Quick viewing(Text Mode)

Banatite Metallogeny of North Poiana Ruscă Mts. Revisited

Banatite Metallogeny of North Poiana Ruscă Mts. Revisited

GEOLOŠKI ANALI BALKANSKOGA POLUOSTRVA Volume 81 (1), July 2020, 67–77 – https://doi.org/10.2298/GABP191113001V Review Paper Прегледни рад

Banatite metallogeny of North Poiana Ruscă Mts. revisited

1 ErBAN iColAE lAD Ș N V Abstract.

The somehow ignored northern portion of the -Timok Pro - vince/Banatitic Belt is reconsidered in metallogenetic terms after updated evaluation based on recent considerations and long ago recognized tectonic, magmatic and metallogenetic evidence. Banatitic occurrences in the investi- gated area are confined to the NE extent of the non productive alkali-calcic alignment up to the Mures Valley where it joins the sub-latitudinal -Mures branching lineament. Banatitic edifices related to this junction depart from the alkali-calcic trend, drifting to the productive calc-alkaline porphyry envi- ronment, characteristic of Timok-South Banat metallogeny. The assemblage Key words: of Cretaceous volcanics/pyroclastics and sedimentary formation with subvol- Banatites, Timok, Poiana Ruscă, canic and blind intrusions with associated alteration and mineralization cre- porphyry environment. ates a environment that reminds the well-known Timok setting. Despite the so far poor understood setting with underestimated economic attractivity, in- tegrated geological-geophysical evidence underscore the potential of this pe- culiar Timok like volcano-plutonic structure associated with blind porphyry Cu-Au and distal base metal expression, fostering future investigations. Апстракт.

На неки начин занемарени северни део провинције Банат-Ти - мок/банатитски појас преиспитан је са металогенетског аспекта након ажуриране процене засноване на недавним разматрањима и давно при - знатим тектонским, магматским и металогенетским доказима. Појаве банатита у истраживаном подручју су ограничене на североисточну зону непродуктивног алкално-калцијског појаса до долине Mures где су у контакту са Bega-Mures разгранатим појасом. Банатитски продукти веза - ни за овај контакт одступају од алкално-калцијског тренда, прелазећи у продуктивно калцијско-алкално порфирско окружење, карактеристично за тимочко-јужнобанатску металогенију. Асоцијација кредних вулкани- та/пирокластита и седиментних формација са плутонитима и скриве - Кључне речи: ним интрузивима праћених алтерацијом и минерализацијом ствара Банатити, Тимок, Poiana Ruscă, окружење које подсећа на добро познату тимочку грађу. Упркос до сада Порфирска лежишта. слабо схваћеном окружењу са потцењеним економским значајем, инте - грисани геолошко-геофизички докази подвлаче потенцијал ове свој - ствене вулканско-плутонске структуре која наликује тимочкој, а у вези је са скривеним порфирским лежиштима Cu и Au са пратећим металима, подстичући будућа истраживања.

1 Babes-Bolyai University. Cluj-Napoca, , E-mail: [email protected]

67 Șerban nicolae Vlad

Introduction

far – the most ndreireliable regional geophysical support provided by a et al. (1989): The historyvon of banatitesoTTa extends from early iușCăBanatitic tectono-magmatic alignments, by sources such as C (1864) who introduced this G et al. (1966); e.g., term into the geological literature, till present times Banatitic magmatism, both volcanic and intrusive, when this complex rock association of Late Creta- characterized by poly-stage emplacement; spatial e.g., vs. ceous age is accepted as a subcontinental belt named distribution as coincidingiofLiCa magmaticLad and metalloge- Banatiticerza Magmatic Metallogenetic Belt /BMMB ( netic alignments by C & v (1973); B et al., 1998) or apuseni–Banat–Timok–Sredno- Magmatic-metallogenetic zonation with spatially vs. gorieoPov Magmatic Metallogenetic Belt/aBTS ( distributed porphyry non-porphyry environ- P et al., 2000). relaying on multi-secular time ments: the main intrusive event contains two calk- , e.g., span contributions, various authors expressed their alkaline productive magmatic suites, resulting in Cu interest during the last decades in terms of general base metal ore formation andLad adjacent non-eco- outlook, structural setting, petro-geochemistry,anković geo - nomic alkali-calcic suite by v (1979). chronologyLad anderza metallogeny oPov( J , 1997;ein Banat–Poiana ruscă Mts. (South Carpathians) e.g., riCHv , 1997;euBauer B et al., 1998;ioBanu P et al., 2000; uPonTH - banatites, including the area under present evalua- & n Lad, 2002;erza C et al.,erza 2002; d von tion, belong to the Banat–Timok Province (BTP) of etuadT al., 2002; v & iMMerManB , 2003; B , 2004;erza the BMMB (fig. 1). Their mainerza characteristics areLad QLinCa et al., 2005;aLLHofer z et al., 2008;ander B & recallederza briefly belowerza ( LinCaB et al., 1998; v i , 2014; G et al., 2015; v et al., & B , 2003; B & i , 2014): 2016). Such recent literature generated more or less accurate models based on credible age determina- tions, relations between magmatism and metal- logeny and, last but not least, suggested tectonic setting. Plate tectonic setting is still controversial, i.e., featuring both compressional and extensional inter- pretations. if progress was made in terms of geo- chronology and petro-geochemistry, lack of systematic sampling procedure ( type location and selective samples from early stage and major trends - main stage of the banatite multistage entity) or even use of uncreditedioBanu samples (such as molybdenite ana- Fig. 1. Volcano-plutonic alignments of BMMB. A. North Banat–Ri- lyzed by C et al., uPonT2002) or otherwise specula- danj–Krepoljin zone / non-porphyry (Fe-Pb-Zn); B. South Banat- tive interpretations (d et al., 2002) represent Timok zone / porphyry (Cu-Mo-Au). Banatite alignments: a. so far obstructions in recognizing the real Banatitic Banatitic metallogeny in Banat-Poiana Alkali-calcic alignment; b. Calc-alkaline western major alignment; magmatic-metallogenetic signature. Calc-alkaline eastern major alignment; Calc-alkaline eastern- Ruscă Mts. c. d. most alignment. Banatitic massifs: 1. Tincova pluton; 2. Rusca Montană volcano-sedimentary basin / Ascuțita-Ruschița intru- sions; 3. Densuș volcano-sedimentary basin; 4. Baru Mare intru- sion; 5. Bocșa composite pluton; 6. -Dognecea pluton (extension of Bocșa east); 7. Surduc pluton; 8. Oravița-Ciclova plu- The present paper refers to the northern part of tons; 9. Sasca and Nouăintrusions; 10. -Lăpu - șnicel intrusion; 11. Lăpușnicu Mare intrusion; 12. Li lieci- Banat-Poiana ruscă Mts. (South Carpathians) seg- -Purcariu-Nasovăț (Șopot) intrusions. ment of the Banatite Belt. This somehow ignored area was revisited recently and reconsidered in 68metallogenetic terms based on a set of three long ago recognized, and still valid evidences, with – so Banatite metallogeny of North Poiana Ruscă Mts. revisited

Petrology e.g.,

with late Cretaceous extensional basins of Gosau typeMetallogeny ( rusca, Șopot). The Banatitic igneous evolution was markedly intrusive, but significant volcanism was described in Senonian Gosau type basins. intrusive banatites are ascribed to calc-alkaline hydrated magmas and belong to i-type/magnetite series granitoids. The The ore deposits and prospects are related BTP source is deep crustal or upper mantle and the spe- mainly to skarn and porphyry types. The main com- i.e., cific evolution lines are a more primitive monzodi- modities are Cu, Au, Mo, Pb, zn, fe, subordinately W, b c d orite, diorite to granodiorite and a complementary Bi, u, Ti, Co, Ni. more evolved granodiorite to granite trend (high-k The in Banat-Poiana ruscă Mts. consists of western zone calc-alkaline to calc-alkaline), both productive in two meridian zones of contrasting features, a a terms of ore formation ( , , and alignments; fig. western zone and an eastern zone, separated by the 1). An additional alkaline trend (in fact high-k calc- Pb-Cu line (fig. 1): alkaline to shoshonitic) of restricted extent lacks - The extends from Poiana ruscă e.g., economic interest (so far) ( alignment; fig. 1). Mts. in the north with a slight bend conform to the b c Precise isotopic data range between 84 and 70 Ma Carpathian curvature to the North Banat Mts. and (Santonian–CampanianAllHofEr as late Cretaceous subdivi- further south of the in (ridanj-kre- sions) ( G , 2015). poljin sector) along specific portions of alignments Early stage The magmatism is poly-stage and consists of plu- and (fig. 1). The environment is non-porphyry tons and/or volcano-plutonic complexes and related with marked base-metal character. The magmatism Volcanic stage dikes: belongs to the more evolved granodioritic to : gabbro, monzodiorite, quartz-mon- granitic trend. related fe-Cu-Pb-zn-skarns in distal Main stage: zonite, syenite plutons and apophyses and dikes to proximal peri-plutonic setting is peculiar for the : andesite, dacite, rhyolite lavas, “classic” ocna de fier-Dognecea district (similar to a subvolcanics and pyroclastics Hannover-fierro district in the Southern Cordillera) two evolution lines: in Banat and to ruschița, Ascuțita, Tincova in Poiana reinterpretation of its ex- a) monzodiorite, diorite to granodiorite trend: ruscă. tent and potential monzodiorite, quartz-monzonite, diorite to quartz- The additional alignment (fig. 1) is atypical: diorite, granodiorite, (granite) plutons and apophy- the magmatism is alkali-calcic and so far it lacks eastern zone ses and dikes metallogenetic appeal. The Late stage: b) granodiorite to granite trend: granodiorite, , in fact the aim of this paper, is dis- (monzodiorite), granite, microgranite plutons and cussed subsequently. apophyses and dikes. - The correlates Banat Mts. occur- differentiated dikes and final lampro- rences to the very prolific Timok Massif (eastern phyre dikes Serbia) along meridian lineation. This metallogenic The intrusive activity generated contact aureoles unit exhibits a Cu character in typical porphyry en- with recrystallization and metasomatic products vironment. The magmatism is of more primitive b c (hornfels and marble, respectively skarn, hydrother- trend, monzodioritic-dioritic to granodioritic, and malStructural alteration and setting mineralization). the associated ores mainly of porphyry and/or skarn type. Two tectono-magmatic alignments (southern parts of and ; fig. 1) are recognized: the western line contains oravița-Ciclova-Sasca- Moldova Nouă ore deposits with Cu (Mo, Au+-W, Co) Banatitic intrusions and the volcano-plutonic as- skarn-(porphyry) in the north and Cu (Mo±Au) semblagesGeol. an. Balk. poluos., cross 2020, from 81 the(1), 67–77 South towards North the skarn-porphyry, Bingham-like style at Moldova69 Getic-Supragetic Groups of Nappes in association Nouă, whereas the eastern one represents the very ȘERBAN NiColAE VlAd

ElTz extension of the Timok volcano-plutonic complex ism of the Apuseni Mts. (P et al., 1968), andoȘu rein- north of the Danube, yielding much less productive terpreted lately as Banatitic occurrence (r et al., Cu (Mo) porphyries at Șopot and Bozovici/lăpușni - 1993). cu Mare. Banat Mts. contain minor Au occurrences, A minor Carboniferous (Hercynian) parallel lin- such as Au remobilization at Văliug. Presumable eation located marginal and eastward to the Ba- Carlin type settings did not confirm any expectation natitic alignment is found between Gladna-rozalia so far. and Bulza ore occurrences and consist of Ba-Pb-zn The additional minor alignment Teregova-lăpu- veins at Tomești (fig. 2). Scaun Hill vein and adja- șnicel (d; fig. 1) extends probably towards Poiana cent minor veins striking NE-SW and subordinately ruscă,The alkali-calcic but its potential alignment is not promising, so far. NW-SE, especially along marble-schist contact, lack economic importance. Such couples of Banatitic- Hercynian ore alignments are found in eastern Ser- bia-South Banat region by the Danube with special regard to peripheral Hercynian Ba veins trailing in North Banat, the western major alignment of major Banatitic porphyry clusters. Metallogenetic calc-alkaline character (b; fig. 1) is bordered to the indicators of this kind suggest reactivation-remobi- west by above mentioned “atypical” alkali-calcic lization processes through the South Carpathians i.e., alignment of restricted extent (a; fig. 1). it runs SW– that trigger re-evaluation of present standard con- NE from Surduc intrusion to Bocșa West intrusion cepts at regional and local scale. (part of Bocșa composite pluton). Compared with A brief presentation of above mentioned occur- widespread calc-alkaline occurrences where the rences in Poiana ruscă, northern extension of products of the main magmatic event prevail, the al- the alkali-calcic alignment, after field visit and li- kali-calcic plutons exhibit intrusions stemming brary study is intended to comment why Hăuzești Hăuzești-Drinova Banatite field mainly from the early magmatic stage, such as gab- is nonproductive, Gladna-rozalia disappointing and bro, monzodiorite to monzonite followed by mon- Bulza more promising, featuring a ”mini”-Timok like zogranite differentiates. Both plutons lack economic setting. attractivity. They are non-productive or alterna- (fig. 2) con- tively, the productive upper level been eroded. sists of Hăuzești main intrusion and Drinova an- The alkali-calcic alignment extends to NE into the desite body. The basement is represented by southern part of the Poiana ruscă Mts., at Drinova quartz-albite schists, dolomite marbles and calc- and Hăuzești, with similar occurrences. The conti- schists of the Padiș Series (lower Carboniferous). nuity of the NE trend is suggested by geophysics and Hăuzești intrusion is similar to Bocșa west and Sur- field exposures such as Gladna-rozalia intrusive and duc plutons from the North Banat portion of the al- dikes with contact aureole and minor occurrences kali-calcic alignment and represents their proximal of polymetallic mineralization. regional integrated NE extension. it is interpreted as the upper part of gravimetric and magnetic survey suggest the fur- a composite stock that contains several magmatic i.e., ther extension of this alignment to the northern pulses. The sequence and rock types are, like Bocșa Poiana ruscă Mts., by the Mureș crustal fault that west and Surduc plutons, associated by far with the separates the Apuseni Mts. structuresNDrEi from the early stage of the Banatitic magmatism. Surduc and South Carpathians structures (A et al., 1989) Bocșa west model of the early stage, gabbro, (fig. 2). Accordingly, Bulza polymetallic mineraliza- monzodiorite to monzonite followed by monzogran- tion located south of the Mureș Valley fits into this ite differentiates is recognized at Hăuzești where system. Bulza sector as northernmost extension of the pyroxene-monzodiorite, pyroxene-diorite and the alkali-calcic alignment is represented by minor olivine gabbro association is cut by monzodiorite ore occurrences related to apophyses of a shallow and micromonzodiorite; andesite dikes occur be- 70intrusion. The environment is a volcano-plutonic yond the intrusion asGeol. well an. Balk. as poluos., final lamprophyre2020, 81 (1), 67–77 complex which was related to the Tertiary volcan- dikes. The sequence is documented by k-Ar age de- Banatite metallogeny of North Poiana Ruscă Mts. revisited

Fig. 2. Alkali-calcic banatitic alignment in Poiana Ruscă (simplified geology and anomalies, after ANDREi et al., 1989).

iofliCA uDor iofliCA terminations (C et al., 1994). The contact au- T , 1990, 1991, 2012; C et al., 1992) stron - reole of restricted extent consists of hornfelses and gly suggest that the Banatitic sequence is more evol- superposed hydrothermal alteration (“tourmalini - ved compared to Surduc, Bocșa west and Hăuzești non-produc- zation, propylitic alteration, silicification, sericitiza- intrusions found southward along the same align- tive tion, chloritization,iofliCA argillic alteration, carbonatization” ment. A monzodiorite intrusion and related mi- Banatites Early acc. to C et al., 1994). cromonzodiorite porphyry apophyses linked to a late Stage . ore potential: Hăuzești intrusion is pulse of the early stage, is penetrated in core by a gra- Gladna-Rozalia field , similar to Surduc and Bocșa west plutons nodiorite stock and related microgranodiorite por- (North Banat) composed mainly of phyry apophyses belonging to the main stage. The that lacks economic significance sequence is completed as usually by late dikes. The i.e., (fig. 2) consists of minor ba- upper part of this edifice is eroded. The remnant sub- natitic occurrences situated mainly along rozalia val- jacent assemblage is marked by a ring like (diameter ley and tributaries. The geological setting is similar ~1.5 to 2 km) alteration aureole with minor miner- to above mentioned Hăuzești field, epimetamor- alization zones produced by the main stage granodi- Geol.phic an. schists Balk. poluos., of the 2020, Padeș 81 (1), 67–77 seriesHiVu penetratedErAfiMoViCi by Ba- orite emplacement (figs. 3, 4). The aureole consists71 natites. refined early data (C & S , 1965; of potassic and phyllic alterations in granodiorite ȘERBAN NiColAE VlAd

Fig. 3. Geological cross section through the GladnaMontană intrusion (PoianaRuscă Mts.) (after CiOFLiCA et al., 1992). 1. Epimetamorphic schists partially converted into hornfels; 2. Monzodiorite; 3. Micromonzodiorite porphyry; 4. Granodiorite; 5. Microgranodiorite por- phyry; 6. Hydrothermal alterations: potassic (K) and silica (Si) zones; 7. phyllic (Phy) and argillic (A) zones; 8. Propylitic (Pr) zone; 9. Cu+Mo mineralization; 10. Cu+Py mineralization; 11. Pyrite.

whereas silicification, argillic alteration and periph- Since the main stage is productive throughout eral propylitisation extend in intruded rocks con- the BMMB, we expect a certain degree of ore forma- verted into hornfelses. The ore formation is of tion at Gladna-rozalia, too. This is confirmed by porphyry style: it consists of Cu-Mo stockworks cen- above mentioned evidence, i.e., porphyry-like sys- tered on granodiorite apophyses and grade south- tem;   wards in hornfelses along fissure networks. A The reduced intensity of ore formation and the   Northern extent of the alkali-calcic alignment mineralization zoning is mentioned as following: erosion level that removed a consistent amount of (Bulza-Tisa-Fântoag field) productive level are relevant factors in terms of eco- cp+mo+py mg+cp+mo+pyr+marc nomic evaluation resulting in restricted potential. i.e., py+cp+mo+marc py sph+gn+Au : the alkali-calcic align- Minor veins of polymetallic character have been ment may be continued following the same NE mentioned along tributaries of rozalia valley, trend up to the Mureș valley (fig. 2). it is repre- Vingl, Banita and Talianu. They include Au-telluride sented by blindNDrEi structures deducted from regional species and Au. re-evaluation of these data suggest geophysics (A et al., 1989) that lack economic the following: interest. Anyway, the northernmost portion is an ex- in terms of large scale evaluation of the alkali- ception, that is the association of andesite volcanics calcic Banatitic alignment, the more evolved Gladna- and Cretaceous sedimentary formation creates an rozalia72 intrusion contains the main stage of the environment that remindsGeol. an. the Balk. well-known poluos., 2020, 81 (1),Timok 67–77 poly-stage banatite evolution; setting. The age of these volcanics has been contro- Banatite metallogeny of North Poiana Ruscă Mts. revisited

eation is similar to a peculiar magmatic-metalloge-lAD N DrEinetic BMMB situation in mid-Banat (V , 1979; A - et al., 1989): main eastern alignment at oravița-Ciclova and main eastern alignment at Bozovici/lăpușnicu Mare are linked by a meridian alignment of shallow intrusions; both oravița-Ciclova and Bozovici/lăpușnicu Mare tectonic intersections are selective hot centers of ore formation, whereas the adjacent southern and northern portions of the main western and eastern alignments as well as the meridian lineation are barren. Bulza mineralization (fig. 5) occurs at the edge of Poiana ruscă and South Apuseni structures. Thus Fig. 4. Rozalia geological map (after CHiVu & SERAFiMOViCi, 1965), the basement is metamorphic (Supragetic) stem- hydrothermal and mineralization aureoles (TuDOR, 1991). Leg- i.e., ming from Poiana ruscă Mts. and ophiolite and sed- end: 1. upper Cretaceous igneous rocks: (a) andesites; (gd) gra- imentary Transylvanides affiliated to the Apuseni nodiorites; (d) diorites; 2. Pre-Banatitic igneous rocks: dolerites; Mts. The area of interest occurs in a volcanic pile, 3. Muscovite schists complex; 4. Muscovite schists complex; 5. Hy- andesitic lavas, late rhyolites (in places ign- drothermal alteration area; 6. Mineralized areas. imbrite facies) and pyroclastics. Magmatism of the early stage is represented by monzonitic subvol- canic bodies surrounded by hornfels zones. A later magmatic event produced mainly por- phyritic micro-granodiorite intrusions. The granodi- orite emplacement is responsible for intrusive e.g versial. Early considered as Miocene linked to the breccia formation and significant hydrothermal al- classicElTz Tertiary volcanism of the South Apuseni Mts. teration (tourmalinization, propylitization, sericiti- (P et al., 1968), this assemblage was reconsid-NDrEi zation and argillization), accompanied in two ered as BanatiticoȘu in the last decades ( ., A et sectors, ioneasca valley and Bulza valley, by miner- al., 1989; r et al., 1993). Anyway the area is alization of porphyryoȘu –like type and minor base poorly understood, and the economic potential ig- metal veins (r et al., 1993). The late magmatic nored. So far, among a few minor ore occurrences, event is marked by basaltic andesite rocks. Bulza occurrence may be more attractive. its loca- Such evolution shows evident departure from tion in the very NW corner of Poiana ruscă Mts. early described occurrences of the alkali-calcic seems to be controlled by an intersection of two Poiana ruscă and North Banat. it is much closer to alignments (fig. 2): the monzodiorite-granodiorite trend of Cu charac- NE termination of the alkali-calcic alignment ter. furthermore, thinking of challenging compari- which lost its character largely expressed at Surduc, son with Timok, it may representoȘu an area of Bocșa West, Hăuzești, and partly at Gladna-rozalia; economic incitement. in fact r et al. (1993) con- Bega-Mureș alignment consisting of shallow in- ducted a petrochemical study on 20 analyses and trusions in the west and volcanic sequences to the concluded that “most tested magmatic rocks plot east, by Mureș valley. This lineament interferes into the calc-alkaline field and only few of them in somehow with the Vardar-like structure of the so- the alkaline field, which differentiates them from the called Mureș corridor. banatitic rocks in the Poiana ruscă which show a Geol.Such an. Balk. orthogonal-like poluos., 2020, 81 (1), 67–77 tectonic setting, that is moreoȘu pronounced alkaline tendency”. in addition,73 meridian major lineation crossed by latitudinal lin- r et al. (1993) stated that “mineralization from ȘERBAN NiColAE VlAd

Fig. 5. Areas of economic significance at Bulza. 1. Lower Carboniferous sedimentary; 2. Jurassic ophiolites; 3. upper Jurassic limestones; 4. Cretaceous sedimentary; 5. upper Cretaceous volcanoclastics; 6. upper Cretaceous igneous rocks; 7. Neogene sedimentary; 8. Faults; 9. Deep-seated outline of the “Ophiolitic trench” of Metaliferi Mts. inferred from aero-magnetometric data; 10. Deep-seated outline of banatitic plutons inferred from gravimetric and/or aero-magnetometric data; 11. Deep-seated limit of “Mureș Cordillera” inferred from gravimetric data; 12. Deep-seated outline of the southern summit of “Mureș Cordillera” inferred from gravimetric data; 13. Deep- seated outline of Neogene igneous bodies (necks and sub-volcanoes) inferred from gravimetric and magnetometric data; 14. Sub-out- cropping outline of the metabasite core summits of “Mureș Cordillera” inferred from gravimetric data; 15. Areas of economic interest. (Simplified geology after LuPu et al.,1991; geophysical data after BORCOȘ et al., 1998).

the west side of the ioneasca and Bulza valleys dis- - occurrence of subvolcanic bodies, as target for play a well expressed spatial zoning which could be blind porphyry systems; traced as follows (towards the subvolcanic granodi- - local NW-SE fractures as main tectonic control; orite body): SbàPb, zn, CuàCu, Mo±Au”. - widespread hydrothermal aureoles bearing Consequently, Bulza-Tisa-fântoag field turned base metal and Au-Ag mineralization; 74into a compelling area of interest based on several - significant geopysicalGeol. an. and Balk. geochemical poluos., 2020, 81 (1),anom- 67–77 indicators for further investigations, such as: alies. Banatite metallogeny of North Poiana Ruscă Mts. revisited

Brief final reflections References

NDrEi riSTESCu AloTă roCA oMANESCu During the last decades the northern and espe- A uSSo, J., CăNDulESCu, T., C TEfAN, A., P uCEAVA, A., r rADu , T., Rev. Roum. Geol. cially the north-western termination of Banat- rANNiCH-S lBAiu, D., Ș , A., S , M., B , M., Geoph. Geogr., ser. Geoph. Timok Banatite entity has been underestimated in H , D. & A , M. 1989. Spatial distribution and structural images of banatites from romania, deduced terms of metallogenetic significance. under present th a from gravity and magnetic5 int. Symp. data. East Medit. Geol., circumstances a new thinking approach to the Thessalo niki Greece, 14-20 April 2004, Proceedings following valuation of the regional potential: ErzA , 33: 70–85. , B , T. 2004. late Cretaceous magmatism in the Carpa - The non-productive alkali-calcic alignment of North Banat ( ; fig. 1) that runs SW-NE from Surduc thian-Balkan Belt. to Bocșa West plutons extends north-westward to , 3: Resource Hăuzești–Drinova field further on to Gladna-rozalia ErzA1092–1094.oNSTANTiNESCu lAD Geology and on towards Mureș Valley (fig. 2). The same B , T., C , E. & V , Ș.N. 1998. upper Cre- magmatic pattern is conserved, that is early mag- taceous Magmatic series and associated mineraliza- matic stage association prevail. in addition, the al- tion in the Carpathian-Balkan orogen. 20th kali-calcic style still preserved at Hăuzești graded to ErzA ,liNCA 48 (4): 291–306. Congress of the Carpathian-Balkan Geological Associ- a calc-alkaline trend at Gladna-rozalia, i.e.occur- B , T. & i , G. 2014. late Cretaceous Banatitic mag- ation. Buletini i ShkencaveGjeologjike, Tirana (Alba- rence of the main magmatic stage – monzodiorite, matism and metallogeny in the frame of the Eoalpine nia) diorite à granodiorite suite, related commonly to Cu- tectonics from the Carpathian-Balkan orogen. ore formation. it looks promising but, in fact, the porphyry systems found at Gladna-rozalia are de- Rom. Journ. Min. ceiving due to their low volume and grade. The orCoȘ , 145–148.lAD DuBAȘA H ăBuDEANu Dep. modest development of the productive magmatic B , M., V , Ș.N., u , G . & G , B. 1998. stage is responsible for the reduced economic value Qualitative and quantitative metallogenetic analysis of Gladna-rozalia metallogenetic field. of the ore genetic units in romania. Contributions to Mureș Valley area (intersection of northern ter- HiVu SpecialErAfiMoViCi issue, 78: 158. the knowledge of the geology and tectonics of the Ro- mination of the alkali-calcic alignment with Bega– C , C. & S , V. 1965. Contribuții la cuno - mania-Gladna Română (Poiana Ruscă NW Mureș alignment) (fig. 2). Based on well-esta blished așterea geologieiși tectoniciiregiunii romanești-- D.S. inst. Geol. geological-geophysical evidence, emerging mes- na română (Poiana ruscă de NW) [ sages underscore the potential of this peculiar set- ting: )- in roman- Mineralium Deposita, Timok like volcano-plutonic edifices associated ioBANuian]. ook , TEiN52 (3): 5–12. with blind porphyry Cu-Au and distal base metal ex- C , C., C , N. & S , H. 2002. regional setting and pression, fostering future investigations throughout geochronology of the late Cretaceous Banatitic Magma - Rev. Roum. Geol. Geoph. Geogr., ser. Geol. Acknowledgementsthe Bulza–Tisa–fântoag metallogenetic field. iofliCAtic and MetallogeneticlAD Belt. 37: 51. C , G. & V , Ș.N. 1973. The correlation of laramian Metallogenetic events belonging to the Carpatho- Balkan Area. ,

iofliCA2 (22): 217–224.uDE uPulESCu An. univ. C Buc., Geol.G., J , r. & l , M. 1992. Cupriferous min- The presentANkoVić contributionArAMATA is a tribute to late pro- fessors S. J and S. k who introduced eralization processes associated with upper Creta- me attentively to the metallogeny of the former ceous-Eocene magmatites from romania. iofliCA ,ECSkAY 40–41: 3–18.uDE uPulESCuRev. Roum. Geol., Yougoslavia and published early worksliNCA of mine. ser. Geol. The author wishes to thank dr. G. i from the C , G., P , z., J , r. & l , M. 1994. k-Ar university of Bucharest for the fruitful discussions ages of Alpine granitoids in the Hăuzești-Drinova area (Poiana ruscă Mountains, romania). Geol.which an. Balk.helped poluos., in 2020,improving 81 (1), 67–77 this manuscript. 75 , 38: 3–8. ȘERBAN NiColAE VlAd

uPoNT ANDEr uWErA iN AriNCEA T ErzA ANDEr uWErA ErzA ESElS uPoNT D , A., V A , J., P , C., M , Ș . & B , V A , J., B , T., G , J. & D , A. 2016. T. 2002. Trace elements Mineraliumand isotope Deposita(Sr, Nd) geo- The late Cretaceous igneousinternational rocks of Journal romania of chemistry of porphyry- and skarn- mineralizing late (ApuseniEarth Sciences Mountains and Banat): the possible role of Cretaceous, intrusions from, Banat, western South amphibole versus plagioclase deep fractionation in Carpathians, romania. , 37: two different crustal terranes.Rev. Roum. Geol. Geoph.

AllHofEr568–586. VoN uADT EYTCHEVA CHMiD lADGeogr., ser. Geol.,, 105 (3): 819–847. G EiNriCH, D.AH Q , A. P ,Tectonics i., S , M.D. & V , S.N. 1979.A survey of Banatitic (laramian) metal- H , C . 2015. Tectonic, magmatic, and metallo- logeny in the Banat region.

genic evolution of the late Cretaceous arc in the lAD 23 (1):Mineralium 39–44. Deposita Carpathian-Balkan orogeny. , 34: V , S.N. 1997. Calcic skarns and transversal zoning in

iuȘCă10.1002/2015TC003834.iofliCA AVu An. the Banat Mountains, romania: indicators of an An- G Com., D., Geol. G , G. & S , H. 1966. Caracterizarea - dean-type setting. , 32(5):

petrologică a Provinciei Banatitice [Petrological char- lAD446–451.StudiaErzA univ. Babes Bolyai, Geologie acterization of Banatitic Province- in romanian]. V , S.N. & B , T. 2003. Banatitic magmatic and met-

EiNriCH H ,35:13–45.EuBAuErMineralium Deposita allogenetic belt:Erzlagerstättenim metallogeny of the Banat romanian und in seg-Ser- H , C . & N , f. 2002. Cu-Au-Pb-zn-Ag metal- ment.bien , 48:

logeny of the Alpine-Balkan-Carpathian-Dinaride geo- VoN112–122.oTTA ANkoVićdynamicMineralium province. Deposita , 37: 533–540. C ,B. 1864. J , S. 1997. The Carpatho-Balkanides and adjacent VoN uADT.Braumüller,oriTz Wien,EYTCHEVA 108 pp. EiNriCH area: ARomania sector of –the Geological Tethyan mapEurasian 1:50000, metallogenic Lăpugi- Q , A., M , r., P , i. & H , C.A. 2005.

uPubelt.Coștei sheetAriNESCu oȘu , 32(5):iColAE 426–433.urEȘAN Geochronology and geodynamicsOre Geol. of late Rev. Cretaceous l , M., M , f., r , E., N , i. & M , M. magmatism and Cu-Au mineralization in the 1991. Panagyurishte region of the Apuseni-Banat-Timok-

ElTz ElTz, GeologicalrCAN institute of romania. Srednogorie belt, Bulgaria. , 27(1–4): P , S., P D.S., M. inst. & Geol. u , T. 1968. Contribuții: la iMMErMAN95–126. TEiN ANNAH ožElJ oGDANoV cunoaștereavulcanismuluineogen din regiuneaGroși- z ErzA, A., S , H.J., H , J.l., k , D., B , Bulza-fîntoag (extremitateasud-vestică a Munților k. & B , T. 2008.Mineralium Tectonic configuration Deposita of the

oPoVMetaliferi).ErzA ruBić , 55 (1967-1968) 109–133. Apuseni-Banat-Timok-Srednogorie belt, Balkans- P , P., B GEODE-ABCD, T. & G 2000, A. 2000. Workshop, upper Borovets Cretaceous Bul- South Carpathians, constrained by high precisions re- garia,Apuseni-Banat-Timok-Srednogorie Abstract volume (ABTS) magmatic Резимеosmolybdenite ages. , 43: 1–21. and metallogenetic belt in the Carpathian-Balkan orogeny. Преглед металогеније банатита oȘu TEfAN iEru , 69–70.oBu iEru ToiAN северних Poiana Ruscă планина r ,rABAr E., S i Rom., A., Journ. DrESCuV Mineralogy, C., r , l., V , C., S , M., G , G. & u , C. 1993. Petrology of the Ba- natitic magmatites of the Bulza-Costeiu area, Timiș

uDorDistrict. , 76 (1): St.41–42. Cerc. Geol. T , G. 1990. Magmatite lesimineralizațiile associate У раду је дат приказ металогеније северног paleoriftului intracontinental din zona romanești- дела планина Banat-Poiana ruscă (Јужни Кар- Gladna română (Munții Poiana ruscă). , пати) који представља сегмент банатитског St. Cerc. Geol. uDor35: 33–41. појаса. Банатитски магматизам је углавном био T , G. 1991. intruziunea magmatică de la Gladna Mon- интрузивног типа, а значајни вулкански про - Rom. J. Mineral. tana (Munții Poiana ruscă) – generatoarea uneimin- дукти су заступљени у сенонским басенима. Dep. uDoreralizatii porphyry . , 36: 9–17. Интрузивни банатити воде порекло од калк- T , G. 2012. Metallogenic considerations in NW алкалних хидратисаних магми и припадају i- Poiana ruscă Mountains (romania). 76 типу/магнетитске серијеGeol. an. Balk.гранитоида. poluos., 2020, 81Извори (1), 67–77 , 85 (1): 52–56. магми воде порекло из горњег омотача и Banatite metallogeny of North Poiana Ruscă Mts. revisited

дубљих делова коре. Прецизни изотопски подаци диорити и кварцдиорити, гранодиорити са плу- указују на сантонско-кампанску старост (84–70 тонима, апофизама и дајковима Рани стадијум Ма). Магматизам је имао полифазни карактер и б) гранодиоритски до гранитски тренд: гра - са стоји се од плутона и вулканско-плутонских нодиорити, монцодиорити, гранити са плутони - Вулкански стадијум комплекса и пратећих дајкова: ма, апофизама и дајковима. : габрови, монцодиорити, кварц - Рудна лежишта су углавном скарновског и Главни стадијум монцонити, сијенити; порфирског типа. Главне металичне сировине су Manuscript recieved November 13, 2019 : андезити, дацити, рио - представљене рудама Cu, Au, Mo, Pb, zn, fe, док се Revised manuscript accepted February 18, 2020 лити, пирокластити; подређено јављају сировине W, Bi, u, Ti, Co, Ni. : две еволутивне фазе: а) монцодиоритски, диоритски до граноди - оритски тренд: монцодиорити, кварцмонцонити,

Geol. an. Balk. poluos., 2020, 81 (1), 67–77 77