Interactive Application and Video Game Creation

Total Page:16

File Type:pdf, Size:1020Kb

Interactive Application and Video Game Creation NTERACTIVE Each team will be allotted a I minimum of either one six-foot (6') APPLICATION AND or one half of an eight-foot (8') conference table, based on VIDEO GAME availability, and two chairs to share CREATION among team members b. A 110-volt electrical outlet c. Written knowledge exam and pencils PURPOSE Note: No internet access will be provided To evaluate each contestant’s preparation for or allowed during the competition. employment and to recognize outstanding students for excellence and professionalism in 2. Supplied by contestants: the field of interactive application and video game creation. Note: State and school identifiers should not appear on the electronically submitted First, download and review the General items—specifically the prototype (2.a), the Regulations at: http://updates.skillsusa.org/. game design document (2.e), and video submissions (2.f). School names/states ELIGIBILITY should only appear on the hardcopy Open to a team of two active SkillsUSA affidavit (2.c) and résumés (2.d). Lastly, be members enrolled in programs focused on prepared to show proof of licensing for all creating interactive applications and/or video software used at setup. See below: game design and development as occupational objectives. Up to four addition students from a. A working sample or prototype of an the same school and program may assist the interactive application or video game team, as long as they are properly credited per (the Game), including all source files the instructions below in Sections 2c and 2f and any necessary software and hardware. If different from the target playback platform, teams should also CLOTHING REQUIREMENTS bring a computer capable of reading, Class E: Contest specific — Business Casual displaying and compiling the Game • Official SkillsUSA white polo shirt from their source files • Black dress slacks (accompanied by black b. A multi-outlet power strip with surge dress socks or black or skin-tone seamless protection hose) or black dress skirt (knee-length, c. A loose-leaf affidavit signed by all team accompanied by black or skin-tone members on 8.5”x11” paper, seamless hose) countersigned by their school’s administrator and instructor or These regulations refer to clothing items that SkillsUSA advisor, stating the team are pictured and described at: submission is original work created by www.skillsusastore.org. If you have questions the team members during the current about clothing or other logo items, call school year. Credits for any students 800-401-1560 or 703-956-3723. assisting in the project should be listed along with detail on the work they Note: Contestants must wear their official performed contest clothing to the contest orientation d. A loose-leaf, typewritten, single-page meeting and on contest day. résumé for each team member on 8.5”x11” paper e. A Game Design Document (GDD) EQUIPMENT AND MATERIALS organized as a series of digital 1. Supplied by the technical committee: documents in Microsoft Word or Adobe a. Space for team prototypes. PDF files. Here are the sections of the GDD, document titles in bold: • A one page type-written Overview your school or state), detailing each describing the Game, including the person’s role in the development title, a summary, description of the process. target audience, main selling points, any competitive or Then, in the same video, one team inspirational game titles, estimated member, acting as spokesperson, total playtime, and measured should give a quick overview of the performance metrics on the Game. Game, including its title, genre, • A one page SWOT analysis table target audience, how many levels, listing the primary Strengths, total approximate playtime Weaknesses, Opportunities and developed, performance metrics, Threats for the Game. and any notable user interfaces (opening, closing screen, cut The Summary and SWOT should be scenes, etc.). submitted digitally in 8.5”x 11” single- spaced text in 12pt font. 2. The second digital video should be a one minute long and entitled • Completed Concept Artwork “Trailer” pitching the Game, and/or the storyboard used to demonstrating and describing what develop the Game. Shrink to fit, if is best about the Game, including needed, and submit between two to gameplay, mechanics, significant four (2-4) pages, double-sided on objects or characters, levels, 8.5”x11” paper (2 sheets max). artwork, backgrounds, sound, with • Code Examples of the higest a focus on why the audience would quality and complexity of want to play the Game. Think of programming developed for the this as an advertisement designed Game, between two to four (2-4) to drive player acquisition. pages, formated in 8.5”x11.” If a computer language was used, Note: All documents, the digital GDD code should be single spaced in 12 and videos (Section 2.c-g) must be pt font. If visual programming was handed in at the contest orientation. used, submit screen captures of visual programming diagrams. Content may be submitted to other contests or events, but SkillsUSA must be granted e. For the national finals (NLSC), two unencumbered rights to use imagery and 1080p digital video files must be also content from all submissions for marketing and be prepared and submitted with the full nonprofit outreach. digital GDD on a USB drive AT THE CONTEST ORIENTATION MEETING. Note: Your contest may also require a hard The digital videos should be tested in copy of your résumé as part of the actual advance on WIN and MAC computers contest. Check the Contest Guidelines and/or and viewable on movie players the updates page on the SkillsUSA website at included with those operating systems. http://updates.skillsusa.org/. Here are details for the two videos: SCOPE OF THE CONTEST The contest is a two-person team event that 1. The first digital video should be tests technical knowledge and production three to four (3-4) minutes long skills, including critical thinking, creative and entitled “Intro”, where the problem solving, team work, interpersonal and contestants should introduce visual communication, artistic design, and themselves and any students from technical programming. their program who assisted them (by name only, careful not to reveal Interactive Application and Video Game Development, 2020 • 2 Knowledge Performance 7. The technical committee reserves the The contest will include a written exam right to photograph and videotape assessing the team’s knowledge of the industry, contest-related activities. including its jargon, technologies and 8. The technical committee will be professional methods. responsible for developing the evaluation tools by which to objectively measure the Skill Performance competing team’s performance. Judging Teams must produce an original prototype or criteria will be general in nature and will sample of an interactive application or video be done from the completed concept game with at least one level and ten (10) art/storyboard, demonstrated sample or minutes of interactive content. It must be prototype, any written and video created during the school year immediately submission, résumés, exam scores and preceding the contest deadline. The production interviews with the judges. should include the sample or prototype itself Specific criteria may be based on the and other submissions described in Section 2 demonstration of competency in the above. Résumés should include the skills elements of conceptualization, design, gained from their experience developing the artwork, content creation, gameplay, or contest submission, the time they invested, and effective simulation, programming the professional and academic relevance to the effectiveness, user-interface design, contestant’s career ambitions. implementation, functionality and performance on the target platform. 9. The setup, configuration, and teardown Contest Guidelines of all contestant-provided equipment will 1. Contestants will show up at the contest be the team’s responsibility. orientation meeting with their full submission of written documents, including a résumé for each team Standards and Competencies member, and their completed GDD and digital videos, pre-tested and ready for The technical committee has identified the submission on a USB drive. Late following professional competencies addressed submissions will be docked 10% against in the contest: all applicable judging criteria, and no submissions will be accepted after the VG 1.0 — Solve a problem or create a conceptual design in a designated contest setup time. visual format 2. If an industry briefing or contest 1.1 Conceptualization, visual debriefing is offered, attendance is higly communications for artists and recommended but not required. storyboarding techniques 3. Later, at the designated setup time, each 1.1.1 Solve problems and/or develop team will assemble and test their stories creatively sample/prototype and workstations. 1.1.2 Define how a problem will be 4. Schedules will be disseminated with the solved or how a story will be time periods for interviews with the told judges. 1.1.2 Describe the concept visually 5. Outside their particular interview time, with enough depth to someone from the team should be on substantially and accurately hand to demonstrate to the public and to communicate the final output for watch over their equipment. team members and interested We recommend this responsibility be third parties shared among both team members. 6. The contest timeframe will depend on VG 2.0 — Create and manipulate 2D, 3D, and audio computer- the total number of entries in the contest,
Recommended publications
  • Game Level Layout from Design Specification
    EUROGRAPHICS 2014 / B. Lévy and J. Kautz Volume 33 (2014), Number 2 (Guest Editors) Game Level Layout from Design Specification Chongyang Ma∗z Nicholas Vining∗ Sylvain Lefebvrey Alla Sheffer∗ ∗ University of British Columbia y ALICE/INRIA z University of Southern California Abstract The design of video game environments, or levels, aims to control gameplay by steering the player through a sequence of designer-controlled steps, while simultaneously providing a visually engaging experience. Traditionally these levels are painstakingly designed by hand, often from pre-existing building blocks, or space templates. In this paper, we propose an algorithmic approach for automatically laying out game levels from user-specified blocks. Our method allows designers to retain control of the gameplay flow via user-specified level connectivity graphs, while relieving them from the tedious task of manually assembling the building blocks into a valid, plausible layout. Our method produces sequences of diverse layouts for the same input connectivity, allowing for repeated replay of a given level within a visually different, new environment. We support complex graph connectivities and various building block shapes, and are able to compute complex layouts in seconds. The two key components of our algorithm are the use of configuration spaces defining feasible relative positions of building blocks within a layout and a graph-decomposition based layout strategy that leverages graph connectivity to speed up convergence and avoid local minima. Together these two tools quickly steer the solution toward feasible layouts. We demonstrate our method on a variety of real-life inputs, and generate appealing layouts conforming to user specifications. Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object representations 1.
    [Show full text]
  • CHECKLIST for the MINOR in NEW MEDIA and DIGITAL DESIGN 6 TOTAL COURSES
    CHECKLIST for THE MINOR IN NEW MEDIA AND DIGITAL DESIGN 6 TOTAL COURSES CORE COURSES (MUST TAKE BOTH COURSES): _____ NMDD 1001: EXPLORATIONS IN DIGITAL DESIGN ______CISC 2500: INFORMATION AND DATA MANAGEMENT COURSEWORK: MUST TAKE 4 COURSES (THESE MAY BE IN A SINGLE CONCENTRATION, OR IN ANY COMBINATION FROM ACROSS CONCENTRATIONS) THE FOLLOWING COURSES COUNT IN ALL CONCENTRATIONS: ______CISC 2530: Computer GraphiCs ______CMBU 4471: The Business of New Media ______DTEM 3476: SoCial Media ______DTEM 2421: Digital ProduCtion for New Media ______NMDD 3880: Designing Smart Cities (ServiCe Learning Course) ______VART 2003: GraphiC Design and Digital Tools ______VART 2400: Fundamentals of Web Design A. New Media and Information ______DTEM 1401: IntroduCtion to Digital TeChnology and Emerging Media ______CISC 2350: Information and Web Programming ______CISC 2530: Digital Video and Multimedia ______CISC 2850: Computer and Data Analysis or INSY 4431: Web AnalytiCs ______CISC 3850: Information Retrieval Systems ______CISC 4001: Computers and Robots in Film (ICC) ______DTEM 1402: Digital Cultures ______DTEM 2417: Data Visualization ______DTEM: 3463: CiviC Media ______DTEM 2427: Digital Audio ProduCtion ______FITV 2621: Digital Video Design ______COMC 3340: Freedom of Expression ______COMC 3380 International CommuniCation (Globalism) ______COMC 3374: Media EffeCts ______COMC3350 or BLBU 4451: New Media and CommuniCation Law ______DTEM 2775: Writing for Online Media ______INSY 4431: Web AnalytiCs or CISC 2850: Computer and Data Analysis ______INSY 3442:
    [Show full text]
  • Video Games: Changing the Way We Think of Home Entertainment
    Rochester Institute of Technology RIT Scholar Works Theses 2005 Video games: Changing the way we think of home entertainment Eri Shulga Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Shulga, Eri, "Video games: Changing the way we think of home entertainment" (2005). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Video Games: Changing The Way We Think Of Home Entertainment by Eri Shulga Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Information Technology Rochester Institute of Technology B. Thomas Golisano College of Computing and Information Sciences Copyright 2005 Rochester Institute of Technology B. Thomas Golisano College of Computing and Information Sciences Master of Science in Information Technology Thesis Approval Form Student Name: _ __;E=.;r....;...i S=-h;....;..;u;;;..;..lg;;i..;:a;;...__ _____ Thesis Title: Video Games: Changing the Way We Think of Home Entertainment Thesis Committee Name Signature Date Evelyn Rozanski, Ph.D Evelyn Rozanski /o-/d-os- Chair Prof. Andy Phelps Andrew Phelps Committee Member Anne Haake, Ph.D Anne R. Haake Committee Member Thesis Reproduction Permission Form Rochester Institute of Technology B. Thomas Golisano College of Computing and Information Sciences Master of Science in Information Technology Video Games: Changing the Way We Think Of Home Entertainment L Eri Shulga. hereby grant permission to the Wallace Library of the Rochester Institute of Technofogy to reproduce my thesis in whole or in part.
    [Show full text]
  • Introducing the Game Design Matrix: a Step-By-Step Process for Creating Serious Games
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-2020 Introducing the Game Design Matrix: A Step-by-Step Process for Creating Serious Games Aaron J. Pendleton Follow this and additional works at: https://scholar.afit.edu/etd Part of the Educational Assessment, Evaluation, and Research Commons, Game Design Commons, and the Instructional Media Design Commons Recommended Citation Pendleton, Aaron J., "Introducing the Game Design Matrix: A Step-by-Step Process for Creating Serious Games" (2020). Theses and Dissertations. 4347. https://scholar.afit.edu/etd/4347 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. INTRODUCING THE GAME DESIGN MATRIX: A STEP-BY-STEP PROCESS FOR CREATING SERIOUS GAMES THESIS Aaron J. Pendleton, Captain, USAF AFIT-ENG-MS-20-M-054 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this document are those of the author and do not reflect the official policy or position of the United States Air Force, the United States Department of Defense or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-20-M-054 INTRODUCING THE GAME DESIGN MATRIX: A STEP-BY-STEP PROCESS FOR CREATING LEARNING OBJECTIVE BASED SERIOUS GAMES THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Cyberspace Operations Aaron J.
    [Show full text]
  • Designing Affective Games with Physiological Input Lennart E
    Designing Affective Games with Physiological Input Lennart E. Nacke Regan L. Mandryk University of Saskatchewan University of Saskatchewan 110 Science Place, Saskatoon, SK 110 Science Place, Saskatoon, SK Canada Canada [email protected] [email protected] ABSTRACT information about user emotion [1] and/or cognition [6]) are With the advent of new game controllers, traditional input becoming more popular in desktop software design as well mechanisms for games have changed to include gestural [2]. For human-computer interaction evaluative studies, this interfaces and camera recognition techniques, which are marks a shift from analyses centering on usability to those being further explored with the likes of Sony’s PlayStation that are looking at the full spectrum of user experience Move and Microsoft’s Kinect. Soon these techniques will (UX). These studies focus on human aspects of interaction, include affective input to control game interaction and such as the behavioral, perceptual, emotional, and cognitive mechanics. Thus, it is important to explore which game capabilities of people [5]. designs work best with which affective input technologies, giving special regard to direct and indirect methods. In this In addition to evaluating affective user responses, the use of paper, we discuss some affective measurement techniques a player’s own cognitive and emotional state as input – and development ideas for using these as control known as affective input – is an exciting input possibility mechanisms for affective game design using that has not been fully explored in the context of games [4]. psychophysiological input. Affective input has seen use as a direct method of control in accessibility applications, and as an indirect method of Author Keywords control in biofeedback training for meditation and phobia Affective computing, entertainment computing, treatment.
    [Show full text]
  • Arts, Audio Video Technology, and Communications Graphic Design and Multimedia Arts
    ',*,7$/ &20081,&$7,216 ARTS, AUDIO VIDEO TECHNOLOGY, AND COMMUNICATIONS GRAPHIC DESIGN AND MULTIMEDIA ARTS Local Implementation Considerations: Students completing two or more courses for two or more credits within a program of study earn concentrator status for Perkins V federal accountability reporting. Proposed Indicator: Students finishing three or more courses for four or more credits with one course from level 3 or 4 within a program of study earn completer status for federal accountability reporting. Texas Education Agency® COURSES Principles of Arts,A/V Technology, and Communications Professional Communications LEVEL 1 Web Communications Digital Communications in the 21st Century NS IO AT IC N U Audio/Video Production/Lab M Digital Audio Technology M O LEVEL 2 C D N A DIGITAL Y Y G COMMUNICATIONS Audio Video Production II/Lab O L Digital Audio Technology II O N LEVEL 3 H C E T V / A , S T Practicum of Audio/Video Production R A Practicum of Digital Audio (TBD) Practicum of Entrepreneurship (TBD) LEVEL 4 MASTERhS/ MEDIAN ANNUAL % HIGH SCHOOL/ OCCUPATIONS CERTIFICATE/ ASSOCIATEhS BACHELORhS DOCTORAL WAGE OPENINGS GROWTH INDUSTRY LICENSE* DEGREE DEGREE PROFESSIONAL CERTIFICATION DEGREE Sound Engineering $39,562 79 27% Technicians Apple Final Cut Certified Video Recording Arts Communications Camera Operators, $50,024 129 9% Pro X Engineer Technology/Technician Technology/ Television, Video Technician and Motion Picture Audio and Video $40,581 757 Apple Logic Commercial Cinematography and Film/ 29% Equipment Pro X Audio Technician
    [Show full text]
  • Game Design Involving Online Tools
    Analyzing a Process of Collaborative Game Design Involving Online Tools Sandra B. Fan1, Brian R. Johnson2, Yun-En Liu1, Tyler S. Robison1, Rolfe R. Schmidt1, Steven L. Tanimoto1 1. Department of Computer Science and Engineering 2. Department of Architecture University of Washington, Seattle, WA 98195, USA 1: {sbfan, yunliu, trobison, rolfe, tanimoto}@cs.uw.edu; 2: [email protected] Abstract collaboration tools for problem solving across a range of disciplines. In particular, we take a state-space- In this study, we explore how problem solving and search approach to modeling the design process, based design can be modeled using state-space-search on the classical AI theory of problem solving. methodology, by engaging in the design of two During each design exercise, we utilized different educational games. Additionally, we wanted to online collaboration tools: our own INFACT system, discover how online communication tools could be Google Wave beta, as well as our CoSolve used to support collaborative design. We used three environment for modeling state-space problem solving, online tools: 1) CoSolve, a collaborative problem- and we developed two games: Go Atom, a chemistry solving environment that we developed, 2) Google game, and Eco-avelli, a climate change game. Wave, a wiki/chat hybrid communication tool, and 3) In Section 2, we will describe the existing INFACT, a discussion forum that we built for use in technologies and the state-space-search design education. We used these tools to design Go Atom, a methodology in more detail. In Sections 3, 4 & 5, we chemistry game, and Eco-avelli, a game that intended will describe our specific design process of creating to demonstrate the politics of climate change.
    [Show full text]
  • Abstract the Goal of This Project Is Primarily to Establish a Collection of Video Games Developed by Companies Based Here In
    Abstract The goal of this project is primarily to establish a collection of video games developed by companies based here in Massachusetts. In preparation for a proposal to the companies, information was collected from each company concerning how, when, where, and why they were founded. A proposal was then written and submitted to each company requesting copies of their games. With this special collection, both students and staff will be able to use them as tools for the IMGD program. 1 Introduction WPI has established relationships with Massachusetts game companies since the Interactive Media and Game Development (IMGD) program’s beginning in 2005. With the growing popularity of game development, and the ever increasing numbers of companies, it is difficult to establish and maintain solid relationships for each and every company. As part of this project, new relationships will be founded with a number of greater-Boston area companies in order to establish a repository of local video games. This project will not only bolster any previous relationships with companies, but establish new ones as well. With these donated materials, a special collection will be established at the WPI Library, and will include a number of retail video games. This collection should inspire more people to be interested in the IMGD program here at WPI. Knowing that there are many opportunities locally for graduates is an important part of deciding one’s major. I knew I wanted to do something with the library for this IQP, but I was not sure exactly what I wanted when I first went to establish a project.
    [Show full text]
  • The Role of Architecture in Constructing Gameworlds
    Document generated on 09/25/2021 8:46 p.m. Loading The Journal of the Canadian Game Studies Association The Role of Architecture in Constructing Gameworlds: Intertextual Allusions, Metaphorical Representations and Societal Ethics in Dishonored Anthony Zonaga and Marcus Carter Volume 12, Number 20, Fall 2019 Article abstract In this article, we present a close analysis of the role that the steampunk URI: https://id.erudit.org/iderudit/1065898ar industrial Victorian architecture in Dishonored (2012) has in constructing the DOI: https://doi.org/10.7202/1065898ar player’s experience and knowledge of the gameworld. Through various intertextual allusions and metaphorical representations, we argue the See table of contents architecture works as an important storytelling element, contextualizing information that the player learns and conveying information about the game’s main characters, similar to the ways that architecture is utilized in Publisher(s) other visual media such as television and film. In addition, we also argue that the architecture in Dishonored plays a crucial role in conveying to the player Canadian Game Studies Association information about the morals and values of the fictional society, key to the game’s moral-choice gameplay. ISSN 1923-2691 (digital) Explore this journal Cite this article Zonaga, A. & Carter, M. (2019). The Role of Architecture in Constructing Gameworlds: Intertextual Allusions, Metaphorical Representations and Societal Ethics in Dishonored. Loading, 12(20), 71–89. https://doi.org/10.7202/1065898ar Copyright, 2019 Anthony Zonaga, Marcus Carter This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online.
    [Show full text]
  • Using Video Game Design to Motivate Students
    Using Video Game Design to Motivate Students Michael A. Evans, Brett D. Jones, and Sehmuz Akalin Because video games are so popular with young people, (Reiber, 2005) can be particularly useful in fostering in- formal science learning. researchers have explored ways to use game play to en- To add to the knowledge base, we studied how stu- dents used level-based video game development in an gage students in school subjects (Peppler & Kafai, 2007; out-of-school time (OST) setting to learn science con- tent. Building on prior efforts (Evans & Biedler, 2012; Rockwell & Kee, 2011; Small, 2011). Motivating students Evans, Norton, Chang, Deater-Deckard, & Balci, 2013; Evans, Pruett, Chang, & Nino, 2014), we explored how in science is especially important because of declines the project incorporated the video game to support learn- ers’ science motivation. This work with a commercial both in the number of young people who choose science careers and in the number of adults who have a sufficient MICHAEL A. EVANS is an associate professor in the Department of Teacher Education and Learning Sciences at NC State University. He grasp of science to make thoughtful decisions (Bell, Lew- researches the effects of video games and other popular digital me- dia on youth learning and engagement, with a focus on academic enstein, Shouse, & Feder, 2009). relevance. BRETT D. JONES is a professor in the Educational Psychology pro- gram in the School of Education at Virginia Tech. He researches stu- To counter these trends, informal science educators have dent motivation and examines strategies teachers can use to design adopted video games and simulations as teaching tools instruction to support students’ motivation and learning.
    [Show full text]
  • Inside the Video Game Industry
    Inside the Video Game Industry GameDevelopersTalkAbout theBusinessofPlay Judd Ethan Ruggill, Ken S. McAllister, Randy Nichols, and Ryan Kaufman Downloaded by [Pennsylvania State University] at 11:09 14 September 2017 First published by Routledge Th ird Avenue, New York, NY and by Routledge Park Square, Milton Park, Abingdon, Oxon OX RN Routledge is an imprint of the Taylor & Francis Group, an Informa business © Taylor & Francis Th e right of Judd Ethan Ruggill, Ken S. McAllister, Randy Nichols, and Ryan Kaufman to be identifi ed as authors of this work has been asserted by them in accordance with sections and of the Copyright, Designs and Patents Act . All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. Trademark notice : Product or corporate names may be trademarks or registered trademarks, and are used only for identifi cation and explanation without intent to infringe. Library of Congress Cataloging in Publication Data Names: Ruggill, Judd Ethan, editor. | McAllister, Ken S., – editor. | Nichols, Randall K., editor. | Kaufman, Ryan, editor. Title: Inside the video game industry : game developers talk about the business of play / edited by Judd Ethan Ruggill, Ken S. McAllister, Randy Nichols, and Ryan Kaufman. Description: New York : Routledge is an imprint of the Taylor & Francis Group, an Informa Business, [] | Includes index. Identifi ers: LCCN | ISBN (hardback) | ISBN (pbk.) | ISBN (ebk) Subjects: LCSH: Video games industry.
    [Show full text]
  • Design Methods for Democratising Mobile Game Design
    Design Methods for Democratising Mobile Game Design Mark J. Nelson Abstract Swen E. Gaudl Playing mobile games is popular among a large and Simon Colton diverse set of players, contrasting sharply with the lim- Rob Saunders ited set of companies and people who design them. We Edward J. Powley would like to democratise mobile game design by ena- Peter Ivey bling players to design games on the same devices they Blanca Pérez Ferrer play them on, without needing to program. Our concept Michael Cook of fluidic games aims to realise this vision by drawing on three design methodologies. The interaction style of The MetaMakers Institute fluidic games is that of casual creators; their end-user Falmouth University design philosophy is adapted from metadesign; and Cornwall, UK their technical implementation is based on parametric metamakersinstitute.com design. In this short article, we discuss how we’ve adapted these three methods to mobile game design, and some open questions that remain in order to em- power end user game design on mobile phones in a way that rises beyond the level of typical user- generated content. Author Keywords Mobile games; casual creators; metadesign; parametric design; end-user creativity; mixed-initiative interfaces. ACM Classification Keywords H.5.m. Information interfaces and presentation: Miscel- laneous Introduction Fluidic Games Our starting point is the observation that mobile games To support on-device casual design, we are developing have attracted a large and diverse set of players, but a what we call fluidic games [5-7]. These blur the line smaller and less diverse set of designers.
    [Show full text]