATION Instructional Design and Technology (IDT) Program EDIT 772 DL2: Serious Games and Gamification 2 credits, Fall 2018 October 15, 2018 through December 19, 2018; Asynchronous FACULTY Name: Dr. Karen Cooper Office hours: Day or evenings by appointment via phone, email, or web. Phone: 407-434-9020 Email: [email protected] PREREQUISITES/COREQUISITES None UNIVERSITY CATALOG COURSE DESCRIPTION Provides basic knowledge of available applications and platforms for creating contextually based learning environments such as immersive virtual worlds, simulated worlds, alternate reality games, and massive multiplayer online role-playing games for e-learning. COURSE OVERVIEW Welcome to Serious Games and Gamification. This course provides basic knowledge of the range of capabilities of gaming and gamification techniques. Students learn to cultivate and identify effective game design practices for creating instructional products. For our purposes, a Serious Game is defined to be a game designed for the purpose of solving a learning need. Although serious games can be entertaining, their main purpose is to train or educate. Gamification is the application of typical elements of game playing (e.g., point scoring, competition with others, rules of play) to activity in a non-game environment. Throughout history people have taught, learned, entertained and communicated with games, and this has held constant across platforms. From board games to customized digital body-gear of today, games can convey information and transfer experience in a very engaging way, offering perspective, motivation, and a powerful autonomous learning experience. EDIT 772 DL2: Serious Games and Gamification, 2 credits, Fall 2018 1 Our focus will be the intersection of technology, gameplay and pedagogy. -
Designing Affective Games with Physiological Input Lennart E
Designing Affective Games with Physiological Input Lennart E. Nacke Regan L. Mandryk University of Saskatchewan University of Saskatchewan 110 Science Place, Saskatoon, SK 110 Science Place, Saskatoon, SK Canada Canada [email protected] [email protected] ABSTRACT information about user emotion [1] and/or cognition [6]) are With the advent of new game controllers, traditional input becoming more popular in desktop software design as well mechanisms for games have changed to include gestural [2]. For human-computer interaction evaluative studies, this interfaces and camera recognition techniques, which are marks a shift from analyses centering on usability to those being further explored with the likes of Sony’s PlayStation that are looking at the full spectrum of user experience Move and Microsoft’s Kinect. Soon these techniques will (UX). These studies focus on human aspects of interaction, include affective input to control game interaction and such as the behavioral, perceptual, emotional, and cognitive mechanics. Thus, it is important to explore which game capabilities of people [5]. designs work best with which affective input technologies, giving special regard to direct and indirect methods. In this In addition to evaluating affective user responses, the use of paper, we discuss some affective measurement techniques a player’s own cognitive and emotional state as input – and development ideas for using these as control known as affective input – is an exciting input possibility mechanisms for affective game design using that has not been fully explored in the context of games [4]. psychophysiological input. Affective input has seen use as a direct method of control in accessibility applications, and as an indirect method of Author Keywords control in biofeedback training for meditation and phobia Affective computing, entertainment computing, treatment. -
Competition Versus Cooperation: the Sociological Uses of Musical Chairs*
NOTES THE CHAIRS GAME- COMPETITION VERSUS COOPERATION: THE SOCIOLOGICAL USES OF MUSICAL CHAIRS* SUSANR. TAKATA Universityof Wisconsin,Parkside MY TEACHINGAPPROACH is not traditional techniques to use in my classes, I acciden- "lectures-and-quietly-take-notes"where stu- tally came across one in Robert Fulghum's dents are the passive recipients of knowl- Maybe (MaybeNot): Second Thoughtsfrom edge. In recent years, I have become in- a Secret Life (1993:117-21). As an ice- creasingly interested in active student- breaker in his high school philosophy involved, process-based learning. Yvone classes, he presented two versions of musi- Lenard reminds us that "Learningis messy. cal chairs. The first version is the one we Performance is neat,"' which reflects the are all familiar with, but the second version initial struggles that occur when studentsare has one rule change that demonstrates the problem solving or grasping a new sociolog- value of cooperation. I use the same ap- ical concept. Founded on the principles of proach as Fulghum, which emphasizes com- cooperative learning (Johnson, Johnson, and petition versus cooperation, but I have ex- Holubec 1991), the taxonomy of learning panded the focus of this teaching technique (Bloom 1956), divergent production to include the application of a variety of (Guilford 1967), and affect (Hall 1959), the sociological concepts. The Chairs Game is Chairs Game demonstrates how students an excellent active learning tool, which be- learn about competition versus cooperation comes the focus of class discussions as well as a variety of sociological concepts throughoutthe semester. This technique ap- and theories. This process does not occur plies to a wide variety of courses within neatly or in a straight line progression. -
Game Design Involving Online Tools
Analyzing a Process of Collaborative Game Design Involving Online Tools Sandra B. Fan1, Brian R. Johnson2, Yun-En Liu1, Tyler S. Robison1, Rolfe R. Schmidt1, Steven L. Tanimoto1 1. Department of Computer Science and Engineering 2. Department of Architecture University of Washington, Seattle, WA 98195, USA 1: {sbfan, yunliu, trobison, rolfe, tanimoto}@cs.uw.edu; 2: [email protected] Abstract collaboration tools for problem solving across a range of disciplines. In particular, we take a state-space- In this study, we explore how problem solving and search approach to modeling the design process, based design can be modeled using state-space-search on the classical AI theory of problem solving. methodology, by engaging in the design of two During each design exercise, we utilized different educational games. Additionally, we wanted to online collaboration tools: our own INFACT system, discover how online communication tools could be Google Wave beta, as well as our CoSolve used to support collaborative design. We used three environment for modeling state-space problem solving, online tools: 1) CoSolve, a collaborative problem- and we developed two games: Go Atom, a chemistry solving environment that we developed, 2) Google game, and Eco-avelli, a climate change game. Wave, a wiki/chat hybrid communication tool, and 3) In Section 2, we will describe the existing INFACT, a discussion forum that we built for use in technologies and the state-space-search design education. We used these tools to design Go Atom, a methodology in more detail. In Sections 3, 4 & 5, we chemistry game, and Eco-avelli, a game that intended will describe our specific design process of creating to demonstrate the politics of climate change.