<<

Norwegian Polar Research Institute Rolfstangveien 12 1330 Lufthavn

Telephone: 47-2-123650 Telex: 74745 PolarN Telefax: 47-2-123854

ISBN 82-90307-64-0

Printed on 100 % resycled paper by GCS - Graphic Communication System A.S. Layout and technical production: Bente Brekke Front cover photo: Jon Tolgenbakk ENVIRONMENTAL GIPSDALEN, Vol. Il Reports on the Quaternary , Vegetation, Flora, and Fauna of Gipsdalen, and the Marine Ecology of Gipsvika.

Prepared for Northern Resources Ltd. by Bente Brekke and Rasmus Hansson Norwegian Polar Research Institute

With contributions from:

Jon Tolgensbakk, Leif Sørbel and Kirsti Høgvard: Quaternary Geology and Geomorphology in Gipsdalen, Svalbard.

Hilde Keilen: Bedrock geology in the Gipsdalen area.

Reidar Elven, May-Britt Eriksen, Arve Elvebakk, Bernt E. Johansen, and Torstein Engelskjøn: Gipsdalen, Central Svalbard; Flora, Vegetation and B6tanical values.

Per Ole Syvertsen: The Fauna of Gipsdalen, Svalbard.

J. Marcin Weslawski, Slawek Swerpel, Jozef Wiktor, Marek Zajaczkowski, Marek Ostrowski, and Ryszard Siwecki: Summer Environmental Survey of Gipsvika, Svalbard.

Rasmus Hansson: Sensitiv ity of the Gipsdalen Environment (Vol. 1). Professionally responsible: Fridtjof Mehlum

Norsk Polarinstitutts Bibliotek "

co' Gb·Y·

Biinsow Land with Gipsdalen, Central , Svalbard. PRE FACE

This Environmental Atlas is the first product of turbance, are being carried out during the spring an Environmental Impact Assessment fo r a pro­ of 1990, and will be reported during the summer posed coal min ing project in Gipsdalen, Svalbard. of 1990. A study of Pink-footed geese Anser The project is carried out by the Norwegian Polar brachyrhynchus including their reaction to Research Institute on behalf of N orthem disturbance, and additional counts are Resources Ltd. The atlas consists of: planned to be carrled out during the summer of 1990 and reported early in the autumn of 1990. - Volurne I: "Sensitivity of the Gipsdalen Based on the complete !?eries of environmental Environment", including a preliminary impact studies and the plans fo r in Gips­ assessment of the proposed co al mining pro­ dalen, an Environmental Impact Assessment of ject, and (in separate cover) a vegetation map coal mining in Gipsdalen is planned to be pre­ (two sheets), a conservation value map fo r pared during the autumn of 1990. vegetation, and a quaternary geology and geo­ morphology map. As Volurne I contains confi­ The vegetation and quatemary geology maps dential information its di stributi on is were produced at a higher quality than strictly restricted until further notice. needed fo r this project. The production was thus partly fu nded by the Norwegian Polar Research - Volurne Il (this Volurne): "Reports on the Institute and the Department of Physical Geo­ Quatemary Geology, Vegetation, Flora and graphy, University of Oslo, respectively. The pro­ Fauna of Gipsdalen, and the Marine Ecology ject is otherwi se fun ded by Northem Resources of Gipsvika" ; full reports from the work Ltd. carried out in 1989, also includes the above mentioned maps. The fauna report is in We thank those wh o have made contributions to Norwegian, with an exhaustive English sum­ reports and maps (see author list). We also mary. acknowledge the contributions of Fridtjof Mehlum (prof�ssionally responsible), lan Gj ertz, Halvar The fauna report presented in these volurnes is LudVIgsen, and the . not complete. A winter/spring Svalbard Rangifer tarandus platyrhynchus survey, a Phoca hispida/ sur­ vey, and a literature study of the reactions of Ringed seals and other marine mammals to dis Bente Brekke Rasmus Hansson TABLE OF CONTENTS

Page Page

1 GEOMORPHOLOGY AND 56 Vegetation den sity map QUATERNARY GEOLOGY OF 59 Applications of the maps GIPSDALEN, SVALBARD 60 Conclutions

2 Summary and conclusions 60 Evaluation 60 Location of botanical values 3 Bedrock geology in the Gipsdalen area 63 Vulnerability 64 Proposals 5 Geomopphology and quaternary geology 65 Conclusions of Gipsdalen, Svalbard 5 Introduction 65 Aknowledgements 5 Description of the Gipsdalen area 10 Comments on the Gipsdalen Quaternary 65 References Geology and Geomorphology Map 10 Surficial matter 67 THE FAUNA OF GIPSDALEN, 13 Landforms SVALBARD 19 Factors that affect terrain wear 20 Classification system fo r the evaluation 68 English- summary of vulnerability 68 Summary and conclutions 21 Current tracks in Gipsdalen 69 Introduction 21 Classification of areas in Gipsdalen 69 Material and methods according to vulnerability 70 Species accounts 25 References 74 Figures

27 GIPSDALEN, CENTRAL SVALBARD; 85 Oppsummering og konklusjoner FLORA, VEGETATION, AND 85 Funistikk, status og verneverdi BOTANICAL VALUES. 85 Foreløpig miljøkonsekvensvurdering Possible consequences of planned mining activities 86 In�ledning

28 Summary and conclutions 86 Materiale og metoder 86 Undersøkelsens omfang 28 Introduction 86 Metoder

29 Study area 86 Artsgjennomgang 29 Location and topography 86 Smålom Gavia stellatata 30 Bedrock 87 Havhest Fulmarus glaeialis 32 88 Kortnebbgås Anser brachyrhynehus 32 Phytogeographical position 91 Hvitkinngås Branta leueopsis 33 Human impact 92 Ærfugl Somateria mollissima 94 Praktærfugl Somateria speetabilis 33 Materials and methods 94 Havelle Clangula hyemalis 95 Svalbardrype Lagopus mutus 34 Flora hyperboreus 34 Composition 96 Sandlo Charadrius hiatieula 40 Diversity 96 Sandløper Calidris alba 41 Plants of special conservation value 97 Fj æreplytt Calidris maritima 41 Regionally rare plants 98 Steinvender Arenaria interpres 42 Locally rear plants 98 Tyvjo Stereorarius parasiticus 42 The Braya problem 99 Polarmåke Larus hyperboreus 43 of rare plants 100 Krykkje Rissa tridaetyla 43 Conclusions 101 Ismåke Pa gophila eburnea 102 Rødnebbterne Sterna paradisaea 43 Vegetation 103 Polarlomvi Uria lomvia 45 Vegetation types 104 Teist Cepphus grylle 52 Approaches to classification 105 Alkekonge Alle alle 54 Vegetation maps 105 Lunde Fratereula aretiea 54 Aerial photo-based vegetation map 106 Snøspurv Pleetrophenax nivalis 54 -based vegetation map 106 Fj ellrev Alopex lagopus 54 Comparison and evaluation of the maps 108 References Page

111 SUMMER ENVIRONMENTAL SURVEY OF GIPSVIKA, SVALBARD

112 Summary and conclusions

112 Introduction

112 Materials and methods

113 Results and discussion 113 Geographical position, area, bathymetry 114 Sediments 114 Coasts 114 Hydrology 116 Fresh water volume, river plume and circulation 117 Suspension and water transparency 117 Benthic fauna 120 Prominent species and communities 120 Specific biota 122 Feeding grounds 122 Phytobenthos 126 126 Meiofauna 127 Mesozooplankton

130 Aknowledgements

130 References

Maps (in separate cover): - Gipsdalen vegetation map (2 sheets) - Conservation value map; vegetation (Fig. 7 in Elven et al.: Gipsdalen, Central Svalbard; Flora, vegetation, and botanical values. - Quatemary geology and geomorphology GEOMORPHOLOGY AND QUATERNARY GEOLOGY OF GIPSDALEN, SVALBARD

Raised beach-ridge system with a distinct pattern of polygons. In the upper center an alluvian fan in front of terrace edges. The upper part of the mountain wall of Templet is scoured by avalanche tracks, while the lower part is covered by talus cones (foto: Jon Toigensbakk) .

by . Leif Sørbel, Kirsti Høgvard and Jon Tolgensbakk *

Including: BEDROCK GEOLOGY OF GIPSDALEN by Hilde B. Keilen **

Department of Physical Geography Norwegian Polar Research Institute * ** University of Oslo 1330 Oslo Lufthavn 2 Environmental Atlas Gipsdalen, Svalbard

SUMMARY AND CONCLUSIONS

Gipsdalen is a typical, dry central Spitsbergen Between Aitkenfjellet and Usherfjellet, mainly on vally. Exept for the rai sed beach forms and De the eastern side of the river, most of the flat Geer moraines mentioned below, Gipsdalen does vegetated areas with fine-grained marine or geli­ not contain forms of particular interest from a fluction material are vulnerable to wear (Group geomorphological point of view. 3-4). Along both sides of the valley from Gipsvika to Ri nkbreen, patches of Group 3 and some A scale 1:40 000 map of the quaternary geology Group 4 areas occur. Slope, water and/or vege­ and geomorphology of Gipsdalen is presented (en­ tation cover make these areas vulnerable. closed). Based on this map and a classification a system for vulnerability to wear, the sensitivity The raised be ch areas are slightly or moderately of areas in Gipsdalen is identified (Fig. 23). vulnerable to wear. The areas not classified as Group 5 belong to Group 2. The areas are classified as Steep slopes and talus cones are considered in­ Group l Invulnerable to wear: surface contino­ vulnerable or moderately vulnerable to wear usly changing, usually very coarse gravel or (Group 1 or 2). This goes for most of the higher exposed bedrockl ice. Traces of wear disappears parts of the valley slopes. Parts of the fossilized quickly. . and vegetated alluvial fans are somewhat more vulnerable (Group 2). Group 2 Slightly or moderately vulnerable to wear: coarse gravel/sediment and little water/ice Current alluvial plains (e.g. Leirflata) and active in upper layers, little vegetation cover. Traces of alluvial fans (in front of the side valleys), are wear are shallow, no subsequent . eonsidered invulnerable (Group 1).

Group 3 Vulnerable to wear: fine-grained sedi­ During detail planning and possible implemen­ ment and relatively high water/ice con tent in tation of the proposed plans for coal mining, the upper layers, continuous vegetation, flat. Traces following faetors affecting terrain wear should be of wear are prominent and may be extended taken into eonsideration: through subsequent erosion. Vegetation Co ver: Removal of the vegetation Group 4 Greatly vulnerable to wear and subse­ cover will alter the thermal balance in the aetive quent erosion: Similar characteristics as Group 3, layer and may eause erosion. and additionally; sloping ground, very high water/ice content in flat areas, running water in Surficial Material: Fine-grained material has an ice/water con tent often 50%. It is unstable sloping. Traces of wear are very prominent, and > damage will normally increase significantly be­ ,and subjected to mass movement and erosion. cause of mel ting, mass movement and erosion by running water. To pography: Exposure is significant to snow ac­ eumulation and thus length of snow-free season Group 5 Worthy of conservation: e.g. unique land and amount of meltwater. Gradient is signifieant forms, rare plant communities, occurances of fos­ to mass movement and erosion and thus terrain sils etc. of particular scientific, pedagogical or wear. historical value, important for /recrea­ tional experience etc. Not necessarily vulnerable : the depth of the active layer influ­ to wear. enees drainage and the stability of the sediment. Insulative eapaeity of the vegetation cover, type Close to the mouth of the valley, between Dalkal­ of material, length of snow-free season and water len and the river, there are well-developed balanee influence the permafrost. systems of raised beach forms (Figs. 4 and 13). These are of scientific interest and worthy of Water Access: Aecumulation of water on the conservation (Group 5). ground may eause increased perrnafrost melting (Fig. Traeks on slopes act as water channels 19). Patterns of large tundra polygons also occur in and may eause erosion. these areas (front page of this report). Two of the most representative areas are classified in Group The existing vehicle track running through Gips­ 5. dalen mainly follows dry areas. The wear is dis­ tinet (Fig. 20), but not expanding exept in some The field of De Geer moraines between Bolton­ moist areas (Fig. 21), where new tracks are being breen and Methuenbreen is among the most made alongside the old and melting and fluvial interesting in Svalbard, where such moraines are erosion is extending the damage (Fig. 22). uncommon. The moraines are classified to Group 5. They are also vulnerable to impact. Geomorphology and Quaternary Geology of Gipsdalen, Svalbard 3

BEDROCK GEOLOGY IN THE GIPS· DALEN AREA ment with alluvial fans and river floodplains The Svalbard Archipelago contains an almost which built out from the graben edges (Gjelberg complete geological sequence ranging from the & Steel, 1981). Outerops are seen in the inner­ late Precarnbrian socalled Hecla Hoek meta­ most part of the Gipsdalen in the bottom of the morphic rocks (basement, about 1000 mill. years valley northwest of Finlayfjellet. old), up to recent Quarternary sediments. The ol de st unit exposed in the Gipsdalen area is of The Gipsdalen Group east of the BFZ is in the the middle Hecla Hoek division (about 800-700 lowerrnost part dominated by andstones, carbon­ mill. years old). It is exposed in the innermost ates and evaporites (limestones, dolomites and part of the valley in front of Florabreen gips/anhydrites; mainly sediments resulting fr om (Lauritzen et al. 1989). This unit consists of fine the evaporation of saline water) intercalated by grained, dark phyllite and micasehist, which in marIs and shales. These sediments represents some parts are more coarse grained and compar­ alluvial fan and fan delta environments which able to sandstonelgravel in tex ture. The Hecla built out eastwards into restricted marine and Hoek rocks were originally sedimentary rocks sabkha environments (abroad, salt-encrusted, which during the Caledonian Orogeny (500-400 supratdal surface or coastal flats bordering mill. yeras ago) were subjected to an increase in lagoonal or inner shelf regions). Outcrops are temperature and pressure (metamorphosed). se en in the inner half of the valley bottom in These rocks were hardened and are today much fr ont of Margaretbreen, south of Nordstrømfjellet more resistant against erosion proeesses and and north west of Pyefjellet. The middle unit is weathering than the surrounding post-Devonian exposed along the entire valley floor and is sedimentary rocks. Glacial striae (see enclosed predominantly made up of fo ssiliferous, light gray geomorphological map) from the last glaciation to very dark gray/blackish limestones interbedded are exposed on the surfaces of these Hecla Hoek with marI. These sediments were deposited in rocks. restricted and more open marine environments.

Svalbards tectonic fr amework is dominated by a The upperrnost part of the Gipsdalen Group is number of structural lineaments, mostly N-S to made up of interbedded white colored evaporites NW-SE oriented. One of these, the yellowish dolomites and dark gray marIs with � Fault Zone (BFZ), had significant influence on transition to more grayish limestones towards the sedimentation regimes certain periods fr om the top. These sediments were deposited in a Devonian time. This lineament is recognized fr om sabkha environment wh ich then was transgres­ the Reindalen area, N orden ski øld Land north of sed by restricted and more open marine environ­ and northward to Austfjorden, ments. (A trangression means an invation of a in the southern part of . Th e fa ult large area of land by the sea in a relatively zone runs through the Gipshuken area (Fig. 1). short space of time, geologically speaking). The main part of the valley slopes and escarpments The Billefjorden Fault Zone divided 'high' areas are made up of these sedimentary rocks. They to the west represented by the Nordfjorden Block, are the main source for the Quarternary sedi­ and 'lowareas to the east, the Billefjorden ments in th e valley bottom. Trough, in Lower to Middle Carboniferous time. The transition between the lower Gipsdalen E�st of this fault zone a sedimentary basin, the BIllefjorden Trough, was developed, and filled up Group and the Group represents by a large amount of sedirilents during the Mid­ an erosive contact and is very easy to recognize dIe Carboniferous time. During Upper Carbon­ in the field. It is a lithological marker horizon. iferous and Lower Perrnian time, the entire area (A relatively thin layer of rock which because of was a part of an extensive, shallow carbonate some pecularity of lithology, structure, or fa unal plattform. The total thickness of sediments east con tent is easily recognised). The Tempelfjorden of the BFZ is approximately 3500 m (Lauritzen Group which is the youngest exposed sedimentary et al. 1989). This sedimentary sequence is today sequence in this area cornprises limes tones almost horizontally bedded with a gentle NW-SE cherts, siltstones, sandstones and spiculitic shale� strike, and a NE-SW dip and lies unconformably with a predominantly dark gray colour. The on the Precarnbrian Hecla Hoek basement. (In limestones are interpreted as shoreface deposits. The other sediments represent local shoaling in this case, the older beds dip at a different angle' to the younger, upper beds). a deep, distal and shallow shelf environment. Outcrops of these resistant rocks are seen on the The sedimentary sequence is devided lithologi­ top of the mountains sorrounding the valley. cally into three main groups; The Billefjorden-, Gipshuksletta, Gipshukodden, Gåsodden and Gås­ øyane concist of blackish dolerite, which is caused Gipsdalen- and Tempelfjorden Groups. (Cutbill & Challinor, 1965). by intrusions and volcanic activity during the transition between the Jurassic and Cretaceous 1984). The lowerrnost Billefjorden Group consits of (Steel & Worsley, Glacial strias from the sandstones and coalbearing dark shales which last gl aciation are easily seen on these rocks at were deposited in a humid, swamp-like environ Gåsodden (Lauritzen et al. 1989). ,j:o.

c::::� GIPSDALEN, Svalbard Geology 1 100,000 a' &i*\.11(«<<. � � Il> � S" -- > .... ff G) 'tj. � � �"f' j:J .,. Cl.> --� o- � a.

Ebbadalen Fm Kapp Starostin Fm //Sandstone, conglomerate, Gipsdalen Gr Carboniferous Chert. silt stone, siliceous sandstone Tempelfjorden Gr Permian Billefjorden Fault Zone [J shale and evaporite and spiculitic shale .Y /

Billefjorden Gr Gipshuken Fm Sandstone and Carboniferous Interbedded anhydrite and dolomite (Iower), Gipsdalen Gr Permian Quaternary deposits • coalbearing dark schist 1\11 dolomite and calcite (upper) and sandstone 1\11 Hecla-Hoek, middle division Nordenski61dbreen Fm Permian Micaschist, dark phyllite Precambrium Gipsdalen Gr Dolerite Jurassic-Cretaceous Mainly limestone and quartzite � D � Groups (Gr), Formations (Fm)

Modifed from Lauritzen, Salvigsen and Winsnes 1988. Billefjorden Geological map Svalbard 1:100,000

Figure The geology of Gipsdalen, Bunzow land, Svalbard. Modified from Lauritzen, Salvigsen and Winsnes 1 1988. Billefjorden Geological map Salbard 1:100 000. Geomorphology and Quaternary Geology of Gipsdalen, Svalbard 5

GEOMORPHOLOGY AND QUATERNARY undertaken on behalf of SNSK and Norsk Hydro GEOLOGY OF GIPSDALEN, SVALBARD The main part of the field research of thi� assignment, however, was carried out in Sassen­ al n wit on y four days field work by one � � .' � � INTRODUCTION mdiVIdual m GIpsdalen. A general classification of the area in terms of degree of vulnerability was then prepared, but the limited time availible In the corse �f the last few years, the Depart­ ment of PhysIcal Geography, University of Oslo, did n.ot allow for the undertaking of detailed has undertaken a comprehensive mapping of land mappmg of land forms and surficial material. forms and surficial deposits on Svalbard. The research in Gipsdalen in 1989 emphasized Thematic overview maps of glacial geology and the preparation of a detailed map, thereby laying the groundwork for a more detailed cIassification geomorphology (Kristiansen & SoIlid 1986) and in terms of evaluation of vulnerability in relation surficial deposits (Kristiansen & Sollid 1987) have been prepared. Both of the se maps cover to terrain damage. Svalbard in its entirety (seale 1:1 mill.) and are inc�uded in the National Atlas for Norway. A The field research in 1989 was carried out by serIes of maps of Svalbard's coastal zones in a Jon Tolgensbakk and Kirsti Høgvard between 13. scale of 1:200,000 have also been prepared (Høg­ and 20. July. During this period field mapping of land forms and sediment �as undertaken yard & SolIid 1988, 1989a, 1989b, 1990, Øde­ along with soil sampling. In addition, the area gård e�. !lI. 1987�. The maps incIude both" geo­ and blO-mformatlOn. In connection with the was photographed from a helicopter with a 6x6 coastaJ maps, a data base of videos and photo­ Ha.sselblad camera and diapositive colour film. graphs, most of which have be en taken from heli­ ThIS photo material has been a useful supple­ copter, is in the process of being built. The maps ment to the black and white aerial photographs. and data base are thought to be of particular use The e�cIosed Quaternary geological and geomor­ in connection with environmental management phologIcal map (Tolgensbakk 1990) is produced and in the preparation of impact assessments o on. t�e basi� of fieldwork, helicopter photos, and f eXlstmg aerIal photographs. The thematic infor­ differet.t� types of. intervent�on, .i.e oil prospecting. In addIbon, detalled mappmg m connection with mation on the completed map is transferred research on erosion, mass movement and frost photogr�mmetri�ally in a stereoautograph (Sa?-tom StereosImplex from the aerial photo processes in specific areas (Sørbel & T�lgensbakk serIes S61 from the NorwegianGB) Polar Research in �rep., Tolgensbakk 1987, and Tolgensbakk & Solhd 1987) has been undertaken. This research Institute. comprises a part of the scientific basis for this report. The report initially gives a general overview of the natural conditions in Gipsdalen. Landforms Research on terrain wear and impact assessments , climate, perrnafrost and bedrock conditi� of planned development activities has been o?-s are discussed. Thereafter follows a descrip­ carried out earlier in many connections, among bon of the enclosed Quaternary geological and them, as a part of the MUPS project (Environ­ geomorphological map (Tolgensbakk 1990) with mental Impact Studies on Svalbard, cf. Hansson definitions and discussion of the individual et. al. 1990). In cooperation between the Depart­ elem�nts that are mapped. Finally, an overview ment of Physical Geography and the Norwegian of dIfferent physical relationships that affect Polar Research Institute, a project on erosion terrain damage is presented, as well as a classi­ studies and Quaternary geological mapping was fication of Gipsdalen in areas according to degree initiated in 1984 in . Studies on of vulnerability. erosion i? reindeer grazing areas, and research on terram damage caused by human activity Interpretation of aerial photos, drawing of have been undertaken. The project was initiated figu�es, reproduction work and report writing was by Professor Nils Are Øritsland from the Nor­ carrIed out at the Laboratory of Remote Sensing wegian Polar Research Institute and Professor and Thematic Mapping at the Department of Johan Ludvig SoIlid from the Department of Physical Geography, University of Oslo. Expenses Physical Geography. Field research has mainly for the field research and the technical prepa­ been carried out by Leif Sørbel and Jon Tolgens­ ration of the map and report are partly covered bakk from the Department of Physical Geography by N orthern Resources Ltd. !lt the University of Oslo (Sørbel & Tolgensbakk m prep.). In connection with the project, a system for evaluating the vulnerability of dif­ DESCRIPfION OF THE GIPSDALEN AREA ferent types of terrain with respect to wear damage is being developed. This system is used Gipsdalen is ca. 25 km long, and ca. 3 km by the in the following report from Gipsdalen, and in fjord. The valley floor is broad and flat, outlined earlier research, incIuding Sassendalen and by steep mountain slopes (Fig. 2). It is largely Gipsdalen (Sørbel 1987), (Elvebakk covered by sediment, partly by fine-grained' marine material, and partly with relatively coarse & Sørbel 1988) and Reindalen (Sørbel, SolIid & EtzelmiiIIer 1989). The studies in Sassendalen river material. This material was deposited in a and Gipsdalen in 1987 (Sørbel op. cit.) were what was a shallow fjord during the deglaciation 6 Environmental Atlas Gipsdalen, Svalbard phase of the last lee Age. At that time, the sea Around the outlet of Gipsdalselva there is a well­ level was relatively high er than to day, as the formed system of raised beach ridges (Fig. 4) landblock was depressed by the weight of the which shows the subsequent land raising after inland ice. The marine limit, i.e. the highest sea the last lee Age. Driftwood, shells, whalebones level after the inland ice disappeared, is 72 m and pumice found at different heights on the a.s.l. at three different locations in the outer part beach ridges can be used for dating of the diffe­ of Gipsdalen. Datings of shells and driftwood rent sea levels (Salvigsen 1984). The beach ridges from Kapp Ekholm shows that the Billefjorden consist of coarser material than the fine-grained area probably became ice-free around 10,000 marine deposits further inland. The finer par­ years BP (Salvigsen 1984, Lauritzen et al. 1988). tic1es in the beach ridges have been removed by wave activity. During the period of deglaciation, an uplift of the landblock took place due to the decreasing weight In the lower part of the steep valley sides, collu­ of the ice. The rate of uplift was 'highest in the vium (material from mass movement) is deposited beginning and then decreased gradually. The in the form of dis tinet talus cones (Fig. 5). In the change in the relative height of sea level during steep mountain walls above, debris is produced postglacial time is shown in a shoreline displace­ regularly because of frost weathering. This ment curve in Fig. 3. material eventually builds up the talus cones. Alluvial fans (river fans) of rather coarse material are built in front of the side valleys.

ma.s.l. The fans are forrned where the water is no longer able to transport the coarser material due 90 to decreasing fall in the river profile. Alluvial

80 fans cover a large part of the valley floor. This is typical for Svalbard. Basically, the roain land­ scape features are dominated by landforms cre" 70 ated by weathering, mass wasting, frost proeesses and fluvial activity. Landforms made by glacial 60 erosion of inland ice are less common on Sval­ bard than in Fennoskandia. 50 A series of valley glaeiers fill the side valleys of Gipsdalen. In the upper part of a glaeier (the 40 accumulation area), the input of snow and ice in the winter is higher than the output by melting 30 in the summer. In the lower part (the ablation area), the summer melting is high er than the 20 input of snow and ice in the winter.

10 Generally, the glaeiers on Svalbard are characterized as subpolar. The ablation area remains below freezing temperature all the way ro 9 8 7 654 32 0 to the bottom, while the accumulation area 1000 14C years B. P. maintains a temperature at the pressure melting point. Perrnafrost is therefore seldom found under Figure 3 Shorline displacement curve fo r the Kapp the accumulation area of the glaeiers. Ekholm - Ekholmvika area in Billefjorden, based mainly on radiocarbon dates and pumice obserations In the cold ablation area of a subpolar ,the (from Salvigsen 1984). meltwater drainage is partly running in streams

Weathering material Usherfjellet m a.s.1...... Colluvium Colluvium, Talus cones Aitkenfjellet O Exposed bedrock Gelifluction material 500 000 Marine beach material Marine material, fine-grained Fluvial material Organic material

200 scale Vertical 2,5x lilll�.�.., :Gipsdalselva::::æ _""l!5æ..,,,,,��.I�llt:�100 Horizontal scale 1 : 40,000 O ...... O

Figure 2 Cross profile from Usherfjellet in NW to Aitkenfjellet in SE, 5 km from the fjord. Geomorphology and Quaternary Geology of Gipsdalen, Svalbard 7

Figure 4 Raised beach ridges around the outlet of Gipsdalselva. Note the distinet vehicular track crossing the area.

Figure 5 Talus cones and avalanche tracks at Usherfjellet. Many of the cones are scoured by debris-flow channels. View towards N. 8 Environmental Atlas Gipsdalen, Svalbard at the ice surface, partly in tunnels cut down in this icing grows slightly in years to come, it may the glacier. The outlet of such a tunnel is shown cause damage to the FeD camp. in Fig. 6. The lower parts of the glaciers in Gipsdalen have As parts of the glaciers are at the melting point, a relatively gentle slope (90 at the lower 2 km water may also run from the glacier in the at both Methuenbreen, Margaretbreen and Bol­ winter. At the front of the glacier this water tonbreen). This can imply that the glaciers are freezes into large cakes of ice, "icings". These currently relatively inactive. The front of the can become so large that parts of them survive Methuenbreen and the Margaretbreen has retre­ the entire melting season. In the summer of 1989 ated 450 and 150 m respectively since 1961. The there were two icings in Gipsdalen, one small on enclosed map shows the extent of the glaciers in top of the ice-cored moraine in front of Marga­ 1969. retbreen (about 50 000 m2), and a larger one in front of Methuenbreen close to the Finncoal On Svalbard it is common that the glaeiers move Development (FCD) camp, covering an area of relatively slow ly, partly because the ice is cold 0.67 km2 (Fig. 7). Assnming a mean thickness of and has low plasticity, partly because the glacier 2 m (probably a low estimate), this represents is frozen to the ground in the ablation area. 1.3 mill. m3 of water. Satellite images were Movement thus becomes too small to keep a state examined to check the dimentions of this icing in of equilibrium between the mass stored in the the recent past. As shown in Fig. 8, the icing upper part of the glacier, and that melting off was much larger in 1989 than in 1985 and 1986 in the lower part. This can create an increasingly (0.67 km2 compared to 0.12 and 0.11 km2). If steep surface in the upper part of the glacier

Figure 6 Meltwater stream from medial moraine at Methuenbreen. Geomorphology and Quaternary Geology of Gipsdalen, Svalbard 9

Figure Large icing (0,67 km2) on the alluvial fan in front of Methuenbreen. The location of the Finncoal 7 Development camp is indicated with a white arrow. Photo from helicopter, view towards W.

Icing in front of Methuenbreen 28'· ol July 28'· ol August 19'· ol July 1985 1986 1989

• 33X WH 440180 Legand : Se. map Glpsdalen (Tolgensbakk 1990) 1:40,000

Figure 8 The extent of the icing in front of Methuenbreen 1985, 1986 and 1989. 10 Environmental Atlas Gipsdalen, Svalbard until a certain critical limit is reached. Glacier with ice-cored moraines in front of current movement then increases manifold, and theglacier glaciers. Sediment sample 8 (Fig. 9) is collected front becomes steeper and moves rapidly forward. at a depth of 1 m in a cutting in the ice-cored This is called a "surge" (LiestøI 1969, 1989, moraine in front of Methuenbreen. Hagen 1988). The till covering ice-cored moraines is deposited Large moraine ridges lie in front of the current by inland ice. As usual on Svalbard, till from glaciers. As usual on Svalbard, these moraines inland ice is relatively sparsely represented contain a core of glacial ice covered by till. They within the mapped area. This type of till is far are thus called ice-cored moraines.The vegetation more cornmon in Fennoscandia. The reason for cover is relatively thin and discontinuous in large this difference may be that earlier claciations on areas of Gipsdalen, except for moist areas with Svalbard were dominated by cold-based ice (Sollid fine-grained marine sediment and a continuous & Sørbel 1988a), while this was less typical in cover of wet tundra vegetation. Fennoscandia. In Gipsdalen, till primarily occurs along the valley bottorn. A comparatively large The climate in central parts of Spitsbergen is till area is found between Methuenbreen and Boltonbreen. Sediment sample 7 (Fig. 9) high . The closest meteorological station is IS in , approximately 40 km southwest collected from one of the De Geer moraines in of Gipsdalen. The average annual temperature in . this area. Longyearbyen is -5.5°C, and the annual precipi­ tation is about 300 mm. Glaciofluvial material is transported by glacial rivers and deposited relatively close to the Svalbard's land regions have continuous perma­ glacier, in more or less well-sorted layers. Rock frost, with the exception of areas under the gla­ fragments are rounded by water transport. Sedi­ ciers. The depth of the permafrost ranges from ment sample 9 (Fig. 9) from a terrace ,north of ca. 150 m in the lower areas up to 500 m in the Methuenbreen may represent this type of materi­ higher areas (LiestøI 1977). The "active layer", a al. As seen from the grain-size curve, however, surface layer of about 0.5 m - 1.5 m, melts in the sample has a bimodal distribution. the course of the summer. In the summer of 1989, the depth of the active layer in Gipsdalen It is often difficult to distinguish between was measured to about 70 cm in areas with fine­ glaciofluvial and fluvial material on Svalbard. On grained material. In coarse material, the active the map, the term glaciofluvial material is only layer penetrates deeper because the ground con­ used on terraces clearly deposited by meltwater tains less ice and water. from inland ice.

Fluvial material, pre-recent refers to fluvial COMMENTS ON THE GIPSDALEN QUATER­ material deposited in areas where there is no NARY GEOLOGY AND GEOMORPHOLOGY river flow at present. This applies to alluvial fans MAP or alluvial plains that are partly overgrown with vegetation, as opposed to aetive regions where Surficial material vegetation can not establish due to continously changing ground surface. The enclosed map "Gipsdalen, Svalbard; Quater­ nary Geology and Geomorphology 1:40,000" Fluvial material, recent is transported and de­ (Tolgensbakk 1990), shows different types of posited by running water in connection with surficial material portrayed on the map as currently active rives. The material is sorted, surfaces with different colour shades. Surface often with pronounced layering. The· grain size material is classified on the basis of the way varies depending on the flow rate under the they were formed. It can, however, be difficult to aetual deposition process. Grain fragments are determine the genesis completely. Different gen­ often well-rounded. The degree of roundness etic processes can operate simultaneously, or the depends on the length of transport and the type original material may be affected at a later date of rock, and the fluvial material in Gipsdalen is by other processes. In such cases, the colour on generally less rounded than what is otherwise the map shows the dominating type of sediment, typical. In active alluvial plains the water while occurences that are small or difficult to continually changes its course, and the rate of delimit are labelled with letters. The different flow varies greatly throughout the season. types of surficial material shown on the enclosed Therefore, some parts of the river beds have map are described in the following section. pockets of fine sand or silt, while other parts are made up of coarse gravel or stone. Till is debris which is transported and deposited directly from glaciers. The _ material is angular, Lakustrine material found at Leirflata is not unsorted and may contain all grain sizes from given a separate colour in the map, but is shown clay fragments to large boulders. Till makes up, together with recent fluvial material. Lakustrine as a rule, a compact mass without clear layers. material is deposited in lakes. This means that Leirflata was previously a lake inside a threshold The largest till areas are found in connection in the valley that was ually filled up by Geomorphology and Quaternary Geology of Gipsdalen, Svalbard 11

sediments. Lakustrine material is, as shown by distinct beach ridges. Beach material is mainly sample 6 (Fig. 9), well-sorted and finer than made up of stones, gravel and sand, with rock fluvial material. fragments well rounded by wave activity. Finer grain particles are normally washed away, and Marine beach material is deposited by wave deposited in deeper water or in less exposed activity either in the current beach zone or in beach areas. Sediment sample 1 (Fig. shows a connection with sea levels from earlier post­ typical grain-size curve for beach material,9) while glacial periods. The material often builds up samples 3 and 4 contain more fine-grained

GIPSDALEN, Svalbard

• Localities for sediment samples

CLAY SILT SAND GRAVEL 100% .:;�� .-'" '" �", 90 I , I / I J1'l;/ 8 80 ./I/.V I/ i 'l! 70 V I ...-::� I ff JO ,/'/ J.,.- f 60 V/ --- 1..'1/ I I II 5 f J.-.---"' �� '" IJ I 50 I 1/ I I ...-,1 1/ I /V I 8 L)' 40 1/ 9 ,.7 v �/1 ..4 ... / V .. 30 21,1 �� V , V 1,-' V ..... 20 ,/ , / J,/ v '" " - - , V,. " ' 10 �� ---!d1-:; 1.- ... :,..- -- o l;;"'�- ,5 2 5 10 20 50 100,,", ,2 ,5 2 5 10 20 50 100mm Cumulative grain-size distribution curves

Figure 9 Sampling sites and cumulative grain size distribution curves for 10 sediment samples from Gipsdalen. The table shows Md (median grain size diameter) and 80 (sorting).

8ample no. MO (in mm) 80

1 3,7 1,14 2 0,0085 0,96 3 9,7 0,51 4 5,5 1,00 5 0,040 1,07 6 0,016 0,74 7 2,3 1,08 8 2,5 1,62 9 0,64 1,75 10 0,126 0,49 12 Environmental Atlas Gipsdalen, Svalbard material than what otherwise common for this more fine-grained than what is otherwise typical type of material. This is due to carbonation and for eolian material (samples 5 and 10, Fig. is to infilling of eolian material. because the material has its origin in the.9)fine­ grained marine material in the valley. Ma rine material, fine-grained is deposited by the settling of suspended material in salt or Weathered material is forrned in situ by brackish water. The deposits are generally made weathering of rock surfaces. Under climactic up of clay and silt (sample 2, Fig. Fine­ conditions like in Svalbard, frost shattering is the grained marine material covers large regions9). of most common weathering process. Weathered the valley floor in Gipsdalen. In lower regions material covers relatively large areas in shell fragments are abundant in the deposits. Gipsdalen, particulatrly on the maountain The material was deposited when Gipsdalen was plateaus. a shallow fjord after the inland ice retracted. Collu vium is formed through mass movement Eolian material is transported and deposited by such as avalanches, slides or rock fall. The wind. The grain size normally varies from material originates primarily through weathering medium or fine sand to coarse silt. Eolian in upper sections of mountain walls, where it is material is very well sorted. In Gipsdalen, eolian too steep for debris to remain situated. The deposits are mainly found north of the river coarsest fragments fall and roll farthest down in mouth of Gipsdalselva, around Leirflata and in the slope, while finer material remains higher up. the inner regions of Gipsdalen. The material is The material thus undergoes a· sorting. Rock fall

Figure 10 Earth hummocks on the flat valley bottom west of Aitkenfjellet. View towards NE. Geomorphology and Quaternary Geology of Gipsdalen, Svalbard 13 material builds up well-formed talus cones along 11). The moraine ridge in fr ont of Methuenbreen both sides of Gipsdalen (Fig. 5). is 57 m high, and that in fr ont of Boltonbreen is 48 m. The surface material of ice-cored moraines Gelifluction material. This term is used for a is generally coarse, often with big, angular sediment transported by slow downward flowing boulders. The iee-eore makes up the main part of of water saturated masses. The movement is a the ridge. The thiekness of the till cover varies few cm per year at most. The term gelifluction is from a few dm to severaI meters. The till cover limited to permafrost areas, but the process is on the ice must, however, be thicker than the basically the same as solifluction. Gelifluction aetive layer (that which thaws during the material is, as a rule, rich in fines, but it also summer) if the iee-eore is to be preserved over a contains coarser components. longer period of time. If the . ice-eore melts, a dead-ice with mounds and ridges will Organic material describes surfaces with a con­ remain (Sollid & Sørbel 1988b). tinuous peat cover. This includes moist bog areas with poor drainage in the valley floor (Fig. 10). Debris may also be fo und on the surfaee of th e The peat layer in Gipsdalen is relatively thin, at glacier high er up, for example where two glacier the most 30-40 cm thick. In such regions, perma­ tongues eombine into one. The material is carried fr ost is often found near the . surface due to th e downwards with the iee movement, and remains good insulative properties of the peat layer. on the surface in the ablation area as long There is also a great deal of water and ice in the stripes of till in the glaeie.r's longitudinal ground, and melting therefore requires greater direction. If the thickness of the till becomes amounts of heat than in dryer areas. more than a few cm, this layer wiIl insulate the iee surfaee underneath, and a sharp ice ridge (a Exposed Bedrockind icates surfaees not eovered medial morain) will emerge .under the debris by debris, or at the most only by a very shallow (Figs. 6 and 11). layer. In many plaees in Gipsdalen the rock surfaces are heavily weathered. The re sitant De Geer Moraines are relatively small but dis­ Hecla-Hoek surfaces innermost in the valley are tinet moraine ridges. U sually severaI moraines more intact. Exposed bedrock is also fo und in appear close together. De Geer moraines are mountain walls too steep fo r debris to remain formed at the front of glaciers that extend into situated. the sea. Here, the material remains unfrozen throughout the year, and moraine ridges can easily be formed by small winter advances of the Landforms glacier fr ont.

In this section, the different types of landforms De Geer moraines often have an asymmetrical shown on the enclosed map are described. cross profile. The side th at faces the glacier front (the proximal side) has a more gentle slope than Glacial Striae are narrow stripes on rock sur­ the lee side. The surface of the moraines may be fa ees, seldom wider than a few millimeters. The covered by glaeiofluvial or marine material. In stripes are caused by sand and rock particles in Gipsdalen, the surface of the de Geer moraines is the basal ice grinding against rock surfaces as often eovered with eolian (windblown) material. the glacier are moving. The stripes are therefore De Geer moraines . have been much discussed in oriented along the direction of ice movement such Scandinavian scientific litterature, and they are as this was at the time the stripes were formed. therefore of great interest. The moraine type is The map symbol for glacial .striae is a line indi­ relatively rare on Svalbard. In Gipsdalen the eating the direetion of iee movement towards the most distinet ridges are found in the valley observation point, which is indicated by a dot. bottom between the glaciers Boltonbreen and Methuenbreen (Fig. 12). Glacial striae that occur outside areas that have been eovered by current glaeiers, and therefore Canyons are fluvial channels in bedrock, whith must have be en forrned by larger glaciers under more or less verlical walls. Only small eanyons the last lee Age, are only observed at the head are found in Gipsdalen. of Gipsdalen; In this area, southwesterly orien­ tated striae are preserved the resistent Heckla­ Meltwater Channels are eroded by meltwater Hoek surfaces. Rock surfaces in the mapped area streams from glaciers. They area fo und along are otherwise so heavily weathered that old current glaciers, or where there were glaciers e.g. glacial striae are seldom preserved. Glacial stria during the deglaciation phase of the last lee Age. with a southerly and southwesterly direction Few such old meltwater ehannels are seen in occur on Gipshuksletta west of the mapped area Gipsdalen today. This is probably due to rapid (Lauritzen et al. 1988). weathering and mass movement during post­ glacial time.

Terminal and Media! Moraines, mainly ice­ Washed Surfaces are areas heavily affected by cOl'ed. In front of today's glaeiers on Svalbard, glaciofluvial erosion, normally without distinet there are often very large moraine ridges (Fig. meltwater channels. 14 Environmental Atlas Gipsdalen, Svalbard

Figure 11 Tenninal and medial moraines at Methuenbreen, view from the ice-cored moraine in front of Margaretbreen towards SE.

Figure 12 De Geer morains in front of Pyefjellet, The Finncoal Development camp is seen in the left centre of the photo. View towards NW. Geomorphology and Quaternary Geology of Gipsdalen, Svalbard 15

Gullies indicate V-shaped cuttings in fine­ of Gipsdalen. This line is seen seen on Fig. 13 grained sediment. The gullies are fo rmed through (marked with an arrow). This strandline is erosion by running water combined with mass caused by a regional transgression (relative in­ movement. crease in sea level) because of the final melting of the last part of the inland ice over the North Channels on A11uvial Fans and River Fiats American continent. Comparable transgression show both earHer and current drainage channels. leveIs, called Tapes LeveIs, are found along the The details in the pattem of the many drainage coasts of Fennoscandia. channels undergo constant change. The main pat­ tem, however, seems to be relatively stable, as Arites are narrow, sharp mountain crests result­ seen by a comparison of the current situation ing from backward growth of the walls of adjoin­ with patterns mapped by aerial photos fr om ing cirques or mountain slopes. 1961. . Erosion Scarps in Bedrock, large, refers to Alluvial Fans are fan-shaped deposits of fluvial distinct steep scarps in bedrock that mark the material with a dense pattem of drainage chan­ transition from flat regions in top areas to steep nels on the surface. The fans are deposited where slopes below (Fig. 14), or where there are clear rivers or streams from side valleys meet the scarps (edges) that mark the transition between main valley. Here, the incline of the valley rocks of different degrees of erosional resistance. profile decreases and the river is no longer able to transport as much material as in the steeper Erosion Scarps in Bedrock, small, are steep side valleys. The beds on the surface undergo slopes a few metres heigh, usually fo rmed by continual change in the active parts of the fans, fluvial or marine erosion (Fig. 15). especially in flooding periods, and the fans are expanded both on the sides and over the valley Erosion Scarps in Sediment are the same as floor. As may be seen on the map, alluvial fans above, but eroded in sediment. They are all rela­ cover large regions of Gipsdalen. The slope of th e tively small. 8 largest fans in Gipsdalen is on an average 3.2°, with extremes of 2.2° and 4.3°. Terrace Edges are slopes outlining distinct, horizontal terrace surfaces (front page). Such Eolian Forms are created by wind activity. The surfaces are, as a rule, built up of debris term partly refers to erosional hollows where the deposited in water. The surface shows a previous wind has removed material (deflation hollows), water leve!. The actual steep scarp may either be and partly to accumulation forms where wind­ fo rmed as a frontal slope on a delta under blown material create dunes and mounds. The fo rmation, or it may be caused by secondary latter fo rms are primarily found west of and erosion proeesses, especially river erosion. close to the outlet of Gipsdalselva. Depression, Thermoka rst is a depression Beach Ridges are distinet ridges made up of caused either by differential melting of ground sorted beach material. They are fo und either as ice, or by melting of glacier ice covered by active fo rms in the recent beach zone, or as fo ssil sediment. fo rms created by a relatively high er sea level in the pa st (Figs. 4, 13 and the front page of this * * * * * report). Beach ridges are fo rmed through accumu­ lation of sediment due to wave activity, and they Most of the landforms described in the following are often built" up during storms. The top of the section are periglacial landforms. This is a col­ ridges can therefore be several meters above the lective term fo r landforms directly assosiated average sea level at the time they were form ed. with either perrnafrost or with freeze-thaw pro­ The material in the beach ridges is relatively cesses. Among the periglacial landforms, a certain coarse as the fines are washed away. The grain group is called patterned ground (Fig. 16). This size may, however, vary according to how exposed is a collective term fo r a characteristical the area is to wave activity. In Gipsdalen, beach patterning of the surface into fo rms as polygons, ridges exposed to the south west are dominated by circles and stripes. Such patterns are very coarse gravel and stone, whereas parts facing common in most arctic areas, and also in high north-east are made up of finer material such as mountain areas at lower latitudes. The forms are sand and fine gravel. Well developed syste.m of termed sorted or nonsorted, dependent on raised beach ridges on both sides of the outlet of whether or not the pattem is due to a separation Gipsdalselva show the successive upHft of the of stones and fines. There is no general agree­ land after the last lee Age. ment about how the different types of patterned ground are fo rmed, except that their fo rmation is Strandlines are erosion lines fo rmed by wave connected to fr ost proeesses. activity in the beach zone. Unlike beach ridges, strandlines are erosional fo rms. Tundra Polygons (ice wedge polygons) are distinet polygon-shaped pattems on the surface, A distinet strandline, 19.5 m.a.sJ. run through often 10 to 40 meters across (front page). The the fo ssil beach ridge system in the lowest region creation of the polygons is initiated by thermal 16 Environmental Atlas Gipsdalen, Svalbard contraction. In the winter the tundra surface mocks occur in areas of fine grained material contracts due to low temperatures, and a pattem and a relatively continuous cover of vegetation. of tension cracks in the permafrost is fo rmed. The hummocks are created by repeated fr eezing During the summer, water fr om melting ice and and thawing of fine-grained debris. They are not snow freezes in these cracks in the permafrost, very com mon in Svalbard, probably because the creating th in, vertical ice wedges. The wedges are vegetation cover is generally too thin and dis­ weak zones in the ground, and subsequent cracks continuous for them to be formed. They are, how­ tend to follow the same pattem. The ice wedges ever, common on the flat and wet areas of fine­ are thus expanded until they become about 1 m grained marine sediment inside the large beach­ across in the upper section, reach a fe w meters ridge system that crosses Gipsdalen north-west of down in the ground. They create a pattem on Dalkallen (Fig. 10). the surface, because the growth of the ice wedges pushes debris out towards th e sides. The result Nonsorted Polygons and Circles, are patterns is a low depression over the actual ice wedge and formed by factors such as relief differences, a small ridges on both sides. crack system, or a systematie variation between vegetation covered and vegetation-free surfaces. Earth Hummocks make up a coalescing pattem The small unsorted fo rms in Gipsdalen are gene­ of small mounds, generally 20-30 cm high and rally different types of vegetation-free soil with a diameter of about 50 cm. Earth hum circles on an otherwise vegetation covered field.

Figure 13 Raised beach ridges along Gipsdalselva south of Usherfjellet. View towards SE. A strandline is marked with an arrow. Note also the dis tinet vehicular track in the baekground and the less distinet track in the foreground. Geomorphology and Quaternary Geology of Gipsdalen, Svalbard 17

Figure 14. Large erosion scarp in limestone south of Figure 15 Small marine erosion scarp in limestone at Gipshuken. View towards W.. Gipvsika. The height of the scarp is 4 m.

Figure 16 Patterned ground of various forms in the foreground. Usherfjellet in the background. View towards N. 18 Environmental Atlas Gipsdalen, Svalbard

They are probably made by differential frost Gelifluction Lobes (boulder tongues) are lobe­ heave on ground rich in fine material. or tongue-like forms created through slow flowing of material saturated with water. This flow Sorted Polygons are polygon al fe atures with a process is called gelifluction in areas with border of stones surrounding a central area of permafrost, and solifluction in other climatic finer material. The polygons are forrned through zones. frost sorting due to repeated fr eezing and thawing in the active layer. The polygons may in Rock Glaeiers are landforms connected to some cases be initiated by a pattern of con­ permafrost regions. The most common rock traction cracks created by drought or servere glaciers on Svalbard are primarily made up of frost. The actual fo rmation process is not yet coarse rock material with ice between the stones. clear. The material is derived fr om steep mountain walls by frost action. Under the active layer, Sorted Cicles are circular accumulations of 'water freezes, and stones and finer material are stones surrounding a central area of finer cemented by interstitial ice. This leads to a slow material. These fo rms are related to stone downward movement of the whole body of frozen polygons, but in contrast to the latter, they may rock and ice, somewhat like the movement known be completely circular and may occur from a normal glaeier. The movement is, how­ individually. Normally, however, sorted circles ever, much slower, not more than a fe w cm or also occur in groups. dm a year. The lower front of an active rock glacier is usually very steep (Fig. 17). Stripes, (sorted and unsorted). Sorted stripes are elongated accumulations of stones with inter­ Rock glaciers with a core of glacial ice below a vening areas of finer material. Sorted stripes are cover of rock debris may also occur. This type is related to sorted polygons, but in contrast to fo rmed when glacial ice is covered by large these, they occur on sloping ground. Nonsorted amounts of debris, either through slides fr om the stripes are linear patterns of vegetation and soil. valley sides, or from till that covers the fr ontal The stripes fr equently occur in areas with geli­ parts of a glaeier. Such rock glaciers are difficult fluction material. . to seperate fr om ice-cored moraines. In Gips-

Figure 17 Rock glacier north of Templet. The front is about 20 m high. View towards E. Geomorphology and Quaternary Geology of Gipsdalen, Svalbard 19

dalen, however, rock glaciers of this type do not common in permafrost areas. They are caused by occur. the upper, water-saturated soul layer sliding on the water impermeable permafrost, particularly Avalanche Tracks are distinct channel-like during the spring thaw. corridors in steep mountain walls along which avalanches . move (Fig. 5). They are formed by a Large Boulders are single boulders with a size combination of weathering and mass movement. of severaI cubic meters are depicted on the map, mostly derived from rock fall and rock slides. Talus Cones are cone-shaped deposits of colluvi­ um at the base of steep slopes, most often at the Mounds refer to erosion remnants of unconsoli­ continuation of avalanche tracks. The material dated deposits at the valley floor. The mounds derives fr om mountain walls, mainly caused by are low, but stand out c1early due to the flat fro st weathering. Talus cones are largely made surroundings (Fig. 18). up of coarse, angular rock material, but may also contain a fair amount of fines. The surface of the Glacial Crevasses are forrned because the upper talus cones is often scoured by debris flow layer of the glacier acts like a stiff crust over an channels (channels made by rapid flow of debris underlying mass of more plastic material. The with a high water con tent) (Fig. 5). crust breaks up when subjected to tension. The crevasses rarely penetrate deeper than 20-30 m, The lower parts of the mountain slopes on both where the ice becomes more plastic because of sides of Gipsdalen are more or less covered by the pressure. Glacial crevasses on the map are talus cones. The average gradient was measured derived fr om aerial photos from 1961. The same to 34.7° on 20 randomly selected large talus applies to the position of the glaciers. cones. The extreme values were 28° and 43°. Talus cones with c1ear signs of fluvial transport on the surface had a more gentle slope, as Iow as FACTORS THAT AFFECT TERRAIN WEAR 23.5°. Although those cones c1early consist of a mixture of colluvium and fluvial material, they Different areas are to a different degree vulne­ are c1assified as colluvium on the map. rable to terrain damage caused by driving, seis­ mic activity, installations or other human en­ Debris Slides, small are landslides of Unconsoli­ croachments. The vulnerability is, among other dated earth, soil and debris. Such slides are things, dependent on vegetation cover, type of

� �• •� !� �•....iIr �

Figure 18 Mounds (erosion remnants consisting of fine-grained marine material) close to Gipsdalselva SE of . Usherfjellet. Note vehicular track crossing the mounds. View towards SW. 20 Environmental Atlas Gipsdalen, Svalbard

surficial material, topography, permafrost con- ing and bring about larger and more lasting damage (Fig. 19). Tracks on slopes act as chan­ ditions, local climate, and water accessibility. nels for running water, and this may lead to Generally, the vulnerability is much greater for serious soil erosion. unfrozen ground than for snow covered, fr ozen ground. An overview is given below of the most important fa ctors that affect terrain wear. CLASSIFICATION SYSTEM FOR THE EVALUATION OF VULNERABILITY Vegetation Cover is important in maintaining the thermal balance in the upper surface layer in In the following section the degree of "vulnera­ a permafrost climate. If parts of the vegetation bility to wear" is used to indicate how likely an cover are removed, the thaw will . penetrate area is to suffer terrain damage when exposed to deeper than in nearby areas. This can bring impact fr om activities like constructions, vehicle about local sinking of the ground, channelling of driving, seismic explosions, removal of vegetation runn ing water and cause rem oval of the soil and cover by wear or pollution etc. Not all human vegetation cover. The damage impact fr om wear activities wiIl necessarily inflict damage to vul­ is often greatest in areas with a thick' and nerable areas, but special consideration must be continuous vegetation cover. taken in order to avoid negative effects. Driving on fr ozen, snow-covered areas will normally not Type of Surficial Material is of great le ad to any noticeable wear. importance in evaluating vulnerability. Especially important is the grain size of the sediment. Fine­ It is desireable to tind criteria fo r how to evalu­ grained material is fr ost susceptible, and due to ate the vulnerability on the basis of mapping and frost heave such material has a high con tent of registrations before activities begin. No complete segregated ice both in the upper part of the system exists, but a proposal for vulnerability permafrost and in the active layer in the winter. criteria is discussed by Sørbel & Tolgensbakk (in The con tent of ice in fine grained material is prep.). In this report, the evaluation of the areas quite often high er than 50 %. Such material is are made on the basis of these proposals. therefore more - unstable and more subjected to mass movement and erosion processes than The vulnerability of an area may be placed in coarser material. Deeper thawing may result in one of the following general categories: depressions in the surface. The composition of the surficial material is largely determined by the mo de of transport and the parent rock.

Topographie Conditions of consequence are primarily gradient and exposure. Exposure means . towards which direction the slope is facing, and whether the terrain surface is convex or concave. Areas with a steep slope are normally more ex­ posed to terrain wear, since wear here may trig­ ger off mass movement and cause serious erosion. The exposure is significant for snow accumu­ lation, and thereby the length of the snow-free season and the amount of meltwater.

Permafrost Conditions. The depth of the active layer influences the drainage and the stability of the sediment. The depth is, among other things, determined by the insulation capacity of the vegetation cover, the type of material, the length of the snow-free season, and the moisture con­ ditions. In fine-grained material, permafr ost may contain layers and small lenses of ice. There are also larger bodies of ice in tundra polygons and pingos. The ice content is greatly dependent on the grain size in the sediment and on the access to water.

Water Access. Factors of significance are the con tent of water or ice in the upper surface layer, location in relation to melting snow drifts, drainage conditions and permeability. Changes that lead to accumulation of water on the ground Figure 19 Permafrost melting and sinking ground may cause increased melting of the perm afrost. due to water accumulation in vehicular track west of Water puddles in vehicular tracks increase melt- Aitkenfjellet. View towards NE. Geomorphology and Quaternary Geology ol Gipsdalen, Svalbard 21

Group 1 - Areas that are invulnerable to wear. are not necessarily particularly vulnerable to This category cornprise active alluvial plains and wear, but it is desirable to protect the areas in alluvial fans, dry fall regions, etc. where the their original form without external influences of surface is continously changing so that tracks any kind. will not last for a long time. Glaeiers and ex­ posed bedrock also fall ,under this group. The same applies to vegetation-free surfaces in areas CURRENT TRACKS IN GIPSDALEN with coarse sediment, e.g. boulder fields and some ice-cored moraines. In such areas, there are A distinet vehicular track runs through the west­ normally no significant traces of wear. ern side of the valley, mostly along the river. On flat areas with coarse sediment and thin vege­

Group 2 - Areas that are slightly or moderately tation cover there are lasting traces of wear, but vulnerable to wear. The principal criteria for this the dam age is not very prominent. This applies group are impacts may leave traces of damage on to marine terraees, other areas with rai sed beach the surface - even lasting traces - but the dam­ forms and fo ssil alluvial fan s. These areas are age is not particularly prominent. This mainly classified in Group 2 with respect to vulnerability applies to areas with thin and discontinuous (Fig. 20). vegetation cover on coarse surface material: coarse gravel, weathered material or till contain­ Areas with fine-grained surficial material, con­ ing sparce amounts of fines. Such areas are rela­ tinuous vegetation cover and good access to tively dry, and the upper part of the permafrost moisture have the most distinet traces of dam age does not contain much ice. Normally traces of due to destruction of the vegetation cover and wear will not penetrate deeply into the ground, deeper melting of frozen ground (Fig. 21). In and further erosion will not occur. The wear does addition, damage by vehicular tracks in these not affect the depth of the active layer to any areas are often extended as soil destruction by significant degree. fo rmer tracks has fo rced drivers to repeatedly . choose new routes. Most of these areas belong to Group 3 - Areas that are vulnerable to wear. Group 3. Af; the road mainly follows the flat The traces of damage are of a lasting charaeter, valley floor, there is no great danger of further and they are particularly prominent on the erosion by mass movement. Loeal areas with ground. In some parts the worn areas can be sloping ground, however, are seriously damaged extended through subsequent erosion. These areas due to subsequent erosion, and these areas are are usually characterized by a continuous classified to Group 4 (Fig. 22). vegetation cover and fine-grained surfieial material, often loclized to flat valley regions, wet The distinct "road" in Gipsdalen is presumed to tundra or plateaus up to medium elevation. be a result of summer driving with large ve­ These areas are particularly vulnerable because hicles. For practical reasons the road generally wear may easily alter the thermal palance in the follows the dryest areas. Comparable vehicular sUrface layer. This brings about melting of the tracks in moi st terrain with a steeper slope permafrost and local sinking of the ground would, have caused comprehensive damage. surface.

Group 4 - Areas that are greatly vulnerable to CLASSIFICATION OF AREAS IN GIPS­ wear and subsequent erosion. The traces of wear DALEN ACCORDING TO VULNERABILITY are of a lasting nature and are highly visible. The extent of the damage will normally increase Mapping of land fo rms and surficial material because of melting, often combined with mass together with the evaluation of dam age along the movement and eros ion by running water. These current ro ad are the basis for the classification of areas have many characteristics in common with vulnerability areas shown on Fig. 23. areas in Group 3. Af; a rule, the sUrface material is fine-grained, and most often there is a con­ At the lower part of the valley there are well­ tinuous vegetation cover. Additionally, one or formed systems of raised beach fo rms (Figs. 4, 13 more of the following characteristics occur: sIop­ and front page). These are of scientific interest ing ground, an abundance of moisture/running and clearly considered as worthy of conservation. water, and if the areas are flat, there is much Some of the areas with raised beach forms have iee in the upper part of the permafrost layer. also a well-formed pattern of large tundra The most important effects of the damage are polygons on the surface (front page). Two of the that subsequent erosion brings about signi{icant . most representative areas are classified in Group extension of the original traces of wear. 5.

Group 5 - Areas worthy of conservation. These A field with De Geer moraines between Bolton­ are special locations like, for example, unique breen and Methuenbreen is also . considered land forms, rare plant communities, occurances of worthy of conservation (Group 5). De Geer fo ssils etc. that are of special scientific, pedagog­ moraines are scarce on Svalbard, and as the ical value or in some way of interest to natural ridges are rather small they may easily be history or recreational experience. These areas destroyed. Besides the beach ridges and the De 22 Environmental Atlas Gipsdalen, Svalbard

Figure Vehlcular track on the fos sil part of an alluvial fa n south of Leirsletta. Vulnerability Group 2 area 20 due to coarse surface material and scarce vegetation. View towards NE.

Figure 21 Vehicular track on fine-grained marine material south of Leirsletta. Vulnerability Group 3 area. View towards NE. Geomorphology and Quaternary Geology of Gipsdalen, Svalbard 23

Geer moraines no other landfo rms are fo und classified as worthy of conservation, these areas worthy of conservation. belong to Group 2.

Current alluvial plains and active alluvial fans in Along the valley bottom, most of the flat vege­ fr ont of the side valleys are changing continously tated areas with fine-grained material or and traces of wear will normally disappear. gelifluction material are vulnerable to wear and These areas are therefore considered as invulner­ accordingly classified in Group 3 (Fig. 23). able (Group 1). Parts of the alluvial fans that are fo ssilized and overgrown with vegetation are a LocaIly, due to slope, water access or vegetation little more vulnerable (Group 2). Steep slopes and cover, wear may lead to serious erosion. Those talus cones are considered invulnerable or areas are classified to Group 4, and they are moderately vulnerable (Group 1 or 2). marked with a heavy tint on Fig. 23. The raised beach areas have coarse surface material, the ground is dry and the vegetation is It is likely that there are other local areas where scattered. These areas are accordingly only the risk of damage through erosion is high, but slightly or moderately vulnerable to wear. Unless due to insufficient field data fu rther predietions are not given at present.

Figure Vehicular track dose to the Finncoal Development camp. The damage is severely increased by 22 melting and fluvial erosion. Vulnerability Group 4 area due to fine-grained marine material with high ice/water con tent. View towards E. �

�<:: 1 100,000 GIPSDALEN, Svalbard Evaluation of Vulnerability : a· ;:::s � � ;:::s S ""- � � Q -6. I b g. � �'" � 1" ? ) en<:: / �""- o­ � a.

/N/

o GROUP 1 Areas that are invulnerable to wear O GROUP 2 Areas that are slightly or moderately vulnerable to wear _ GROUP 3 Areas that are vulnerable to wear _ GRO UP 4 Areas that are greatly vulnerable to wear and subsequent erosion 1* *1 GROUP 5 Areas worth conservation

Figure 23 Conservation value and vulnerability to wear of areas in Gipsdalen. Geomorphology and Quaternary Geology of Gipsdalen, Svalbard 25

REFERENCES

Salvigsen, O. 1984: Occurence of pumice on raised Cutbill, J.L. &; Challinor A. 1965: Revision of the Stratigraphical Scheme for the Carboniferous and beaches and Holocene shoreline di splacement in the inner area, Svalbard. Polar Research 2 n.s. Permian Rocks of Spitsbergen and Bj ørnøya. Geol. Mag. 102, 418-439. 107-113. Sollid, J.L. &; Sørbel, L. 1988a: Utbredelsesmønstret Elvebakk, A. &; Sørbel, L. 1988: Botaniske og av løsmateriale og landformer på Svalbard 'noen kvartærgeologiske undersøkelser i Agardhdalen, øst­ ' hovedtrekk. Norsk geogr. Tidsskr. 42. Spitsbergen. Universitetet i Tromsø, Institutt for biologi og geologi, Universitetet i Oslo, Geografisk institutt. og (Report, unpublished). Sollid, J.L. &; Sørbel, ,L. 1988b: Influence of temperature conditions in formations of end moraines in Fennoscandia and Svalbard. Boreas. Gj elberg, J. &; Steel, R.J. 1981: An outline of lower - middle Carboniferous sedimentation on Svalbard: ' effects of tectonic, climatic and sea-level changes in rift Steel, R.J. &; Worsley, D. 1984: Svalbard s basin sequences. Mem. Can. Soc. Petrol. Geol. 7 post-Caledonian suata - an atlas of sedimentational ' 543-561. patterns and palaeogeographic evolution. In A.M. Spencer et al. (eds.): Petroleum Geology of the North Hagen, J.O. 1988: Glaeier surge in Svalbard with European Margin. Norwegian Petroleum Society / examples from Usherbreen. Norsk geogr. Tidsskr. 42. Graham & Trotman, London, 109-135.

Hansson, R., Presterud, P. Øritsland, (eds.) Sørbel, L. 1987: Kvartærg eologiske registreringer og N.A. . . 1990: Assesment system fo r the environment and kartleggmg av kj ørespor l ' Sassendalen og Gipsdalen, industrial activities in Svalbard. Norwegian Polar Svalbard. Geografisk institutt, Universitetet i Oslo. Research Institute. (Report, unpublished.) Sørbel, L., Sollid, J.L. &; Etzelmiiller, B. 1989: Høgvard, K. &; Sollid, J.L. 1988: Ky stkart Svalbard, Kvartærgeologi og geomorfologi i Reindalens B4 1:200 000. Geografisk institutt ' nedslagsfelt, Svalbard. , Universitetet i Oslo. Geografisk institutt U�versitetet i Oslo. (Report, unpublished.) Høgvard, K. &; Sollid, J.L. 1989a: Ky stkart Sørbel, L. &; Toigensbakk, J.: Erosjonsstudier og Svalbard, B5 Sørkapp 1:200 000. Geografisk institutt' Universitetet i Oslo. kvartærgeologisk kartlegging innenfor kartbladet Adventdalen, Svalbard. In prep. Høgvard, K. &; Sollid, K.J. 1989b: Kys tkart Toigensbakk, J. 1987: Erosjonsundersøkelser Svalbard, C4 Edgeøya 1:200 000. Geografisk institutt og ' kvartærgeologisk kartlegging i Berzeliusdalen. Universitetet i Oslo. In Presterud, P. & Øritsland, N.A (eds.): Mi ljø under­ søkelser i tilknytning til seismisk virksomhet Høgvard, K. &; Sollid, J.L. 1990: Ky stkart Svalbard på Svalbard 1986. Norsk Polarinstitutt Rapportserie 34 B3 Isfjorden 1:200 000. Geografisk institut ' t' 19�21& Universitetet i Oslo. Toigensbakk, J. 1990: Gipsdalen, Svalbard. Kristiansen, K.J. &; Sollid, J.L 1986: Svalbard Quaternary geology and geomorphology 1:40,000. glasial-geologisk- og geomorfologisk kart 1:1000 00 0. Department of physical geography, University of Oslo. Nasjonalatlas fo r Norge. Geografisk institutt ' Universitetet i Oslo. Toigensbakk, J. &; Sollid, J.L. 1987: Kvadehuksletta, geomorfologi og kvartærgeologi 1:10 Kristiansen, K.J &; Sollid, J.L. 1987: Svalbard 000. Geografisk institutt, Universitetet i Oslo. Norsk jordartskart 1:1000 000. Nasjonalatlas fo r Norge : Polarinstitutt Te makart nr. 8. Geografisk institutt, Universitetet i Oslo. Toigens akk, J. &; Sørbel, L.: Adventdalen, geo­ Lauritzen, ø., Andresen, A., Salvigsen, and � o. morfologl og kvartærgeologi 1:100 000. Geografisk Winsnes T.S. 1989: Geological map of Svalbard institutt, Universitetet i Oslo. In prep. 1:100.000. Sheet C8G, Billefjorden.' Norsk Polarinstitutt Temakart nr.5. Ødegård, R., Sollid, J.L. &; Trollvik, JA 1987: Kystkart Svalbard, A 3 Forlandsundet 1:200 000. Lauritzen, ø., Salvigsen, O. &; Winsnes, T.S. 1988: Geografisk institutt, Universitetet i Oslo. Norsk Billefjorden, Spitsbergen. Geological map Svalbard Po larinstitutt Te makart nr. 6. 1:100,000. Norsk Polarinstitutt Temakart nr. 5 1988.

Liestøi, O. 1969: GlaclaI surges in West Spitsbergen. Canadian Jo urnal of Earth Sciences 6, 895-897.

Liestøi, O. 1977: Pingos, springs and permafrost in Spitsbergen. Norsk Polarinstitutt kbok 1975, 7-29. Liestøi, O. 1989: Kompendium i glasiologi. Meddelelser fra Geografisk institutt, Universitetet Oslo. Na turgeogra{isk serie. Rapport nr. 15. 92 pp.

GIPSDALEN, CENTRAL SVALBARD; FLORA, VEGETATION, AND BOTANICAL V ALUES Possible consequences of planned mining activities

Juvenlie, but reproductive Braya purpurascens (foto: Reidar Elven). by Reidar Elven *, May-Britt Eriksen **, Arve Elvebakk **, Bernt E. Johansen ***, and Torstein Engelskjøn *

University of Oslo, Botanical Garden Museum * & University of Tromsø, Institute of and Geology ** University of Tromsø, FORUT *** 28 Environmental Atlas Gipsdalen, Svalbard

SUMMARY AND CONCLUSIONS

1) The Gipsdalen area contains botanical values . extremely nutrient-poor ecosystems of Gips­ at severaI levels (see pp. 41-42). Three dalen. Sewage fr om the mining site would vascular plants are very rare on a European influence the entire fluvial system of the (Carex amblyrhyncha - buttstarr) or Svalbard valley, and threaten severaI elements of scale (Juneus castaneus - kastanjesiv, and botanical value.

Ko bresia simpliciuscula - myrtust). SeveraI others are rare on a Svalbard (regional) scale. - Impacts on sites of special botanmical Many occurrences are marginal in a phytogeo­ values. graphical or ecological context. This is due to the location of the area in an inn er fjord zone 6) The plans presented are not sufficiently with warmer climate than anywhere else in detailed for an analysis of possible conse­ the world at this latitude. quences. The following conclusions and rec om­ mendations are preliminary: 2) One of the very fe w plant species totally protected in Norway - Braya purpurascens - The mining activity in the Margaretbreen - (purpurkarse) - occurs in very large popu­ Methuenbreen area should avoid the local lations throughout Gipsdalen (see p. 42). No areas with botanical values in the upper construction activity can be undertaken part of the valley. without disturbing or destroying parts of the populations. This . species is one of those - The conveyor system and transport road protected by the Norwegian Government to should be situated as close to the river as comply with the requirements for ratification possible in the uppermost parts (from of the Bern Convention of 1983. An exeption "Leirsletta" and upwards), but should avoid fr om the protection must be given by the the river margin further down. Norwegian Government before any construc­ tion activity is undertaken. - Special care should be taken to avoid the valuable marsh area at U sherfjellet and in 3) The nationally and regionally rare and vulne­ crossing the valuable ridge and marsh rable species are confined to a fe w vegetation system to the west of the estuary. It might types of restricted distribution in the area (see be possible to cross the Tverråa river fa n p. 43): (a) Sloping, drained marshes of a ther­ and fo llow a major, bro ad beach ridge to a mophilic type; (b) open, calcareous, gravelly or suitable harbour area. siltY ridges; (c) silty . river margins; and (d) bird-cliffs. Sites of the types (a)-(c) may be - No harbour facilities should be located to the innermost parts of Gipsvika, or to influenced by the planned activities.. Their location is indicated in Fig. 4. Gipshukodden, but could be located between these areas without large conflicts with 4) The vegetation pattern of Gipsdalen (see pp. botanical interests. 43-52, Fig. 5 and enc10sed vegetation maps) differs fr om all other investigated areas in the There should be no additional supply of inner fjords by being a virtual limestone semi­ nutrients (sewage) to any part of the eco­ desert (or arctic steppe), with low productivity systems, and especially not to marshy areas due to lack of nutrients (except Ca, Mg), or the river. drought, and selective effects effects of the abundant calcium carbonate. The open vege­ - A joint field survey should be undertaken to tation types, resulting fr om the specialized decide the exact location of the road/ ecological conditions, are widely distributed in conveyor belt and the mining and harbour Gipsdalen. facilities.

5) The main dangers to the botanical values arising fr om the planned activities are (see INTRODUCTION also pp. 60, 63-64): Until recently the botany of Biinsow Land (where - Erosion on ridge tops, in the slopes and in Gipsdalen is located) was little known, compared the marsh areas along the conveyor system with other areas in the inner parts of Isfjorden. and planned new transport road. Numerous plant species had be en recorded, mainly fr om coastal areas (see e.g. Rønning - Changed drainage in marshes (both impeded 1972), but no systematic survey of the flora had and enhanced) due to construction and been made. The vegetation types and their ditching. distribution were virtually unknown. The situ­ ation has changed in · recent years, through - Increase in influx of nutrient fr om sewage botanical field investigations in 1985, 1987 and or diffuse seepage from working sites. Such 1989, coupled with use of aerial photos and impacts would be very detrimental to the satellite data. Gipsdalen, Central Svalbard; Flora, Ve getation, and Botanical Values 29

The investigations in 1985 and 1987 were made STUDY AREA by C. , Brochmann, A Elvebakk, R. Elven, T. Engelskjøn, L. Hodin, B. E. Johansen, J. T. The most important factors for the Schwenke, and S. Spjelkavik, and supported development of flora and vegetation are: land­ financially by the University of Tromsø, Institute fo rms, bedrock and substrates, climate, and geo­ of Biology and Geology and FORUT. The graphical position. All place-names refer to the purposes of the se investigations were purely map Billefjorden (Sheet C 8, 1 : 100,000, Nor­ scientific, but relevant results are included in the wegian Polar Research Institute, Oslo 1984). present report.

The 1985 investigations were mainly floristie Location and topography including major parts of the main valley . of Gipsdalen, the Gipshukodden - �åsodden plam, Biinsow Land is surrounded by fjords to SE and along the Templet mountain east to the (Tempelfjorden), SW (Sassenfjorden) and W (Bille­ Kapp Murdoch area. The areas of NW fjorden), and by large glaeiers to E (Tun breen) Gipsdalselva river bet�een Me nsfjellet �d � �� and N (Nordenskioldbreen). It is locally Isolated Tverråa were not investIgated. ImtIal vegetatIon from other land areas, but due to efficient wind studies were undertaken in the lower parts of dispersal of and fruits across snow and ice the valley. The 1987 investigations comprised this isolation is irrelevant for most plants. floristie studies and vegetation mapping in th e inner parts of the valley between the Methuen­ A main topographical feature is the deep trough breen and Margaretbreen glaeiers. of Gipsdalen, dissecting the peninsula from SW to NE along a distance of approximately 25 km The 1989 investigations were financed by fr om the Gipsvika bay to the Florabreen glaeier. N orthem Resources Ltd. through the Norwegian The valley is broadly U-shaped and of even Polar Research Institute (NP). Field investi­ width (approx. 3 km). The longitudinal profile of gations were made by M.-B. Eriksen and the valley floor is also even, with an elevation A Cross, with these main purposes: increase of only 25 m in the first 14 km, and another 75 m in the last 10 km of the valley. - Supplementing the floristie registrations, The even profiles do not provide much shelter especially on the NW side of Gipsdalselva. from fjord winds and fall winds from the glaciers. - Undertaking a field control of a satellite-based The valley floor passes evenly into gentle slop�s vegetation map of the area, construed by on the sides, ending more or less abruptly m FORUTII'r6msø fr om Landsat (TM) data. talus screes along all mountains. The heights of the mountains increase fr om about 700 m a.s.l. - Undertaking a conventional vegetation m�p­ in the outer parts to more than 1100 m a.s.l. in ping of the entire valley, based on aenal th e innermost parts. Stable vegetation is confined photographs and field surveys. to the valley floor upwards to the scree slopes and to a fe w mountain plateaus (see Fig. 6 and - Evaluating the vulnerability of plant popu­ Spjelkavik Elvebakk 1989), while the 3-500 m & . lations and vegetation types within the high, unvegetated scree slopes represent a barner indicated construction areas. between the vegetated beIts.

Main purposes of this report are: A more varied topography is encountered in the lowermost part of the area, where the wide bay - To present a survey of the higher flora of Gipsvika is delimited by the steep Templet (phanerogams and pteridophytes) of the area; mountain to the SE, and by the low plateau of to compare it with other inn er fjord areas of Gipshukodden, Gipshuksletta, and Gåsodden to Svalbard' and to indicate speeies of value in the NW. These areas are all well vegetated. conservation at severaI geographieal leveIs: international/national, regional (Svalbard) and Raised littoral terraces are eharaeteristic and loeal (Biinsow Land). biologically important features of the Gåsodden­ Gipshukodden prornontory, the Gipsvika bay area, - To present a vegetatiQn classification suited and of the lowermost 4 km of the valley, pro­ both for conventional and satellite-based vege­ viding habitat complexes of dry, nutrient-poor tation mapping; to give short descriptions of . ridges and damp depressions. vegetation types in the area; to compare Wlth other areas; and to indicate elements of inter­ The main topographical fe atures of the area were est in a conservation con text. forrned by glacial erosion and deposition. The present glaciation is, however, restricted to small - To indicate areas with location of elements of ice-caps on some of the mountain plateaus sur­ special botanical value. ro un ding th e valley, to outlet glaeiers in the tributary valleys, and to the interior part where - To evaluate the mining plans as to possible Florabreen is an outlet glaeier of the extensive conflicts with botanical values. iee-cap of th e N ordenskioldbreen and 30 Environmental Atlas Gipsdalen, Svalbard glaciers. Only a few of the tributary valley 1988): The basal, metamorphic Hecla Hoek fo r­ gl aciers extend to the main valley (Stenhouse­ mation; Devonian, Carboniferous, and Permian breen, Boltonbreen, Methuenbreen, and Margaret­ sedimentary rocks; and dolerite of age. breen), and re cent moraines constitute an insig­ nificant part of the substrate in th e main valley. An outcrop of the Hecla Hoek formation is found in the uppermost 4 km of the valley. These are The main river of Gjpsdalselva runs from the the only hard, silicic basement rocks in the Florabreen glacier snout, and receives significant lowlands of central Isfjorden, mainly micaschists tributaries fr om all tributary valleys. The river and quartzites. A study of the vegetation of these course may be divided into three parts: outcrops was one of th e major aims of the 1985 expedition to Gipsdalen. Most areas are, however, 1) Along the uppermost 11-12 km the river bed influenced by calcareous fine-textured soil, mainly is broadened in most sections, apart fr om a morainic, partly aiso aeolian. Only small patches small canyon below Rinkbreen. River sedi­ of acidophilic vegetation and species are found. ments are mostly gravelly or silty. A consoli­ dated river margin vegetation is rarely The bedrocks exposed in most of the valley are developed. calcareous sedimentary rocks of five formations (see Lauritzen et al. 1988): The Lower Carboni­ 2) Leirflata is an about 3 km long and 1 km ferous Billefjorden Group is represented in the wide sedimentation basin SW of the tribu­ upper parts of the valley floor from the Hec1a taries from the Stenhousebreen and Bolton­ Hoek limit to the MethuenbreenJMargaretbreen breen glaciers. Most of the silty banks are area. The Upper Carboniferous Ebbadalen For­ devoid of vegetation, but scattered stands of mation occurs along the valley floor between more or less ubiquitous plants are fo und along MethuenbreenJMargaretbreen and Boltonbreenl the margins and on elevated banks. Stenhousebreen and along the north side of the valley slopes further north. The main parts of 3) In the lowermost 7-8 km a distinct river the valley floor and lower slopes belong to the channel has fo rm ed, with elevated banks and Carboniferous to Permian N ordenskioldbreen siltY margins. Here a well-developed river Formation. The younger Permian formations, i.e. margin vegetation is found. the Gipshuken and the Kapp -8tarostin, are confined to the upper slopes and (especially the Recent fluvial sediments are a significant part of Kapp Starostin Formation) to the mountain the substrate in the entire valley. plateaus.

River fa ns fr om the tributary valleys are a The biological effects of most of the Carboniferous distinct fe ature of biological significance, being and Permian fo rmations are fu ndamentally the covered by an open, unstable vegetation with low same: they prodvide calcareoo.s, dry lithosols. The competitive power. This vegetation is distinctly Kapp Starostin bedrocks differ in being silicified different from the mature, stable vegetation chert, a very hard rock producing coarse, silic­ between the fans in the lower part of the valley, eous pebble beds, but intermingled with calcar­ less so in the upper part. River fans constitute eous fine-textured soils. about 20 % of the valley floor area. Dolerite is restricted to the Gipshukodden - For botanical purposes the topographical elements Gåsodden plateau. It is weathering resistant, but and types of substrate types may be divided into contains plagioc1ase, and produces a circum­ the following groups: neutral soil. !ts biological effects are modified by calcareous debris, and they are mostly structural/ - Bottom moraine, covering large parts of th e topographical. The saxicolous lichen vegetation valley floor. does not inc1ude strongly acidophiIic species, and - Recent sedimentation areas along th e main acidophilic vascular plants are very rare. river: gravel and silt. - River fa ns: gravel. The gypsum, which has given name to the valley, - Recent moraines: boulders, gravel and silt. is found as anhydrite horizons in the mountain - Talus: boulders and debris. sides in severaI fo rmations, and as heaps close to Raised beach ridges: mainly gravel, but locally the Margaretbreen moraines. The gypsum silt. weathers very easily. The beds in vertical or very steep mountain sides are totally unvegetated. The The distribution of the more deviant types of outcrops in th e valley have a Dryas vegetation imporlance fo r the development of vegetation is similar to the prevailing vegetation on other indicated in Fig. 1. calcareous ridges, but more open.

Biologically, the single most important feature of Bedrock the bedrock and morainic material of Gipsdalen is that it is so uniformly calcareous. It has a For botanical purposes the bed rock may be decisive influence both on the floristic compo­ divided into three groups (see Lauritzen et al. sition (see pp. 34-43) and the vegetation pattem Gipsdalen, Central Svalbard; Flora, Ve getation, and Botanical Values 31

Recent moraines.

River sedimentation fiats, loamy.

Tributory river fans, gravelly.

Raised beach ridges, calcarcous grave Lrl I.

Figure 1 Distribution of special landscape features influencing the development of vegetation in Gipsdalen: raised beach ridges, river fans, river sedimentation plains, and recent moraines. 32 Environmental Atlas Gipsdalen Svalbard

(see pp. 60). Chemical weathering is restricted in thick snow cover of long duration. This is partly arctic areas, and the physical weathering of a result of the even topography, and the preval­ limestone results in large fr actions, gravel and ence of valley winds, but also indicates low shingle, and very fine-textured fractions like silt. winter precipitation. The thin snow cover is a The coarse substrate is poor in most nutrients distinct difference between Gipsdalen and e.g. the except calcium. Excessive drainage inhibits Sassendalen and Adventdalen valleys. formation of a well-developed humus layer, a prerequisite for capturing and retaining of both Cold air is transported downwards through the water and nutrients. The vegetation is therefore flat valley with no topographical obstacles. This much less developed than one should expect valley wind climate is probably very important in under the prevailing climatic conditions. Large understanding the drought, and it has a distinct areas might be classified as an "arctic steppe or cooling effect, especially in the upper part of the semi-desert", a fe ature known from other areas valley. The wind effect can easily bee seen from (see e.g. Scholander 1934). Arctic steppes and the deposits of aeolian silt. Enhanced radiation, semi-deserts are areas with scant vegetation due however, may compensate for the thermic effects. to low precipitation in combination with a dry substrate and inhibiting effects from excess of lime. Phytogeographical position

The earliest subdivision of Svalbard into Climate phytogeograpical areas was made by Summer­ hayes & Elton (1928). They divided the coastal The general is arctic-oceanic areas of the into four zones: the climati­ (see Walter 1973, Walter-type IX), but with large cally most fa vourable Inner Fjord Zone, the local differences. somewhat less favourable Cassiope tetragona (kantlyng) zone, th e very widely distributed Zinger et al. (1985) have estimated summer Dryas octopetala (reinrose) Zone, and th e Barren isotherms based on glacioclimatic data. A Zone (mostly polar deserts). Biinsow Land is gradient is found fr om 2-3°C on the outer coast located in the most favourable part, the Inner of western Spitsbergen to 5°C in central fjords. Fj ord Zone. Gipsdalen is here placed in the zone with mean summer temperature between 4°C and 5°C. This The same division with only small modifications corresponds weU with mean temperatures at the has been applied by Brattbakk (1986) in a map­ only weather station in inner Isfjorden ping of the entire islands. His Cassiope tetragona (Longyearbyen 1957-1976 and Svalbard airport Zone includes · the two most favourable zones of 1976-1989). July and August means during the Summerhayes & Elton, while he divides their period 1976-1989 are, respectively, 6.1°C and Dryas Zone into a Dryas Zone and a less favour­ 4.8°C (data from Det Norske Meteorologiske able Salix polaris (polarvier) Zone. Brattbakk's Institutt 1989). Only three months have mean subdivision is too schematic fo r the inner fjord temperatures above zero (June-August).

Winter temperatures are probably lower in the 40 MM fjords than on the outer coast. Means of the two coldest months, January and February, are 30 -15.8°C and -16.0°C, for th e period 1976-1989. 12 'C 20 Precipitation is low, with a yearly mean (1976- 1988) of 186.5 mm. Mean precipitation amounts 10 in the three summer months are 9.9 mm (June), 12.5 mm CJuly), and 27.6 mm (August).

A general climate diagramme fo r Svalbard airport - 4 (close to Longyearbyen) is presented in Fig. 2. - 8 Gipsdalen probably differs climatically from the Longyearbyen area in some respects: The location in th e interior part of a peninsula results in a -16 "--� D: -1 5.7 more continental climate, with less precipitation. -20 Fog may significantly increase the water supply above what is measured by standard meteoro­ Figure 2 Simplified Walter-type climate diagramme logical methods. · Fog is quite common in Long­ of Longyearbyen (Svalbard airport), based on the yearbyen, but rare in the interior parts of period 1975-1988. Indicated are monthly means of Gipsdalen. temperature (a) and precipitation (b), yearly rneans, and means of temperature for the warmest Cc) and coldest (c) months. The hatched area indicates the A thin snow cover is indicated by the small areas period where the percipitation is sufficient to prevent of snowbed vegetation types depending upon a drough (all the year at Longyearbyen). Gipsdalen, Central Svalbard; Flora, Ve getation, and Botanical Values 33

areas. As it is based mainly on the regional northern warm areas (inn er fjords of central (Svalbard) distribution of chosen species, it is not North , central Ellesmere , Axel easily compared with other arctic areas. Heiberg Island, and southern ) by large reaches of sea. The recent divisions of the Arctic into phyto­ geographical areas emphasize the south - north The thermophilic plant species found must have changes in climate, vegetation, and flora at a reached their present northern localities either in larger geographical scale (Alexandrova 1980, periods with a warmer climate or by accidental Elvebakk 1985, 1989b). The conventional division long distance dispersal (birds?). In either case into "Low" and "High Arctic" has been; largely their occurrences on Svalbard are of interest in replaced by the following scheme (Elvebakk 1985, an international context. The character of 1989a & b): Gipsdalen, as an extremely dry, continental calcareous valley, results in a unique concen­ - Hemiarctic Zone - The transition zone tration of very disjunct thermophilic and/or between boreal (HAZ).forests and arctic tundra, calciphilic speeies in the area. It is one of the including the "forest tundra". In N Europe major arguments for conservation of botanical this zone includes parts of , NE values in the area. Finnmark in N Norway, and the coastal areas of N . Human impact - South Arctic Tundra Zone (SATZ). - The southern , e.g. with peat-producing The impacts from earlier activities in the valley mires of a boreal type, and low shrub thickets are restricted, and with few exceptions they are of Betula nana (dvergbjørk) and shrubby confined to the SE side of the valley. The main Salices (viere). The zone is virtually absent human impact is a track (or road) from the sea from N Europe, as this climatic zone is almost half the way up the valley. It was occupied by the , but it is well­ established by coal industrial activities early in developed in Greenland and in N Siberia. th e century, and has been used recently by the Finnish drilling company. - Middle Arctic Tundra Zone (MATZ). - The middle tundras of dry dwarf-shrub heaths and The recent (Finnish) exploration has left well-developed marshes (or arctic mires), but disturbances in the beach ridge complex in no mires of the boreal type. This zone includes Gipsvika where equipment was landed and , , and the warmer fjord deposited. The transport road from Gipsvika to regions of Spitsbergen. the exploration site at Methuenbreen has disturbed severaI beach ridges, parts of the most - North Arctic Tundra Zone (NATZ). - The extensive and valuable marsh area, and silty northern tundras, of prostrate shrubs and ridges. The surroundings of the mining camp at forbIgrass vegetation, and less developed Methuenbreen are influenced by tracks and marshes. This is the other major zone of the leftovers (oil barrels etc.), but . the impacts are Spitsbergen island and western parts of restricted to a small area. Scattered tracks fr om Edgeøya and Barentsøya. The inner fjord motorized vessels are seen also outside the areas of also belong to this transport road, on both sides of the valley. zone.

- Arctic Polar Desert Zone (APDZ). - The polar MATERIALS AND METHODS desert, without larger areas of closed vegetation, is widely distributed on the east The report . is based on a field survey of plant coasts of the Svalbard islands, and as an species distributions and vegetation composition altitudinal belt in the mountains. and distribution in an area including the entire valley of Gipsdalen from Gipsvika up to the Elvebakk (1989a) has modified this classification Methuenbreen - Margaretbreen area (vegetation), for the Svalbard islands by recognizing a locally partly to the end of the valley at Florabreen more favourable subzone within the Middle Arctic (floristics), and the coastal areas from Gåsodden Tundra Zone in th e inner fjords. This new in th e west to the mountain Templet (vegetation) version of the Inner Fj ord Zone largely and the Bj onahamna/Kapp Murdoch area corresponds to Summerhayes & Elton (1928), but (floristics). includes some revisions. It is restricted to the innermost Van Mijenfjorden, the inn er half of The floristic investigations include a quantitative Isfjorden (including Biinsow Land), Wijdefjorden, registration of all vascular plant species in a net and small areas in inner Kongsfjorden and of 81 UTM quadrats, each 1 km 2 large, along Bockfjorden. Gipsdalen up to Florabreen, and the coastal areas fr om Gåsodden to Bj onahamna and the These warm areas are among the northernmost Murdoch glacier delta. The investigated quadrats in the world of such comparatively warm sites. include the majority of the area involved by the They are strongly isolated at present from other planned activities. 34 Environmental Atlas Gipsdalen, Svalbard

In addition, records of the rarer species in the vegetation map is reproduced from Spjelkavik & two major Norwegian herbaria with collections Elvebakk (1989). from the area (Oslo and Tromsø) have been registered and controlled in 1989. The vegetation investigations include a classification and FLORA description of the vegetation types, based on the local variation. Most vegetation types are Within the area covered by the floristic documented by species lists, but generally not by investigations (see Fig. 3) we have registered 104 vegetation analyses. Such documentation would taxa of vascular plant species, plus one hybrid. be desirable, but would require more time than These are listen in Table 1, and represent about available within the project. The methods and 66 % of the indigenous vascular plants of criteria applied in the vegetation classification Svalbard as reported by Rønning (1979). The are described on pp. 43, 52-54. number is comparable to that of other investigated areas in the inner fjords, e.g. The vegetation classification is used directly in a Berzeliusdalen (95 taxa), Reindalen (100 taxa), conventional vegetation mapping of the main and Kj ellstrømdalen (80 taxa) in the Van Mijen­ parts of Gipsdalen, and in an interpretation of a fjord area, and ColesbuktalColesdalen (99 tax�), satellite-based map of the entire Biinsow Land. Adventdalen (115 taxa) and Sassendalen (113) In The conventional vegetation map covers the the Isfjorden area (unpublished Sassendalen data valley floor of Gipsdalen northeast to Margaret­ by Elvebakk and Elven, all others from Engel­ breen - Methuenbreen, Gipsvika, and the Gås­ skjøn et al. 1986). Most of the differences odden - Gipshukodden plain. It is based on field between the areas seem to be due to differences surveys in 1985, 1987, and especially in 1989, in size. Adventdalen and Sassendalen may, how­ and on aerial photographs (Norwegian Polar ever, have a slightly higher species diversity than Research Institute series 1248, 23 August 1961, the others. scale approximately 1:46.000). There are some differences between the aerial photographs and the present-day situation, especially on the river Composition fans where the river courses have changed. Here the map shows the situation in 1985-89. Even if the number of taxa in the Gipsdalen area is comparable to the other investigated Field survey for the conventional vegetation map . areas in the inn er fjords, the composition of the consists of correlation between vegetation in the flora is different in severaI ways. A rough field and aerial photographs, and registration of separation into frequency groups is given in occurrences of the rarer and less easily Table 2. identifiable vegetation types. The high fr equency groups indude, in addition to The satellite map of Biinsow · Land is part of an many ubiquitous plants in the Svalbard area, a analysis of a larger area in the interior fjords, numbeT of regionally less frequent taxa. The also including the areas between Isfjorden and majority of these are restricted to two types of Van Mijenfjorden (e.g. Sassendalen, Adventdalen, habitats: the area westwards to , Reindalen, and Lundstromdalen). It is based on a Landsat 1) Calcareous ridges and dry tundra (heaths), e.g. TM scene fr om 5 August 1985 (path 217, row 3, Draba corymbosa (puterublom), Puccinellia Q4), utilizing the bands 1, 4 and 5. unsuper­ An vahliana (fimbulgras), Braya purpurascens vised classification (cluster analysis) into 27 (purpurkarse), Pedicularis lanata ssp. dasy­ dasses is used. antha (ullmyrklegg), Arenaria pseudofrigida (kalkarve), and Festuca baffinensis (hår­ Field surveys fo r the satellite-based vegetation svingel). map consist of location of severaI patches of each of the dasses, and description of the content of 2) Shallow, slightly sloping (drained) marshes of each dass. Such surveys have been undertaken a thermophilic type, i.e. Eriophorum triste also in other areas within the TM scene (in (svartull), Carex parallela (smalstarr), and Sassendalen by Elvebakk, R. Elven, B. E. A aizoides (gulsildre). Johansen, and J.-T. Schwenke; in Reindalen by B. E. Johansen). The contents of the dasses are Species belonging to these two ecological groups found to differ to some degree between the are much more frequent in Gipsdalen than in different areas, and the interpretation given other inner fjord areas. below is based mostly on Gipsdalen. The species with low and very low frequencies As vegetation den sity is a main feature reflected can also be defined as belonging to certain in the satellite image, a direct visual inter­ habitat groups. In addition to plants generally pretation is possible based on a standard fa lse­ rare in the Svalbard area, there is a significant colour composite. A map based on contrast stret­ group of regionally frequent or common, but ching of a composite of the bands 4, 3 and 2 in locally rare taxa. In all cases their restriction can the same TM scene as used in the satellite-based Gipsdalen, Ce ntral Svalbard; Flora, Ve getation, and Botanical Values 35

� ...

o 10-14

• 15 24

O 25-34 • 35-44 O 45-54 • �55

Figure 3 Vascular plant diversity, given as species number within 1 km squares approximatly in the UTM gri d. Total numbers of speeies in each 1 km square are given by dot sizes: 1) 10-14 speeies, 2) 15-24, 3) 25- 34, 4) 35-44, 5) 45-54, and 6) =55 speeies. Squares without symbols have not been investigated. Data from Engelskjøn et al. (1986) supplemented from investigations in 1987 and 1989. 36 Environmental Atlas Gipsdalen, Svalbard

Table 1 Vascular plants (species, subspecies, and hybrids) known from the Gipsdalen area. The taxa are listed in alphabetie order. Latin nomenclature follows Elvebakk et al. (1986), Norwegian vernacular names mainly Rønning (1979).

Regional (Svalbard) rarity (R) is given as by Elvebakk et al. (1986): 1 - very rare, less than 5 known occurrences; 2 - rare, 5-25 known occurrences; 3 - scattered to common.

Phytogeographical patterns are divided into zonal (south/north) and sectional (east/west) types.

Zonal types:

'Aret' - Arctic, not reaching or only reaching the northernmost, coastal parts of Scandinavia; 'Arct-Scand' - Arctic-Scandinavian, reaching the mountain range, sometimes only in the north ('N'), sometimes also reaching the British Isles; 'Aret-Alp' - Arctic-Alpine, reaching south to the C European mountain ranges.

A 'C' denotes that the taxon is entirely or partly coastal.

Sectional types:

'C-pol' - Circumpolar, more or less continuously around the Polar basin;

'W-Arct' - Western Arctic, with main distribution in North Ameriea and Greenland. They may reach east to Svalbard or Novaya Zemlya..Jamal.

'E-Arct' - Eastern Arctic, with main distribution in Eurasia, normally not reaching west to Greenland. 'N-Atl' - North Atlantic, distributed on both sides of the North Atlantic, but not in Siberia, Alaska or W .

'End' - Endemie to Svalbard or to Svalbard and neighboring islands (Zemlya Franza Josifa, Novaya Zemlya).

Taxon R SIN- EIW- distr. distr.

Alopecurus alpinus Sm. - polarreverumpe 3 Arct-Scand C-pol Arctophila fulva (Trin.) N.J.Anderson - hengegras 3 Aret C-pol Arenaria pseudofrigida (Ostenf. & Dahl) Juz. - kalkarve 3 Arct-Scand (N) N-Atl Braya purpurascens (R.Br.) Bunge - purpurkarse 3 Aret C-pol Cardamine bellidifo lia L. - høgfjellskarse 3 Arct-Seand C-pol Cardamine pratensis L. ssp. polemonioides - polarkarse 3 Arct-Scand C-pol Carex. amblyrhyncha V.Krecz. - buttstarr 1 Aret C-pol C. maritima Gunn. - bue starr 3 Aret-Alp (C) C-pol C. misandra R.Br. - dubbestarr 3 Arct-Seand C-pol C. nardina Fr. - skjeggstarr 3 Arct-Seand (N) W-Arct C. parallela (Læst.) Sommerf. - smalstarr 3 Aret-Seand N-Atl C. rupestris All. - bergstarr 3 Aret-Alp C-pol C. saxatilis L. - blankstarr 3 Aret-Seand N-Atl C. subspathacea Worm sk. - ishavs starr 3 Aret-Seand (C) C-pol C. ursina Dewey - bjørnestarr 3 Aret (C) C-pol Cassiope tetragona (L.) D.Don - kantlyng 3 Aret-Scand (N) C-pol Cerastium arcticum Lange - snøarve 3 Aret-Seand N-Atl

C. arcticum x regelii , ? Aret ? C. regelii Ostenf. - polararve 3 Aret C-pol Chrysosplenium tetrandrum (N.Lund) Th.Fr. - dvergmaigull 3 Aret-Seand (N) C-pol Cochlearia groenlandiea L. - polarskjørbuksurt 3 Aret C-pol Cystoptens fragilis (L.) Bernh. ssp. dickieana (Sim) Hyl . - berglok 3 Aret-Alp C-pol Deschampsia alpina (L.) Roem. & Sch. - fjellbunke 3 Aret-Scand ±C-pol D. brevifolia R.Br. - stivbunke 3 Aret C-pol D. adamsii Ledeb. - polarrublom 3 Aret C-pol D. alpina L. - gullrublom 3 Arct-Seand C-pol D. arctiea J.Vahl - ''hårrublom'' 3 Aret C-pol? D. corymbosa R.Br. - puterublom 3 Aret C-pol D. daurica DC. - skredrublom 3 Arct-Seand C-pol Gipsdalen, Central Svalbard; Flora, Ve getation, and Botanical Values 37

Table 1 (cont.)

Taxon R SIN- EIW- distr. distr.

Deschampsia lactea Adams - lapprublom 3 Aret-Seand C-pol D. micropetala Hook. - tundrarublom ? Aret ? D. norvegica Gunn. - bergrublom 3 Aret-Seand N-Atl D. oxycarpa Sommerf. - bleikrublom 3 Aret-Seand N-Atl D. subcapitata Simmons - halvkulerublom 3 Aret C-pol Dryas octopetala L. - reinrose 3 Aret-Alp E-Arct Dupontia pelligera Rupr. - småtundragras 3 Aret C-pol D. psilosantha Rupr. - spriketundragras 3 Aret C-pol Equisetum arvense L. ssp. boreale (Bong.) Å.U>ve - "polarsnelle" 3 Aret-Seand C-pol E. variegatum Sehleieh. - fjellsnelle 3 Aret-Alp C-pol Erigeron humilis Grah. - svartbakkestjerne 3 Aret-Seand (N) W-Aret Eriophorum scheru;hzeri Hoppe - snøuIl 3 Aret-Alp C-pol E. triste (Th.Fr.) A.U>ve & Hada� - svartull 3 Aret C-pol Eutrema edwardsii R.Br. - polarreddik 3 Aret C-pol Festuca baffinensis Polunin - hårsvingel 3 Aret W-Aret F. hyperborea Holmen - polarsvingel 3 Aret C-pol F. rubra L. ssp. arctica (Hack.) Govor. - raudsvingel 3 Aret-Seand C-pol Hierochloe alpina (Sw.) RBr. - fjellmarigras 3 Aret-Seand (N) C-pol Juncus biglumis L. - tvillingsiv 3 Aret-Seand C-pol J. castaneus Sm. - kastanjesiv 1 Aret-Alp C-pol J. triglumis L. - trillingsiv 2 Aret-Alp C-pol Kobresia simpliciuscula (Wg.) Maek. - myrtust 1 Aret-Alp C-pol Luzula arctica Blytt - snøfrytle 3 Aret-Seand C-pol L. arcuata Sw. ssp. confusa (Lindeb.) Blytt - vardefrytle 3 Aret-Seand C-pol (L.) S.F.Gray - østersurt 3 Aret-Seand (C) W-Aret Mi nuartia biflora (L.) Sch. & Th. - tuvearve 3 Aret-Alp C-pol M. rossii (RBr.) Graebn. - putearve 3 Aret W-Aret M. rubella (Wg.) Hiern - nålearve 3 Aret-Seand C-pol M. stricta (Sw.) Hiern - grannarve 2 Aret-Alp C-pol Oxyria digyna (L.) Hill - fjellsyre 3 Aret-Alp C-pol Papa ver dahlianum Nordh. - svalbardvalmue 3 Aret N-Atl Pedicularis hirsuta L. - lodnemyrklegg 3 Aret-Seand (N) N-Atl . P. lanata Cham. & Schleeht. ssp. dasyantha (Trautv.) Hult. - ullmyrklegg 3 Aret E-Aret Phippsia algida (Sol.) RBr. - snøgras 3 Aret-Seand C-pol P. concinna (Th.Fr.) Lindeb. - sprikesnøgras 3 Aret-Seand E-Arct Poa abbreviata RBr. - jøkelrapp 3 Aret C-pol P. alpina L. var. vivipara L. - fjellrapp 3 Aret-Alp ±C-pol P. arctica R.Br. eoll. - jervrapp 3 Aret-Seand (N) C-pol P. glauca J.Vahl - blårapp 3 Aret-Alp C-pol P. pratensis L. ssp. alpigena (Fries) Hiit. - seterrapp viviparous biotype 3 Aret C-pol seminiferous biotyPe 3 Aret-Seand C-pol Polemonium boreale Adams - polarflokk 3 Aret C-pol Polygonum viviparum - harerug 3 Aret-Alp C-pol L. Potentilla hyparctica Malte - raggmure 3 Aret-Seand (N) C-pol P. nivea L. eoIl. - snølflågmure 3 Aret-Alp C-pol P. pulchella RBr. - tuvemure 3 Aret C-pol P. sp. ? Aret? W-Aret? Puccinellia angustata (RBr.) Rand. & Redf. - polarsaltgras 3 Aret C-pol P. phryganodes (Trin.) Scribn. & Merr. - teppesaltgras "Svalbard - Novaya Zemlya type" 3 Aret End Puccinellia vahliana (Liebm.) Seribn. & Merr. - fimbulgras 3 Aret C-pol Pucciphippsia vacillans (Th.Fr.) Tzvelev - svalbardfimbulgras 2 Aret End? Ranunculus hyperboreus Rottb. - setersoleie 3 Aret-Seand C-pol R. pedatifidus Sm. - fliksoleie 2 Aret C-pol R. pygmaeus Wg. - dvergsoleie 3 Aret-Alp C-pol R. sulphureus C.J.Phipps - polarsoleie 3 Aret-Seand (N) C-pol Sagina intermedia Fenzl - jøkelarve 3 Aret-Scand C-pol Salix polaris Wg. - polarvier 3 Aret-Seand E-Aret S. reticulata L. - rynkevier 3 Aret-Alp ±C-pol Saxifraga aizoides L. - gulsildre 3 Aret-Alp W-Aret S. cespitosa L. - tuvesildre 3 Aret-Seand ±C-pol 38 Environmental Atlas Gipsdalen, Svalbard

Table (cont.). l

Taxon R S/N- EIW- distr. distr.

Saxifraga cernua L. - knoppsildre 3 Aret-Alp C-pol S. flageIlaris Sternb. & WiIld. - trådsildre 3 Aret C-pol S. hieracifolia Waldst. & Kit. - stivsildre' 3 Aret-Alp C-pol S. hirculus L. - myrsildre 3 Aret-Alp C-pol S. hyperoorea R.Br. - polarsildre 3 Aret C-pol S. nivalis L. - snøsildre 3 Aret-Seand C-pol S. oppositifolia L. - raudsildre 3 Aret-Alp C-pol S. rivularis L. - bekkesildre 3 Aret-Seand C-polS. S. svalbarcknsis Øvstedal - svalbardsildre 3 Aret End Silene acaulis (L.) Jacq. - fjellsmelle 3 Aret-Alp W-Aret S. fu rcata Rafin. ssp. furcata - småjonsokblom 3 Aret C-pol S. uralensis (Rupr.) Bocq. ssp. arctica (Th.Fr.) Bocq. - "arktisk blindurt" 3 Aret C-pol Stellaria humifusa Rottb. - ishavsstjerneblom 3 Aret-Seand (C) C-pol S. longipes Goldie eoll. - snøstjerneblom 3 Aret-Seand (N) C-pol Taraxacum arcticum (Trautv.) Dahlst. - arktisløvetann 3 Aret C-pol Trisetum sp icatum (L.) K.Rieht. - svartaks 3 Aret-Alp C-pol ,

Table 2 Frequeney groups and eeologieal preferenees of vascular plants in the Gipsdalen area. Frequeneies (F%) are given as a pereentage of the 81 investigated one km squares. The taxa are listed in order of decreasing frequeneies.

Group/taxa Freq Habitat type(s)

High frequency group (70-100 %)

Saxifraga oppositifolia 99 • Ubiquitous Salix polaris 95 ± Ubiquitous Draba corymbosa 92 Open ealcareous heath, gravel Cerastium arcticum 87 ± Ubiquitous Polygonum viviparum 87 Ubiquitous ± Dryas octopetala 84 Heath, mostly caleareous Carex misandra 82 Calcareous heath Pedicularis hirsuta 81 Humie heaths and meadows Equisetum variega tum 80 ± Ubiquitous Juncus biglumis 79 Snowbeds, marshes, damp soil Puccinellia vahliana 79 Open ealcareous heath, silt Saxifraga cernua 76 Ubiquitous ± Saxifraga aizoicks 74 Slopes, ealcareous and anhydrite Braya purpurascens 72 Calcareous gravelIsilt Carex rupestris 72 Heath, mostly calcareous Stellaria longipes eoIl. 72 Ubiquitous ± Mi nuartia rubella 70 Ubiquitous, mostly ealcareous ± Intermediate frequency group (30-69%)

Draba oxycarpa 68 Ubiquitous ± Luzula arctica 67 Heaths to snowbeds Poa alpina var. vivipara 67 Meadows, snowbeds Saxifraga cespitosa 65 ± Ubiquitous Equisetum arvense 63 Flushed ground Pedicularis lanata ssp. dasyantha 62 Calcareous heaths Papa ver dahlianum 59 Lithosol, debris Deschampsia alpina 58 Marshes, wet soil Cerastium regelii 57 Snowbeds, wet gravel Poa abbreviata 55 Exposed, cale. heaths, silt Poa pratensis ssp. alpigena (viv.) 55 Outwash, flushed ground Eriophorum scheuchzeri 54 Marshes, silty alluvial plains Silene acaulis 54 Heaths, eobble pavements Silene uralensis ssp. arctica 54 ± Ubiquitous Dupontia pelligera 50 Sloping marshes etc. Eriophorum triste ' 50 Calcareous marshes Oxyria digyna 46 Snowbeds, open soil Cochlearia groenlandica 43 Snowbeds, bird eliffs etc. Gipsdalen, Central Svalbard; Flora, Ve getation, and Botanical Values 39

Table 2 (cont.).

Group/taxa Freq Habitat type(s) DralXl subCapztata 43 Ex posed nage s Carex parallela 42 Sloping marsh, calcareous Draba lactea 40 Marsh hummocks, snowbeds Arenaria pseudo{rigida 38 Calcareous heath, gravel Eutrema edwardsii 38 Intermediate to snowbed, calcareous Deschampsia brevifolia 37 Marshes and silty plains Draba arctica 37 Lithosol, silt Potentilla pulchella 37 Exposed heaths, silt Saxifraga nivalis 37 Heaths, ledges Carex nardina 32 Calcareous heath and anhydrite Draba alpina 32 Snowbeds etc. Saxifraga hirculus 32 Snowbeds, sloping marshes Festuca baflinensis 30 Calcareous heath/slopes Silene furcata ssp. furcata 30 . Calcareous slopes

Low frequency group (5·29 %)

Ranunculus pygmaeus 29 Snowbeds, slopes Carex subspathacea 28 Sloping and stagnant marsh Trisetum spicatum 26 Warm slopes, early snowbeds Cassiope tetragona 25 Heaths and slopes Festuca rubra ssp. arctica 24 Slopes, early snowbeds Draba daurica 22 Mainly bird-cliffs, screeMinuartia biflora 21 Warm slopes Ranunculus hyperooreus 21 Wet marshes, brooks, dams Alopecurus alpin us 20 Mainly damp heath and marsh Ranunculus sulphureus 20 Snowbeds, marshes Sagina intermedia 20 Snowbeds, open gravel Draba adamsii 18 Snowbeds, damp soil Festuca hyperoorea 18 Exposed heath, gravel Poa pratensis ssp. alpigena (seminif.) 18 Mainly warm slopes Puccinellia angustata 18 Exposed ridges, bird-cliffs Phippsia concinna 17 Snowbeds and gravel Poa arctica coll. 17 Peaty, stony slopes Phippsia algida 15 Mainly late snowbeds Mi nuartia rossii 13 Flushed silt Poa glauca 13 Rigde crests, scree, bird-cliffs Ranunculus pedatifidus 12 Bird-cliff meadow Carex saxatilis 11 Sloping marsh Po lemonium ooreale 11 Bird-cliffs, talus Salix reticulata 11 Silty, well-drained plains Cardamine nymani 9 Sloping marsh Saxifraga flagellaris 9 Damp soil, cliffs Chrysosplenium tetrandrum 8 Damp soil, snowbed Cy stopteris fragilis ssp. dickieana 8 Scree, cliffs Puccinellia phryganodes 8 Salt marshes Po tentilla sp. 6 Bird-cliffs, scree Carex ursina 5 Salt marshes Draba norvegica 5 Scree Me rtensia maritima 5 Gravelly seashores Saxifraga hieracifo lia 5 Damp slopes, sloping marsh

Very low frequency group (1-4 %)

Carex amblyorhyncha 4 Warm, sloping marshes Juncus triglumis 4 Warm, stony marsh Luzula arcuata ssp. confusa 4 Peat on silicic ledge Potentilla nivea 4 Bird-cliffs, scree Saxifraga hyperborea 4 Silicic gravel, peat Stellaria humifusa 4 Salt marshes Taraxacum arcticum 4 Warm slopes Pucciphippsia vacillans 3 Riverbanks, siltJgravel Dupontia psilosantha 3 Stagnant marshes Erigeron humilis 3 Warm slopes Saxifraga svalbardensis 3 Wet moss carpets, marsh Arctophila fulva 1 Pond marginal Cardamine bellidifo lia 1 Silicic lithosol Carex maritima 1 Peaty seashore Cerastium arcticum x regelii 1 River fan, open gravel 40 Environmental Atlas Gipsdalen, Svalbard

Table 2 (cont.).

Group/taxa Freq Habitat type(s)

Juncus castaneus 1 Wann, sloping marsh Ko bresia simpliciuscula 1 Wann, sloping marshMinuartia stricta 1 1iIlnrl Potentilla hyparctica 1 Heath on dolerite Røy Sanfraga rivularis 1 Wet, silicic gravel

be explained by demands for habitats that are species), or through lack of peat formation rare in the study area. The three main ecological resulting in very shallow marshes (e.g. Areto­ groups are: phila, Dupontia psilosantha, Ranuneulus hyper­ bore us, R. lapponieus, and R. spitzbergensis). 3) In acidic or neutral dry tundra (heaths): Luzula arcuata ssp. eonfu sa (vardefrytle), Hierochloe alpina (fjellmarigras), Poa aretiea Diversity (jervrapp), and Potentilla hyparetica (ragg­ mure), cf Elvebakk (1982). Speeies diversity is given as speeies number within the 1 km large UTM quadrats. The 4) In acidic or neutral slopes/snowbeds: number of vascular plants per quadrat ranges Ranuneulus pygmaeus (dvergsoleie), Trisetum from about 10 to about 55, and there is a sp ieatum (svartaks), Cassiope tetragona (kan­ distinct geographical pattern of variation in tlyng), Festuea rubra ssp. aretiea (raudsvingel), speeies diversity (Fig. 3). Draba adamsii (polarrublom), Draba norvegiea (bergrublom), Cardamine bellidifolia (høgfjells­ The most species-rich quadrats (>45 species per karse), and Saxifra ga rivularis (bekkesildre). km ) are located in the lowermost parts, Ranuneulus sulphureus (polar soleie) and reaching from Gipshukodden around Gipsvika Phippsia algida (snøgras) are also rare, but and along the lower slopes of Templet mountain this is due to the general scarcity of snowbeds to Bj onahamna. The single highest value is found in the valley. in the area including the western prornontory of Templet, i.e. the bird-cliff Skiltvakten. The only 5) In stagnant, very wet marshes: Ranuneulus inland area with a high value (UTM quadrat WH hyperboreus (setersoleie), Dupontia psilosantha 3610) contains calcareous ridges, both sloping and (spriketundragras), and Aretophila fu lva stagnant marshes, and a species-rich river bank. (hengegras). Comparatively high diversities (35-45 species) Less explicable is the low frequency of one of the characterize the rest of the coastal areas and the most common and edaphically least specialized of lower parts of the valley, except fo r a few Svalbard plants: Alopeeurus alpinus (polar­ quadrats with small land area (e.g. WH 3010, reverumpe - common e.g. in calcareous areas in 3408, 3604, 4102), dominated by river fa ns (e.g. Sassendalen). 3608), or very open shore ridges (e.g. 3507, 3709). Further up the valley areas with more than 35 The lists can be supplied with taxa occurring speeies are restricted to the comparatively well­ elsewhere in interior fjord areas of Svalbard, but vegetated slopes between th e river fans of the laeking (as far as known) from the Gipsdalen tributary valleys, e.g. between the area (ecological groups in parentheses): Arnica StenhousebreenIBoltonbreen valleys and the angustifo lia ssp. alpina - fjellsolblom (3), Carex MargaretbreenIMethuenbreen valleys, and lachenalii - rype starr (4), Draba fladnizensis - between these valleys and Florabreen. alperublom (3), D. nivalis - snørublom (3), Equisetum seirpoides - dvergsnelle (4), Huperzia Low diversities (15-35 speeies) characterize most selago ssp. aretiea - polarlusegras (3-4), Ranun­ of the middle and upper parts of the valley. eulus nivalis - snøsoleie (4), Ranuneulus lap­ Quadrats with less than 35 species are also ponieus - lappsoleie (5), R. spitzbergensis - sval­ found scattered in the lower parts. Very low bardsoleie (5), Saxifra ga fo liolosa - grynsildre diversities (less than 15 sp�cies) are found in the (4-5), and Saxifraga tenuis - grannsildre (more or fe w mountain top areas investigated (WH 3210, less ubiquitous). 3310), and on Leirflata (WH 3912).

The floristie anomalies suggest the influence of The high speeies diversity in the lowermost part, a the c lcareous substrate on the composition of and especially along the coast, is correlated both the local flora. The effects seem to be direct in with high habitat diversity and with presenee of some cases (e.g. for the calciphiles Arenaria some habitats very rich in species (bird-cliffs, pseudofrigida and Braya purpuraseens), indirect thermophilic sloping marshes, dolerite hills). Each in many other cases, either through lack of humi­ of the high diversity areas contain at least one of fication (e.g. Cassiope tetragona and Huperzia those species-rich habitat types. selago, and other proved or suspected mycotrophic Gipsdalen, Central Svalbard; Flora, Ve getation, and Botanical Values 41

The decrease in species diversity upwards in th e part of Gipsdalen (found here in 1985). The valley is caused both by the scarcity of some locality is a small sloping, shallow marsh of species-rich habitats (e.g. bird-diffs ), and by a the thermophilic type (quadrat WH 3409), decrease in species numbers in those habitats where severaI individuals are found within a which occur along the entire valley. small area.

Category 2. - Another five taxa are rare or at Plants of special conservation value least restricted on Svalbard, and all their local occurrences should be a matter of con cern in We have grouped the plant species considered conservation: interesting in a conservation context into four value categories: Pucciphippsia vacillans (svalbardfimbulgras). - This taxon is possibly a hybrid between 1) Regionally very rare, i.e. very rare on Puccinellia vahliana (fimbulgras) and a species Svalbard. of the genus Phippsia. Hedberg (1962) pro­ 2) Regionally and locally rare. poses Phippsia algida (snøgras) as the other 3) Regionally infrequent, but locally parent, based on investigations in arctic rare to frequent to common. Canada, where P. algida is the only species of 4) Locally even if they are frequent on Phippsia present. The Svalbard plants differ rare, Svalbard as a whole. in severaI ways, and the differences point towards P. concinna (sprikesnøgras) rather The regionally rare plants (1-3) are of interest in than P. algida. The way of reproduction is a Norwegian or larger context, while the locally unknown, but some kind of production is rare (4) have a more limited interest. indicated, as the plants often occur in large and well separated stands, without any vege­ tative means of reproduction and dispersal. Regionally rare plants Asexual seed production (i.e. agamospermy) is not known previously from this gro up of Category 1. - Three of the Gipsdalen species are genera. The taxon is of high scientific interest. among the rarest vascular plants on Svalbard It has been found along the river in the lower (see maps in Rønning 1972 and Elvebakk 1989a). part of the valley (quadrats WH 3711, 3811) They belong to the highest value dass, and all and in Fuhrmeisterdalen east of Gipsdalen their occurrences should be avoided during (Rønning & Skifte 1958, Herb. TROM). The construction work: Svalbard distribution is shown by Rønning (1972). Carex amblyrhyncha (buttstarr). - On Svalbard this species is only known with certainty fr om The Potentilla nivea (snømure) and the P. pul­ Gipsdalen (first fo und here in 1985) and chella (tuvemure) species groups are among the Sassendalen. It is restricted to shallow, taxonomically most complicated ones in the slightly sloping, marshes of the th ermophilic vascular . In addition to the type, and may form large stands, often widely distributed P. pulehella at least two associated with Eriophorum triste (svartull), fu rther taxa occur in the area: a type belonging Carex parallela (smalstarr), and C. saxatilis to P. nivea or P. chamissonis (flågmure) is (blankstarr ). In Gipsdalen it has been found frequent in the more or less heavily bird­ both in the lower part (quadrats WH 3409, manured scree slopes along Templet mountain 3710, 3810), and in one very small stand in between Gipsvika and Bj onahamna, and a the upper part (WH 43 18), dose to the biotype of dubious affinity, possibly related to the Finnish mining camp. Its total distribution is West Arctic P. rubricaulis (raudstengelmure), circumpolar, with some gaps, and the Svalbard occurs frequently in the same area. localities are the only ones in Europe (se Bocher 1952 and Engelskjøn 1986).N On Svalbard Ranunculus pedati{idus (fliksoleie), a R. auricomus microspecies, is known with Juncus castaneus (kastanje siv). - Only known certainty fr om the innermost parts of Isfjorden, from three localities in Adventdalen, Sassen­ in one locality on Oscar Il Land north of the dalen, and in Gipsdalen (found here in 1989), mouth of Isfjorden, and around Kongsfjorden, and where it occurs in a sloping, shallow marsh of reporled fr om severaI other localities in the the thermophilic type in quadrat WH 3711. interior fjords and along the west coast. The The Gipsdalen stand is small, approx. 50 Svalbard distribution is mapped by Elvebakk plants (Eriksen, in prep.). Outside Svalbard (1989a). In th e area it is fairly common along Juncus castaneus has a wide circumpolar and the manured scree slopes of Templet between arctic-alpine distribution. Gipsvika and Bj onahamna.

Ko bresia simpliciuscula (myrtust). - Three Mi nuartia strieta (grannarve). - There are only widely separated localities are known, in th e six documented Svalbard reports of this species, Kongsfjord area on the west coast, near which has scattered occurrences from Van . on , and in the lower Keulenfjorden north to Kongsfjorden and Sorg- 42 Environmental Atlas Gipsdalen, Svalbard fjorden. The Svalbard distribution is mapped by on the Hecla Hoek quartzite in the upperrnost Elvebakk (1989a). An initial revision of th e valley (WH 4822 a.o.); calcifuge. herbarium collections indicates that much of the Potentilla hyparctica (raggrnure). - On the material may have been misinterpreted, and that dolerite at Gipshukodden (WH 3107); calcifuge. the spedes is very rare on Svalbard. It has at Saxifraga hyperborea (polarsildre). - Gips­ least one substantiated occurrence in the Templet huken, above 400 m (WH 3310, 3311). area (WH 3604). Saxifraga riv ularis (bekkesildre). - Below Cooperbreen (WH 3807). Category 3. - SeveraI regionally infrequent or Taraxacum arcticum (arktisløvetann). - Gips­ rare species have unusually large stands in hukodden - Gåsodden area; one locality on Gipsdalen. Populations of the following species Gipshukodden not exactly localized (H. Res­ are of conservation interest fo r that reason: voll-Holmsen 1908, Herb. TROM).

Arenaria pseudofrigida (kalkarve). - Dry cal­ careous gravel and ridges. The Braya problem Braya purpurascens (purpurkarse). - See below (p. 42). The small crucifer Braya purpurascens (purpur­ Carex saxatilis (blankstarr). - Shallow, sloping karse, front page of this report) represents a marshes. special problem. It is cornmon on Svalbard, but Deschampsia brevifo lia (stivbunke). - Shallow has an uneven distribution because of its demand marshes and siltY outwash. for calcareous soil. In Gipsdalen it is very Eriophorum triste (svartull). Shallow cornmon; as seen fr om Table 2 it is placed in the marshes. highest fr equency group. Based on counting of Eutrema edwardsii (polarreddik). - Moist individuals in plots of different vegetation types, heaths and stony marshes. Elvebakk et al. (unpubl.) estimate the total Festuca baffinensis (hårsvingel). - Dry tundra population size in the valley to be about 200 and talus. Mill. individuals. The populations of Braya in Mi nuartia rossii (putearve). - Flushed slopes Gipsdalen may be the largest ones of the species and gravel. in Europe. It is also very cornmon in other Pedicularis lanata ssp. dasyantha (ullmyr­ limestone areas in the inn er fjords, as in klegg). - Calc;areous dry tundra. Sassendalen. Juncus triglumis (trillingsiv). - Shallow, sloping marshes. Braya purpurascens is one of the two plants the Polemonium boreale (polarflokk). - Bird-cliff Norwegian Government had to protect by law in meadows and talus. 1983 to comply with the requirements for signing Saxifraga aizoides (gul sildre). - Flushed slopes the Bern Convention on threatened plants and and gravel. animals in Europe (see Østhagen 1984). The rea­ Saxifraga svalbardensis (svalbardsildre). - Wet son why Braya had to be protected is its extreme moss carpest, sloping marshes. rare occurrence on the European , con­ fined to a small area close to North Cape, North Norway. The legislators did not con sider the Locally rare plants status of Svalbard as a (legal) part of Norway and Europe. The comparatively common Braya Category 4. - The following taxa are widely purpurascens is thereby the only plant on distributed on Svalbard as a whole, but due to Svalbard that is totally protected as a species, their rare occurrences in th e area, they have and not indirectly through area protection. local value in conservation: The taxa covered by the Bern Convention shall Arctophila fu lva (hengegras). - One stand in be protected against both collection and "un­ the lower part of the valley (WH 3810). intentional" damage, e.g. technical damage. As an Cardamine bellidifo lia (høgfjellskarse). example, one population of the other Norwegian Gipshuken, above 400 m (WH 3210). plant given protection in 1983, the extremely Carex maritima (buestarr). - One stand at rare Oxytropis deflexa ssp. norvegiea (masimjelt), Gåsodden (WH 2909), close to the sea. was threatened by the Alta-Kautokeino Cy stopteris fra gilis ssp. dickieana (bergIok). - hydroelectric power project. It became necessary SeveraI stands in scree and on warrn slopes with special constructions to safeguard the along Templet and Sindballefjellet, on dolerite population. at Gipshukodden (WH 3209), and on the slope towards Gipsvika (WH 3308). It is impossible to do any construction work Dupontia psilosantha (stortundragras). - One along Gipsdalen without disturbing and partly stand in a wet marsh in the upper part of the destroying large populations of Braya purpur­ . valley (NE of Margaretbreen, WH 4621). ascens. The min ing project depends on an Erigeron humilis (svartbakkestjerne). - Stands exeption fr om the protection. in the warm, manured slopes of Templet. Luzula arcuata ssp. confusa (vardefrytle). - On the dolerite at Gipshukodden (WH 3109), and Gipsdalen, Central Svalbard; Flora, Ve getation, and Botanical Values 43

Habitats of rare plants Location of sites of the majority of the rare plants, and their main habitats, are shown in The regionally and locally rare plants are, with Fig. 4. some exceptions, confined to a fe w habitat types:

1) Eight valuable species, among th em the three Conclwiions in the highest value category, are confined to the shallow and fa irly warm, sloping marshes - The number of vascular plant species fo und in typical of the calcareous valley slopes: Carex Gipsdalen is at level with th at found in other amblyrhyncha, Juneus castaneus, Ko bresia inner fjord areas on Svalbard, in spite of the simpliciuscula, Carex saxatilis, Deschampsia specialized ecological conditions. Many brevifolia (partIy), Eriophorum triste, Ju ncus otherwise common acidophilic species are triglumis, and Saxifraga svalbardensis. These replaced by regionally rare calciphilic species. habitats are also among the most species-rich The species diversity is highest in th e lower in the area. The sites are mainly confined to parts of the valley and along the coast. th e lower part of the valley, but a fe w small er patches are also found in the upper valley. - The Gipsdalen area supports severaI species of Main areas are the hills west of the river international (i.e. European), national (i.e. mouth , th e large marsh area inside the major Norwegian), and/or regional (i.e. Svalbard) shore ridges on the east side of the valley, interest in a conservation context, among them and some areas fu rther up the valley, between very large populations of one of the protected the river fans from the tributary valleys. species covered by the Bern Convention (Braya Conservation values in rich marsh areas on purpurascens). th e western side of the valley may conflict with construction plans. - With fe w exceptions, the especially valuable species are confined to a fe w habitat types, all 2) The second most important habitat of rare of them with restricted distribution in the plants are the bird-diff and th e bird-manured valley: sloping shallow marshes, bird-cliffs and scree at the mountain Templet east of Gips­ bird-manured scree, and calcareous ridges and vika. Four of the five species in value category dry tundra (heaths). 2 are more or less confined to manured sites, as are three in lower categories: Poten tilla - Are as with concentrations of rare and/or nivea/chamissonis, P. sp., Ranunculus pedati­ valuable vascular plant occurrences are fidus, Mi nuartia strieta (in this area), Pole­ marked in Fig. 4, with indications of main monium boreale, Erigeron humilis (in this habitat types. The species are concentrated in area), and Cystopteris fra gilis ssp. dickieana six areas: (1) The Gåsodden - Gipshukodden (partIy). These sites will not be directly plain and the slopes east of Gipshuken influenced by construction as indicated in th e mountain; (2) The inner parts of Gipsvika plans, but the bird colonies might be disturbed with surroundings; (3) The large terrace by the activity, with possible long-term system on the east side of the river, 2 km NE deterioration of the bird-cliff vegetation. of Gipsvika, with the marshes dammed inside th e ridges; (4) The slopes of Templet east­ 3) Calcareous ridges and dry tundra (heaths) wards to Bj onahamna; (5) Small sloping contain fo ur species of value category 3 - marshes on the west side of the river between Arenaria pseudofri gida, Braya purpurascens, Tverrdalen and Stenhousebreen; (6) A small Festuca baffinensis, and Pedicularis lanata marsh area dose to the transport road and ssp. dasyantha - and also numerous other low­ Finnish min ing camp at Methuenbreen; and frequent species. The most varied and (7) The Hec1a Hoek outcrops in th e innermost valuable ridges are fo und to the west of th e parts of the valley. river mouth, and on the large shore terrace system on the east side 1-3 km inland fr om - The construction plans may conflict with flor­ Gipsvika. istic values in th e areas 1, 2, 5, and 6. More detailed plans are needed before a more exact The other listed species are dispersed in various evaluation can be made. habitats: Pucciphippsia vaeillans on the banks of rivers and runneIs, Carex maritima on or close to seashores, Arctophila and Dupontia psilosantha VEGETATION in wet, stagnant marshes, Luzula arcuata ssp. confusa and Potentilla hyparctica on the rare There is no single classification system available outcrops of acidic bedrock at Gipshukodden and for the description and mapping of arctic vege­ in th e uppermost valley, and Eutrema edwardsii tation yet, and severaI systems have been applied and Mi nuartia rossii in severaI types. The both on Svalbard and in other areas. In this habitats of Cardamine bellidifolia, Saxifra ga report is used a system developed in recent years hyperborea, and S. rivularis are silicic lithosol, by A. Elvebakk, B.E.Johansen, and R.Elven. The which is prevalent elsewhere on Svalbard, and of system is design ed so as to be applicable both to less interest. conventional vegetation mapping and to inter 44 Environmental Atlas Gipsdalen, Svalbard

Figure 4 Locations of some of species of restricted distribution, either regionally or locally (1-18), and areas with concentrations of valuable species (I-IV).

The species included are: (1) Arctophila fulua (hengegras), (2) Carex amblyorhyncha (buttstarr), (3) C. maritima (buestarr), (4) C. ursina (bjørnestarr), (5) Dupontia psilosantha (stortundragras), (6) Erigeron humilis (svartbakkestjeme), (7) Juneus castaneus (kastanjesiv), (8) J. triglumis (trillingsiv), (9) Kobresia simpliciuscula (myrtust), (10) Luzula arcuata ssp. confusa (vardefrytle), (11) Minuartia strieta (grannarve), (12) Potentilla chamissonis lniuea group (snømure/flågmure), (13) P. hyparctica (raggmure), (14) Pucciphippsia uacillans (svalbardfimbulgras), (15) Saxifraga sualbardensis (svalbardsildre), (16) Stellaria humifu sa (ishavsstjerneblom), and (17) Ta raxacum arcticum (arktisløvetann), and (18) the fruticose race ofXa nthoria elegans. The location of the site of No. 18 is very approximate.

The areas where most species with restricted distributions are concentrated are: I - The Gipsvika area with thermophilous marshes and salt-marshes; Il - Templet with bird-manured vegetation; III - The large beach ridge system with calcareous gravel vegetation, rich snowbeds, and with associated rich marshes; and IV - The innermost part of the valley with some rich marshes and the less calcareous Heckla Hoek formation. The areas indicated are approximate.

- --- �---�- Gipsdalen, Central Svalbard; Flora, Ve getation, and Botanical Values 45 pretation of satellite-based maps. The system is the snow cover/exposure and moisture/drainage diseussed and compared with other, alternative gradients, and partly along the acidic/alkaline systems on pp. 52-54. and substrate fraction size gradients. As we move further northwards or upwards, small er parts of The main structure of the system is a differenti­ the gradients are able to sustain a closed atian at five levels according to major differences vegetation. In the Middle Arctic Tundra Zone, the in habitats and floristie composition: major parts of the area will be densely vegetated at sites with more or less normal climatic and/or a) Altitude/latitude; in the central fjord areas a edaphic conditions. division into lowland (Middle Arctic Tundra Zone, MATZ) and upland (North Arctic Tundra The areas with more or less c10sed vegetation are Zone, NATZ, and Arctic Polar Desert Zone, divided into groups according to hydrology. APDZ) vegetation. b) Vegetation densit y; a differentiation into areas Group 1: Well-drained sites with closed vegetation (with effective compe­ tition) and open ones. There are important differences in the , composition of life forms and species, and in the c) Main drainage and/or substrate types (groups). ecological conditions, between areas where the topsoil dries out fo r longer periods during the d) Habitat types; e.g. along snow cover gradients growth season, and areas where the ground or soil water gradients, usually physiognomi­ water level is situated near or at the soil surface. cally characterized by distinet life-forms of Woody plants are usually confined to well-drained plants (subgroups). areas, as are lichens and the majority of tussock­ forming grasses and sedges. Mosses usually play e) Floristically characterized vegetation types some role, but are rarely dorninating. (types). The main separating factor within the gro up is The entities at levels (a)-(d) are essentially the duration of snow cover, i.e. the length of the same in most areas, while the floristically charac­ potential growth season. Five of the subgroups terized types (e) may differ. (subgroups 11-15) are arranged along this gradient, while the sixth (subgroup 16) is In Gipsdalen the vegetation in the lowlands confined to an ecologically deviating situation (MATZ) and uplands (NATZ, APDZ) is separated (bird-cliffs). by usually sterile talus slopes. The upland vegetation has not been investigated within the present project, but has be en mapped by Subgroup 11: Exposed gravelly ridges with .spj elkavik & Elvebakk (1989). a discontinuous vegetation cover

The vegetation groups and types registered in The uppermost parts of ridges and hills usually Gipsdalen are listed in Table 3 and used in th e have a very open vegetation° cover, and are aerial photo-based vegetation map. Gaps in th e described under the next main group. Just enumeration refer to types found only in other beneath the top is normally found a zone where areas in the inn er fjords. patches of prostrate shrub vegetation alternate with open patches or patches covered with very low-growing lichens, mosses and seattered Vegetation types individuals of forbs, graminids and the prostrate willow Salix polaris. Two vegetation types are A Lowland areas witk more or less closed recognized: vegetation cover Type 111: Open Dryas-Cartt rupestris type; This main group includes habitats with a more and Type 112: Open Dryas type. or less continuous vegetation, and with at least The open Dryas type (112) covers large areas some interspecific cornpetition. The vegetation is in Gipsdalen. It is found both on the raised usually stable fr om year to year. The substrate beach ridges in the OUter parts and on hills, is more or less stabilized by the vegetation. slopes and partly stabilized river fans in the Plants with extensive vegetative growth usually interior parts of the valley. From the climate dominate. alone one should expect a denser vegetation type in these habitats. The type replaces the The division between more or less closed and closed Dryas type (121) on the extremely open vegetation cover is easily seen both on calcareous, well-drained and dry substrate. In aerial photographs and on satellite maps. Along other areas this type is very poor in species; most ecological gradients in the Arctic open it may often consist of Dryas octopetala alone. vegetation (or no vegetation) is found at the Some calciphilic grasses and fo rbs are, extremes, while the more favourable middle parts however, common in the type in Gipsdalen, are densely vegetated. This is the case along both e.g. Arenaria pseudofrigida and 46 Environmental Atlas Gipsdalen, Svalbard

Table 3 Vegetation groups and types registered in Gipsdalen. The entities are described in the text and used in the vegetation maps (enclosed). The survey is based on a tentative system proposed by Elvebakk, Elven & Johansen.

A LOWLAND AREAS WITH MORE OR LESS CLOSED VEGETATION COVER

Group 1 Well·drained sites

Subgroup 11 Exposed gravelly ridges with discontinuous vegetation cover Type 111 Open Dryas-Carex rupestris type Type 112 Open Dryas type Subgroup 12 Dry closed heath vegetation of xerophilous vascular plants and partly lichens Type 121 Closed Dryas · and Dryas-Carex rupestris type Type 122 Cassiope tetragona and Dryas-Cassiope type Subgroup 13 Warrn, favourable slopes with closed, therrnophilic vegetation Type 132 Therrnophilous Festuca rubra type Type 133 Therrnophilous Festuca baffinensis type Type 134 Trisetum spicatum-Minuartia biflora type Subgroup 14 Early snowbed and snowflush vegetation dominated by mesG'hygrophilous plants, partly moss-dorninated Type 141 Homalothecium nitens-Dryas type Type 142 Salix polaris type and related, poo rly defined types Type 143 Seasonally hygrophilous Dupontia pelligera type Subgroup 15 Late snowbeds Type 151 Phippsia concinna type and related types Type 152 Cerastium regelii type Subgroup 16 Bird-cliffs (not differentiated further)

Group 2 Poorly drained sites

Subgroup 21 Moss tundra Type 211 Ho malothecium nitens-Salix polaris-Alopecurus alpinus type Type 212 Ho malothecium nitens-Salix polaris-Dupontia pelligera type Subgroup 22 Wet moss tundra Type 221 Therrnophilous Carex parallela-C. saxatilis type Type 222 Homalothecium nitens-Carex subspathacea type Type 224 Dupontia pelligera-Eriophorum scheuchzeri type Type 226 Frost upheaval Dupontia pelligera-forb and Salix polaris-Saxifraga oppositifolia­ Poa arctica types Type 227 Eriophorum triste-Deschampsia brevifolia type Subgroup 23 Swamp tundra Probably not represented in Gipsdalen Subgroup 24; Swamp Type 241 Arctophila fulva, Dupontia psilosantha and Ranunculus hyperboreus types

B LOWLAND AREAS Wlm OPEN VEGETATION COVER

Group 3 Very exposed, stable or eroded ridges

Subgroup 31 Ridges with gravelly substrate Type 312 Draba-Saxifraga-Cerastium arcticum type Subgroup 32 Ridges with silt substrate Y Type 321 Poa abbreviata-Potentilla pulchella type Type 323 Puccinellia angustata type

Group 4 Sedimentation fiats with silt substrate Y Subgroup 41 FIats with more or less continuous vegetation Type 411 Dry Polygonum viviparum type Type 412 Homalothecium nitens-Salix polaris-Equisetum arvense type Subgroup 42 FIats with discontinuous vegetation Type 421 Open Salix polaris- Saxifraga oppositifolia type Type 423 Open Dupontia pelligera-Deschampsia spp. type

Group 5 Gravelly river fans

Subgroup 51 Fans with vegetation cover Not differentiated further Subgroup 52 Fans with scattered plants Not differentiated further Gipsdalen, Central Svalbard; Flora, Ve getation, and Botanical Values 47

Table 3 (cont.).

Group 6 Recent moraines Not differentiated further

Group 7 Seashores

Subgroup 71 SaltJbrackish marshes on fine-grained substrates Type 711 Puccinellia phryga rwdes type Type 712 Carex subspathacea and C. ursina types Subgroup 72 Gravel shores Not differentiated fu rther

C and D. UPLAND AREAS Not treated in Gipsdalen

Puccinellia vahliana. Carex misandra is very and around the moraines of Margaretbreen in cornmon (almost constant) in the type in the the interior. The stands are confined to area. The open Dryas-Carex rupestris type depressions where humus accumulate and (111) is very rare in Gipsdalen, mainly isolate the plants to some degree from the confined to some hills near the river mouth. limestone. In the Margaretbreen area the This is usually the most cornmon type of the stands may be associated with more acidic . community in other inner fjord areas. The two moraine transported down the valley from the types are mapped collectively as 11. acidic Hecla Hoek outcrops. The rarity of Cassiope heaths is a characteristic feature of the valley. The stands are too small to be Subgroup 12: Dry closed heath vegetation included in the map.

The closed Dryas and Cassiope tetragona dry tundra types (heaths) are prominent fe atures of Subgroup 13: Warm, favourable slopes with most inn er fjord areas on Svalbard. They are closed, thermophilic vegetation widely distributed in Gipsdalen on .the upper parts of ridges and hills, beneath the preceding Steep, warm south- or southwest-facing slopes zone, and they also cover vast areas on weU­ with some supply of water may have a vege­ drained plains and raised beach ridges. The tation dominated by graminids and' fo rbs rather dominants are prostrate shrubs, and the vege­ than prostrate shrubs. They are most often fo und tation types are usuaUy monotonous and poor in on the slopes of moraine ridges or at the foot of species. Two types are recognized in the area: small er or larger cliffs. Such sites are very rare in Gipsdalen, and the fe w stands seen do not Type Closed Dryas and Dryas-Ca supply enough material for a local differentiation. .121: rex rupestris type. The closed prostrate shrub The following types are, however, indicated: heaths in Gipsdalen are totally dominated by Dryas octopetala. Carex rupestris is cornmon, Type Thermophilic F stuc rubra type. 132: e a but not dominating, and is often replaced by The type is characterized by comparatively Carex misandra. Other very cornmon tall-growing gras ses (Poa spp. and especially associates are Salix polaris and Saxifra ga Festuca rubra ssp. arctiea) mixed with some oppositifolia. Re onally infrequent calciphiles fo rbs. The type occurs very locally on some are locally cornmon.gi The type is widely ridges, on the upper parts of river-banks in distributed in the lower parts of the valley, the lower parts of the valley, and in the on more sheltered parts of the raised beach peripheral parts of the bird-cliff area at ridges, and on the Gipshukodden-Gåsodden Skiltvakten. The areas are too small for plateau. In the interior parts the type is mapping. restricted to favourable places on slopes, often with some accumulation of humus. In th e Type 133: Thermophilic Festuca baffinensis vegetation map the code 121 is used for the type. This species-rich meadow is charac­ cornmon variant in Gipsdalen, while the code terized by the distinctive Festuca ba{{inensis, 121a is used for a less calciphilic variant often associated with other comparatively found on the dolerite outcrops on the thermophilic species like F. rubra, Silene Gipshukodden. - Gåsodden plain. fu rcata, and Saxifraga nivalis. It is restricted to the small hillocks at the mouth of the val­ Type 122: Cassiope tetragona and Dryas­ ley north of Templet, and the slopes along Cassiope type. The beautiful Cassiope heaths Templet. Both this and the next type are less are prominent in most inner fjord areas, but frequent in Gipsdalen than in neighboring not in Gipsdalen. Here they are restricted to areas (e.g. the Sassendalen and the Kapp a fe w sheltered (concave) slopes in the Thordsen areas). Gipshukodden area outermost in the valley 48 Environmental Atlas Gipsdalen, Svalbard

Type 134: Trisetum sp icatum-Minuartia of types are recognized: biflora type. The type is characteristic of the sheltered slopes of moraine ridges, with a Type 151: Phippsia concinna type and stable snow cover during winter, but an early related types. The Phippsia snowbeds are snow-melt in spring. The substrate may be most common in the uplands (most often with unstable, and characteristic plants are the two P. algida as the characterizing species), but above together with Oxyria digyna, Erigeron small stands are often fo und at the base of humilis (very rare . in Gipsdalen), and Ranun­ ridges in the lowlands. A fe w, very small culus pygmaeus. The type has be en fo und in stands have been registered along the valley, severaI places in the lower parts of the valley, to� small to be mapped. Larger, deviating but most stands are too small to be mapped. stands are found at the mouth of the valley north of Templet. These stands are located on a SE-facing, unstable slope, and Phippsia spp. Subgroup 14: Early snowbed and snowflush are mixed with e.g. Draba adamsii, Cerastium vegetation regelii, . and Ranunculus pygmaeus.

The snow cover disappears early in most of Gips­ Type 152: Cerastium regelii type. This is a dalen. Snowbed vegetation is therefore restricted. moister type, usually found on upland plateaus Some stands are found in the tributary valleys and in shallow depressions on silty substrates. and ravines in the lower parts, but th e larger It is lacking from lower Gipsdalen, but occurs areas are confined to the upper, colder parts of regularly at the base of slopes beneath low the valley. Snowflush vegetation, i.e. · irrigated moraine ridges and cliffs in upper Gipsdalen. during the melting period; is equally rare. Only The total area is, however, small, and no a few, weakly characterized types are recognized: stands are mapped. Cerastium regelii is usually dominant, and is associated with e.g. Type 141: HomalotMcium nitens-Dryas type. Draba alpina, Saxifraga spp., and Desch­ This slightly irrigated type of Dryas heath is ampsia alpina. usually located on slopes beneath bills with a comparatively late snow cover. It is inter­ mediate between ordinary Dryas heaths and Subgroup 16: Bird-cliffs moss tundra. Distinct stands are only found on th e upper parts of the Gipshukodden - The most luxuriant vegetation in the inner fjord Gåsodden plain beneath Gipshuken mountain. areas is found below the bird-cliffs, where manuring both supplies the vegetation with nutr­ Type 142: Salix polaris type and related ients lacking elsewhere, and helps in building a types. Vegetation types dominated by Salix humic soil which both stabilizes the scree and polaris are widely distributed in and used to increases the water capacity. The only detailed characterize the North Arctic Tundra Zone study of bird-cliffvegetati on on Svalbard (Eurola (see Brattbakk 1986). In the Middle Arctic & Hakala 1977) is not representative of the inner Tundra Zone they are of less importance, and fjord sites, and we have not attempted a division mainly confined to unstable sites (see types into vegetation types based on the scanty 412 and 421), moss tundras (types 211-2), or material available. sites with long-Iasting snow cover. Salix polaris snowbeds are confined to the basal In Gipsdalen small stands of bird-cliffvegetation parts of moraine ridges in the lower parts of are found beneath the bird colonies in severaI the valley, but an open version covers soine mountains along the valley (e.g. Dalkallen), but area in the upper valley. the only site of importance is the mountain Templet. Bird-manured vegetation is fo und along Type 143: Seasonally hygrophilous the entire mountain fr om Skiltvakten to Bjona­ Dupontia pelligera type. This is a weakly hamna. Concentrated manuring characterizes the characterized irrigated vegetation type, slopes beneath Skiltvakten, diffuse manuring the intermediate between moss tundra and moist rest of the area. heaths. It is characterized by a combination of dry tundra (heath and marsh species, and by The Skiltvakten bird-cliff vegetation may be a little developed moss cover. Scattered stands divided into three zones: are fo und on the upper parts of the slopes from Gipsdalselva to the mountain sides. The innermost, most heavily manured zone is composed of one species only, the grass Puccinellia angustata, growing as a dense, Subgroup 15: Late snowbeds deep lawn on the uppermost cliff ledges.

Late snowbeds are areas with a snow cover The next zone is less heavily manured, and lasting well into July or later in normal years. contains a very varied meadow vegetation of They are very rare in Gipsdalen. Only a fe w forbs and grasses, often reaching a height of stands have be en fo und in ravines and on the 0.5 m. In addition to common bird-cliff species north side of steep moraine ridges. Two groups like Cochlearia groenlandiea, Oxyria digyna, Gipsdalen, Central Svalbard; Flora, Vegetation, and Botanical Values 49

Saxifraga hieracifolia, Poa pratensis ssp. Type 211: Homalothecium nitens-Salixpolaris­ alpigena, P. glauca, Draba arctiea, D. daurica, Alopecurus alpinus type; and 212: and Ranunculus sulphureus, this is the site of Homalothecium nitens-Salix polaris-DuTypepontia less fr equent species like Polemonium boreale, pelligera type. The two types are weakly char­ Ranunculus pedatifidus, and a Potentilla sp. acterized and only fr agmentarily developed in Gipsdalen (not mapped). The first-mentioned The third zone is diffusely manured, and the is often tussocky, the other more even. They vegetation is a species-rich Dryas-Salix polaris are found on the upper parts of slopes, mostly heath with deep moss carpet, changing gradu­ in the lower parts of the valley, or as margins ally into a normal Dryas heath fu rther fr om around wetter marshes. In spite of the small the cliffs. areas, they seem to be heavily used for winter grazing by (indicated by a high con­ The more diffusely manured area between Skilt­ centration of winter fe ces). This is explained vakten and Bj onahamna has a fr agmented vege­ by the dense vegetation cover and the thin tation, where well vegetated meadow slopes alter­ iceJsnow cover. nate with open scree. The area is also drier, due to less soil formation than in Skiltvakten. In addition to the species mentioned fr om Skilt­ Subgroup 22: Wet moss tundra vakten are fo und e.g. an intricate variation in the Po ten tilla nivea-chamissonis group, Minuartia The wet moss tundras are found on flat or very strieta, and Erigeron humilis. gently sloping ground. The ground water level is situated at or just beneath the soil sUrface during much of th e growth season, but tussocks Group 2: Poorly drained sites are common, elevating some plants well above it. These vegetation types have a restricted distri­ The poorly drained sites are here colfectively bution in Gipsdalen, but a large and varied area referred to as "marshes", and separated in earlier is fo und inside the innermost raised beach ridges versions of the system into moss tundra, wet on the east side of the river. The beach ridges moss tundra, and swamp. This separation is kept here have a damming effect. The five types here, but in th e fu ture a more consistent set of recognized are among the most interesting terms should be found. Some of the types are vegetation types in the valley: clearly related to boreal-alpine mires (e.g. type 221), while others are specific arctic communities. Type 221: Thermophilic Carex parallela-C. saxatilis type. The type is usually tussocky in These are sites where the ground water level is Gipsdalen, with open soil or a very thin moss situated at or a short distance beneath the soil cover between the tussocks. Precipitation of surface for most of the growth season. The spring lime is common. In addition to common marsh is delayed compared with well-drained sites, but species like Dupontia pelligera and Erio­ the season may be prolonged in late summer. phorum triste, th is type is characterized by a The moss layer is usually very well developed, combination of thermophilic and often rare while most lichens are lacking. Woody plants graminids: Carex paralleia, C. saxatilis, C. (except fo r Salix polaris) are of small importance, amblyrhyncha, Juncus triglumis, and in one while mat-forming grasses, sedges, rushes, and site each Juneus castaneus and Ko bresia many forbs are characteristic. simpliciuscula. Except for Carex amblyrhyncha these are species characteristic of rich The main differentiating fa ctors within the group minerotrophic mires in alpine areas in Scandi­ are the depth of the active layer, the depth of navia. Floristically this type is the closest the ground water level during the main parts of approximation on Svalbard to a boreal mire. th e growth season, and the drainage conditions. The type is found in the most favourable parts of the large marsh complex inside the major The coarse, well-drained substrates in many beach ridges on the east side, in a small parts of Gipsdalen prevent fo rmation of marshes, depression on the largest beach ridge, and except where there is some topographical locally on the slopes beneath the mountains impeding of the drainage. Poorly drained sites U sherfjellet and Gipshuken on the west side. cover a much smaller fraction of the area than in neighboring areas like Sassendalen, Type 222: Homalothecium nitens-Carex Bub­ Adventdalen, and on Kapp Thordsen. spathacea type. The type occurs on even ground, usually with a high, Stagnant or very slowly moving water table. Tussocks are less Subgroup 21: Moss tundra frequent than in the preceding type. Carex subspathacea may dominate . alone or with The least moist marshes are usually named Dupontia pelligera and Eriophorum scheu­ "moss tundra" on Svalbard. They are often chzeri. The type is important in the large dominated by the moss Ho malothecium nitens marsh complex on the east side, and around associated with Salix polaris and gras ses, and the small lake on the west side of the estuary. are usually found on gently sloping ground. 50 Environmental Atlas Gipsdalen, Svalbard

Type 224: Dupontia pelligera-Eriophorum SeveraI fa ctors may be responsible for keeping scheuchzeri type; and Type 227: the vegetation open. Extreme exposure (abrasion) Eriophorum triste-Deschampsia brevifo lia type. combined with drought is characteristic of the These two types are characteristic of flats or ridge crests, while salinity is a stress factor on gentle slopes with a scant moss cover and the seashores. Instability is a characteristic both weak humus accumulation. The water table is of sedimentation plains, river fans, scree, and situated close to the surface, and usually recent moraines. moving. The stands are very poor in species, and single species may dominate large pat­ ches. Both types are frequent in the middle Group 3: Very exposed, stable or eroded and inner ' parts of the valley. The last­ ridges mentioned type is a characteristic feature separating Gipsdalen from the other investi­ The crests of raised beach terraces and moraine gated inner fjord areas. The types are mapped ridges are free of snow through most of the collectively as 224/227. winter. The vegetation is usually very open due to a combination of drought (both in winter and Type 226: Frost upheaval Dupontia summer), abrasion by ice crystals and dust, and pellige -forb and Salix polaris-Saxifraga ra wind erosion of the substrate. The species compo'­ oppositifolia-Poa arctica types. These are sition varies with the type of substrate, but is restricted to areas with silty sediments usually distinctly different fr om that fo und in the combined with high water table. They are a surrounding discontinuous or closed heaths. The transitorial to group 4. In Gipsdalen they are vegetation of the open ridges has previously not rare and confined to the transition fr om been studied in detail on Svalbard. The sepa­ marshes to river margin, especially along the ration between the three types below is large marsh complex. They are not mapped. preliminary:

Subgroup 24: Swamp Subgroup 31: Ridges with gravelly substrate

The deep swamps characteristic of most other In the lower parts of the valley these are mainly inner fjord valleys (e.g. Reindalen, Adventdalen, rai sed beach terraces, in the upper part moraine and Sassendalen) are lacking fr om Gipsdalen. ridges. The substrate is, however, fundamentally Swamp tundra types (Subgroup 23), dominated the same: calcareous gravel more or less mixed by Arctophila fu lva, Dupontia psilosantha and with silt. Only one vegetation type is recognized: mosses, have not been found, and swamp zones are restricted to the margins of the small lakes Type 312: Draba-Saxifraga-Cerastium (or rather dams). These are collectively placed in arcticum type. The crests of gravelly ridges a weakly defined type: are almost devoid of vegetation, except for scattered individuals of hardy fo rbs and Type 241: Arctophila fulva, Dupontia psilos­ grasses, sometimes with small amounts of antha and Ranunculus hyperboreus types. Salix polaris. The most common species are N arrow rims are found at the small lake west Saxifraga oppositifolia, S. cespitosa, Draba of the river mouth (not mapped), at "Dun­ corymbosa, D. oxycarpa, D. subcapitata, D. sapietjønna" on the major beach ridges on the arctica, Cerastium arcticum, and Poa abbr­ east side (mapped), and in some small hollows eviata. The high fr equency of Draba corymbosa near Methuenbreen in the upper valley (not is characteristic of Gipsdalen. The type is mapped). The characterizing species are all frequent in the entire valley, but usually very rare in Gipsdalen. occurs in small stands.

BLowland with open vegetation ver areas co Subgroup 32: Ridges with silty substrate

Ridges with a predominantly siltY substrate are The distinction between open and continuous less resistant to wind erosion than gravelly vegetation is not as clear-cut in Gipsdalen as in ridges. Such ridges are rare in Gipsdalen, mainly other inn er fjord valleys. This is due to the found close to the river and locally elsewhere calcareous substrate, not to instability. SeveraI (moraines). Two vegetation types are recognized, normally closed vegetation types are found as both in very small stands: more or less open versions in Gipsdalen, but with the same species composition. They are therefore Type 321: Poa abbreviata-Potentilla pulchella described in the preceding main group to facili­ type. This type is characteristic of ridges with tate comparison with other areas. The present mixed silt and gravel, and is found as small group is reserved for types kept open by some stands in places near the river, and on ridges kind of instability or environmental stress (except within the large marsh complex on the east for excess of lime). Gipsdalen, Central Svalbard; Flora, Vegetation, and Botanical Values 51

side. Charactet:istics, in addition to the naming Type 421: Open Salix polariB-Saxifraga speeies, are e.g. Festuca hyperborea, Puccinellia oppositifolia type. A very common type along vahliana, Draba arctica, and scattered other most major rivers in the inner fjords. The Drabas and Saxifragas. vegetation usually consists of isolated clones and colonies of Salix polaris, Saxifraga Type 323: Puccinellia angustata type. The oppositifolia, and other ubiquitously distributed type is characterized by very open stands of plants. Lack of hygrophytes separates this Puccinellia angustata, often the depauperate type fr om the next. It occurs along most of type (var. depauperata). It occurs on. low siltY Gipsdalselva, and may be considered an initial ridges close to the lower course of the river. stage to type 411. The protected species Braya The stands are very small. purpurascens is especially common in this type (see pp. 42). Both types have been very little investigated, but se em to occur regularly in the valleys of the Type 423: Open Dupontia pelligera­ inner fjord region, especially on calcareous Deschampsia spp. type. This is the regular substrates. initial vegetation on the lowermost silty banks along (and in) the river, with a hygrophytic species con tent, but lacking mosses because of Group 4: Sedimentation plains with silty th e fr equent and often heavy sedimentation. substrate Deschampsia alpina is more common than D. brevifo lia in this vegetation type, and SiltY plains subject to yearly flooding occur along Eriophorum scheuchzeri is very common. Gipsdalselva river. The vegetation is more or less in balanee with this disturbance, but may change rapidly if there is any change in the amounts of Group 5: Gravelly river fans sedimentation. Decrease results in a rapid change into closed Salix polaris or Dryas types, or into In Gipsdalen the valley slopes are divided almost marshes. Increased sedimentation may res ult in equally between areas with a more or less stable destruction of all macro-vegetation. The two bottom moraine, and unstable gravelly river fans groups below represent different (potential) fr om the tributaty valleys. On these fans there is developmental stages. a series of developmental stages fr om sterile gravel to closed Dryas and Salix polaris heaths. The well stabilized stages are classified to types Subgroup 41: Plains with more or less of closed vegetation, while the unstable ones are continuous vegetation recognized as belonging to this group.

The two types represent well-developed, semi­ The species content seems to be partly random, stable stages differing in hydrology: partly depending upon the species available in the vicinity. Two ecologically defined subgroups Type 411: Polygonum viviparum types. are recognized, but no floristically characterized These plainsDry are usually situated on the top vegetation types, as there is little floristic of river banks, where the drainage is good. homogeneity between stands: Polygonum viviparum may occur alone or mixed with smaller amounts of Salix polaris, Saxifraga oppositifolia, and mosses. The Subgroup 51: Fans with vegetation cover vegetation may be very monotonous fo r long stretches, but in Gipsdalen the type is The single most important plant in the restricted to a fe w stands along th e 10wer stabilization of river fa ns in the area is Saxifraga course of the river. oppositifolia, weawing a net of long rooting branches through the gravel and silt. Some Type 412: Homalothecium nitens-Salix stabilization is also attained by Salix polaris, polaris-Equisetum arvense type. These plains Polygonum viviparum, by mats of Stellaria are damper, and the vegetation cover usually longipes coU., Pro spp. and Equisetum spp., and denser. They are often situated at slightly by tussocks of e.g. Draba, Saxifraga, MinuartifL, lower levels than the preceding, and may Cerastium, and Festuca spp. Vegetated river fans receive more sediments. Only small stands are are among the more species-rich habitats in the fo und in Gipsdalen (not mapped). area, especially in upper Gipsdalen.

Subgroup 42: Plains with discontinuous Subgroup 52: Fans with scattered plants vegetation This type is an initial stage to the preceding, The two types are parallels to the preceding with less consolidated substrate and vegetation ones, representing earlier developmental stages: cover, but with largely the same species content, and often an even high er species number. 52 Environmental Atlas Gipsdalen, Svalbard

The two types alternate on the fans, according Subgroup 72: Gravel shores to the changing courses of rivers and brooks. Stands of both types may be kept in a dynamic The gravel shores of Gipsvika are without equilibrium by a more or less constant amount vegetation, except for a fe w scattered plants on of inundation and new sedimentation each year. the uppermost, least saline ridges, where a fe w shoots of Saxifraga spp., Oxyria and other The river fans are of importance as permanent ubiquitous plants are found. refuges for a series of weak competitors, and as a meeting place for plants from otherwise * * * * * separated habitats. They may therefore fu nction as habitats of hybridization between species (e.g. Vegetation types may be of conservation value Cerastium arcticum x regelii and probably some for severai reasons: Draba hybrids). - Restricted distribution, totally , regionally or locally. The knowledge of in Group 6: Recent moraines general is too scant to indicate which vegetation types are rare in a circumpolar Recent moraines occur at the motith of tributary con text. We have, however, enough information valleys, especially at Boltonbreen, Methuenbreen, to evaluate the vegetation in a Svalbard Margaretbreen, and Florabreen glaciers. The context. youngest moraines are sterile, while th e older parts contain a vegetation similar to that of the - Sites of especially rare and valuable species, river fans, i.e. comparatively rich in species, and or concentrations of severai species with habitats of otherwise non-competitive species. restricted distribution. This criterion is common to floristic and vegetational purposes (see p. 43). Group 7: Seashores Typical (representative) of the area in The shores of Gipsvika and surrounding are question. In Gipsdalen this wiIl be vegetation predominantly coarse and devoid of vegetation. types characteristic of strongly calcareous Driftwalls are fo und at severai places, but they substrates, and types of shallow marshes. are barren. The seashores are divided upon two ecological groups, but only one of these is - Types of importance for other components of vegetated in the area: the ecosystem, i.e. fo r animals; in Gipsdalen reindeer and geese.

Subgroup 71: SaltJbrackish marshes on fine­ Vegetation types considered valuable are listed grained substrates in Table 4, with indication of the criteria applicable in each case. Salt marshes are restricted to the lower parts and estuary of Gipsdalselva. The vegetation may be divided into severai types according to ele­ Approaches to classification vation (i.e. fr equency of inundation by saline water), and degree of fr eshwater influence. Two Our knowledge of arctic vegetation types and types are found in Gipsdalen: their ecological relations is still insufficient for many purposes. A fa irly detailed c1assification Type 711: Puccinellia phrygarwdes type. The system is needed for comparison between areas lowermost zone, consisting of the creeping and for evaluation. Entities as broad as e.g. "wet grass P. phryganodes alone or in association tundra", "dry tundra" and "ridges" occur every­ with the creeping forb Stellaria humifu sa. where, and can scarcely be compared. Small stands are found in the lower river course, especially in bays on the eastem Three different approaches have been used in shore. describing and classifying the vegetation of Svalbard in recent years: an approach based Type 712: Carex subspathacea and Carex mainly on floristic differences (phytosociology), ursina types. The upper zones, with a slightly an approach based on series of vegetation more diversified vegetation dominated by the typesfound in different habitats, and a low-growing sedges Carex subspathacea (mat­ modification of the last one suitable both for forming) and/or C. ursina (tussocks), usually conventional mapping and for satellite mapping. associated with Stellaria humifusa, Draba A short discussion is given here, to fa cilitate . arctica, and some mosses. Small borders are comparison between the system used in the found in the same area as the preceding. present report and earlier classifications and vegetation map legends. Gipsdalen, Central Svalbard; Flora, Vegetation, and Botanical Values 53

Table 4 Gipsdalen vegetation types deemed to be of value in a conservational context. The criteria applied are: 1 - Restricted distribution in a Svalbard context (la) or locally (lb); 2 - Sites of rare speeies; 3 - Representative of the Gipsdalen area, i.e. characteristics of the special ecological fe atures present; and 4 - Of special importance as pastures for reindeer or geese. The codes of the vegetation types refer to Table 3.

Code Type Criteria

112 Exposed, discontinuous heath; open Dryas type 3 122 Closed heath; Cassiope tetragona type lb 133 Warm slopes; thermophilous Festuca baffinensis type lb, 2 134 Warm slopes; Trisetum spicatum-Minuartia biflora type lb 141 Snowflush vegetation; Ho malothecium-Dryas type lb, 4 151 Late snowbeds; Phippsia concinna type lb 152 Late snowbeds; Cerastium regelii type lb, 3 16 Bird-cliff vegetation lab, 2, 4 21 Moss tundra types lb, 4 221 Wet moss tundra; thermophilous Carex parallela-saxatilis type lab, 2, 3, 4 227 Wet moss tundra; Eriophorum triste-Deschampsia brevifolia type la, 2, 3, 4 24 Swamp vegetation lb 321 Exposed siIty ridges; Poa abbreviata-Potentilla pulchella type lab, 2, 3 322 Exposed siIty ridges; Puccinellia angustata type lp 4 Silt y sedimentation flats 2, 3 71 SaltJbrackish marshes lb

The phytosociological approach. This is based snowbeds, exposed open ridges, and sedimen­ on defining and naming vegetation units by use tation plain and river fan habitats, or for upland of exclusive or otherwise characterizing species (mountain) areas. (see Braun-Blanquet 1964). The approach has been used on Svalbard by e.g. Hadac (1946, 1989 The series approach. This is a mainly - severaI vegetation types), Hofmann (1968, 1969 Scandinavian approach based on ecological series - mainly seashores), Thannheiser (1976 - shores of vegetation types: i.e. a "heath", a "meadow" and marshes), Thannheiser & Hofmann (1977 - and a "mirelmarsh" series. It has been applied seashores), and partly by Rønning (1965, 1969 - most consistently by the Trondheim group of severaI types), Brattbakk (1979 and 1981 - sea­ botanists working in the MAB vegetation map­ shores, 1983 - heaths), Eurola (1971 - "mires"), ping of large parts of W and N coasts of Spits­ Eurola & Hakala (1977 - bird-cliffs), and bergen and of Adventdalen, and is inherent in Brossard et al. (1984 - mosaic communities). the vegetation descriptions of e.g. Brattbakk et al. (1976) and Brattbakk (1980). The entities are There are severaI problems inherent in a purely described and numbered in a linear sequence, floristic approach to arctic vegetation, in addition and grouped into the three series independent of to a general criticism often raised against the the linear sequence. A third grouping is based on methods in recent decades. (1) The low number vegetation density (cover). of species in arctic areas, compared to the number of habitats, makes it difficult identify The lack of hierarchy is a drawback of this to uniquely characterizing species groups for each system. It is "closed" in the sense that new ecologically different type of habitat. (2) The entities either have to be added to the linear confinement of a species to a certain habitat is sequence, or included as a subtype in an already often a result of competition. Decreased compe­ established type. Another drawback is that the tition, as common in arctic areas, often increases series are adapted from Scandinavian vegetation, the ecological span of many species, and they and not very well suited to arctic, unstable be come less characteristic of single habitats. conditions. The specific, open vegetation types of Some of the widest distributed and least charac­ exposed ridges and sedimentation areas have terizing of Svalbard species - e.g. Salix polaris mostly been treated as open phases of otherwise (polarvier) and Saxifraga oppositifo lia (raudsildre) closed vegetation, or ignored. - are restricted to clearly defined ecological niches in more southem areas. (3) The instability of It has proved difficult to correlate the vegetation many arctic habitats, due e.g. to cryoturbation, entities on the numerous maps produced by erosion and permanently changing water courses, Brattbakk directly with the results of satellite makes successional or "arrested" stages an impor­ mapping. The picture attained from satellite tant part of the total vegetation pattem. (4) The mapping is sometimes more detailed (especially phytosociological approach has not been applied in wet areas), sometimes less, than the differ­ to more than a part of the total variation, and entiation in the series approach. no surveys exist on vegetation of widely distri buted habitats like marshes, "moss tundras " , 54 Environmental Atlas Gipsdalen, Svalbard

The modified series approach. The vegetation vegetation may be fo und in 5 additional classes. classification used in this report has been chosen An interpretation of the classes, based on studies fo r use both in interpretation of satellite maps in Gipsdalen, Sassendalen (B. E. Johansen, A and in conventional description and mapping of Elvebakk, J.-T. Schwenke, and R. Elven), and vegetation Cbased on aerial photographs). It is Reindalen (B. E. Johansen), is given in Table 5, based on the main principle of the series with an abbreviated version in the map legend. approach, a differentiation according to major ecological habitats, but differs in some respects: (1) It is hierarchical in that it groups the Comparison and evaluation of the maps habitats and vegetation entities at severaI leveIs. (2) It combines grouping of habitats and of The classifications behind the two maps are very floristically characterized vegetation types in one different, both in the criteria applied and in the system. (3) It is "open" in the sense that new classification procedures. habitats or vegetation types may be added without significant change of structure. This Habitat and floristic criteria are fu ndamental in facilitates the comparison between different sites, the conventional vegetation mapping, while while it retains the possibility to describe entities reflection from substrate and vegetation cover, of local significance. irrespective of single species, is paramount in the classification of satellite data. Even low-frequent The system is still in the experimental phase. It species may be highly indicative in the conven­ has be en applied to the vegetation of Agardh­ tional classification (e.g. the thermophilic marsh dalen (Elvebakk & Sørbel 1988), Sassendalen and species). Such species will, of course, have no Gipsdalen, and seems to facilitate the use of direct influence on the satellite data. satellite data in the interpretation of vegetation types and distribution. The classification underlying the conventional map is highly subjective, while the clustering resulting in the satellite-based classes is objective Vegetation maps in the sense that it is reproducible when the same parametres are chosen (bands, classification Three vegetation maps, representing different algorithm, number of classes, threshold values). approaches, are presented: one map based on aerial photos and extensive field survey, one map In spite of these differences, the two maps are based on satellite-data and more limited field surprisingly similar. The same major trends in surveys, and a vegetation density map based on the landscape are reflected in both maps: satellite data alone. The relative values of these approaches are evaluated. - Separation between non-vegetated and vegetated areas (and between different types of non-vegetated areas). In both types of Aerial photo-based vegetation map sources (aerial photos, satellite data) it is difficult to separate between completely naked A conventional vegetation map, based on the soil and areas with scattered plants. classification described above, is enclosed as two sheets. - Two mutually independent differentiations are reflected within the vegetated groups: (a) Between closed and open vegetation; and The map includes 25 vegetation units, given in (b) the legend to the map sheets. Some mapping between dry and moist/wet areas. entities differ from the vegetation description above: Many entities occur in stands too small to - The dominant life-forms in �ach vegetation be figured in the map. Other entities occur group influence both classifications, e.g. regularly together in mosaic pattems. Such com­ differentiation between dominance of prostrate plexes are mapped as a combination of two or shrubs and graminids in the dry tundra more entities, e.g. 111121, 224/227 and 312/133. (heaths), and between graminids and mosses In some cases the mapping entities are collective, in the marshes. i.e. including severaI closely related vegetation types. The correspondences between the maps are indi­ cated in Table 5. For each class in the satellite map (Fig. 5) are listed the corresponding habitat groups and vegetation types. Satellite-based vegetation map There are, however, severaI interesting differ­ A satellite-based map of Biinsow Land is ences between the maps: presented in Fig. 5. Of the 27 classes, severaI represent unvegetated or slightly vegetated areas, - A more detailed differentiation is possible in e.g. water, snow and ice, shadow effects, and the conventional map, based on field survey of mostly naked silt, gravel and stones. The number the floristic composition. Purely floristic of distinctly vegetated classes is 7, while open differences, e.g. between different species of Gipsdalen, Central Svalbard; Flora, Vegetation, and Botanical Values 55

Table 5 Interpretation of classes in the satellite-based vegetation map (Fig. 6). The interpretation is based on studies in Gipsdalen, Sassendalen and Reindalen. Bernt Johansen, Tromsø (FORUT), is mainly responsible for the Sassendalen and Reindalen interpretation. Reference is made, where possible, to the conventional vegetation types (see Table 5.1).

Class Interpretation

Unclassified. o 1 Sea water, mostly deep and comparatively pure. 2 Shadows, with or without vegetation. 3 Swamp tundra and swamp (subgroups 23 and 24). 4 Silty sedimentation fiats, more or less vegetated (parts of subgroup 42). 5 Open to partly closed types of wet moss tundra with vegetation cover about 50 % (e.g. types 222, 224 and 227). 6 Luxuriant sloping wet moss tundra with . vegetation cover approaching 100 % (e.g. type 221 and dense variants of type 224). 7 Mossy, sometimes graminid-rich Dryas and Salix polaris vegetation, in Gipsdalen with much Carex misandra (includes parts of types 121a, 141 and 142). . 8 A mixture of damp vegetation types with a more or less closed vegetation: moss tundra (types 211-212), saltlbrackish marshes (subgroup 71), and some snowbeds. 9 Closed to partly open heath vegetation with dominance or co-dominance of graminids (e.g. Carex rupestris in the lowlands, Luzula spp. and possibly Alopecurus alpinus in the mountains), including parts of type 121. Bird-cliff meadows (subgroup 16). 10 Sea water with river sediments. 11 River and melt water, including the fjord water close to estuaries. 12 Glaciers, probably with some dust covering. 13 4. As 14 Gravelly river fans without or with open vegetation (group 5), some lus.ta 15 Sedimentation fiats with a more or less continuous vegetation (subgroup 41 and parts of type 423). 16 Closed Dryas heath vegetation Oowlands, type 121) and densely vegetated polygon ground in mountains. 17 Open Dryas heath vegetation Oowlands, types 111-112) and comparable types (e.g. Luzula types) in mountains. 18 Sterile fe ll-fields and talus slopes, stones and gravel; exposed gravel and silt ridges with open vegetation Y (group 3). 19 Sea water with especially large amounts of river sediments. 20 Glaciers. 21 Glaciers and snow. 22 Wet sedimentation flats and gravel river fa ns. 23 Wet, silty sedimentation fiats, probably also shadow effects. 24 Glaciers and snow. 25 Wet gravel river fans; the drainage courses. 26 Non-vegetated fe ll-fields, mountains. 27 Glaciers and snow.

graminids in the marshes or in graminid­ in a satellite-based map. In the present map dominated dry tundra, is reflected in this this is partly compensated for by choice of approach only. The satellite-based map gene­ similar colours for floristically related types. rally reflects entities at the three high er (ecological and physiognomical) levels in the - There has to be a minimum vegetation cover conventional c1assification (Table 3), while the before it is detected at all in satellite data or fourth, floristie level must be registered and aerial photos, while only a few, scattered mapped based on field surveys in any case. plants are needed before it is defined as a vegetation type during field surveys. The - The satellite map reflects hydrology better proportion of non-vegetated ground will than both monochromatic aerial photos and therefore be higher in estimates based on superficial field surveys. Hydrology is reflected satellite data alone than in estimates based on both in densely vegetated areas and in areas a combination of aerial photos and field with mostly open soil. This is important for surveys. an evaluation of gravel fans and sedimen­ tation areas. - Vegetation density is very well reflected in the We conc1ude that both approaches present an satellite map, while the amounts of vegetation ecologically valuable survey of the area. They are are often exaggerated in field · surveys, and comparable as to the main features, but differ in under-estimated by use of aerial photos alone. the degree of detail, in reflection of ecoIogicaI Vegetation types with fundamentally the same fe atures (e.g. moisture), and in their relevance species content, but differing in density, may for identifying the floristically most valuable therefore often be split on two or more c1asses vegetation types. 56 Environmental Atlas Gipsdalen, Svalbard

Both approaches must be combined with field Iimitations the results of a field survey of parts surveys ("ground truth data") to give valuable of a classified satellite scene can be extrapolated results. A large amount of field survey is needed to the remaining, and to other scenes from before a vegetation map based on aerial photos comparable areas taken at about the same time. is ecologically and floristically well documented. Some extrapolations are made below (p. 59). It is an expensive method, and the results obtained from one area cannot be extrapolated toother areas. A much small er amount of field Vegetation density map work is needed to document a classified satellite scene. Field control of a smaller number of sites In this satellite-based map (Fig. 6) densely of each class is usually sufficient. With certain vegetated areas are indicated by red to dark

Figure 5 A classified satellite map of Bunsow Land, based on bands 1, 4 and 5 a Landsat TM scene from 5 August 1985 (path 217, row 3, Q4).

The map includes the major parts of Bunsow Land with Gipsdalen, the lower parts of Sassendalen (lower right), and the coast from Sassenelva estuary west to Diabasodden prornontory (lower left).

Numbers in parentheses refer to vegetation groupltype codes, see Table 5.1.

The map is produced by FORUT, the University of Tromsø, by Bernt E. Johansen, which is also partly responsible for the legend. Further explanations, see Table 5.3 and text.

Legend:

Non-vegetated clas8es

Unclassified (residual class) o 1 Sea water, more or less pure 2 Shadow effects, with or without vegetation) 10 Sea water, with some river sediments 11 River and melt water, estuarine water 12 Glaciers 19 Sea water, with niuch river sediments 20 Glaciers 21 Glaciers and snowfields 24 Glaciers and snowfields 25 Wet gravelly river fans, the drainage courses 26 Fell-fields, mountains 27 Glaciers and snowfields

Slightly vegetated claS8eS

4 Silt sedimentation plains, more or less vegetated (parts of 42) Y 13 Same as 4 14 Gravelly river fans, without or with open vegetation (5), some talus 18 Exposed gravel and silty ridges (3); also sterile fe ll-fields and talus slopes, stones and gravel 22 Wet sedimentation plains and gravel river fa ns 23 Wet silt sedimentation plains; probably also some shadow effects Y Openly densely vegetated claS8eS to 3 Swamp tundra and swamps (23 and 24) 5 Open to partly closed wet moss tundra, vegetation cover around 50 % (222, 224, 227) 6 Dense sloping wet moss tundra, vegetation cover approaching 100 % (221 and dense variants of 224) 7 Mossy, sometimes grarninid-rich Dryas and Salix polaris vegetation, in Gipsdalen with Carex misandra (parts of 121a, 141 and 142) 8 A rnixture of damp vegetation types with more or less closed vegetation: moss tundra (211, 212), saltlbrackish marshes (71), some snowbeds 9 Closed heaths and meadows rich in graminids: Carex rupestris heaths (parts of 121), Luzula heaths and Alopecurus tussock heaths in the mountains, bird-clitT meadows (16) 15 Sedimentation plains with more or less continuous vegetation (41, parts of 423) 16 Closed Dryas heath (121); densely vegetated polygon fields in the mountains 17 Open Dryas heath (111, 112); cornparable (Luzula) types in the mountains Gipsdalen, Central Svalbard; Flora, Vegetation, and Botanical Values 57 58 Environmental Atlas Gipsdalen, Svalbard

Figure 6 Standard false-colour composite map of Bunsow Land with Gipsdalen (up per part), Sassendalen (lower right) and the Adventdalen area (lower left). The map is based on a Landsat TM scene from 5 August 1985, utilizing the bands 2, 3 and 4. The map is produced by FORUT, The University of Tromsø, and has been presented earlier by Spjelkavik & Elvebakk (1989). ·

Red and brown colours indicate weU vegetated areas: dark brown and brownish red - closed Dryas heaths, deep red - moss tundras and marshes, light red - bird-manured meadows.

Further information, see text. Gipsdalen, Central Svalbard; Flora, Vegetation, and Botanical Values 59 brown colours, while little vegetated or unvege­ thereby productive areas should be avoided. tated areas are indicated by light brown colours. Glaciers and snow fields are white and blue, sea Separation of the main groups of vegetation and and lakes black to bluish (when rich in their distribution is best seen from the satellite­ sediments). based map (Fig. 5). From this map we may e.g.: (a) Exactly locate and delimit the valuable marsh We may separate between four types of well areas (green classes 3, 5 and 6); Separate vegetated areas in the Gipsdalen part of the between the closed (and botanically trivi(b) al) Dryas map: heaths (beige and light brown classes 7 and 16), th e more open species-rich Dryas heaths (yellow­ 1) Dark brown areas are closed dry tundra ish brown class 17), and the driest parts of the (heaths), mainly of the Dryas types. Lighter moss tundras (dark brown class 8); (c) Identify brown colours characterize the more open the graminid-dominated heaths and bird-cliff heaths of ridges and partly stabilized river meadows important as pastures (yellow class 9); fans. and (d) Separate between gravelly and silty areas, and between dry and moist types of these. 2) Deep red areas are moss tundras and marshes, with the most intense colours in the The map may be used to locate and to estimate most luxuriant types. These are the only the amounts of pasture and other valuable vege­ important summer pastures of reindeer and tation types with an accuracy probably not geese in Gipsdalen. attainable by conventional, aerial photo-based vegetation mapping. Exact location of in stall­ 3) Two small "red" areas in the mountains, on ations and transport systems in Gipsdalen may, the plateaus of Gipshuken and Sindballefjellet, to a large degree, be based on this map. are the only important winter pastures of reindeer in the Gipsdalen area (see discussion When comparing Gipsdalen with the other areas by Spjelkavik & Elvebakk 1989). included in the map, severaI important differ­ ences are found. Gipsdalen differs, in addition to 4) Intense light red areas indicate the bird-cliff a much less total area of densely vegetated vegetation around the slopes of Templet and ground, in a different balanee between the on the southern parts of Sindballefjellet. classes. Class 9 (yellow) of graminid-rich heaths and meadows is of no significance in Gipsdalen, When comparing Gipsdalen (uppermost in Fig. 6) while it is among the most widely distributed in and the neighboring areas Sassendalen (lower Sassendalen, both in the valley and in moun­ right) and Adventdalen (lower left), severaI tains. Marshes and moss tundras (classes 3, 5, 6, important differences appear. Vegetated areas and 8) have a much wider distribution both in cover a much smaller proportion of the total area Sassendalen and in the Vindodden-Diabasodden of Gipsdalen than in the other valleys. The area than in Gipsdalen. The pattern of classes differences are most marked in the moss tundra found south of the fjord is the normal one in the and marsh fractions and in the mountains. interior fjord on Svalbard. Densely vegetated mountain plateaus, like the Coloradofjella and Flatkollen areas in Sassen­ Neither the vegetation density map nor the dalen and Platåberget close to Longyearbyen, are satellite-based vegetation map give any infor­ absent fr om Gipsdalen. The features of an open mation per se about the location of sites of calcareous arctic steppe or semi-desert in Gips­ floristically valuable types, or of rare vegetation dalen are directly observable fr om this map. types. Rare types will normally occur in a fe w and often small stands. In . an unsupervised classification they will either be included in more Applications of the maps widely distributed classes or in the residual class (class 0, as seen fo r some bird-manured slopes in The three maps presented (Figs. 6-7 and the Templet in Fig. 5). enclosed maps) are complementary; each presents information not readily accessible fr om the A conventional vegetation map based on floristie others. criteria and extensive field surveys (the enclosed maps) is still needed to identify: (a) The low­ Location of productive areas is best made fr om a frequent, and thereby vulnerable, elements; and vegetation density map (Fig. 6). The map also (b) The floristically different types within groups gives some information about which type of similar in hydrology and life-forms, e.g. in productive vegetation is present, i.e. dry, moist, marshes. This is especially the case in an area wet, or manured. Areas of importanee as like Gipsdalen, where such elements are of very pastures for the larger herbivores present in local occurrence. Svalbard are directly indicated. Maps of this type would be suited for an extensive survey of arctic The conventional vegetation map is the base of a areas, especially when combined with more derivated map (Fig. 7, enclosed), where the entire intensive confirmatory studies in selected areas. mapped area is classified as to conservation In construetion work the densely vegetated, and value. This map should be used in the future 60 Environmental Atlas Gipsdalen, Svalbard planning to locate construetion activities to the The majority of regionally and locally rare plants least vulnerable vegetation types. are restricted to equally rare habitats . and vegetation types in the Gipsdalen area. (It is impossible to protect the species without Conclusions protection of the vegetation.) Impacts on the vegetation types are usually more destructive - The vegetation of Gipsdalen is influenced by than impacts on single speeies populations. The the strongly calcareous substrates, resulting in evaluation below will therefore emphasize sites of a wide distribution of open vegetation types, restricted and valuable habitats and vegetation more restricted distribution of closed vege­ types, and their vulnerability to different types of tation, and a species con tent in many habitats impacts, as these are the most relevant dangers different from what is usually found in the in connection with the presented plans. interior fjords.

- Large areas are virtual calcareous arctic Location of botanical values steppes or semi-deserts, where physical and chemical properties of the substra4ls restrict The especially valuable plants and vegetation the development of vegetation. types are mainly confined to seven local areas:

- The open and pedologically anomalous condi­ A The Gipshukodden area tions favour severaI speeies and vegetation B The western Gipsvika area types rare on Svalbard as a whole, partly C The eastern Gipsvika area types confined to a calcareous substrate, partly D The Templet area types characterized by low inter-specific E The main beach ridge - marsh area competition. A list of such vulnerable vege­ F The marsh area below Usherfjellet tation types and groups is given in Table 4. G The Margaretbreen - Methuenbreen area

- The productivity is generally low, and the The geographic positions of these areas are productive areas are restricted to small parts shown in Fig. 7. of the valley. The highest production is probably found in the bird-cliff meadows and in the marshes. The larger areas of productive A The Gipshukodden area vegetation are located to the lower parts of the valley. Gipshukodden is the southeastern prornontory of the Gipshuksletta plain, the westernmost part of - By combined use of a conventional vegetation Biinsow Land. The prornontory consists of silicic map based on aerial photos (enclosed), a dolerite. This makes parts of the flora and satellite-based vegetation map (Fig. 5), a vegetation differ from the rest of the almost vegetation density map (Fig. 6 ), and results uniformly calcareous Gipsdalen, even though a ' of field surveys, it is possible to indicate areas thin layer of calcareous soil mostly cover the where installation and construction activities dolerite. Plants rare or laeking elsewhere in will be in minimal conflict with botanical Gipsdalen are e.g. Potentilla hyparctica (ragg­ values and generally productive areas. mure) and Saxifraga flagellaris (trådsildre). Dolerite is also a hard, but fractured rock, and the exposed outcrops on Gipshukodden are split EVALUATION into reetan gu lar boulders. Sheltered conditions between boulders, and soil with mixed acidic and Construction work in an arctic environment has calcareous components, cause a luxuriant vege­ severaI effects, direct and indirect, on the vege­ tation with unusually large plant individuals. tation and flora. The closed heath vegetation of the dolerite has be en mapped as a separate type (type 121a). Changes in the speeies compositiori may be effected by: (a) introduction of new plants or of Gipshukodden reaches only 46 m a.s.l., and is new biotypes of plants already present; (b) giving exposed to sea spray. This may be an additional preference to some plants with detrimental effects reason for the weIl-developed vegetation. on others; and (c) by direct decimation or eradication of plants. Introductions of new plants Further inland towards the Gipshuken mountain are of little significance in the Middle and North the main vegetation type is closed Dryas heath Arctic Tundra Zone of Svalbard, as no single (type 121). This dry tundra is dominated by e.g. introduced plant has yet become weU established Carex misandra (dubbestarr), Salix polaris (polar­ in the islands. Genetical "pollution" by foreign vier) and Saxifraga oppositifo lia (raudsildre), in biotypes of plants already present may be more addition to Dryas octopetala (reinrose). Some dangerous, but such effects have not been studied small, moist areas, dominated by mosses ("moss in the Arctic yet. tundra"), are south-facing and warm, and support weakly thermophilic species like Dupontia pelligera (småtundragras), Carex subspathacea Gipsdalen, Central Svalbard; Flora, Vegetation, and Botanical Values 61

(ishavsstarr) and Saxifraga hirculus (myrsildre), e.g. Ko bresia simpliuscula (myrtust, regionally type 141. very rare) and Juneus triglumis (trillingsiv), type 221. In 1985 a fruticose Xanthoria (a lichen of an otherwise foliose genus) was found 1-2 km NE of A great speeies diversity, coupled with habitat the summit of Gipshukodden. The occurrence is diversity, is the main reason fo r the value of this located within a 10 by 50 m large area on a area. The dams and marshes make it interesting raised beach terrace, approximately 2-300 m fr om on a Iocal scale, and two species occurrences are the sea. Other collections fr om arctic Canada of regional/n ational value. have recently been published as modifications of Xa nthoria elegans (Fahselt & Krol 1989). This modification is of a high systematic, evolutionary C The eastern Gipsvika area and ecological interest. The stand NE of Gipshuk­ odden is the only one known outside Canada, The area E of the estuary is delimited to the N and should by no means be destroyed. by the fan of a river N of Templet mountain, to the E by Templet. It consists of a very low, but Other species and vegetation types of th e Gips­ distinct beach ridge system between the fan, the hukodden area are rare on a local scale, and con­ Gipsdalselva river, and the sea, and botanically tribute significantly to the general diversity of varied slopes towards Templet and the valley Gipsdalen. They are, however, common on a reg­ north of the mountain. ional (Svalbard) scale. The beach is coarse, partly covered by algal drift, but devoid of vegetation (type 72). It borders B The western Gipsvika area directly on dry Dryas-Carex misandra heath on the beach ridges (types 11 and 121), and on a The area is located to the west of the mouth of slightly less dry Salix polaris-Saxifraga oppositi­ Gipsdalselva and delimited by the Tverråa river fo Ua vegetation in the depressions (type 142). fa n to the northeast, Gipshuken mountain to th e northwest, and the Gipshukodden area to the The best developed shore vegetation of Gipsdalen west. is fo und in small bays at the lower course of Gipsdalselva, where a Puccinellia phryganodes The landscape is characterized by plains and low salt marsh (type 711) is fo llowed by Carex sub­ ridges with distinct shore-line patterns, clearly spathacea salt marsh, Carex ursina salt marsh marked because the vegetation is confined to the (type 712), and a slightly halophytic fo rb vege­ shallow depressions between the ridges. Two of tation of e.g. Sagina intermedia (jøkelarve), the three small lakes in Gipsdalen are dammed Mi nuartia rubella (nålearve), and Draba arctiea behind beach ridges, as are severai marshy (flhårrublomfl), mixed with Saxifraga spp. depressions. Th e beaches towards Gipshukodden are narrow (often only 1-2 m wide), coarse and The slopes to the east are partly dry with a devoid of vegetation (type 72). Beaches of more grassy heath vegetation (where Festuca baffin­ fine-grained materials, and supporting fragments ensis - hårsvingel - is locally common, complex of of salt marsh vegetation, are found towards the types 133 and 312), partly moist to wet with a estuary (type 71). species-rich drained marsh vegetation (complex of types 221 and 224). Severai species of interest The raised shore terraces are mostly covered by occur, e.g. the Svalbard endemic Saxifraga sval­ open Dryas heath (type 11), usually with less bardensis (svalbardsildre). than 50 % vegetation cover, and by open ridge v.egetation of fo rbs and graminids (type 312). The The eastem Gipsvika area is of special interest slopes are snow covered during winter, and habit because of the well developed raised beach a weakly developed snowbed vegetation with high terrace system, the salt marsh, and the sloping species diversity (with e.g. Trisetum sp icatum - marshes. Parts of the beach plain are heavily svartaks - and Minuartia bi/lora - tuvearve, type disturbed by the Finnish mining exploration: by 134» . At the bottom of the slopes fr agments of tracks and by the depot for materials. Phippsia snowbeds are fo und (type 151).

The two dams are without higher vegetation. The D The Templet area southemmost is brackish and influenced by rotting algal drift material. The other is The Templet area consists of the slopes of surrounded by a slightly brackish marsh domi­ Templet mountain from Skiltvakten in the north­ nated by Carex subspathacea - ishavs starr (type west W Bj onasletta in the south east, a distance 222). Th ermophilic plants are fo und in the upper­ of about 6 km. This is the most important bird­ most parts, e.g. Carex amblyrhyncha (buttstarr). cliff area of Biinsow Land.

An important thermophilic, drained marsh area Templet reaches a height of 770 m a.s.l, but the is met with between the uppermost beach ridge rim of the summit plateau is mostly situated at and the slope of Gipshuken, with occurrence of 5-600 m. The upper parts are steep cliffs and 62 Environmental Atlas Gipsdalen, Svalbard buttresses, while th e lower 200 metres are talus. 312), while raised silty ridges within the marsh The most concentrated bird colony is fo und at areas contains a regionally rare Poa abbreviata­ Skiltvakten, where a well-developed zonation of Potentilla pulehella vegetation (type 321). The bird-c1iff vegetation is fo und (type 16). The slope towards the river north of Templet is one uppermost part, c10se to the nesting sites, is a of the relatively best snow covered sites in the pure Puccinellia angustata (polarsaltgras) mea­ valley, and supports a well-developed and species­ dow, wh ile a species-rich meadow covers the rich snowbed vegetation (type 151). lower slopes. SeveraI species of interest occur, e.g. Polemonium boreale (polarflokk), Ranunculus The diffuse drainage fr om the Dalkallen and pedatifidus (fliksoleie), and severaI Poten tilla spp. Aitkenfjellet mountains is dammed by the beach (mure), in addition to large populations of very ridges, and supplies an approx. 4 km large tall-growing Cochlearia groenlandica (polarskjør­ marsh complex drained to the river by a brook buksurt), Oxyria digyna (fjellsyre), Papaver just north of the highest ridge. The marsh area dahlianum (svalbardvalmue), and a mixture of is a complex: Very open, shallow marsh with e.g. Poa spp. and Festuca spp. Stones and c1iffs are Eriophorum triste (svartull) and Deschampsia cover ed by ornithocoprophilous lichens, e.g. brevifo lia (stivbunke), almost without moss cover Xa nthoria elegans and Caloplaca saxicola. (type 227); deeper drained marsh dominated by Dupontia pelligera (småtundragras) and mosses The slopes between Skiltvakten and Bj onasletta (types 224 and 226); and hummocky, th ermophilic are more diffusely manured, and an open vege­ marsh characterized by e.g. Carex parallela tation is developed. This is the main site of the (smalstarr), C. saxatilis (blankstarr), C. ambly­ taxonomically intricate Potentilla spp. in the rhyncha (buttstarr), and Juncus triglumis (tril­ area, and also contains small populations of e.g. lingsiv ), in addition to numerous other graminids, Erigeron humilis (svartbakkestjerne) and Cystop­ fo rbs and mosses (type 221). teris fr agilis ssp. dickieana (bergIok), which are locally rare, and of Minuartia stricta (grannarve), A smaller site of the same types is fo und in a which is regionally rare. depression on the main ridge, c10se to the trans­ port road. Shallow, wet marshes are surrounding The beach ramp art along Templet is steep, stony, the pond "Dunsapietjønna", the only place in and without higher vegetation. Gipsdalen wh ere a lake marginal vegetation of e.g. Ranunculus hyperboreus (setersoleie) and Templet inc1uding the pinnac1e Skiltvakten is one Arctophila (hengegras) was seen (type 241). of the most important bird-c1iff sites in the Isfjorden area. Each bird-c1iff usually has its own The marshes are the most important grazing character. During studies in 1986-89 we have areas of geese in the valley, and -also important made some comparison with th e nearby Fj ord­ summer pastures of rein de er. Grazing, manuring nibba bird-c1iff (Sassendalen area). The two sites and dispersal of seeds and fruits may have some represent c1early different types. There are both influence on the composition of the vegetation. floristic and vegetational differences, probably caused by different aspect: Templet is fa cing W The river margin along most of Gipsdalselva is to SW, Fj ordnibba facing NE. Together th e two silty, with a scattered pioneer vegetation of sites represent the bird-c1iff vegetation in the widely distributed, not very competitive species interior fjords well. (e.g. Deschampsia spp., Eriophorum scheuchzeri -

snøull, open stands of Dupontia pelligera -

småtundragras, Juncus biglumis - tvillingsiv; E The main beach ridge . sh area types 42 1 and 423). More varied margins are mar fo und bordering this area, with stands of distinct The area is located on the SE side of Gipsdalen fo rms of Puccinellia angustata (polarsaltgras) and river. It is delimited to the south west by the fa n Potentilla pulehella (tuvemure), type 323, large from the river north of Templet, to the northeast amounts of Braya purpurascens (purpurkarse), by the river fa n fr om Aitkendalen, and to the and important populations of Minuartia rossii southeast by the mountain slopes of Dalkallen­ (putearve) and Pucciphippsia vacillans (svalbard­ Aitkenfjellet. fimbulgras).

This is the botanically most varied part of Gips­ This area has the highest concentration of dalen. It contains the innermost and largest regionally and locally restricted taxa in the raised beach ridge system, the largest and most Gipsdalen area, and the best developed and most varied marsh areas, one of the very fe w ponds in varied ecological gradients. the valley ("Dunsapietjønna), and a species-rich river margin along Gipsdalselva. F The h area below UsherfjeUet mars The crests of the beach ridges are only slightly vegetated, mostly by an open to c10sed Dryas The marsh area below U sherljellet is situated on heath (types 11 and 121), and the two types of the NW side of the river, and borders on the open ridge vegetation. The calcareous gravel preceding area. It is delimited by the river to th e ridges have a Saxifraga-Draba vegetation (type SE, S and SW, and by the river fa n from the Gipsdalen, Central Svalbard; Flora, Vegetation, and Botanical Values 63 valley NE of U sherfjellet to the E. in causing diversity in this part of the valley that fu nctionally is c10se to a calcareous desert. These marshes have a favourable aspect (SE), and are probably among the most thermophilic in the valley (type 221). A concentration of thermo­ Vulnerability philic species is fo und, with the regionally very rare Juneus castaneus (kastanjesiv) as the most A species or vegetation type may be vulnerable important, but also with Carex paralleia (smal­ fo r severaI reasons: it may be very rare and starr), C. saxatilis (blankstarr), and Ju ncus vulnerable because small changes wiIl concern triglumis (trillingsiv). The major parts are large parts of the total amount; it may be composed of Eriophorum scheuchzeri and E. triste generally unstable and easily influenced by marsh (type 227), moss tussocks (fragments of environmental changes; or it may be selectively type 212), and shallow Carex subspathacea marsh susceptible to some type(s) of impact. between the tussocks (type 222). The complex is ecologically varied, due to drainage and stag­ SeveraI habitat and vegetation types of Gipsdalen nation determined by small ridges dissecting the are vulnerable to almost any type of activity, due area. The wettest part, c10se to the mountain, is to the inherent instability caused by the struc­ stagnant due to damming by a rigde paralleI to ture and nutrient content of special substrate the mountain, and composed of a series of small and to the open vegetation: ponds in a wet marsh. - Exposed calcareous gravel ridges with open This marsh area is important both because of its vegetation (subgroup 31). ecological variation, and the concentration of relatively thermophilic marsh species. - Exposed siltY ridges with open vegetation (subgroup 32).

G The Margaretbreen • Methuenbreen - All types of marshes and intermediates area between dry tundra (heath) and marsh (group 2). The uppermost parts of the valley have an open, scattered vegetation. In areas with stable sub­ - Silty river banks (pal"ts of group 4). strates. is fo und a monotonous change between open Dryas-Carex misandra heath on the drier Others are vulnerable because of a very rest­ parts (type 112), a fo rb-grass vegetation with ricted distribution in the Gipsdalen area, with some Salix polaris on moister soil, a shallow fe w and/or small stands: marsh vegetation mostly consisting of Eriophorum triste and Juneus biglumis on wet slopes (near to - Cassiope tetragona heath (type 122). type 227), and a snowbed vegetation of Cerastium - Thermophilic slope vegetation (subgroup 13). regelii (polararve) and both Phippsia spp. - Moss tundra vegetation of Homalothecium and (snøgras) in depressions beneath ridges (type Dryas (type 14). 152). Unstable areas - the moraines and river - Late snowbeds (subgroup 15). fans of the two glaciers - have a more species­ - Moss tundra vegetation of Homalothecium and rich but little structured grasslforb vegetation. Salix polaris (subgroup 21). The more varied sites are very local: - Thermophilic marshes (type 221). - Swamps (subgroup 24). 1) A small stagnant marsh besides the transport - SiltY ridges (subgroup 32). road a short distance fr om the mining camp, SaltJbrackish marshes (subgroup 71). with e.g. Carex amblyrhyncha (buttstarr, the only known site in the upper valley) and Vulnerability and concentrations of rare species Ju neus triglumis .(trillingsiv). are the criteria applied in the derived map of botanical values (Fig. 7). Generally speaking, the 2) Small hills of the silicic Hec1a Hoek fo rmation vegetation types and plant species of Gipsdalen E of the Margaretbreen moraines, with sites are supposed to be vulnerable mainly to impacts of acidophiles like Luzula arcuata ssp. confusa from the following types of activities planned in (vardefrytle). the fu ture:

3) The hills bordering on the Margaretbreen 1) Erosion as a result of construction work or of moraines, with small areas of Cassiope unintentional damage by trampling or tetragona heath (type 122). motorized traffic:

4)Small wet marsh areas just to the northeast Substrate instability is a permanent feature of of the river fa n fr om Methuenbreen, with a severaI habitats in the Gipsdalen area, especi­ slightly thermophilic character. ally in talus, river fans, most river margins, and recent moraines. The species inventory in The deviating sites are of interest because they such sites is adapted to the in stabili ty. Inc­ indicate· what ecological fa ctors are of importance reased instability will probably result in a 64 Environmental Atlas Gipsdalen, Svalbard

decrease in species number and vegetation proposals may be given. density, but will not be very destructive when the entire area is taken into consideration. Permanent installations are planned located in th e valuable areas B and G. The conveyor belt Instability is a potential fe ature of most drier and road will run through the valuable area F. areas of the valley, as the substrate is only The other valuable areas will be Httle influenced. slightly stabilized by finer fractions and by a vegetation cover. This is the case of beach Impacts from the planned activity may be ridges, moraine ridges, and the gentle slopes grouped into: between the river fans. Erosion may occur both in open, discontinuous and continuous 1) Disturbance of vegetation and substrate at and vegetation, with the most dramatic changes in around the main construction sites. the last-mentioned. The additional stability 2) Disturbance as a result of increased trampling given by a closed vegetation may cover a and by use of motorized vehicles. larger potential instability in the substrate, 3) Erosion and changes in drainage as result of e.g. on steep slopes. construction of conveyor system and roads. 4) Seepage and sewage from in stallations. 2) Changed drainage as a result of damming or ditching along roads and conveyor belt: 1) Construction activities will be located to the mining site in area G and the harbour The marshes of Gipsdalen are uniformly fa cilities in area B. In both places the shallow, with a very thin or almost lacking botanical values are confined to small areas, peat layer. The marsh vegetation depends and a conflict can be avoided by careful upon a permanent influx of water, and a location of installations. stable ground water table. Damming by e.g. roads will destroy the present vegetation. In the Margaretbreen - Methuenbreen area (G) Increased drainage, by ditching or by erosion care should be taken to avoid the small marsh channels, will decrease the water table and site near the Finnish camp, and th e outcrops result in a change to more trivial heath of Hecla Hoek bedrock. A more detail ed field vegetation. survey is needed in this area when exact plans for the mining is presented. The unstable and often coarse substrates make the shallow Gipsdalen marshes In the Gipsvika area (B) the harbour especially susceptible to erosion. construction should avoid both the Gipshukodden area and the areas next to the 3) Increased nutrient leveIs: estuary. The areas between are of less botanical value. Construction materials should, The special biological fe atures of Gipsdalen is however, be brought from the mining site (as connected with the general Ievel of nutrients: indicated in the plans), and not taken from a surplus of lime and a deficiency in almost the surroundings. The slopes between Gipsvika every other nutrient. A supply of nutrients and Gipshuken mountain is susceptible to will have clear detrimental effects, i.e. in­ erosion. The location of the conveyor belt and creased opportunities fo r severaI ubiquitous transport road northwards from the harbour plants, a more closed vegetation, and probably may conflict with botanically important sites a decrease in the populations of lime-deman­ (see below). A field survey is needed when ding but weakly competitive species like Braya exact plans are available. purpurascens (purpurkarse) and most of the regionally rare marsh plants. 2) As much of th e vegetation types and the substrate have very low durability, the Increased productivity will be of no value in activities should be co�fined within clearly the Gipsdalen area. The importanee of the delimited areas. Use of motorized vehicles area from a conservation point of view is its outside the delimited roadways should be character as a calcareous arctic steppe or strictly bann ed. semi-desert. There is no potential utilizer of , the increased productivity. The only important 3) The conveyor belt and transport road between herbivore is the reindeer, and its population is Gipsvika and the mine will influence large probably restricted by the very scant winter parts of th e valley, especially as it is planned pastures located in th e mountains. located on the other side of the valley fr om the existing track. A location to the existing track, on the east side, would be preferable for Proposals landscape estetic reasons, but not fo r biological ones. The existing track cuts across the most It is not possible to evaluate exactly the possible valuable beach ridge system, and through a consequences of the planned activities, due to part of the most valuable . marshes. Visible inexact information about location and extent of effects are erosion and Oocally) changed installations. Only some tentative conclusions and drainage. The location of the road/conveyor Gipsdalen, Central Svalbard; Flora, Vegetation, and Botanical Values 65

belt should be decided in the field during Il be decided during a joint survey by repre­ joint survey with biologists. sentatives of th e mining company, biologists, and representatives of the local authorities of During th e construetion care should be taken Svalbard (the nature conservation supervisor). both to avoid erosion in loose gravel slopes (upslope effects) and damming of drainage 6) The min ing company should present plans to (downslope effects). The last can be avoided by indicate how they will cope with the sewage locating the systems dose to th e river. and spillage from installations.

A road/conveyor system on the west side will only have small botanical effects in th e upper AKNOWLEDGEMENTS parts of th e valley, if certain requirements are fulfilled: It should be placed dose to the river; We greatly acknowledge the assistance received, the materials needed should be taken fr om especially from th e Norwegian Polar Research th e mines or from non-vegetated parts of river Institute, the Governor office on Svalbard, SNSK fans; and changes in wet areas should be AlS, AlS, and the University of neutralized by use of bridges. In the area Tromsø, Institute of Biolog)' and Geolog)', and southwest of Leirflata care must be taken to FORUT. avoid both the small areas of valuable marsh, and th e species-rich river margin (both in We have used unpublished results fr om th e 1985 area F). Care must also be taken in crossing and 1987 investigations, and give our thanks to the area between the Tverrelva river fan and th ose ,responsible (in addition to th e authors). Gipsvika, where valuable marshes and dams are located on ·both sides of a large beach Invaluable support was given by our assistant, terrace. Here th e system should be located in Andrew Cross, N orwich, both in the field and the middle of the terrace, avoiding erosion during analysis of the results. down to the marshes .

. 4) The sewage from the mining site should not REFERENCES be allowed to reach the terrain, and especially not the river. Detrimental effects are also Alexandrova, V.D. 1980: The Arctic and the expected from oil spillage, which both will Antarctic: their division into geobotanical areas. damage and destroy the vegetation directly, Cambridge Univ. Press, Cambridge. and increase the supply of nutrients. A proposal fo r handling sewage and spillage Brattbakk, I. 1979: Strandeng på Svalbard. should be presented and evaluated. Cand.real. Thesis, Univ. of Trondheim (unpubL). 268 pp.

Brattbakk, I. 1980: Svalbards vegetasjon. Kgl. Norske Conclusions Vi densk. SeIsk. Mus., Rapp., Bot. ser. 1980, 5, 55-72. · 1) The proposed min ing project will in any case Brattbakk, I. 1981: Strandeng på Svalbard. Kgl. be detrimental to the Gipsdalen area as a Norske Vidensk. SeIsk. Mus., Rapp., Bot. ser. 1980, 5, comparatively undisturbed biological system, 55-72. and as an area with botanical elements special to the Svalbard islands as far as Brattbakk, I. 1983: Lavrik morenevegetasjon på known. Brøggerhalvøya, Svalbard. Kgl. Norske Vi densk. Selsk. Mus., Rapp. , Bot. ser. 1983, 7, 11-16.

2) The fe atures making Gipsdalen especially Brattbakk, 1. 1986: Vegetasjonsregioner - Svalbard og valuable in a botanical con text are at the Jan Mayen. M 1:1 mill. Nasjonalatlas fo r Norge. same time th e ones making the area Ho vedtema 4: Vegetasjon og dyreliv. Kartblad 4.1.3. vulnerable, i.e. th e unconsolidated calcareous Statens Kartverk, Hønefoss. substrate, the open and vulnerable vegetation, and the generally very low level of other Brattbakk, I., Frisvoll, A. &; Sendstad, E. 1976: nutrients th an lime. Vegetasjon, mikrofauna og rein på Reinsdyrflya. Norsk Polarinstitutt Arbok 1974, 153-158. 3) Harbour facilities and mining constructions Braun-Blanquet, J. 1964: ptlanzensoziologie - might be located without loss of important Grundzilge Vegetationskunde. 3. Aufl . Wien. 865 der botanical values, if care is taken. pp.

4) The road/conveyor belt between Gipsvika and Brossard, T., Deruelle, S., Nimis, P.L. &; Petit, P. the mining area may easily come into conflict 1984: An interdisciplinary approach to vegetation with important botanical values, if care is not mapping on lichen-dominated systems in high-arctic taken. environment, Ny Ålesund (Svalbard). Phytocoenologia 12, 433-453. 5) Exact location of harbour and mining instal­ lations, and of the road/conveyor belt, should 66 Environmental Atlas Gipsdalen, Svalbard

BOcher, T. W. 1952: A study of the Circumpolar Lauritzen, ø., Salvigsen, O. & Winsnes, T. S. 1988: Geo/Qgical map Svalbard 1:100 Sheet C8G CarexHele onastes-amblyorhyncha complex. Acta Arctica 000. 5, 1-34. Billefjorden. Norsk Polarinstitutt, Oslo.

Elvebakk, 1982: Geological preferences among Rønning, O. I. 1965: Studies in Dryadion of Svalbard. A. Svalbard plants. Inter-Nord 16, 11-31. Norsk Polarinstitutt Skrifter 134, 1-52.

Elvebakk, 1985: Higher phytosociological syntaxa Rønning, O. I. 1969: Features of the ecology of some A. on Svalbard and their use in subdivision of the Arctic. arctic Svalbard (Spitsbergen) plant cornmunities. Aret. Nord. J. Bot. 5, 273-284. Alp. Res. 1, 29-44.

Elvebakk, 19891;1: Biogeographical zones of Rønning, O. I. 1972: The distribution of the vascular A. based on the distribution cryptogams and monocotyledons in Svalbard. K norske patterns of thermophilous vascular plants. Dr.scient. Vi densk. Selsk. Skr. 24, 1-63. Thesis, Univ. of Tromsø (unpubl.). Rønning, O. I. 1979: Svalbards flora . 2.ed. - Norsk Elvebakk, 1989b: A new method for defining Polarinstitutt, Oslo. 128 pp. A. biogeographical zones in the Arctic. Proc. Conf. Arctic and Nordic Countries on Coordination of Research in Scholander, P. F. 1934: Vascular plants from the Arctic, Leningrad Dec. 12-15, 1988. northern Svalbard with remarks on the vegetation in North-East Land. Skr. Svalbard og Is havet 62, 1-153. Elvebakk, Elven, R. & Engelskjøn, T. 1986: A A., cata/Qgue of Svalbard plants. Ecosystem component Spjelkavik, S. & Elvebakk, 1989: Mapping winter A. values of vciscular plants, bryophytes, lichens and grazing areas for reindeer on Svalbard using Landsat marine macroalgae. Part Va scular plants. Univ. of Thematic Mapper data. Pp. 199-206 in: Proc Workshop l. .

Tromsø, IBG (unpubl.). "Earthnet Pilot Project on Landsat• Thematic Mapper Applications", Frascati. Elvebakk, A., Engelskjøn, T. & Hodin, L.: Purpurkarse (Braya purpurascens (R. Br.) Bunge). Summerhayes, V. S. & Elton, C. S. 1928: Further Utbreiing og mengdetilhøve på Svalbard. Manuscript contributions to the ecology of Spitzbergen. J. Ecol. 16, (unpubl.). 193-268.

Elvebakk, A. & Sørbel, L. 1988: Botaniske og Thannheiser, D. 1978: Ufer- und Sumpfvegetation auf kvartærgeologiske undersøkelser i Agardhdalen, øst­ dem westlichen kanadischen Arktis-Archipel und Spitsbergen. Report to Statoil, Univ. of Tromsø, IB G, Spitzbergen. Po larforschung 46, 71-82. and Univ. of Oslo, Geographical Inst. 38 pp. Thannheiser, D. & Hofmann, W. 1977: Engelskjøn, T. 1986: Zonality of climate and plant Pflanzengesellschaften am Meeresstrand im Kongs- und distribution in some Arctic and Antaretie areas. Norsk Krossfjord (West-Spitzbergen). Docum. Phytosoc. n.s. 1, Polarinstitutt Rapportserie 30, 1-49. 297-303.

Engelskjøn, T. et al. 1986: Distributional patterns of Walter, H. 1973: Vegetation of the Earth in relation the vascular flora of Central Spitsbergen. Manuscript to climate and the eco-physio/Qgical conditions. English (unpubl.). Univ. Press, London.

Eurola, S. 1971: The middle arctic rnire vegetation in Zinger, E. M, Koryakin, V. S., Markin, V. A., Spitsbergen. Acta Agralia Fennica 123, 87-107. Troitskij, L. C., Mihalev, V. I. & Timofeyeva, A. Oledenenie vechnaya merzlota. Ostrov Jan­ 1985: i Eurola, S. & Hakala, A. V. K. 1977: - The bird cliff Maien. Shpitsbergen. pp. 111-112 in A.F. Treshnikov vegetation of Svalbard. Aqui/Q, ser. Bot. 15, 1-18. (ed.): Atlas arktiki.

Fahselt, D. & Krol, M. 1989: Biochemical cornparison Østhagen, H. 1984: Fredete plantearter i Norge. of two ecologically distinctive forms of Xa nthoria Blyttia 42, 157-162. elegans in the Canadian High Arctic. Lichenologist 21, 135-145.

Hadac, E. 1946: The plant-communities of Sassen Quarter, Vestspitsbergen. Studia Bot. Cechosl. 7, 127- 164.

Hadac, E. 1989: Notes on plant cornmunities of Spitsbergen. Folia Geobot. Phytotax. 24, 131-169.

Hedberg, O. 1962: The genesis of Puccinellia vaeillans. Bot. Tidsskr. 58, 157-162.

Hofmann, W. 1968: Geobotanische Untersuchungen in SOdost-Spitzbergen 1960. Ergebn. Stauferland-Exped. 1959/ 60, 8, 1-83.

Hofmann, W. 1969: Das Puccinellietum phryganodis in SOdost-Spitzbergen. Mitt. F/Qr. -soz. Arb.gem. n.f. 14, 224-230. THE FAUNA OF GIPSDALEN, SVALBARD

Pink-footed geese Anser brachyrhynchus (foto: Fridtjof Mehlum).

by Per Ole Syvertsen

Department of Zoology University of Oslo · 68 Environmental Atlas Gipsdalen, Svalbard

ENGLISH SUMMARY nificant aspect of mammal distribution was fo und.

All species legally hunted at Spitsbergen were SUMMARY AND CONCLUSIONS recorded in the study area in 1989. Faunal composition, status and conservation interests Preliminary environmental impact assess­ ment The principal conservation interests among birds and mammals at Svalbard concern rare or endan­ The most vulnerable species in the Gipsdalen gered species (e.g. Pink-footed and Barnacle geese area are Red-throated diver Gavia stellata, Pink­ Anser brachyrhynchus and Branta leucopsis), end­ fo oted and Barnacle geese, Eider Somateria emics (Svalbard ptannigan Lagopus mutus hyper­ mollissima, Turnstone, Kittiwake and Briinnich's bore us and Svalbard reindeer Rangifer tarandus guillemot. The two goose species in parlicular a e platyrhychus), some high-arctic species (�ng � . . very sensitive to human disturbances, and It eider Somateria spectabilis, Sanderhng Caltdns must be feared they will abound Gipsdalen, at alba and Pagophila eburnea, among least as moulting and rearing areas, if current others), and those internationally important popu­ mining plans are realised. Red-throated diver and lations of (in particular Fulmar Ful­ Turnstone will respond negatively to disturbance marus glacialis and alcids) and marine mammaIs. caused by traffic (particularly hiking) on the bre­ eding grounds, while Eider, Kittiwake a!ld Briin­ We recorded a total of 22 bird species in the nich's guillemot may be affected by lOcreased study area (see the species acco�t pp. 70-73). disturbance from aerial traffic. All except four were found breeding: �arnacle goose, Long-tailed duck Clangula hyemalts, Ivory Areas most sensitive are the northern part of gull and Black guillemot Cepphus �rylle. At least Gipsvika (moulting geese, breeding waders), Gips­ Black guillemot probably breeds lO the area as dalselva and the whole valley bottom up to and well, while Ivory gull is unlikely to do so. Bar­ inclusive of the clay deposits at Leirflata (moul­ nacle goose breeds at Gåsøyane, and could pos­ ting geese, breeding Red-throated diver), the sibly breed at Biinsow Land proper. lower parts of the side valleys on the eastern side of Gipsdalen (breeding Pink-footed goos.e), No population or occurrence of particular interest Templet (breeding seabirds), and Gåsøyane Bud were fo und for any bird species in Gipsdalen. Sanctuary (breeding geese, Eider and and Turnstone Arenaria interpres are Sterna paradisaea). scarce and locally distributed at Svalbard. Both species breed in Gipsdalen, but a population was No zoological qualities of particular interest were found fo r Turnstone only. However, uncertainty found in the planned mining area, and the upp r ' � exists regarding this species vulnerability, and reaches of Gipsdalen are in general very poor lO its status at the archipelago is probably under­ animal life. Though Pink-footed geese occur here rated. Gipsvika and Gipsdalen are also utilized as weIl, the importance of these areas is sm�Il by moulting Pink-footed and Barnacle geese, but compared to Gipsdalen downstream from Lelr­ the numbers recorded in 1989 constitute only 1- flata. 2 % of the Svalbard populations. Most other' species occurred in insignificant numbers. The valley bottom between Gipsvika and Leir­ flata is important as moulting and rearing The total seabird population at Templet was grounds fo r geese, particularly Pink-footed .geese, censused to be in excess of 10,000 pairs, the and are also important to Svalbard remdeer dominant species being Fulmar, Kittiwake Rissa during summer. Leirflata is utilized by Pink­ ' tridactyla and Briinnich s guillemot Uria lomvia. fo oted geese. Other breeding species of signifi­ The populations of Alle alle an� Puffin cance are Red-throated diver, King eider and Fratereule arctiea remain unknown. ThlS puts Arctic skua Stercorarius parasitieus. It is con­ Templet in the lower range of a previous rough ceivable that mining in the area will not be estimate (10 000 - 100,000 pairs), but nontheless totally detrimental to other species than the makes it on of the seabird colonies in the Isfjord � geese, given that all transport i� done along the area with the highest number of species and in­ western side of Gipsdalen. The dlstances between dividuals. most breeding areas in Gipsdalen and planned installations are sufficient fo r the geese to con­ The only marine mammals we recorded in the tinue breeding, according to studies fr om .Green­ area were Bearded seal Erignathlls barbatus and land but they will probably not accept thlS level White Delphinapterus leucas, but both of d sturbance after hatching. It is not known Ringed seal Phoca hispida and olar ear Ur us i � � � whether or not suitable moulting and rearing maritimus were encountered nelghbourmg 10 grounds are available in nearby areas. areas during the fieldwork period. Biinsow Land may well come to serve a vital role in the conti­ The beach ridges in the northem part of Gips­ nued spontaneous expansion of Svalbard reindeer vika, where a harbour with associated cargo in the Isfjorden area, but apart from this no sig- The Fa una of Gipsdalen, Svalbard 69 fa cilities are planned, is the single most impor­ geese and the two indigenous speeies of terres­ tant wader locality within the study area, and is trial mammals ( and Svalbard rein de er), also of importanee to Bamade geese. There is and on censusing seabirds in the bird-diffs at little doubt that installations here would have Templet. Limitation of the study area is shown serious consequences fo r the tiny goose popu­ in Fig. 1. Gåsøyane Bird Sanctuary was not lation at Gåsøyane, unless other fo uraging areas visited due to the landing ban 15 May - 15 are available (e.g. along Billefjorden). The conse­ August. quences fo r the local Turnstone population are uncertain. Ringed plover Charadrius hiatieula, We were stationed in Gipsvika almost throughout Purple sandpiper Calidris maritima and Arctic the study period. Gipsdalen above Leirflata was tem will probably be able to cope with the new largely surveyed 26 - 30 July, but the innermost situation. parts of Gipsdalen were also visited on 11 July and 13 August. The work in Templet was carried The proximity to Gåsøyane Bird Sanctuary and out 15 -18 July and 23 - 25 July, while popu­ the seabird colonies in Templet give arguments lations in Bj onadalen were not done until 6 in favour of establishing an aerial corridor fo r all August. The break in the survey work in Templet such traffic to and fr om the installations. was due to a spell of misty days.

Local spills or leakages of oil and fu el fr om bo ats or permanent installations may have con se­ Weather description quences fo r all or most speeies. The risk is particularly high for seabirds, ducks and geese. The weather was often douded and chilly the The short distance fr om Gipsvika to one of the first two weeks, sometimes also with rain or fo g. major seabird colonies in Isfjorden and a bird Day temperatures during this period varied in sanctuary makes this even more alarming. th e range of +2-8°C. The rnountain tops were covered by a thin layer of snow in the evening of The most vulnerable time of the year, as far as 25 July, but the snow melted the next day when birds are concerned, is the summer months June bright sunshine appeared. This new weather to August. However, oil spills are a real threat situation remained the dominant one fo r th e throughout the icefree months of the year, and in period up to 2 August, during which the day some years severaI speeies can be established at temperature often reached +20°C. The last two the breeding grounds already in May. The Sval­ weeks of the fieldwork had a somewhat un stable bard reindeer is most vulnerable to disturbances weather situation, and fr equent mist. Wind would in late winter and in June. periodically hamper fieldwork, particularly whe n censusing in Templet, but the weather rarely prevented data collecting. INTRODUCTION

The valley Gipsdalen and surrounding areas at Methods Biinsow Land, Spitsbergen were faunistically mapped during summer 198, by Halvar Ludvig­ The fieldwork was primarily a faunistic mapping. sen and Per Ole Syvertsen. The primary aim was All parts of the study area was visited on fo ot. to document the occurrence of birds and terre­ In Gipsdalen care was taken to cover as complete strial mammals (species, numbers and local as possible all areas up to approximately th e 150 distribution) in the area as part of an environ­ m a.s.l. contour. Both observers were usually mental impact assessment brought about by working together. Special emphasis was put on plans of coal mining in Gipsdalen. The report censusing geese in Gipsdalen, by systematically presents a prelirninary analysis based on the searching fo r nests in suitable habitats and fieldwork and a literature survey. counting fo uraging groups. During this work, an eye was kept sharp for reindeer and foxes as Under each speeies entry, sections on distribution well. Binoculars or telescopes with up to 10x or and status put the data from Gipsdalen in 45x magnification, respectively, were applied. perspective. Some previously published records fr om the study area is briefly presented. Studies The breeding seabirds in Templet were censused on the various species' vulnerability to human fr om the shoreline or fr om plateaus in the slopes activities are summarised. However, fo r many beneath the diffs. The steep diffs are stratified species no such studies have be en undertaken, and frequently show deep crevices, making it and generalisations sometimes have to be made. easy to define smaller areas to count. Telescopes were always applied. The fieldworkers worked simultaneously but independently. Upon comp­ MATERIAL AND METHODS letion of each predefined area, the two results were compared. New counts were made if devia­ Comprehensivness of the fieldwork tions were judged significant (except for Little auk and Puffin). However, the results were usu­ The fieldwork was done in the period 7 July - 14 ally fairly identical, and repetitions rarely neces­ August 1989. Emphasis was placed on recording sary. 70 Environmental Atlas Gipsdalen, Svalbard

SPECIES ACCOUNTS two thirds of individuals in studied groups in August were young birds, giving an estimated Red-throated diver Gavia stellata production of 270 young. Based on July and August counts, the breeding population was Wide holarctic distribution; breeding summer estimated to be in the range 34 - 65 pairs. visitor to Svalbard, but numbers unknown. One However, some birds could be non-breeding or pair bred in Gipsdalen in 1989 and produced one post-breeding dispersing individuals. chick; possibly a second pair in the area (Fig. 2). Although capable of defen ding themselves against Leaves its nest temporarily when approached by predators, pairs leave their nests when approa­ humans, hence susceptible to nest predation by ched by humans, hence rendering them suscep­ Arctic fox or Gl aucous gull. Vulnerable to oil tible to predation by Arctic fo x or Glaucous gull. pollution during moult. Not very affected by helicopter traffic and other distant noise at nesting grounds, but reacts strongly to helicopters passing kilometers away Fulmar Fulmarus glacialis when moulting and rearing young. Studies at Greenland conc1ude that no helicopter activities Breeds along northern shores of the Atlantic and should be allowed less than 10 km away fr om Pacific Oceans; very numerous at Svalbard. The important moulting areas. Geese are also particu­ 1989 census in Templet concluded with a popu­ larly vulnerable to oil spills during moult, when lation in excess of 6,000 pairs; insufficient metho­ they congregate near water. Population increase dology makes this a low estimate. Also recorded of Arctic fox and Glaucous gull due to improved breeding (low numbers) in DalkaUen, Storholen, fo od availability from human waste may cause Usherfjellet, Grahamkammen, Pyefjellet and local goose populations to come under increased Finlayfjellet in 1989 (Fig. 3). predatory stress.

Feeding habits makes it vulnerable to pollution and littering at sea, e.g. through consumption of Barnaeie goose Branta leucopsis plastic items. Oil spills may conceivably have serious effects on Fulmar populations, directly or Three populations, which are isolated fr om each indirectly (e.g. through reduced fo od availability). other throughout the year: Eastem Greenland, Svalbard and western Siberia. The Svalbard popu.lation (approximately 10,000 birds in mid Pink-footed goose Anser brachyrhynchus 1980's) winters in Solway Firth (SW Scotland), and is dependent on staging areas in north em Picture on front page of this report. Breeds in Norway (Helgelandskysten) during spring migra­ Iceland, eastern Greenland and Svalbard only. tion and (to a lesser degree) at Bear Island Svalbard population numbers approximately during autumn. 25,000 birds (mid 1980's), with wintering areas along North Sea coasts fr om to north­ No nesting areas fo und during 1989 fieldwork, em . but Gipsvika and Gipsdalen as far up as Aitken­ fjellet is used fo r moulting, with up to 100 adult Six separate nesting areas fo und in Gipsdalen in birds recorded regularly (Fig. 4). Also a fe w 1989, comprising 19 recorded nests (Fig. 4). The families rear their young here, probably coming most important area was the mouth of the side fr om Gåsøyane where the species is known to valley near Dalkallen, were ten nest were located breed (3 pairs in 1982, 6-8 pairs in 1983). along a 200-250 m long stretch of the river. Obviously, all nests were not fo und. The species What was said about Pink-footed goose and is also known to breed at Gåsøyane, where 10 vulnerability is in general true for Barnacle goose pairs were reported in 1982 and 30-50 pairs in as well, but this species is somewhat less affected 1983. by helicopter noise. Observance of reserve regula­ tions is vital to the species' breeding success. The most important area fo r moulting and grazing was Gipsdalen between Dalkallen and the northern part of Leirflata (Fig. 4). River beds Eider Somateria mollissima �d associated land further downstream along GIpsdalselva were also regularly utilized, as weU Wide holarctic distribution, and the most mlme­ as wetlands and beaches in the inner part of rous duck species at Svalbard with 20,000 - Gipsvika, particularly in August. Gipsdalen 25,000 pairs. Regular in small numbers on Is­ between Leirflata and Margaretbreen/Methuen­ fjorden and in lower parts of Gipsdalen in 1989 breen was less used. (Fig. 5). Only eight broods were seen, and two deserted nests found, but the species also breeds Attempts to conduct total counts of geese re­ at Gåsøyane. vealed a population of at least 400 birds in mid August 1989, compared to a minimum of 180 Vulnerable to disturbance when breeding. Only birds four 'or five weeks before. Approximately fe males incubate and they rarely leave the nests The Fa una of Gipsdalen, Svalbard 71

fo r fe eding. Stress and repeated heating of eggs Main breeding area found in 1989 was the beach when returning to the nests may reduce their ridges in the inner part of Gipsvika, where 5-8 physical capability to successfully complete pairs were recorded (Fig. 7). One pair was pro­ breeding, or render them vulnerable to nest pre­ bably breeding below Norstromfjellet, and it could dation. Eiders breeding in colonies seems to be possibly be the odd pair other places in Gips­ more anxious than single-nesting fe males. The dalen as weU. effect of helicopter traffic on the fo rmer (huge numbers of Eiders at Svalbard breed in colonies) Many wader species are not particularly vul­ has not been studied. Also vulnerable to oil nerable to human disturbance, but breeding pollution at all times, but particularly during failure may result fr om cooling of unattended moult. Sinking oil may kill bottom-living inverte­ eggs or young, or fr om predation. brates, its main fo od.

Sanderling Calidris alba King eider Somateria spectabilis A high-arctic species breeding in Canada, Green­ A high-arctic, circumpolar species. Less numerous land, Siberia and on some islands. than Eider at Svalbard; numbers unknown, but Scarce at Svalbard; the population is not weU mostly fo und in western and southern parts of known here. Breeding was recorded in Gipsdalen Spitsbergen. in 1989 through behaviour of single adult bird at the beach ridges immediately west of Gipsdals­ Observations of single females in Gipsdalen in elva river outlet (Fig. 7), but nest or young were 1989 as far up as Leirflata indicate a small bree­ not fo und. Juveniles and one adult se en in ding population in the area, and one fe male with August may have been birds on passage. a brood of three was seen in a pond near Gips­ vika (Fig. 5). A few more records were made of groups of females and single males. Purple sandpiper Calidris maritima

Probably vulnerable to oil pollution and distur­ Holarctic distribution, in Europe south to Scandi­ bance during breeding season similar to what has navia. The most common wader species at Sval­ been said about Eider. bard, numbering severaI thousand pairs. Common and widespread in Gipsdalen in 1989, recorded Long-tailed duck Clangula hyemalis virtuaUy throughout the study area (Fig. 2). A rather rough estimate of the breeding population Circumpolar distribution in arctic and northern concludes with at least 30 - 40 pairs. alpine areas. Fairly widespread at Svalbard, but . population size unknown. Seen occassionally in small numbers (up to approximately 50 birds) in Turnstone Arenaria interpres Gipsvika in 1989. No sign of breeding in the area, but breeding is known fr om Gåsøyane. Circumpolar distribution in arctic and north Vulnarable to oil pollution, as most other ducks. temperate areas. Rather scarce and local at Sval­ bard, but occurrence here not weU known. A small breeding population (3-5 pairs) was fo und Svalbard ptarmigan Lagop us mutus hyper­ at the beach ridges in the inner part of Gipsvika boreus in 1989; probably one pair also in the eastern part of Gipsvika (Fig. 7). More sensitive to The Svalbard ptarmigan is confined to the archi­ disturbance when breeding than most waders. pelagoes of Svalbard and . It is common at Svalbard, where it is the only non­ migratory plant-eating bird. Arctic skua Stercorarius parasiticus

Recorded very scarcely but widely distributed in Circumpolar distribution, and common and Gipsdalen in 1989 (Fig. 6). Hens with chicks widespread at Svalbard. Five territories defended were encountered only twice, but the species is in Gipsdalen and west to Gipshukodden in 1989 probably more numerous than the scanty records (Fig. 8). Three nests were located, but one clutch indicate, particularly on the mountain plateaus. did not hatch. At least three young were pro­ They are very confident in people, and hens leave duced. th eir nests only after very strong provocations. Skuas in general are vulnerable to oil poUution at sea. Agressive against intruders at breeding Ringed plover Charadrius hiaticula grounds, but leaves nest at longer distance than most species on the Svalbard tundra. Widely distributed in the northern Palearctic. SeveraI hundred pairs breed scattered around Svalbard. 72 Environmental Atlas Gipsdalen, Svalbard

Glaucous gull Larus hyperboreus Arctic tem Sterna parodisaea

An arctic, circumpolar species. Common along the Wide holarctic distribution. Common throughout coasts of Svalbard, sometimes breeding in Svalbard, sometimes in colonies of severaI co lon i es of severaI hundred pairs, it is a very hundred pairs. Recorded regularly in very small important predator on wildfowl and other sea­ numbers along the shores of Isjorden in 1989, birds. and scattered pairs breed in Gipsvika and (pro­ bably) at Gipshuksletta (Fig. 8). Arctic terns also Bred scattered among other seabirds at Templet breed at Gåsøyane, but no population estimate is in 1989, where at least nine pairs were fo und available. along 5 km shoreline (Fig. 8). Small groups (up to approximately 30 individuals) were often recor­ Though terns usually do not come in direct ded. contact with oil on the sea, spills will have serious indirectly effects on fe e.ding, due to their Gulls are in general vulnerable to oil spills near specialised steep-diving fishing technique. They breeding areas, due to inshore feeding habits that are vulnerable to disturbance when breeding, but expose them to sullying. Disturbance on breeding can also breed very c10se to human activities. grounds may also be a negative factor of impor­ Defence is offered through colonial breeding and tance, hovewer, the Glaucous gull has not been aggressive behaviour (see Arctic skua p. 71). specifically studied. Furthermore, it is an oportu­ nistic species that benefits from many human activities at Svalbard. Briinnich's guillemot Uria lomvia

Breeds along arctic and sub-arctic coasts. Very Kittiwake Rissa tridactyla numerous at Svalbard, where colonies may con sist of severaI hundred thousand pairs. Seven Breeds along northern coasts of the Atlantic and colonies in Templet in 1989 (Fig. 9), the larger Pacific Oceans. The most numerous gull species two also holding Kittiwakes. The population was at Svalbard, breeding in small to huge colonies, c1early in excess of 3,000 adult birds as even our but total population not known. higher figures gave underestimates, see colony­ wise breakdown in Table 1. Two colonies in Templet in 1989 (Fig. 9), both c10sely associated with colonies of Briinnich's Breeding birds studied at Svalbard responded to guillemots. Direct counts of occupied nests gave helicopter traffic, sometimes at distances up to 6 populations of 339 pairs and 917 pairs, respec­ km. Helicopters approaching or overpassing the tively, hence a total of 1,256 pairs. However, this birdc1iffs caused more reactions than those figure is known to be too low due to incomplete passing parallell to the cliffs. Noise level (desibel) survey of the larger colony. An estimated mini­ and bird response was correlated, while low­ mum of 1.500 pairs is considered conservative. fr equency infra-sound c1early also is of impor­ tance. It was conc1uded that aerial traffic should When a colony is suddenly approached by a not be allowed c10ser than 2 km to breeding passing helicopter, eggs or young may get lost colonies, and 6 km in areas with many and/or when adults hurriedly leave the nests. Presence large colonies. of people on fo ot near the colony has no apparent effect. The Kittiwake is not particularly vul­ All auks are vulnerable to oil pollution, and nerable to littering at sea (see Fulmar p. 70). moulting populations and young of species that perform swim migrations (e.g. Briinnich's guille­ mot) particularly so. Oil is a hazard to survivle Ivory gull Pagophila eburnea in terms of direct as well as indirect (e.g. redu­ ced fo od availability) effects. A high-arctic species only known to breed in Canada, Greenland and on some Arctic Ocean islands. SeveraI small colonies are known at Table 1 Breeding colonies of BrOnnich's guillemot Svalbard, and the species occurs throughout the Una lomvia in Templet, July 1989 (number of adult archipelago. Three observations in Gipsvika in birds present). 1989, comprising fo ur adult birds. Unlikely to Colony no. Lower count Higher count breed within the study area, but a small colony is known near Ebbabreen at the bottom of Bille­ 1 322 358 fjorden. 2 164 200 3 60 90 No data on vulnerability. Possibly competing with 4 69 69 Kittiwakes about nesting c1iffs, and likely to be 5 198 199 susceptible to local oil spills etc around human 6 366 379 settlements, where it often fo urage. 7 1,506 1,657 SUM 2,685 2,952 Th e Fauna of Gipsdalen, Svalbard 73

Black guillemot Cepphus gryUe Arctic fo x Alopex lagopus

Holarctic distribution, mostly in the north Atlan­ Holarctic distribution in arctic and high-alpine tic Ocean. Wi despread at Svalbard, but numbers areas. Common at Svalbard, where it is fo und unknown. Not recorded breeding in the study throughout the archipelago as well as in the area in 1989, although likely to do so (e.g. at pack-ice. Templet or Gipshukodden); small numbers always present. Two dens were located in the study area in 1989, both underneath Templet and approximately 5 The effect of disturbance to breeding success is km apart (Fig. 11). Recurring observations of one not well known for cave-nesting species like adult fo x in summer plumage in Gipsdalen Black guillemot, Little auk and Puffin. They between DalkallenlUsherfjell and Leirflata may may, however, be less vulnerable to oil pollution possibly indicate a den in that area as well. than other auk species, because their young Adult fo xes or signs of foxes were occasionally fledge fu lly capable of flight. seen almost throughout the study area, but mostly downstream of Leirflata. A total of 3-6 animals are believed to have be en involved (ex­ Little auk Alle alle cluding observations from the dens), judged by individual fu r characters. An arctic species, confined to th e Atlantic Ocean and some islands in the Arctic Ocean. ApparentlY Hunted and trapped at Svalbard throughout the

the most numerous breeding bird at Svalbard, period 1 November - 15 March, evidently without but their number is unknown. affecting the population significantly. It is, however, likely that oil pollution in Svalbard Common in Templet in 1989� where they were waters may affect local fox survival, since sea­ fairly evenly distributed (fig. 10); also fo und in birds constitute a major prey. Sindballefjellet. Our count of 427 adults in Templet is beyond any doubt an underestimate of this hard-censused species. Vulnerability, see Black guillemot.

Puffin Fratercula arctica

Breeds along along north Atlantic Ocean coasts. Less numerous than other breeding auk species at Spitsbergen, and similarly difficult to census as the Little auk.

The result obtained in Templet in 1989 (893 adults counted) is an underestimate. Almost half the birds were fo und at Templet's SE corner, near Bj onapynten (fig. 10). A fe w Puffins might breed between boulders at Gipshukodden; the species was also present in Sindballefjellet, and it was seen in Dalkallen in September 1989 (R. Hansson pers. comm.). Vulnerability, see Black guillemot p. 73.

Snow bunting Plectrophenax nivalis

A holarctic species with wide breeding distri­ bution in arctic and high-alpine temperate regions. The only widely occurring passerine at Svalbard. Recorded virtually throughout the study area in 1989 (Fig. 6). Breeding populatiofl' estimated to be at least 15-20 pairs (8-10 fledged clutches encountered, and adults seen on at least 8-10 more localities). Not particularly vulnerable to human activities. 74 Environmental Atlas Gipsdalen, Svalbard

Limitation of the study area.

Bird-cliff census area.

Figure 1 Limitation of the study area in Gipsdalen, Svalbard 1989. The Fauna of Gipsdalen, Svalbard 75

"-' Red-throated diver observation (no breeding indication) .

.... fIIT Purple sandpiper, observation of adultlchick. Breeding record. •

Figure 2 Observationsof Red-throated diver Gauia Stellata and confinned breeding of Purpel Sandpiper Calidris maritima in Gipsdalen 1989. 76 Environmental Atlas Gipsdalen, Svalbard

� Fulmar, breeding area.

Figure 3 Approximate, observed breeding areas of Fulmar Fulmarus Glacialis in the Gipsdalen area 1989. The Fa una of Gipsdalen, Svalbard 77

� .

.� Pink-Iooted goose, breeding record.

Pink-Iooted goose, breeding area.

Barnaeie goose, observation ol adultljuvenile (no breeding indication).

Pink-Iooted goose, important grazing and chick-rearing area.

Barnaeie goose, grazing, chick-rearing and moulting area.

Pink-Iooted goose, uncertain status (tracks seen, but no birds).

Figure 4 Breeding and moulting areas of Pink-footed goose Anser brachyrhynchus and Barnacle goose Branta leucopsis in Gipsdalen 1989. 78 Environmental Atlas Gipsdalen, Svalbard

..... Eider, observation of adultlchick. @ King eider, breeding indication. bl!:::a King eider, observation (no breeding indication). <& Eider, breeding colony.

Figure 5 Observations of breeding and breeding indications of Eider Somateria mollissima and King eider Somateria spectabilis in Gipsdalen/Gipsvika 1989. Th e Fauna of Gipsdalen, Svalbard 79

Svalbard ptarmigan observation (no breeding indication).

Svalbard ptarmigan brood.

Svalbard ptarmigan breeding record.

Snow bunting, pairs and fledglings.

Figure 6 Observations of Svalbard ptarmigan Lagopus mutus hyperboreus and breeding records of Snow bunting Plectrophenax nivalis in Gipsdalen 1989. 80 Environmental Atlas Gipsdalen, Svalbard

Ringed plover observation.

Tumstone observation.

Sanderling observation.

Breeding indication.

Ringed ' plover, breeding area.

Tumstone, breeding area.

Figure 7 Observations and breeding areas of Ringed pl over Charadrius hiaticula, Sanderling Calidris alba, and Turnstone Arenaria interp res in Gipsdalen 1989. Th e Fauna of Gipsdalen, Svalbard 81

. � Glaucous gull, approximate location of breeding pairs. � Arctic skua. )( Arctic tern.

• Breeding record.

O Breeding indication.

Figure 8 Breeding of Arctic skua Stercorarius parasiticus, Glaucous gull Larus hyperboreus, and Arctic tem Sterna paradisaea in Gipsdalen and Templet 1989. 82 Environmental Atlas Gipsdalen, Svalbard

III Kittiwake and BrOnnich's guillemot, breeding area. � BrOnnich's guillemot, breeding area.

Figure 9 Observed breeding areas of Kittiwake Rissa tridactyla and Briinnich's Guillemot Uria lomuia in the Gipsdalen area 1989. Th e Fauna of Gipsdalen, Svalbard 83

m'

• Little auk, breeding area. \. Puffin, breeding area. Puffin, important breeding area.

Figure 10 Observed breeding areas of Little auk Alle alle and Puffin Fratereula arctiea in the Gipsdalen area 1989. 84 Environmental Atlas Gipsdalen, Svalbard

� Arctic lox den. � Area ol repeated observations ol adult Arctic lox. J Possible den.

Figure 11 Dens and possible denmng areas of Arctic fo x Alopex lagop us in the Gipsdalen area 1989. The Fa una of Gipsdalen, Svalbard 85

OPPSUMMERING OG KONKLUSJONER

Faunistikk, status og verneverdi Foreløpig miljøkonsekvensvurdering

De største verneverdiene blant fu gl og pattedyr Mest sårbare for forstyrrelser i Gipsdal sområdet på Svalbard knytter seg til sj eldne eller sårbare er smålom Gavia stellata, kortnebbgås, hvit­ arter (bl.a. kortnebbgås Anser brachyrhynchus og kinngås, ærfugl Somateria mollissima, stein­ hvitkinngås Branta leucopsis), særpregede lokale vender, krykkje og polarlomvi. De to gåseartene former (svalbardrype Lagopus mutus hyperboreus er så følsomme overfor forstyrrelser at det er og svalbardrein Rangife r tarandus platyrhynchus), grunn til å frykte nærmest total overgivelse av enkelte høyarktiske arter (praktærfugl Somateria Gipsdalen, i det minste som myte- og opp­ spectabilis, sandløper Calidris alba og ismåke vekstområde, dersom gruveplanene settes ut live Pagophila eburnea m.f1.), og de internasjonalt slik de er framlagt. Pro blemene for smålom og viktige forekomstene av sj øfugl (særlig havhest stein vender er knyttet til ferdsel og trafikk i Fulmarus glacialis og alkefugl) og sj øpattedyr. selve hekkeområdene, mens ærfugl, krykkje og polarlomvi kan bli berørt av eventuell økt lufttra­ Vi observerte i alt 22 fuglearter i undersøkel ses­ fikk i området. området (se artsgjennomgangen). Bare fire av disse ble ikke påvist hekkende: hvitkinngås, De mest sens itive områdene er Gipsvika nord havelle Clangula hyemalis, ismåke og teist (myten de gjess, hekkende vadere), Gipsdalselva Cepphus grylle. Det er sannsynlig at i det minste og dalbunnen opp til og med Leirflata (mytende teist også hekker i området, mens ismåke neppe gjess, hekkende smålom), munningene av side­ gjør det. Hvitkinngåsa hekker på Gåsøyane, og dalene på østsida av Gipsdalen (hekkende kort­ kan muligens hekke på Biinsow Land. nebbgås), fuglefjellene i Templet (hekkende sj øfugl), og Gåsøyane fu glereservat (hekkende Gipsdalen ble ikke fu nnet å huse spesielt be­ gjess, ærfugl og rødnebbterne Ste rnaparadisaea ). tydningsfulle forekomster av noen fugleart. Sandløper og steinvender Arenaria interpres er I selve det planlagte gruveområdet ble det ikke fåtallig og lokalt utbredt på Svalbard. Begge fu nnet spesielle zoologiske kvaliteter, og området artene ble fun net hekkende, men bare fo r stein­ er generelt svært fattig på dyreliv. Selv om venderens del ble det påvist en bestand i om­ kortnebbgjess var å finne også i de øvre deler av rådet. Det er likevel uvisst i hvilken grad denne Gipsdalen, er betydningen av området liten vil bli skadelidende ved det planlagte inngrepet, sammenlignet med arealene lenger ned i dalen. samtidig som artens status på øygruppa trolig er undervurdert. Gipsvika og Gipsdalen benyttes Dalbunnen mellom Gipsvika og Leirflata er viktig også av mytende kortnebb- og hvitkinngjess, men som my te- og oppvekstområde for gjess, spesielt de observerte gjessene utgjør bare 1-2 % av kortnebbgås, og er også viktige beitearealer for bestandene på Svalbard. De fleste andre arter svalbardrein om sommeren. Hele Leirflata be­ opptrådte i svært små antall i Gipsdalen i 1989. nyttes av kortnebbgås. Andre hekkearter av interesse er smålom, praktærfugl og tyvjo Ster­ Den totale sj øfuglbestanden i Templet ble taksert corarius parasiticus. Dersom all transport legge s til i overkant av 10.000 par, og var dominert av til vestsida av Gipsdalen er det mulig at inngre­ havhest, krykkje Rissa tridactyla og polarlomvi pet ikke vil ha avgjørende betydning for andre Uria lomvia. Bestandene av alkekonge Alle alle arter enn gjessene. Erfaringer fra Grønland og lunde Fratereula arctiea er ukjente. Dette tilsier at avstanden mellom flertallet av reirplas­ plasserer Templet i nedre del av den størrelses­ sene i Gipsdalen og de planlagte inngrepene er orden (10.000 - 100.000 par) som ble antatt av tilstrekkelig til at kortnebbgjessene fortsatt skal Norderhaug et al. (1977), men gjør det like fullt kunne hekke her, men de vil sannsynligvis ikke til et av de fuglefjell i Isfjorden som har høyest akseptere fo rstyrrelsene etter klekking. Det er arts- og individantall. uvisst om bestanden vil kunne finne nye myte­ og oppvekstområder i nærheten. Foruten de to landpattedyra (fjellrev Alopex lagop us og svalbardrein) observerte vi bare Strandvollene i Gipsvika nord, hvor lasteanlegg storkobbe Erigathus barbatus og hvithval Delphi­ og utskipningshavn er tenkt plassert, er den napterus leucas i området, men både ringsel viktigste vaderlokaliteten i undersøkelsesområdet, Phoca hispida og isbjørn Urs us maritim us ble og området er også viktig fo r hvitkinngjess. Med påtruffet i tilgrensende områder under fe ltopphol­ mindre andre . beitearealer er tilgjengelige (f.eks. det. Biinsow Land kan komme til å spille en ved Billefjorden) vil anleggene i Gipsvika trolig avgjørende rolle for videre spontan spredning av få svært uheldige følger for den lille gåsebestan­ svalbardrein i Isfj ordområdet, men det ble ellers den i Gåsøyane fu glereservat. Det er. uvisst ikke funnet spesielt viktige forekomster av hvilke følger inngrepene vil få fo r steinvenderne pattedyr. i området. Sandlo Charadrius hiatieula, fjære­ plytt Calidris maritima og rødnebbterne vil trolig Alle viltarter som er jaktbare på Spitsbergen ble kunne tilpasse seg aktivitetene. påtruffet i undersøkelsesområdet. 86 Environmental Atlas Gipsdalen, Svalbard

Nærheten til Gåsøyane og sj øfuglkoloniene i dagene 26.- 30.7 da vi hadde vår base i FCD's Templet kan gjøre det aktuelt å opprette særskilt leir nedenfor Methuenbreen, men de indre delene korridor fo r eventuell lufttrafikk til og fr a de av Gipsdalen ble også besøkt 11.7 og 13.8. Arbei­ planlagte anleggene. det i Templet ble utført 15.- 18.7 og 23.- 25.7, mens bestandene i Bj onadalen ikke ble talt opp Ved lokale utslipp eller lekkasjer av olje og fø r 6.8. Pausa i tellingene i Templet skyldes at drivstofffr a båter eller installasjoner vil i praksis det lå tåke i fjellet disse dagene. så godt som samtlige arter i området kunne bli skadelidende. Risikoen er spesielt stor fo r sj øfugl Været var ofte skyet og kj ølig de fø rste to ukene og andefugl. Gipsvikas nære beliggenhet til både av oppholdet, iblant også med regn eller tåke. et av Isfjordens viktigste fuglefjell og et fuglere­ Dagtemperaturen lå i denne perioden fo r det servat gjør dette ekstra betenkelig. meste på +2-8°C. Et tynt snødekke la seg i fjellene på kvelden 25.7, men allerede et døgns For fuglelivet i området vil den mest sårbare tida tid seinere satte det inn med strålende solskinn. på året være perioden juni - august. Oljeforurens­ Dette kom til å dominere værsituasjonen fr am til inger er imidlertid en trussel hele den isfrie del 2.8, og dagtemperaturen lå ofte på rundt +20°C av året, og i år med tidlige vårer kan flere arter . i denne perioden. De siste to ukene av feltopphol­ etablere seg på hekkeplassene allerede i mai. det var været noe vekslende, iblant med en del Svalbardreinen er mest sårbar for fo rstyrrelser på tåke. Vinden kunne fr a tid til annen hemme ettervinteren og i juni. fe ltarbeidet, særlig Under tellingene i Templet, men det var svært få dager været satte en stopper fo r datainnsamlingen. INNLEDNING

Gipsdalen og deler av omliggende områder på Metoder Biinsow Land, Spitsbergen ble sommeren 1989 faunistisk undersøkt på oppdrag fra Norsk Undersøkelsene dreide seg primært om faunistisk Polarinstitutt. Feltarbeidet ble utført av Halvar kartlegging. Alle deler av studieområdet ble Ludvigsen og Per Ole Syvertsen. Den primære oppsøkt ved fe rdsel til fots i terrenget. I Gips­ målsettingen var å dokumentere fo rekomsten av dalen ble det lagt vekt på å gjøre stivalget slik fugl og landpattedyr (arter, bestandstall og at både dalbunn og fjellsider (opp til ca. 150 m arealbruk) i området som ledd i arbeidet med å koten) ble dekket. Som regel arbeidet to mann fr ambringe nødvendig lokalkunnskap fo r en sammen. Spesiell vekt · ble lagt på å tallfeste miljøkonsekvensvurdering ved eventuell oppstar­ gjessene i Gipsdalen, gjennom systematisk søk ting av kullgruvedrift i Gipsdalen. Herværende etter reir i egnede habitater og opptellinger av rapport presenterer en fo r�løpig analyse basert beitende flokker. Under dette arbeidet ble det på resultatene fra 1989 og et litteraturstudium. også holdt spesiell utkikk etter rein og fjellrev. Kikkerter med inntil lOxfo rstørrelse ble benyttet, Avsnittene om utbredelse og status på og utenom ofte også teleskoper med inntil 45x fo rstørrelse. Svalbard setter informasjonen fr a Gipsdalen i perspektiv. Det later til å foreligge svært lite Sj øfuglene i Templet ble taksert fr a standplasser faunistisk informasjon om undersøkelsesområdet i fjæra eller på platåer i rasliene nedenfor fjellet. fr a fø r. Viktige biologiske egenskapene ved de Fj ellet var lagdelt og ofte kraftig oppsprukket, så enkelte artene og en del studier over deres det falt seg naturlig å avgrense arealer fo r sårbarhet er kortfattet presentert. For mange opptelling. Teleskop ble alltid benyttet. To mann arter er slike studier såvidt vites aldri fo retatt, arbeidet parallelt og uavhengig. Etter opptelling og det har i en del tilfeller vært nødvendig å av hvert delareal ble de to resultatene sammen­ omtale slike fo rhold i nokså generelle vendinger. lignet, og ved store avvik ble nye opptellinger fo retatt (bortsett fr a for alkekonge og lunde). Overensstemmelsen var som regel god, og det var MATERIALE OG METODER sj elden det var nødvendig å gjenta tellingene. Undersøkelsens omfang ARTSGJENNOMGANG Feltarbeidet ble utført i tidsrommet 7. juli - 14. august 1989. Hovedvekt ble lagt på registreringer SMALOM Gavia steUata av gjess og de to artene av naturlig fo rekom­ mende landpattedyr på Svalbard (fjellrev og sval­ Utbredelse og vandringer bardrein}, og taksering av sj øfuglene i Templet. Avgrensningen av studieområdet fr amgår av Fig. Holarktisk utbredelse i arktiske og nordlige 1. Gåsøyane fuglereservat ble ikke besøkt på tempererte strøk. I Europa hekker arten fr a grunn av fe rdselsforbudet 15. mai - 15. august Svalbard, Frans Josefs land og Novaja Semlja sør (Prestrud 1989). til Island, Skottland, det nordlige Irland (Eire) og Sør-Sverige, og om vinteren er den å finne i Vi var fo r det meste stasjonert i Gipsvika. Gips­ kystnære farvann fr a norskekysten til dalen ovenfor Leirflata ble i hovedsak kartlagt i Middelhavet. The Fauna of Gipsdalen, Svalbard 87

Forekomst og status på Svalbard (Cramp & Simmons 1977). Lommene er i my te­ tida ekstra utsatt fo r oljeforurensninger til havs Hekker spredt ved fe rskvann og på tundraen (Anker-Nilssen 1988). langs kysten av øygruppa, inkludert Bj ørnøya. Ankommer i løpet av mai, og kan observeres til . slutten av september eller begynnelsen av okto­ Diverse ber. Svalbardbestandens størrelse og vandrings­ veier er ikke kj ent. Det er sannsynlig at tapet av en unge i Gips­ dalen skyldes predasjon fr a fjellrev eller polarmå­ ke. En rev gjorde 22.7 et utfall mot kullet, men Biologi og levevis ga . straks opp forsøket da fuglene la seg midt ute på dammen. Ifølge skotske undersøkelser vil bare En dyktig svømmer og dykker, som fo r det meste ca. 20 % av eggene fø re til flyvedyktige lever av fisk hentet opp fra 2-9 m dyp, men tar unger (Cramp & Simmons 1977). De viktigste også endel leddormer, muslinger, krepsdyr og årsakene ' til den lave hekkesuksessen er preda­ vanninsekter. Henter næring både i saltvann og sj on og fo rstyrrelser. fe rskvann; på Svalbard hovedsakelig knyttet til marine næringskjeder. HAVHE ST Fulmarus glacialis Hekker trolig fø rste gang 2-3 år gammel, og kan oppnå en alder av minst 23 år. Paret holder Utbredelse og vandringer sammen gjennom hele hekkesesongen. Reiret plasseres alltid meget nær vannkant, som regel Hekker langs nordlige kyster av Atlanterhavet og mindre enn 0,5 m fr a bredden eller på ei torvøy, Stillehavet. I Europa fins havhesten på Svalbard, slik at den rugende fuglen lett kan gli ut i Frans Josefs land og Novaja Semlja, og fra vannet. Legger 1-3 egg (vanligvis 2), på Svalbard Island, Jan Mayen og norskekysten sØr til Frank­ straks isen forsvinner fr a hekkeplassene i juni - rike (Bretagne). De viktigste europeiske koloniene juli. Kan stå over hekking dersom våren er er på Island, De britiske øyer og Svalbard med ekstremt sein. Eggene ruges i 26-28 døgn. Begge Bjørnøya. En pelagisk art som utenom hekkese­ fo reldrene deltar i ruging og ungepass. Ungene songen fo r det meste treffes langt til havs eller kan svømme og forlater reiret kort tid etter langs kystene etter uvær; dens pelagisk utbredel­ klekking. De er imidlertid fortsatt avhengig av se går i det østlige Atlanterhavet sør til Biskaya. fo reldrene og fø res inntil de blir flyvedyktig etter Havhesten har økt i antall og utvidet sitt ut­ 6-7 uker. bredelsesområde i Nord-Europa, bl.a. på norske­ kysten, i dette århundre.

Status i Gipsdalen I Templet Forekomst og status på Svalbard Smålom er tidligere funnet hekkende i Gipsdalen og på Gåsøyane (Løvenskiold 1964). . En av de mest tallrike fu gleartene på Svalbard. Hekker fo r det meste på smale berghyller i Ett par påvist hekkende i 1989 (Fig. 2): Foreldre­ bratte fjellvegger, både langs kysten og inne i fugler med to dununger på dalbunnen nedenfor landet, men også på flate holmer og øyer eller i Aitkenfjellet 22.7; bare en unge lot til å vokse gresskledte skråninger. Tallrikest på Spitsbergens opp (observert 8.8 og 13.8). Arten ble ellers flere vestkyst og fjordstrøk, og på Bjørnøya. Ankommer ganger sett i ferskvannet på elveterrassene hekkeplassene flere måneder fø r egglegging tar innerst i Gipsvika og i tilliggende deler av til, og ses på Svalbard til mørketida inntrer; er Gipsdalselva uten at hekking eller hekkeforsøk registrert på hekkeplass så tidlig som i januar kunne påvises. Også to voksne i Gipsdalselva ved (Frantzen et al. 1986). Metodiske takseringspro­ sørenden av Leirtlata 13.8, samtidig med at blemer og den vide utbredelsen gjør at samlet hekkeparet var på sin hekkeplass. Smålommer bestandsstørrelse ikke er kj ent. Koloniene i ble flere ganger observert i flukt over de nedre Templet later til ikke tidligere å være opptalt delene av Gipsdalen, på vei til og fra næringssøk (Mehlum & 14Jeld 1987). i Isfjorden.

Biologi og levevis Sårbarhet Spiser hovedsakelig pelagiske smådyr som bløtdyr Smålommen er i sin alminnelighet en fo rholdsvis (blekksprut og vingesnegl), børstemark, krepsdyr sky fugl på hekkeplassen, og går raskt av reiret og småfisk. Det meste av næringen hentes fr a når mennesker kommer i nærheten (Mehlum overtlatelagene mens fu glen ligger på sj øen. 1989). Redusert hekkesuksess gjennom økt preda­ Følger ofte etter fiskebåter fo r å nyttiggjøre seg sj on fr a fjellrev og polarmåke kan derfor lett bli avfall og fiskerester. Mange anser økningen i resultatet av ferdsel i hekkeområder. Den er fiskeriene i dette århundre som en mulig fo rk­ likevel ganske tolerant overfor begrensede fo r­ laring på artens ekspansjon. styrrelser, og kan f. eks. ·ruge synlig fr a veier 88 Environmental Atlas Gipsdalen, Svalbard

Sj øfugler har i sin alminnelighet svært sein individer fra Svalbard (Madge & Burn 1988). kj ønnsmodning, men også lav årlig voks en dødelig­ Bestandene har vært økende i 1980-årene. het (ca. 5 %) slik at de kan bli meget gamle og Trekket gjennom Norge er ufullstendig kj ent, reprodusere mange ganger. Havhesten hekker særlig om høsten. Vårtrekket går trolig i fø rste gang 6-10 år gammel, men voksne blir i hovedsak opp langs dalene i det sørøstlige Norge, snitt 15-20 år gamle og kan bli atskillig eldre. og videre langs kysten fr a Trøndelag til Lofoten Paret holder sammen i flere år. Normalt legges og Vesterålen. En viktig rasteplass i midten av bare ett egg, på Svalbard oftest i slutten av mai. mai er Andøya (Ekker 1981, Rikardsen 1982). Egget ruges av begge fo reldrene i ca. 50 døgn. Den gråaktige dunungen blir de fø rste to ukene alltid passet av en av fo reldrene. Etter rundt 7 Forekomst og status på Svalbard uker i reiret er den flyvedyktig og selvstendig. Utbredt hovedsakelig langs vestkysten og i fjordstrøkene på Spitsbergen, hvor den hekker på Status i Gipsdalen I T�mplet tundra, innunder fuglefjell, i vegetasjonskledte skråninger, og på holmer i fjordene. Myteplassene Løvenskiold (1964) oppgir at det er hekkekolonier er også i stor grad kystbundne. Hekker parvis i Templet og nær Gipshuken. eller i løse kolonier. Både reir- og 'myteområder er de samme fra år til år. Ankommer øygruppa Opptelling i Templet 15. - 25.7.89 (Bjonadalen i slutten av mai, og trekker bort igjen i septem­ ikke fø r 6.8) ga som resultat 4.936 par og 5.886 ber - oktober. Den tallrike ste av de tre gåse­ par for to uavhengige observatører. Templet har artene på Svalbard, og også den som har videst derfor sannsynligvis huset godt over 6.000 par i utbredelse. 1989. I Sindballefjellet vis-a-vis Bj onadalen ble det talt opp 221 par 6.8.89. Arten hekker også i mindre antall i de fleste fjell som omgir . Gips­ Biologi og levevis dalen, og ble sommeren 1989 påvist i Dalkallen, Storholen, Usherfjellet, Grahamkammen, Pyefjel­ Bilde på fo rsiden av denne rapporten. Spiser om let og Finlayfjellet (Fig. 3). sommeren et vidt spekter av tundraplanter, både grønne og underjordiske plantedeler. Oppbygging av fe tt- og proteinreserver fo rut fo r vår- og Sårbarhet høsttrekkene er viktig. Ifølge studier på Grønland benyttes ca. 40 % av tida i myteperioden til Nokså tolerant overfor mennesker på hekkeplas­ beiting (Madsen 1984). sen. Artens nærings økologi gjør imidlertid hav­ hesten sårbar overfo r fo rsøpling og fo rurensning Hekker første gang trolig normalt i en alder av til havs. Det er påvist at de fleste havhester i tre år, iblant som toåring. Voksne har en for­ nordlige farvann får i seg plastpartikler og annet ventet levealder på 3,3 år, men kan oppnå en menneskeskapt avfall. Potensielt kan slike fr em­ alder av minst 21 år. Paret holder sammen hele medelementer i kråsen forhindre fordøyelse og livet, men kan inngå nye parforhold dersom en fø re til fo rgiftning (Mehlum & Giertz 1984). Det av makene faller bort. Reiret plasseres på bak­ er videre fryktet at oljeforurensninger til havs ken, i flatt lende, i bratte skråninger eller på kan få alvorlige konsekvenser fo r Barentshavets berghyller, og fOres med planter og dun. Svært havhestbestander, både direkte og som følge av eksponerte steder i sør- og vestvendte områder er fo rringelse av næringsgrunnlaget, sosialt be­ oppgitt som typisk (Ekker 1981). Egglegging tingede effekter, og annet (Anker-Nilssen 1988). finner sted straks hekkeplassene blir snøbare, på Svalbard vanligvis ikke før i begynnelsen av juni. Hunnen ruger i 26-27 døgn, mens hannen holder Diverse vakt like ved. Familien forlater reirplassen kort tid etter klekking, og flere fa milier samles i Havhesten er på Svalbard jaktbar i perioden L større eller mindre grupper i fe lles oppvekst- og september - 31. oktober (Prestrud 1989). myteområder. Ungene blir flyvedyktige etter omtrent 8 uker, men tar hele tiden til seg næring selv. De er likevel avhengig av fo rel­ KORTNEBBGÅS Anser brachyrhynchus drenes beskyttelse under oppveksten, og familiene holder sammen helt til kort tid før hekkestart Utbredelse og vandringer året etter.

To bestander, som i det vesentlige er geografisk De voksne gjessene fe ller (myter) alle sving­ skilt også i vinterkvarterene: (1) Islandske og fjærene samtidig. De mister derfor fu llstendig øst-grønlandske kortnebbgjess overvintrer i evnen til å fly i ca. 25 døgn i juli - august. Skottland, England og Irland, mens (2) Svalbard­ Tidsrommet faller sammen med når de har bestanden trekker til Nordsjøkystene fra Dan­ unger, og i denne perioden er de svært vare og mark til Nord-Frankrike. Tellinger i vinterhalv­ fø lsomme overfor forstyrrelser (se nedenfo r). året har gitt som resultat 70.000 - 85.000 Myteområdene er alltid nær vann hvor fuglene individer fr a Island og Grønland, og rundt 25.000 kan søke tilflukt ved behov. The Fauna of Gipsdalen, Svalbard 89

Status i Gipsdalen / Templet Det ble altså totalt fu nnet 19 reir av året. Det viktigste registrerte reirområdet var munningen a) Opplysninger fr a tidligere år av sidedalen ved Dalkallen, hvor 10 av reirene lå. Dannelse av trangt elvegjel med stupbratte Løvenskiold (1964) nevner at kortnebbgjess har sider og hyller eller terrasser nær elvebredd hvor blitt sett ved stranda innunder Templet, fo ruten gjessene kan plassere reirene, er her mer ut­ hekking i Gipsdalen og trolig (tidligere) på preget enn andre steder i Gipsdalen. Også om­ Gåsøyane. Gipsdalen var den første lokalitet på rådene 2 og 3 var av denne karakter. Antall Spitsbergen hvor det ble ringmerket gjess, idet en registrerte årsreir med slik beliggenhet utgjør 14 britisk ekspedisjon merket 42 unge kortnebbgjess av 19 (74 %). her i 1952 (Larsen & Norderhaug 1963). Prestrud & Børset (1984) rapporterte at 10 par hekket på c) Ungeproduksjon og bruk av beite- og myteom­ Gåsøyane i 1982 og 30-50 par i 1983. Lokaliteten råder i 1989 ble ikke undersøkt i 1989. De viktigste beite- og myteområdene var dal­ b) Reirområder og reirplassering i 1989 bunnen mellom Dalkallen og nordlige deler av Leirflata (Fig. 4). Også områdene langs Gips­ Hekking påvist i seks separate områder i Gips­ dalselva videre ned til Gipsvika, samt våtmar­ dalen!l'emplet (Fig. 4). kene og strendene innerst i Gipsvika ble benyttet, spesielt i august. Overfo r Leirflata ble Område 1: 2 par (ennå rugende) ved munningen arten bare sporadisk observert, men leirepartiene av sidedalen ved Dalkallen 9.- 10.7. Ved ny . nedenfor N orstromfjellet var fulle av sportegn kontroll av området 19.7 ble det fu nnet i alt tre 27.7 (sporavtrykk, ekskrementer og fjær) som årsreir på sørsida og sj u årsreir på nordsida av bevitnelse om bruk av området. Langs elva, fo ruten flere reir fra tidligere år. Minst ett Gipsdalselva mellom Leirflata og linja reir var plyndret, og rev hadde vært og rotet i MargaretbreenlMethuenbreen ble gjess bare flere. Samtlige reir lå i nær tilknytning til elv, observert mot slutten av fe ltoppholdet. begrenset til et område av 200-250 m lengde. Seks av reirene på nordsida av elva lå innenfo r Det er opplagt at · ikke samtlige kortnebbgåsreir en strekning av ca. 60 m. i området ble funnet. For å kunne si noe om hekkebestandens størrelse må derfor også unge­ Område 2: Ett årsreir og to reir fr a tidligere år tall trekkes inn i vurderingen. Hele eller vesent­ på nordsida av Aitkendalen 28.7; ett årsreir på lige deler av dalen ble ved flere anledninger gått sørsida av Aitkendalen 10.8. Alle reirene lå i nær over på 1-2 dager, og observasjoner og tellinger tilknytning til elv, ved sidedalens munning til av gjess utført. Situasjonen på to valgte tids­ Gipsdalen. punkter, atskilt med en måned, var som følger:

Område 3: Ett årsreir og to fjorårsreir på sørsida 11. juli: Mellom Dalkallen og Leirflata 7 familier av Gipsdalselva der denne danner en liten med tilsammen minst 22 dununger; på Leirflata canyon nedenfor Norstromfjellet 30.7; ett årsreir og dalsida østafor 27 familier med tilsammen 84 og ett reir fra tidligere år på nordsida av elva dununger. Disse 34 familiene hadde altså til­ 13.8. sammen minst 106 unger, med et gjennomsnitt på 3,2 ungerIkull fo r de familier hvor presist Område 4: Ett årsreir ved Margaretbreen 29.7 ungetall kunne fastslås. Tilsammen ble ca. 75 var plassert i dalsida uten nær tilknytning til elv voksne kortnebbgjess registrert. eller annen våtmark. Reir av denne type beliggenhet er klart vanskeligst å registrere, i det 12.-13. august: Spaserte opp hele Gipsdalen vest minste etter at klekking har fun net sted. fo r elva, og ned øst for elva. Kortnebbgjess ble fu nnet i alle deler av dalen, fra fe rskvannet ved Område 5: To årsreir ved ferskvannet på elveter­ Gipsvika til nedenfor Nordstrømfjellet. Det var rassene jnnerst i Gipsvika 20.7 er de eneste reir imidlertid ikke alltid mulig å få presise tall på fu nnet på myr. unge og gamle fugler. På tur opp ble det regi­ strert minst 57 voksne og minst 122 unger, mens Område 6: To årsreir ble fu nnet innunder fugle­ 99-154 individ�r ikke ble aldersbestemt, totalt fjellene i Templet 16.7. Reirene var plassert tett minst 278-333 individer; på nedtur minst 43 inntil fjellveggen der denne steilt reiser seg voksne og minst 93-99 unger, foruten ca. 250 overfor ur og rasmark. Hovedproblemet med å ikke aldersbestemte, totalt minst 386-392 in­ lokalisere reir av denne typen er den vanskelige divider. framkommeligheten i området. Gipsdalens mytebestand av kortnebbgås rundt En kortnebbgås varslet i dalsida nedenfor Pyefjel­ midten av august 1989 lå således på minst ca. let 11.7, men hekking ble ikke påvist i området. 400 individer, mot minst ca. 180 individer 4-5 Videre ble to reir fra tidligere år funnet i dalsida uker tidligere. De 34 familiene 11.7 kan oppfattes ved Stenhousebreen; reirplassering som for som et nedre bestandsestimat, mens de 400 område 4. gjessene i midten av august gir grunnlag fo r beregning av et estimattak. Det var ikke alltid 90 Environmental Atlas Gipsdalen, Svalbard mulig å fastslå andelen unger i flokkene, men fo r forstyrrelser i mytetida. Begge arter hadde en de flokker hvor unge og gamle fugler kunne gjennomsnittlig reaksjonsavstand overfor Be1l 212 telles separat (ca. 40 % av kortn ebbgjessene på ca. 10 km. I spesielle situasjoner kunne 12.-13.8) lå ungfuglandelen på rundt 2/3. Dette kortnebbgjess reagere på helikopterstøy på rundt gir en ungeproduksjon på rundt 270 dersom 20 km avstand. Ved forstyrrelser tidlig i my te­ totalbestanden settes til 400 individer, og fø lgelig tida, mens gjessene ennå kunne fly, forlot de ca. 130 voksne gjess, eller ca. 65 par. Den lokale myteplassene (begge arter). Forstyrrelser seinere hekkebestanden i Gipsdalen/remplet-området i sesongen vil kunne påvirke fuglenes kondisjon anslås derfor til 34-65 par i 1989. gjennom redusert beitetid. Kortnebbgåsa var mer sky overfor Bell 206 enn hvitkinngåsa. Gj ennom­ Selv om det totale antall observerte kortnebbgjess snittlige reaksjonsavstander overfor denne typen i Gipsdalen ble mer enn fordoblet fr a midten av helikopter var henholdsvis ca. 5 km og ca. 2,5 juli til midten av august, økte ikke den regist­ km (Mosbech et al. 1989). rerte ungfuglandelen med mer enn 15 %. Det er derfor mulig at Gipsdalen fu ngerer som myte­ I tillegg til helikoptertypen spiller også en rekke plass for et noe større antall gjess enn den lokale andre faktorer inn ved vurdering av helikopter­ bestanden. Det er også kj ent at familier med fo rstyrrelser. Topografi, værforhold og helikop­ dununger kan vandre minst 24 km (Cranip & terets oppførsel (flyhøyde, flyretning, hastighet og Simmons 1977). En gruppe på ca. 30 kortnebb­ lastmengde) vil ha betydning for lydforplant­ gjess (årsunger og voksne) ble 12.8 påtruffet i ningen. Mosbech et al. (1989) fant . at ved de Billefjorden vest av Svalisgrunnane. avstander hvor gjessene begynte å reagere på helikopterstøy øker støynivået med stigende flyhøyde innenfor intervallet 0-500 m over bak­ Sårbarhet ken. På disse avstander vil derfor et lavtflyende helikopter fo rstyrre mindre enn et høytflyende. a) Forstyrrelser i hekkeområdene Bare på svært korte avstander (ca. 2-3 km fo r Bell 212 i åpent terreng) fo rstyrret høytflying Det later ikke til å være utført omfattende mindre enn lavtflying. Spinder (1984, ifølge studier over kortnebbgåsas sårbarhet på reirplas­ Mosbech et al. 1989) kom til samme konklu­ sen. Det er imidlertid kj ent at den fo rlater reiret sj on fo r rasten de snøgjess (Anser caerulescens) i ved fo rstyrrelser, og de ubeskyttede eggene er da Alaska: Det fo rstyrrer gjessene mindre å passere et lett bytte for fjellrev og polarmåke (Mehlum over dem med fly i 30 m høyde enn i større 1989). Hannene i de to parene som ble funnet på høyder. Likeledes øker helikopterstøyen med hekkeplass i Gipsdalen 9.7.89 varslet når obser­ hastigheten og med tung last. Kortnebbgjessene vatøren befant seg ca. 150 m fr a reirene, men på Grønland reagerte sterkest på helikoptre som hunnene avbrøt ikke rugingen og hannene fo rlot kom rett imot dem. Dette er også i overens­ ikke reirområdet. stemmelse med observasjoner gjort ved en polar­ lomvikoloni på Svalbard (Fjeld et al. 1'988). Mosbech et al. (1989) fant i et studium på Grønland ikke påviselige effekter av helikopter­ Som en konsekvens av studiene på Grønland er trafikk og baseaktiviteter på valg av reirplas­ det etablert en ordning som holder helikoptertra­ sering eller antall hekkende par. Nærmeste fikk minst 10 km vekk- fr a de viktigste myteom­ gåsekoloni lå 1-1,5 km fr a basen, på samme sted rådene på Jameson Land (Mosebech et al. 1989). som før basen ble etablert. De kunne heller ikke påvise fo rstyrrende effekter på kullstørreIse eller Mytende gjess, spesielt kortnebbgjess, er også hekkesuksess, men deres materiale er lite. I et svært vare overfor bakkeforstyrrelser. Ferdsel i større islandsk studium (Sigurdsson 1974 ifølge terrenget kan f.eks. skremme gjess bort fra vann Mosbech et al. 1989) ble det konkludert med at og tvinge dem til å krysse tundraen hvor risikoen gjennomsnittlig kullstørreIse gikk ned hos en fo r predasjon fr a fjellrev øker (Madsen 1984). hekkebestand som ble forstyrret av mennesker eller fjellrev. Det var vår erfaring i Gipsdalen at fuglene var mer sky etter klekking enn fø r. Mytende kort­ b) Forstyrrelser i myteområdene nebbgjess med små unger kunne reagere panikk­ artet på opp til 1-2 km avstand når to personer Kortnebbgåsas og hvitkinngåsas reaksjoner på kom til fo ts opp dalen. Under slike omstendig­ helikoptertrafikk og bakkeferdsel i mytetida er heter, når hele flokken løp avgårde i et vilt studert på Grønland (Madsen 1984, Mosbech et tempo, hendte det at enkelte unger ikke klarte å al. 1989). To ty per helikoptre inngikk i under­ holde følge med foreldre og søsken. Ved to an­ søkelsene, den store og tunge Bell 212 og den ledninger (10.-11.7.89) fant vi etterlatte dununger mindre og lettere Bell 206. Bell 212 produserer i områder hvor vi hadde støkket kortnebbgjess på spesielt mye lavfrekvent lyd (under 20 Hz). dette viset tidligere på dagen. Som regel løp Lavfrekvent lyd dempes mindre enn høyere flokkene ned til elva og fulgte denne opp- eller fr ekvenser i luft (Fjeld et al. 1988). nedstrøms, avhengig av hvor vi befant oss. De tok seg imidlertid også ofte opp dalsidene, og ved De to gåseartene behandles her under ett. Gj esse­ en anledning (10.7) fo rsvant to familier inn ne viste seg å være svært følsomme overfor Aitkendalen. Det fo rekom til og med at fuglene The Fa una of Gipsdalen, Svalbard 91

ikke bare løp ned til elva, men også krysset den Firth, på grensa mellom Skottland og England, og fo rtsatte et stykke opp lia på motsatt side. og trekker langs norskekysten; og (3) vestsibirske Det er således klart at kortnebbgjessene i Gips­ hekkefugler (Novaja Semlja og Vaigach), som dalen er svært vare fo r fo rstyrrelser, spesielt fø lger en sørvestlig trekkrute over Kvitsjøen, tidlig i mytetida når de har små unger. Den Gotland og det sørlige østersjøområdet til vinter­ relativt smale dalbunnen og det trange elveløpet kvarterene, som fø rst og fr emst ligger i Neder­ tilfredsstiller ikke artens behov fo r trygghet og land. Totalt fantes det rundt 70.000 hvitkinngjess fluktavstand overfor mennesker. i begynnelsen av 1970-årene, med Svalbard­ bestanden som den minste (Cramp & Simmons c) Forurensning og fo rsøpling 1977, Norderhaug 1981).

Gj ess samles i større grupper etter at eggene er klekket fo r å søke fe lles beskyttelse gjennom den Forekomst og status på Svalbard sårbare myteperioden. Slike myteflokker har alltid tilhold nær vann, ofte sj øen, og de er derfor De fleste hvitkinngjessene på Svalbard hekker på ekstra utsatte fo r oljetilgrising i denne perioden. mindre øyer langs vestkysten av Spitsbergen, Oljen ødelegger fjærdraktas isolasj onsevne, og men arten benytter også utilgjengelige klippeav­ fuglene må derfor øke energiforbruket fo r å satser og lignende, og kan hekke flere kilometer opprettholde kroppstemperaturen. Dette fø rer lett inn i landet. Innlandslokaliteter var viktige ifølge til utmattelse og død. Dersom de får oljen i seg eldre litteratur. Arten brer seg i vår tid til stadig kan sykdom og død følge av fo rgiftni,ng (Anker­ nye hekkeplasser, bl.a. sørøst i øygruppa, og har Nilssen 1988, Hansson et al. 1989). kolonisert Kongsfjorden i 1980-årene (Mehlum 1989). Industrielle aktiviteter og turisme vil ofte med­ fø re fo rsøpling og dermed god mattilgang fo r Bestandsutviklingen fo r hvitkinngjessene på polarmåke og fjellrev. Økt reproduksjon og lavere Svalbard er meget godt kj ent siden slutten av dødelighet vil igjen føre til større bestander av 1940-årene da bestanden var nede i rundt 300 disse artene. Gj ennom predasjon på egg og unger individer (Owen 1984). De neste tredve år ble en kan de påvirke hekkesuksess og bestandssitua­ rekke forvaltningstiltak iverksatt, bl.a. jaktfo rbud sj on fo r flere andre arter. En økning i bestandene og vern av hekke- og vintertilholdssteder, og i av disse predatorene (bytteeterene) kan derfor midten av 1980-årene var høstbestanden opp i komme til å true lokale gåsebestander på Sval­ rundt 10.000 fu gler (Magde & Burn 1988, bard (Hansson et al. 1989). Mehlum 1989). Trolig hekket mer enn 70 % av parene i reservater i 1982 (Prestrud & Børset Under normale forhold (når de er uforstyrret) 1984). klarer kortnebbgjessene å beskytte reir, unger og . seg selv mot reveangrep (Ekker 1981, Prestrud & Hvitkinngjessene er tilstede på Svalbard fra Børset 1984). I Gipsdalen ble det sommeren 1989 slutten av mai til september/bktober. Vår- og to ganger observert konfrontasjon mellom fjellrev høsttrekkene mellom Svalbard (Spitsbergen) og og kortnebbgås, og ved en anledning lyktes reven vintertilholdsstedet i Solway fo regår i to etapper: i å nedlegge ei gås, som trolig var voksen. På våren stopper gjessene opp 2-3 uker på Helgelandskysten fo r å bygge opp nye fe tt- og d) Jakt proteinreserver før de trekker videre, og på høsten har Bj ørnøya en tilsvarende funksjon. Kortnebbgåsa er den eneste gåseart det er lov å Sikring av disse områdene er helt avgjørende fo r jakte på Svalbard, med jakttid 21. august - 31. bestandens overlevelse og hekkesuksess (Gul­ oktober (Prestrud 1989). Arten jaktes også i lestad et al. 1984, Owen & Gullestad 1984). fa stlands-Norge og i Danmark under høsttrekket. Bestandsøkningen i seinere år tyder imidlertid på at dagens jaktpress er innenfor rammene av hva Biologi og levevis bestanden på Svalbard, kan tåle (Ogilvie 1984). Livnærer seg på hekkeplassene av et vidt spekter Vi registrerte så seint som 13.8.89 fo rtsatt mange av planter. kortnebbgjess som ikke kunne fly, bare åtte dager før jaktstart. Dette gjaldt både unger og Hvitkinngåsa kan hekke fø rste gang 2-3 år voksne fu gler. gammel, og oppnå en alder av minst 18 år. Owen (1984) fant en årlig dødelighet på rundt 10 %. Dødeligheten var høyere hos ungfugler bare i HVITKINNGÅS Branta kucopsis enkelte år, mens toåringer hadde lavere årlig dødelighet enn eldre fugler. Prop et al. (1984) Utbredelse og vandringer kom til at rundt halvparten av alle klekte unger når vinterkvarteret. Som andre gåsearter lever Tre bestander: (1) En bestand hekker på øst­ hvitkinngåsa monogamt i livsvarige parforhold. Grønland, og trekker via Island til overvintrings­ PardanneIsen finner sted på våren i gjessenes områder i Irland og langs Skottlands vestkyst; andre leveår. (2) en Svalbardbestand som overvintrer i Solway 92 Environmental Atlas Gipsdalen, Svalbard

Hekker i kolonier, ofte sammen med ærfugl. kortnebbgåsa og reagerer ikke på helikoptertra­ Kullet består vanligvis av 4-5 egg. Leggetids­ fikk i like stor grad (Madsen 1984, Mosbech et punktet er svært avhengig av de lokale snøfor­ al. 1989). En økning i bestandene av store holdene, og gjessene kan la være å hekke i år flyende predatorer ved bedret mattilgang, bl.a. med svært sein snøsmelting. Eggene ruges i gjennom fo rsøpling, vil kunne få uheldige fø lger 24-25 døgn av hunnen, mens hannen holder seg fo r lokale gåsebestander (Norderhaug 1983). Ved i nærheten. Etter klekking fo rflytter familien seg unødvendige fo rstyrrelser på hekkeplassene, f. eks. til vegetasjonsrik, fuktig mark ved fe rskvanns­ dersom reservatbestemmelser ikke overholdes, dammer, hvor også myteflokkene samles. Ungene kan store deler av bestanden få en dårlig hekke­ er flydyktige etter 40-45 døgn, men familien sesong (Prestrud 1989). oppløses først rett før neste års hekkestart.

Under myteperioden, som varer fra midten av Diverse juli til midten av august, mister de voksne evnen til å fly i 3-4 uker. Ikke-hekkende fugler myter I årene 1973 - 1983 har rundt 3.300 hvitkinn­ noe tidligere enn de hekkende. I denne perioden gjess fr a Svalbardbestanden blitt utstyrt med holder de fleste hvitkinngjessene seg på de flate fo tringer i farget plast fo r individuell identifika­ tundraområdene langs vestkysten av Spitsbergen. sj on i felt. Fangst og merking har funnet sted både på hekkeplassene og i overvintringsområdet i Skottland (Owen 1984). Under feltarbeidet i Status i Gipsdalen I Templet Gipsdalen i 1989 ble det ikke registrert fargemer­ kede individer. Prestrud & Børset (1984) rapporterte 3 hekkende par på Gåsøyane i 1982 og 6-8' par i 1983. Lokaliteten ble ikke besøkt i forbindelse med ÆRFUGL Somateria mollissima Gipsdalsstudiene i 1989. De nevner også at arten er kj ent som klippehekker ved Gipshuken. Løven­ Utbredelse og vandringer skiold (1964) har ingen opplysninger fra denne delen av Isfjorden. Gåsøyane ble i 1973 vernet Holarktisk utbredelse i arktiske og nordlige som fu glereservat med fe rdselsforbud om somme­ tempererte strøk. Arten hekker i Europa på ren (Prestrud 1989). Island, Færøyane, Svalbard, Frans Josefs land, Novaja Semlja og Vaigach, og langs kystene fr a Ingen reirområder ble funnet i 1989, men Gips­ Kaninhalvøya sør til østersjøen, Nordsjøen, vika og Gipsdalselva opp til Aitkenfjellet benyttes Frankrike (sjelden) og nordlige deler av De som oppvekst- og myteområde (Fig. 4). Opptil britiske øyer. De enkelte bestander trekker i ulik rundt 100 voksne hvitkinngjess benyttet studie­ grad; fuglene fra Barentshavområdet til Nord­ området som myteplass, og minst seks familier Europas kyster. Hos noen bestander finner det hadde tilhold her. Det antas at fuglene kom fr a dessuten sted et utpreget mytetrekk på som­ hekkeplasser på Gåsøyane 8-12 km unna. meren. Fuglene samles da i spesielle my te­ områder fo r fjærfelling fø r de fortsetter til Hvitkinngjess var tilstede i området under hele vinterkvarterene. vårt opphold sommeren 1989, fo r det meste voksne fugler. Høyeste antall unger som ble observert var 14-15 (bare en flydyktig, samt 32 Forekomst og status på Svalbard voksne) 8.8, 14 dununger (og 24 voksne) 18.7, og minst 12 dununger (6 fa milier, tilsammen 38 Svalbards mest tallrike andefugl. Hekker i større voksne) 10.7. og mindre kolonier på holmer over det meste av øygruppa, men i størst antall langs vestkysten av Fra slutten av juli økte antallet hvitkinngjess Spitsbergen. Spredte par hekker også inne på som benyttet området. Således ble ca. 110 in­ tundraen på de store øyene. Etablering på hek­ divider (9 dununger) observert 20.7, i det alt keplassene skjer straks snøen smelter og det blir vesentlige i Gipsvika; rundt 60 voksne hadde isfri sjø omkring holmene i slutten av mai eller tilhold i fe rskvannet vest fo r elveoset 31. 7; i juni. Koloniene fo rlates umiddelbart når eggene tilsammen mer enn 80 individer (vesentlig voks­ er klekket, og ærfuglene samles da i gruntvann­ ne) 10.8, fordelt hovedsakelig mellom ferskvannet sområder ytterst ved kysten, hvor de holder seg ved elveoset og dammen på elveterrassene neden­ inntil de forlater øygruppa i løpet av høsten. fo r Dalkallen; endelig talt opp 90-97 voksne og Store myteansamlinger fins langs vestkysten av 11 årsunger totalt i området 12.-13.8 (men Spitsbergen og (Karlsen dammen ved Dalkallen eller Gipsvika vest ble 1984, Karlsen & Mehlum 1986). Ærfugler ring­ ikke besøkt). merket på Svalbard er gjenfu nnet i Nord-Norge og Island.

Sårbarhet Svalbardbestanden utgjør nå 20.000 - 25.000 par (Mehlum 1989), men var i tidligere tider trolig I hovedsak gjelder det samme som fo r kortnebb­ langt høyere. Gj ennom uforsiktig egg- og dunsan- . gås (s. 88 ). Hvitkinngåsa er mindre sky enn king og ukontrollert jakt ble den sterkt redusert. The Fauna of Gipsdalen, Svalbard 93

Artsfredning i 1963 og seinere opprettelse av 15 predasjon (Gabrielsen 1987, Mehlum 1989). reservater fo r de viktigste hekkeplassene (i 1973) Hunnene bruker minst mulig energi til annet enn har ikke vært tilstrekkelig for å bygge bestanden rugingen. De spiser omtrent ikke gjennom ruge­ opp til det antatte tidligere nivå på minst perioden og reduserer derfor sin kroppsvekt med 100.000 par (Norderhaug 1982). inntil 40 %. Stress som fø lge av fo rstyrrelser fr a , mennesker eller predatorer og gjentatt varming av eggene etter avbrudt ruging medfører ekstra Biologi og levevis energikostnader. Over tid kan vekttapet resultere i at hunnene må oppgi rugingen for å berge seg Ernærer seg på bunndyr i fjæresonen, vesentlig selv (Gabrielsen 1987). Når fuglene skremmes av muslinger, men tar også små krepsdyr og pigg­ reiret vil dessuten eggene lett bli utsatt fo r huder. Maten hentes opp både ved dykking predasjon. (vanligvis 2-4 m) og ved at hode og forkropp stikkes under overflaten på svært grunt vann. Ærfu glen har trolig en naturlig lav produksjon av Hunnene tar nesten ikke til seg næring gjennom unger. Rekruttering til bestanden balanseres med hele rugetida, og må tære på opplagrede nærings­ lav voksendødelighet (Åhlund & Gutmark 1989). reserver. På Svalbard er polarmåke og fjellrev ofte årsak til betydelige tap av egg og unger (Løvenskiold Ærfuglen er monogam, men danner nytt par 1964, Norderhaug 1982, Mehlum 1989). Åhlund hvert år. Paretableringen begynner allerede om & Gutmark (1989) fant på den svenske høsten. De fleste hunner hekker fø rste gang tre vestkysten økt risiko fo r stormåkepredasjon på år gamle, noen som toåringer. Reiret plasseres på unger av ærfugl når kullene på forhånd var blitt bakken, gjeme helt åpent, og er godt fo ret med fo rstyrret av båter. dun. Ved kolonihekking er egglegginga godt synkronisert fo r de fleste reirene, men tidspunk­ Gabrielsen (1987) registrerte større varhet hos tet varierer med lokale snØ- og isforhold. Hunnen ærfuglhunner som hekket i koloni på holmer enn ruger alene i 25-26 døgn. Hannene fo rlater som hos enslige rugende hunner på "fastlandet". De regel hekkeplassen fø r eggene klekkes og samles siste hadde svært kort fluktavstand overfor i myteflokker. Ungene følger mora på sj øen kort mennesker og forlot ikke reiret fø r fo rstyrreren etter klekking. De blir selvstendige etter 7-8 var under en meter unna. Holmehekkende ærfug­ uker, men flyr først etter ca. 10 uker. ler reagerte med uro allerede når mennesker i åpen båt var 100-200 m fr a holmen, og fo rlot reirene ved 15-30 m avstand. Sammen med Status i Gipsdalen / Templet ikke-hekkende ærfugler oppholdt de seg likevel i nærheten av reirene; og ruget på ny noen få Løvenskiold (1964) oppgir Gåsøyane som hekke­ minutter etter at holmen igjen var fri for men­ område (koloni). Lokaliteten ble i 1973 vernet nesker. Polarmåkene lot derfor til å ha relativt som fuglereservat med fe rdselsforbud om som­ små sj anser til å forsyne seg av eggene (Gabriel­ meren (Prestrud 1989). sen 1987).

Endel fu gl hadde sommeren 1989 alltid tilhold Gabrielsen (1987) beskriver også to observasjoner langs strendene i Gipsvika, innunder Templet og av hvordan enslig rugende ærfu gler reagerte på ved utløpet av Gipsdalselva, men ingen store overflyende helikoptre. Fuglene fo rlot ikke reirene konsentrasjoner ble observert. Eksempelvis ca. 70 når et helikopter passerte over reirområdet i en individer (hvorav rundt 2/3 hanner) 8.7. Arten høyde av 50-100 m. Energiforbruk og eventuelle ble også ofte sett i fe rskvannsdammene på langtidsvirkninger ved stadige forstyrrelser i strandvollene i Gipsvika, hvor opptil 50-60 rugeperioden, selv om fuglene ikke går av reir­ .individer kunne ha tilhold. En gang observert så ene, er likevel ufullstendig kj ent. Kolonihekkende langt inn i dalen som til fe rskvannet nedenfo r ærfuglers reaksjon . på helikopterfo rstyrrelser er Dalkallen, hvor tre hunner ble sett sammen med . heller ikke studert (Gabrielsen 1987). en praktærfugl hunn 10.7. Ærfu glen er i likhet med andre marine dykken­ De eneste reirfunnene var to forlatte reir ved der (f.eks. praktærfu gl og havelle) utsatt fo r fe rskvannsdammer (trolig plyndret av fjellrev): på oljeforurensninger i sj øen (Anker-Nilssen 1988). elveterrassene ved Gipsdalselva ca. 3 km ovenfor Ekstra utsatte er de i mytetida når de ikke kan elveoset 10.7, og innerst i Gipsvika 20.7 (Fig. 5). fly, men de er sårbare til alle tider. Oljeforurens­ Noen få ungekull ble observert i Gipsvika: 2 ninger kan også ramme ærfuglen gjennom fo r­ dununger i en flokk med 14 hunner 20.7; to kull ringelse av næringsgrunnlaget, ved at olj e som il 2 dununger 31.7; minst fe m kull 7.-8.8 med 2-4 synker skader bunnfaunaen (Anker-Nilssen 1988). dununger i hvert, tilsammen 12 unger. De relativt nyetablerte og ekspanderende be­ standene av storjo (Stercorarius skua) og svart­ Sårbarhet bak (Larus marinus) har også blitt framhevet som mulige fr amtidige påvirkningsfaktorer over­ Forstyrrelse av ærfu gl på hekkeplass kan påvirke fo r ærfuglen på Svalbard (Norderhaug 1983). hekkesuksesseh gjennom avbrudt hekking og økt 94 Environmental Atlas Gipsdalen, Svalbard

PRAKTÆRFUGL Somateria spectabilis hunner ved Gipsvika på morgenen 18.7, og flokk på 5 hunner som fløy inn dalen samme etter­ Utbredelse og vandringer middag; 4 hunner 20.7, 2-3 hunner 31.7 og en hunn 7.8, alle i fe rskvannet innerst i Gipsvika og En høyarktisk art med cirkumpolar utbredelse som regel i flokk med ærfuglhunner; dessuten en fr a Svalbard, Novaja Semlja og kystene av Nord­ voksen hann i Gipsvika 8.7 og 20.7, og en hann ishavet fr a Kanin:halvøya øst til Beringstredet, og i eklipsdrakt ved Gipshukodden 20.7. i arktisk Nord-Amerika fr a Alaska til øst-Grøn­ land. Om vinteren lever den i europeiske farvann fr a Kvitsjøen til norskekysten (spesielt i Troms Sårbarhet og Finnmark) og på Island. Rugønde praktærfugler er trolig sårbare overfo r fo rstyrrelser på samme måte som enslig hek­ Forekomst og status på Svalbard kende ærfugler, men konkrete undersøkelser over dette foreligger ikke. I likhet med ærfugl er også Størrelsen på Svalbards hekkebestand er ikke praktærfuglen sterkt utsatt fo r oljeforurensninger kj ent, men praktærfuglen er betraktelig mindre til havs (Anker-Nilssen 1988). tallrik enn ærfuglen. Viktige hekkeplasser fins på flate og ferskvannsrike tundraområder langs vestkysten av Spitsbergen, særlig fra Prins Karls HAVELLE ClanguZa hyemalis Forland sør til Bellsund, men den fins også på de sørøstre delene av øygruppa (ikke Bj ørnøya). Utbredelse og vandringer Myteflokker er kj ent i grunne fa rvann utenfor vest- og sørkysten av Spitsbergen. I hekketida Cirkumpolar utbredelse i arktiske og nordlige opptrer den mest parvis, men samles i flokker tempererte (alpine) strøk. I Europa hekker ellers i året, ofte sammen med ærfugl. Når havella på Island, Svalbard og Novaja Semlja, og praktærfuglen ankommer og forlater øygruppa er i et belte fr a Fennoskandia videre øst gjennom ikke kj ent. ' arktisk Sovjet. Overvintrer fåtallig i isfrie far­ vann sør til Nordsjøen, i vår del av verden i store antall i østersjøen og langs kysten av Biologi og levevis Nord-Norge.

Praktærfuglens biologi er lite stud.ert. I likhet med ærfuglen spiser den særlig muslinger, Forekomst og status på Svalbard krepsdyr og pigghuder. Insektlarver kan være viktig næring på hekkeplassene. Dykker ofte til Utbredt over store deler av øygruppa, men er større dyp enn ærfuglen. mest tallrik i de vestlige kyststrøkene og på Bj ørnøya, hvor den hekker på holmer langs Praktærfuglen er trolig monogam. Paret etableres kysten eller ved fe rskvann på tundraen. Noen som regel på våren, og den blir kj ønnsmoden som haveller ses langs iskanten svært tidlig på våren, treåring. Reirene plasseres enkeltvis på tundraen, og arten kan trolig overvintre i isfr ie farvann vanligvis åpent eksponert og gjerne nær fe rsk­ rundt Svalbard. Hovedmengden ankommer imid­ vann. Reiret er svært rikt på dun. Eggleggingen lertid i mai, · og de fleste forlater trolig øygruppa finner trolig sted fra midten av juni. De 4-6 igjen i oktober - november. eggene ruges av hunnen i 22-24 døgn. Hannen fo rlater hekkeplassen noen dager etter at rugin­ gen tar til. Hunnen og ungene tilbringer den Biologi og levevis fø rste tida ved fe rskvann. Det er ikke kj ent når ungene blir flydyktige og selvstendige. Spiser mest krepsdyr og muslinger, i fe rskvann ' dessuten insekter og insektlarver. Dykker nor­ malt ned til 3-10 m dyp. Status i Gipsdalen / Templet Monogam, men sterk tendens til flokkdannelse Praktærfugl er tidligere funnet hekkende i utenom hekkesesongen. Ny paretablering hver Gipsdalen (Løvenskiold 1964). Ett hekkefunn i vinter; hekker første gang to år gammel. Hekker 1989: En hunn med 3 dun unger i en liten myr­ parvis eller flere par i nærheten av hverandre dam på elveterrassene innerst i Gipsvika 20.7 (ikke kolonier). Reiret bygges av hunnen, det (Fig. 5). Også enkelte andre observasjoner kan ligger på bakken og er en grunn grop fOret med indikere hekking i Gipsdalen: En hunn i fersk­ litt plantemateriale og dun. De 5-9 eggene legges vannet nedenfor Dalkallen 10.7, og seinere på Svalbard som regel i siste halvdel av juni, og samme dag en hunn (den samme?) i flukt over ruges av hunnen i ca. 26 døgn. Hun avbryter dalbunnen et lite stykke lenger inne; en hunn i rugingen i korte perioder flere ganger om dagen. Gipsdalselva ved sørenden av Leirflata 13.8. Hannene fo rlater hekkeplassene kort tid etter at kullene er fullagte, og samles i myteflokker langs øvrige observasjoner i Gipsdalsområdet som­ kysten. Ungene følger mora til nærmeste fe rsk­ meren 1989: En hunn i flokk med 5 ærfugl- vannsdam, hvor de tilbringer noe tid fø r de The Fauna of Gipsdalen, Svalbard 95

fo rtsetter til saltvann. Ungene kan fly etter 5-6 plasseres på tørr mark, som regel høyt i terren­ uker, og blir samtidig selvstendige. get og gjeme i sørvendte skråninger. Eggleggin­ gen foregår i mai eller juni, men fo rsinkes ved sein snøsmelting eller omlegging. Ku llstørreIsen Status i Gipsdalen I Templet er vanligvis 10-11 egg, og høna ruger i 21-24 døgn. Ungene er flydyktige etter 10-12 døgn, men Havelle er tidligere funnet hekkende på Gåsøya­ de holder seg sammen med mora i 10-12 uker fø r ne (Løvenskiold 1964). de blir selvstendige. Hekkesuksessen er knyttet til hønenes kroppsvekter. Høner med høye Observert sporadisk i lite antall i Gipsvika kroppsvekter danner par og hekker tidligere enn sommeren 1989, oftest i august. Det ble ikke andre, de legger et større antall egg og deres gjort observasjoner som tydet på at fugl ene kyllinger er større når vinteren kommer enn hekket i området. Største antall var ca. 50 høner med lavere kroppsvekter (Unander 1987). individer 14.8. Fj ærskiftet er komplisert og varierer mellom kj ønn og alderskategorier (Unander 1987). Høn­ Sårbarhet ene begynner å myte i april og har fu ll sommer­ drakt (hekkedrakt) i slutten av mai. Eldre høner Som andre marine dykkender ekstra utsatt fo r myter ca. 10 dager tidligere enn ettåringer. oljeforurensninger til havs, spesielt i mytetida Steggene har helt hvit drakt til begynnelsen av (Anker-Nilssen 1988, se ærfugl s. 92). juli, hvoretter den brune sommerdrakten gradvis utvikles fram til midten av august. My ting til vinterdrakten fo regår samtidig hos begge kj ønn SVALBARDRYPE Lagopus mutus hyperboreus i løpet av september. Utbredelse og vandringer Status i Gipsdalen I Templet Svalbardrype er en underart av fjellrype, som er cirkumpolart utbredt i arktiske og nordlige! Løvenskiold (1964) nevner observasjoner (men alpine tempererte strøk. Underarten hyperboreus ikke hekkefunn) fr a Templet og Gåsøyane. er begrenset til Svalbard med Bj ørnøya, og Frans Josefs land. Observert meget spredt og få tallig over så godt som hele Gipsdalen sommeren 1989 (Fig. 6), som Fj ellrypa, og dermed svalbardrypa, er hoved� regel i dalsidene, og helst parvis eller enkeltindi­ sakelig en standfugl. I deler av utbredelsesom­ vider. Arten er sannsynligvis mer tallrik enn de rådet, som i Island, ser det imidlertid ut til at få fu nnene gir inntrykk av. Trolig befant mange fjellryper opptrer syklisk med ca. ti års sving­ individer seg fremdeles høyere i terrenget. Et ninger, og høyarktiske bestander som de i det klekket reir oppunder Margaretbreen 29.7, og nordlige Grønland trekker til områder sør fo r skallrester fu nnet på dalbunnen innunder Aitken­ hekkeplassene om vinteren. Tilsvarende fo rh old fjellet 10.7. Høner med kyllinger ble påtruffet ved er ikke kj ent fra Svalbard. to anledninger: på dalbunnen nedenfor Rinkbreen 30.7 (3 kyllinger), og i dalsida innunder Aitken­ fjellet 10.8 (2 kyllinger). Begge kullene anslått til Forekomst og status på Svalbard å være 1-2 uker gamle.

Tallrik over det meste av øygruppa, men sparsom i nordøst. I hekketida holder den mest til høyt Sårbarhet oppe i fjellskråninger og på fjellplatåer. En fo rflytning til lavere deler av terrenget finner Svalbardrypene er lite redde mennesker (Unander sted på ettersommeren. Mange tilbringer vinteren 1987). Ville rugende høners reaksjon på fo rstyr­ langs vestkysten av Spitsbergen, men vandrings­ relser er studert av Gabrielsen (1987). Hønene mønsteret er dårlig forstått. Svalbardrypa er den trykket når en polarmåke eller havhest fløy over eneste planteetende fugl som ikke fo rlater øy­ reirområdet. Ved provokasjon av mennesker viste gruppa om vinteren. svalbardrypehønene . svakere adferdsmessige og fysiologiske reaksjoner enn lirypehøner Lagopus lagopus i fa stlands-Norge. I motsetning til disse Biologi og levevis hadde de ingen fluktavstand eller fo rberedelser til flukt fra reiret. Svalbardrypehønene ble Lever hele året av plantekost, men kyllingene tar liggende rolig inntil de ble fanget eller dyttet av trolig også endel insekter. Harerug Polygonum reiret. Når de måtte forla,te reiret fløy de jkke viviparum er en særlig viktig næringsplante på vekk og spilte ikke skadd, men ble rolig gående seinsommeren og høsten (Mehlum 1989). på bakken. De oppholdt seg nær reiret, laget "hvese"-lyder, og returnerte straks til eggene når Territoriell. Steggene etablerer territorier i mars inntrengeren fo rlot reirområdet (Gabrielsen 1987). - april, mens tundraen ennå er snødekket. Reiret er en grunn grop, fOret med plantedeler. Det 96 Environmental Atlas Gipsdalen, Svalbard

Diverse fant minst tre par hekkende på nordsida av Gipsvika i 1983. Det er tillatt å jakte svalbardrype i tidsrommet 1. september - 31. mars. På Bjørnøya er den I 1989 ble hekking påvist på strandvollene i totalfredet (Prestrud 1989). Gipsvika fr a Gipsdalselva vest til Gipshukodden (Fig. 7), hvor bestanden anslås til 5-8 par. I alt ble fire unger ringmerket, tilhørende 3-4 kull. SANDLO Charadrius hiaticula Det ble dessuten observert flere nylig flydyktige unger i dette området. Utbredelse og vandringer Sannsynlig hekking også ved leirflaten innunder Utbredt i arktiske og nordlige tempererte strøk Norstromfjellet, hvor enkeltindivider ble registrert av Europa og Asia, i de nordøstre deler av 27.7 (varslende) og 30.7, og to individer 13.8 arktisk Canada og på Grønland. Hekker i Europa (varslende). fr a Svalbard, Novaja Semlja og Island sør til Frankrike (Bretagne), Nordsjøkystene, østersjøen Enkeltindivider ble observert i den østlige delen og Polen. De fleste sandloer er trekkfugler, men av Gipsvika ved et par anledninger 8.-16.7, og på sørlige bestander er delvis standfugler. Vinter­ elveterrassene nedenfor Dalkallen og ved · kvarterene strekker seg via Middelhavsområdet Leirflata i samme tidsrom. Det kan ikke uteluk­ og kystene av Midt-Østen sør til Sør-Mrika og kes at hekking har funnet sted også i disse Madagaskar. Vinterkvarterene fo r Svalbards områdene. sandloer er ukjente, men nordlige bestander trekker generelt lengst sør (Cramp & Simmons 1983). Sårbarhet

Mange vaderarter er svært lite redde fo r mennes- Forekomst og status på Svalbard . ker. Av de arter som hekker på Svalbard er det særlig fjæreplytten som er kj ent fo r å være Hekker spredt på øygruppa, fo r det meste på tillitsfull. De fleste vaderne her aksepterer vestsida av Spitsbergen, men er funnet hekkende fo rstyrrelser i sine hekkeområder i større eller nord til Sjuøyane. Bestanden ble anslått til å mindre grad. Dersom mennesker oppholder seg telle 300-600 par i 1979 (Kålås & Byrkjedal fo r lenge i område� hvor det hekker vadefugl kan 1981). Som tilholdssted velger sandloen helst imidlertid egg eller unger bli kraftig avkjølt, og vegetasjonsfattige sletter med sand eller nær slike fo rstyrrelser øker også predasjonsfaren. salt- eller fe rskvann. Arten ankommer Svalbard Dersom fuglene hekker kolonipreget, slik tilfellet i begynnelsen av juni, og trekker bort igjen fra er i Gipsvika, kan fø lgene for lokale bestander bli slutten av juli til slutten av august. store. De viktigste predatorene på Svalbard er fjellrev, polarmåke og tyvjo.

Biologi og levevis Vadefugler regnes generelt ikke som spesielt utsatt for oljeforurensninger (Anker-Nilssen Livnærer seg på hekkeplassene hovedsakelig av 1988). Ved tilgrising av strender og steiner i insekter, små krepsdyr og andre virvelløse dyr fjæra kan de likevel rammes, både direkte og den finner på land og i fjæra. Byttet lokaliseres gjennom fo rringet næringsgrunnlag. med synet og plukkes vanligvis fr a overflaten ved hj elp av det fo rholdsvis korte og rette nebbet. SANDL0PER Calidris alba Sandloene blir kj ønnsmodne og hekker ett år gamle. Reiret plasseres på tørr sand eller grus. Utbredelse og vandringer De fire eggene legges direkte på underlaget i en grunn grop uten annen fOring enn noen tilfeldig En høyarktisk art som foruten på Svalbard sammenraskete skjellbiter eller strå. Eggleg­ hekker i det nordligste Sibir, på Severnaja . gingen fo regår hovedsakelig i juni, og eggene · Semlja, Nysibirøyene, Nord- og Nordøst-Grønland, ruges av begge kj ønn i 23-25 døgn. Ungene og i arktisk Canada. Trekkfugl, som i stor grad fo rlater som hos andre vaderarter reiret straks er knyttet til kyster under trekket og om vinte­ etter klekking. De blir passet av begge fo reldrene ren. Vinterutbredelsen strekker seg helt sør til til de blir flydyktige etter ca. 24 døgn. Voksne det sørligste Sør-Amerika, Sør-Afrika og Austra­ sandloer spiller "skadd" når de fo rstyrres på lia. hekkeplassene. Hensikten er å lede predatorer bort fra egg og unger. Forekomst og status på Svalbard

Status i Gipsdalen I Templet Sandløperen er påtruffet fåtallig som hekkefugl i vestre og nordvestre deler av Spitsbergen, men Løvenskiold (1964) oppgir at arten er fu nnet ved utbredelsen på Svalbard er sannsynligvis større Gipshuken og i Gipsdalen.. M.A Ogilvie (upubl.) enn det som er kj ent (Mehlum 1989). Kålås & The Fa una of Gipsdalen, Svalbard 97

Byrkjedal (1981) anslo bestanden til 5-15 par i FJÆREPLYTT Calidris maritima 1979, men estimatet er utvilsomt lavt. Ankommer øygruppa i begynnelsen av juni, og kan opptre i Utbredelse og vandringer mindre flokker langs kysten fø r de . sprer seg til hekkeplassene på tundraen. Høsttrekket foregår Holarktisk utbredelse. Hekker i de nordøstre hovedsakelig i august. deler av arktisk Canada, på Grønland, Island, Jan Mayen (van Franeker et al. 1986), Færøyane og Svalbard, i Nord-Skandinavia og på Kolahalvø­ Biologi og levevis ya, og ellers i sovjetisk Arktis fr a Frans Josefs land og Novaja Semlja øst til Taymyr og Sever­ Ernærer seg hovedsakelig på små virvelløse dyr. naja Semlja. Trekkfugl, som om vinteren har I hekketida spiser den fø rst og fr emst insekter på tilhold langs isfrie klippekyster, i Europa fr a tundraen, men den fanger også smådyr i fjæra. Murmansk til Biskaya (hovedsaklig norskekysten Nebbet stikkes ned i sand eller mudder; det og Island). Artens vandringer er imidlertid dårlig relativt kraftige nebbet gjør den i stand til å kj ent. hente fr am byttedyr fr a hardere grunn enn andre småvadere med tilsvarende matsøkteknikk. Forekomst og status på Svalbard Hekker fø rste gang trolig som toåring. Til hek­ keplass velges steinete, vegetasjonsfattige og helst Den mest tallrike vaderarten på Svalbard. Hek­ tørre tundraområder. Reiret er en grunn grop i ker på tundraen over det meste av øygruppa. vegetasjonen eller på bar mark, ofte fOret med Tettheten av hekkende fjæreplytter på Svalbard småblader. Eggleggingen finner sted fr a midten er funnet å være omtrent ett par pr. km2 av juni til et stykke ut i juli, avhengig av når (Mehlum 1989). Kålås & Byrkjedal (1981) anslo tundraen blir snøbar. Kullet består vanligvis av bestanden i 1979 til 2.000-4.000 par på Spits­ fire egg, og ruges i minst 23 døgn. I Canada er bergen og 45 par på Bj ørnøya. Fjæreplyttene det påvist at sandløperparet kan ha to reir sam­ ankommer Svalbard allerede i fø rste halvdel av tidig, slik at hannen og hunnen ruger fr am hvert mai, og holder seg gjerne flokkevis på mudder­ sitt kull, mens arten på Grønland bare har ett strender og i fjæra en stund fø r de parvis sprer kull som ruges av begge foreldrene. Det er ukjent seg utover på hekkeplassene. På ettersommeren hvordan fo rholdene er på Svalbard (Mehlum samles de igjen i flokker langs kysten før de

_ 1989). Ungene passes av hannen til de blir flyve­ fo rlater øyene i løpet av september. dyktige etter ca. 17 døgn. Lite er kj ent om hvor Svalbards fjæreplytter overvintrer. Nylig er to fugler ringmerket på den · Status i Gipsdalen / Templet svenske vestkysten i april gjenmeldt fra Svalbard (Elin Pearce pers. med., egen obs.). Ingen opplysninger fr a litteraturen. Maleolm A Ogilvie (upubl.) så to individer ved munningen av Gipsdalselva 13.7.83, men fant ingen her under Biologi og levevis et nytt besøk 26.7.83. Han mener at fuglene ikke hekket på lokaliteten. Spiser et allsidig utvalg av små virvelløse dyr som krepsdyr, insekter og edderkopper, og tar i Ett par hekket i Gipsvika i 1989: En voksen fugl hekketida også noe plantemateriale. Ungene med typisk hekkeadferd (iherdig varsling, spilte spiser vesentlig insekter og edderkopper på skadd) på elveterrassene rett vest fo r Gipsdals­ tundraen (Mehlum 1989). elvas utløp 20.7 (Fig. 7). Reir eller unger ble imidlertid ikke lokalisert, og ved ny kontroll av Fj æreplyttene hekker parvis, men selv i hekke­ området 31. 7 ble arten ikke observert. tida kan de samles i grupper under nærings søk i fjæra. Som reirplass velges forholdsvis tørre Noen individer observert i Gipsvikfjæra i august tundraområder, både ved kysten og inne i landet. 1989 antas å ha vært fugler på høsttrekk: opptil Reiret plasseres ofte i mose- eller lavvegetasjon. fe m ungfugler 7.-8.8 og ett individ 9.8; dessuten Arten er svært uredd mennesker når den ruger, en voksen ved Gipsdalselva noen få hundre meter og den kamuflasjefargede fjærdrakten gjør den fr a oset 8.8. nesten umulig å oppdage der den ligger i ro. Eggleggingen kan foregå til fo rskjellige tider, avhengig av snøsmeltingen, men de fleste kull Sårbarhet legges fr a midten av juni til begynnelsen av juli. Eggene ruges av begge kj ønn i 21-22 døgn, mest Se sandlo (s. 96) fo r en generell fr amstilling om av hannen. Ungene finner maten selv, men vadefugler. Sandløperen er fåtallig på Svalbard, passes av hannen inntil de blir flydyktige etter og kunnskap om hekkeplassene er derfor viktig ca. 3 uker. fo r den nasjonale fo rvaltning av arten. 98 Environmental Atlas Gipsdalen, Svalbard

Status i Gipsdalen I Templet flere ulike matsøkteknikker. En del av maten finner de ved å velte små steiner o. lign. fo r å Hekkeforekomst i Gipsdalen er oppgitt av Løven­ komme til byttedyr på undersida, men de plukker skiold (1964), som også nevner at arten er obser­ også dyr fra overflater, ved boring i mudder og vert ved Templet og på Gåsøyane. sand, og fr a oppskyllet tang og tare m.m.

Påtruffet og påvist hekkende over så godt som En sosial art som ofte går i grupper under hele undersøkelsesområdet i 1989 (Fig. 2). matsøk også om sommeren. Hekker parvis eller Bestandsstørrelse vanskelig å anslå, men antas i løse kolonier. Kj ønnsmoden to år gammel. å ligge på minst 30-40 par og kan være høyere. Steinvenderne er monogame, og paret kan holde Konkrete hekkefunn: Reir m/4 egg Gipsvika 19.7 sammen mer enn en sesong. Reiret er en grunn (fortsatt ruging 22.7, men klekket ved ny kontroll grop i marken, fOret med småblader og andre 31.7); reir m/4 egg innunder Grahamkammen plantedeler. De fire eggene legges i siste halvdel 21.7; fe m kull observert i Gipsvika 16.7-6.8; 2 av juni eller begynnelsen av juli, og ruges av dununger (ulike kull) ved Leirflata 21.7; 2 du­ begge foreldrene i ca. 22 døgn. Hunnen ruger nunger (ulike kull) innunder Meakinsfjellet 29.7; mer enn hannen, særlig mot slutten av ruge­ 2 dun unger ved Gipsdalselva innunder Usherfjel­ tiden. Ungene blir flydyktige etter ca. 3 uker, og let 8.8. Det ble ringmerket 14 unger fra 8 kull. passes i denne tiden av foreldrene. Hannen er iblant alene om oppgaven i siste del av perioden. Flokkdannelse under næringssøk i fjæra og på strandvoller første gang registrert 19.7. Flokkene fo rekom hyppigst i august da også størst antall Status i Gipsdalen I Templet i flokk ble observert (15 individer 8.8). Løvenskiold (1964) opplyser at steinvenderen er funnet ved Gipshuken. Maleolm A. Ogilvie Sårbarhet (upubl.) fant arten hekkende på nordsida av Gipsvika, men opplyser ikke om hvor mange par. Se sandlo (s. 96) for en generell framstilling om Det fr amgår likevel at det var mer enn ett par. vadefugler. Hekking påvist i Gipsvika i 1989, fra Gipsdals­ elva vest til strand-vollene midtveis mellom STEINVENDER Arenaria interpres Gipsvikas innerste del og Gipshukodden; trolig ett par også i Gipsvikas østre del (Fig. 7). Be­ Utbredelse og vandringer standen anslås til 3-5 par. Unger fra 3-4 kull ble observert, med stor spredning i klekketidspunkt: Cirkumpolar utbredelse i arktiske og nordlige flydyktige unger allerede 20.7 og dununger ennå tempererte strøk. Hekker i østersjøen og fra 10.8. En unge ble ringmerket. Sør-Skandinavia nord til Svalbard, rundt Nord­ ishavets kyster, i store deler av arktisk Canada og på Grønland. Sterkt kysttilknyttet i den Sårbarhet sørlige delen av utbredelsesområdet, mens den i Arktis også fins på tundraen. Trekkfugl, som Se sandlo (s. 96) fo r en generell framstilling om utenom hekketida nesten utelukkende er å treffe vadefugler. Steinvenderen er mer vår på langs kyster, gjerne på stein- eller klippestrand. hekkeplassen enn de andre vaderne på Svalbard. Vinterutbredelsen omfatter alle kontinenter Ved fo rstyrrelser fjerner den seg fra reiret og bortsett fra Antarktis. Vandringsveiene for Sval­ holder seg et stykke unna. Resultatet kan lett bli bardbestanden er ikke kj ent. tap av egg eller unger på grunn av predasjon eller avkjøling (Mehlum 1989). Forekomst og status på Svalbard TYVJO Steroorarius parasiticus Hekker spredt i fjordområdene på vestsida av Spitsbergen; hekket på Bj ørnøya i 1977 (Cramp Utbredelse og vandringer & Simmons 1983). Som tilholdssted velges helst steinet mark med glissen lavvegetasjon i umid­ Cirkumpolar utbredelse i arktiske og nordlige delbar nærhet av saltvann. Bestanden er anslått tempererte strøk. I Europa hekker tyvjoen fra til 10-40 par i 1979 (KAIås & Byrkjedal 1981), Island, Jan Mayen, Svalbard og men dette er uten tvil fo r lavt. Fuglene ankom­ sør til østersjøen, Skagerak, Færøyane og Skott­ mer i første halvdel av juni, og trekker bort igjen land. Knyttet til kyster i den sørlige delen av i løpet av august. utbredelsesområdet; i Arktis kan den hekke på tundraen langt fra sjøen. Pelagisk utbredelse utenom hekketida strekker seg over meget store Biologi og levevis havområder, og omfatter både Atlanterhavet, Stillehavet og de nordvestre deler av Indiahavet. Lever vesentlig av virvelløse dyr, på tundraen Vinteren tilbringer de fleste tyvjoer sør fo r hovedsakelig insekter. Steinvenderne benytter ekvator, europeiske fugler trolig vesentlig utenfor The Fauna of Gipsdalen, Svalbard 99

Mrikas vestkyst, men artens vandringer er Territorium 1: Gipsdalen øst fo r Gipsdalselva, relativt dårlig kartlagt. rett sør fo r elvevifta nedenfor Dalkallen. Reir ml2 egg 10.7 og 19.7; to dununger ringmerket 5.8 og 8.8. Forekomst og status på Svalbard Territorium 2: Gipsdalen øst for Gipsdalselva, på Hekker spredt langs kysten over mesteparten av dalbunnen mellom Dalkallen og Aitkendalen. øygruppa, minst tallrik i nordøst. Opptrer også i Paret fo rsvarte territorium ovenfor kortnebbgjess omliggende farvannene om sommeren. Lite er 10.7 og fjellrev 11.7. Reir eller unger ble ikke kj ent om når tyvjoene ankommer og forlater aktivt søkt etter. Paret ble også observert på Svalbard, men trolig er mange tilstede fra slutten lokaliteten 18.7, men ikke 30.7; en voksen tyvj o av mai og ut august måned. tilstede 8.8 uten tegn til hekking.

Territorium 3: Gipsdalen øst fo r Gipsdalselva, på Biologi og levevis dalbunnen ved sørenden av Leirflata. Reir mil egg funnet 11.7. Ruging pågikk fortsatt 26.7, og Livnærer seg ofte ved hj elp av kleptoparasittisme, egget ble bedømt som ubefruktet. En voksen var dvs. ved å fo rfølge andre sj øfuglarter mens de er fremdeles tilstede 13.8; fuglen var like opphisset på vingene og tvinge dem til å oppgi sitt bytte. som ved tidligere besøk og spilte skadd, men vi På Svalbard er det særlig krykkje og rødnebb­ lette ikke opp reiret igjen denne dagen og søkte terne det går utover, men også alkefugler ikke etter unger. (Mehlum 1989). Byttet er som regel fisk, som tyvjoen fa nger opp i lufta. Fisk er dominerende Territorium 4: Gipsdalen vest fo r Gipsdalselva, kost fo r kysthekkende par og ikke-hekkende innunder Gipshuken rett vest fo r Tverråas individer. Tyvjoen tar imidlertid annen type fø de elvevifte. Paret fo rsvarte territorium ovenfor en også, som insekter, egg og fugleunger, og den reinbukk 20.7, og var sterkt opphisset og spilte kan også selv fa nge og drepe voksne fugler skadd ved vårt besøk samme dag. Tross aktivt (småvadere, små spurvefugler), foruten at den søk fa nt vi imidlertid verken reir eller unger, og spiser åtsler. I områder hvor det fins tar den ved en ny kontroll i området 31.7 ble arten ikke også småpattedyr. observert.

Monogam og territoriell. Parbindingen er vanlig­ Territorium 5: Myrdam på platået ovenfor Gips­ vis livsvarig etter to til tre hekkinger, og paret hukodden. Sterkt opphisset par 20.7; ved søk fant er tro mot territoriet. Første hekking finner sted vi en dununge , som ble ringmerket. En voksen et i en alder av 3-5 år, tidligst hos nordlige be­ lite stykke nærmere Gipshuksletta 9.8, og en stander. Reiret plasseres på tørr mark, gjeme på nylig flydyktig unge uten ring ble observert i en tue, og som regel i nærheten av sj øen eller nærhet av lokaliteten 14.8. Det er derfor mulig fe rskvann. Den grunne reirgropa fOres med at paret hadde to unger. plantedeler; reirtuer får en frodig plantevekst på grunn av den rike gjødslingen. Eggleggingen fo regår i juni, og eggene ruges av begge kjønn i Sårbarhet . 25-28 døgn. Kullet består vanligvis av to egg, iblant bare ett. Ungene fo rlater reiret kort tid Joer er sårbare overfor oljeforurensninger, spesi­ etter klekking, men fOres og passes av fo reldrene elt de mer pelagiske artene polarj o Stercorarius inntil de blir flydyktige etter ca. 5 uker. Selv­ pomarinus og fjelljo Stercorarius longicaudus stendige blir de først minst to uker seinere. (Anker-Nilssen 1988). På hekkeplass Vil tyvjoen spille skadd eller opptre aggressivt overfor inn­ trengere, og ofte er dette tilstrekkelig beskyttelse Status i Gipsdalen I Templet fo r egg og unger. Overfor mer langvarige fo r­ styrrelser er den imidlertid sårbar, fo rdi den har Løvenskiold (1964) nevner at arten er observert lengre fluktavstand enn andre arter som hekker i Gipsdalen og ved Gåsøyane, men ikke påvist enkeltvis på tundraen, f. eks. fjæreplytt. hekkende.

Fem territorier ble lokalisert i Gipsdalen og langs POLARMÅKE Larus hyperboreus stranda ut mot Gipshukodden i 1989 (Fig. 8). Tre reir ble fu nnet (ett med ubefruktet egg) og tre Utbredelse og vandringer unger fra to ulike kull ringmerket. Tyvjo ble også ved flere anledninger registrert nær fuglefjellene Arktisk cirkumpolar utbredelse. I Europa hekker i Templet og i Gipsvika, men ikke under om­ arten på Island, Jan Mayen, Svalbard, Frans stendigheter som tydet på hekking eller stasjo­ Josefs land, Novaja Semlja, Vaigach og Kolgujev, nære par. To voksne på dalbunnen i nordenden og langs Nordishavets kyster østover fr a Kanin­ av Leirflata 28.7, men fuglene viste ikke tegn til halvøya. Delvis trekkfugl, som vinterstid fo r det å hekke og ble ikke observert under andre besøk meste påtreffes langs isfrie kyster og åpne hav­ i området. områder, i Europa så langt sør som til Kattegat, 100 Environmental Atlas Gipsdalen, Svalbard

Den engelske kanal, Sør-Irland og Sør-England Det var ingen koloniopptreden i området. De (Cornwall). første flydyktige ungene ble observert i Gipsvika 5.8, noe som betyr egglegging seinest rundt 21.5.

Forekomst og status på Svalbard Det ble ikke observert polarmåker under omsten­ digheter som tydet på hekking andre steder i Utbredt langs kysten over hele øygruppa, oftest Gipsdalsområdet i 1989. Enkeltindivider og i eller i nærheten av fuglefjell eller holmer med flokker på opptil ca. 30 fugler hadde ofte tilhold hekkende gjess og ærfug1. Hekker som regel ved fe rskvannsforekomster i Gipsdalen inntil 4 parvis, men kolonier på opptil flere hundre par km fra fjæra. Lenger opp i dalen ' bare notert to fo rekommer, f. eks. på Bj ørnøya og langs Spits­ individer ved Boltonbreen 28.7 og ett på Leirflata bergens vestkyst. Kan ses i Svalbards farvann 29.7. hele året, men mange trekker sørover til norske­ kysten, Færøyane, Island eller det sørlige Grøn­ land. Sårbarhet

Måkefugler er generelt sårbare overfor olje­ Biologi og levevis fo rurensninger i nærheten av hekkeområdene (Anker-Nilssen 1988). Ved matleting blir de lett Polarmåka er alteter, med hovedvekt på animalsk tilgriset, og deres næringsgrunnlag kan også fø de. Ernærer seg både ved aktiv predasjon, forringes, selv om polarmåka i likhet med de åtseleting og kleptoparasittisme (se tyvjo). I fleste andre storm åker er en opportunist i mat­ hekketida tas mye egg og unger av andre sj ø­ veien. Forstyrrelser i hekkeområdene kan også fuglarter, gjess og ærfugl. Voksne alkekonger har være en negativ faktor av betydning (Anker­ den ingen problemer med å sluke hele i lufta. Nilssen 1988). Polarmåka later imidlertid ikke til Polarmåka fyller samme økologiske funksjon som å være spesifikt studert i disse henseender. rovfugl gjør lenger sør, men betydningen av Eneste art som er jaktbar hele året på Svalbard predasjonen fo r bestandsstørrelsene av dens (Prestrud 1989). byttearter er ukjent. Polarmåka tar også mange marine organismer i fjæra og fra havoverflaten, og den utnytter gjeme søppelfyllinger. Den gode KRYKKJE Rissa tridactyla næringstilgangen på slike steder bidrar til redu­ sert vinterdødelighet, og dermed økt bestand av Utbredelse og vandringer polarmåke. Krykkja har vidt atskilte bestander i de nordlige Polarmåka er monogam, men artens biologi er deler av både Atlanterhavet og Stillehavet. I den lite studert på de europeiske hekkeplassene. atlantiske delen av Arktis fins den på Svalbard Kj ønnsmoden alder ikke kj ent, men hos andre og mange av de sovjetiske øyene i Nordishavet, europeiske stormåkearter finner fø rste hekking rundt det meste av Grønlands kyster, og i de normalt sted i fjerde til sjette leveår. Reiret nordøstre delene av arktisk Canada. Krykkja er plasseres som regel på toppen av rauker eller vanlig utbredt langs Nord- og Vest-Europas høyt oppe i klipper langs kysten, eller på andre kyster sør til Frankrike, og har nylig ekspandert fo rhøyninger i terrenget. Ved fuglefjell vil den til Spania og Portugal (Cramp & Simmons 1983). ofte holde til ovenfor de andre sjøfuglene. Reiret En tallrik hekkefugl langs mye av norskekysten. er stort, opptil 40 cm i diameter, og består av gress, mose og tang. De 2-3 eggene legges på Pelagisk utbredelse utenom hekkesesongen Svalbard trolig rundt månedsskiftet mai/juni, og strekker seg over så godt som alle isfrie havom­ ruges av begge kj ønn i 27-28 døgn. Ungene råder sør til ca. 30-40oN, men normalt ikke fo rlater reiret etter noen få dager, men holder østersjøen eller Middelhavet øst fo r Sicilia. seg likevel i reirområdet. De vernes og fOres av Opptrer ofte svært tallrik langs kyster etter foreldrene inntil de blir flydyktige. og selvstendige kraftig vind, og fo rekommer også i innlandet. etter ca. 7 uker. Europeiske krykkj er overvintrer på begge sider av Atlanterhavet.

Status i Gipsdalen / Templet Forekomst og status på Svalbard Løvenskiold (1964) oppgir hekkeplasser i Templet og på Gåsøyane, foruten en rekke andre steder i Svalbards vanligste måkeart. Hekker i fuglefjell de indre delene av Isfjorden. over det meste av øygruppa, enten alene eller i blandingskolonier med andre sj øfuglarter, særlig Minst ni par hekket i tilknytning til fuglefjellene polarlomvi. Kolonier fins fra Bjørnøya i sør til i Templet i 1989, spredt over en strekning av ca. Sj uøyane i nord og Kong Karls land i øst, men 5 km lengde (Fig. 8). Tallet omfatter bare par bestandsstørrelsen er ikke. kj ent. Påtreffes overalt som vi fra våre lave standplasser i terrenget i Svalbards farvann i tidsrommet mars-septem­ kunne påvise hekkende gjennom observasjoner av ber. rugende fu gler, unger eller varslende foreldre. The Fa una of Gipsdalen, Svalbard 101

Biologi og levevis person rett under den resulterte ikke i noen synbar endring av fuglenes adferd, men tele­ Krykkjene henter det meste av sin næring fra metriske EKG-målinger viste vedvarende høy overflaten eller øvre vannlag i sj øen. De spiser hj ertefrekvens (Gabrielsen 1987). småfisk og pelagiske virvelløse dyr, i Svalbard­ området mest polartorsk Boreogadus saida, lodde Ved provokasjon med helikopter i avstand av Mallotus villosus, krill og amfipoder (Mehlum & 50-100 m fra fuglefjellet ble det ikke registrert Giertz 1984). De opptrer ofte i flokk og fø lger noen endring i adferd eller hjertefrekvens fø r gjerne fiskefartøyer. helikopteret var like over kolonien (Gabrielsen 1987). Responsen som da oppsto (urolig adferd, En monogam art. Paret gjenforenes hver vår, økt hj ertefrekvens) var av kort varighet hos men nye parbindinger er heller ikke uvanlig. fu gler som ikke fløy av reiret. De fleste tok Hekker fø rste gang 4-5 år gammel, og kan oppnå imidlertid til vingene. Det er uklart om reak­ en alder av minst 25 år. En utpreget fugle­ sj onen skyldtes lyden eller synet av helikopteret. fjellsart, som bebor tette kolonier på smale hyller Når krykkjer flyr av reirene fo rdi de skremmes i loddrette fjellvegger. Benytter ofte llenehy ved av et overflyende helikopter oppstår det risiko fo r fo ten av fjellveggen som reirplass. Eggleggingen at egg eller unger kan rives med og gå tapt i finner på Svalbard sted i fø rste halvdel av juni. panikken som oppstår. Provokasjoner med heli­ Krykkja legger vanligvis to egg, iblant bare ett, kopter i en avstand av 500 m eller mer fra som ruges av begge kj ønn i ca. 27 døgn. Ofte kolonien ga ingen registrering av endret adferd vokser bare en unge opp. Ungene blir værende i eller hjertefrekvens. reiret fr am til de er flydyktige etter 5-6 uker, og blir selvstendige kort tid etter. Krykkja har i likhet med havhesten for vane å fø lge fa rtøyer i sj øen, men det er ikke påvist samme tendens til å fo rsyne seg' av fremmed­ Status i Gipsdalen I Templet elementer fra forsøpling. Se også polarmåke (s. 99) for generell beskrivelse av måkerfu glers Løvenskiold (1964) oppgir at det er en stor koloni sårbarhet overfor oljeforurensninger. i Templet, og nevner også hekkeforekomster ved Gipshuken og Cowantoppen. Ingen av disse koloniene later til å være talt opp tidligere ISMÅKE Pagophila eburnea (Mehlum & Fjeld 1987). Utbredelse og vandringer To atskilte kolonier i Templet i 1989 (Fig. 9), begge assosiert med polarlomvier. Koloniene ble En høyarktisk art som bare er kj ent som hekke­ talt opp 23.-24.7, og fu nnet å huse henholdsvis fu gl i arktisk Canada, på Grønland, Svalbard, 339 par

Gabrielsen (1987) studerte krykkjers reaksjoner Biologi og levevis i rugetida på provokasjon med lyd og mennesker hær kolonien. To enkeltindivider inngikk i under­ Ismåkas biologi er dårlig kj ent. Den spiser søkelsen. hovedsakelig virvelløse dyr og fisk, men selkadav­ re og andre åtsler er også viktige. Ekskrementer Våpenskudd (avstand fra kolonien ikke oppgitt) fra sel og isbjørn inngår også i kostholdet, fo r­ fikk mange krykkjer (men langt fra alle) til å fly ' uten avfall fra båter og ved bosettinger. Reiret av reirene. Provokasjon av flere personer som plasseres vanligvis i bratte" fjell ved kysten eller ankom stranda nedenfor kolonien eller av en på nunatakker i innlandet, men også hekking på 102 Environmental Atlas Gipsdalen, Svalbard flat mark fo rekommer. Reiret består av plante­ Biologi og levevis deler og fjær, og bygges av begge foreldrene. Kullet har vanligvis av to egg, som ruges i ca. 25 Føden består hovedsakelig av småfisk og pelag­ døgn. Ungene fOres av fo reldrene inntil de blir iske krepsdyr, som fanges under stup på grunt flydyktige etter ca. 7 uker. vann. Rødnebbterner kan bli meget gamle; årlig gjennomsnittlig dødelighet for voksne er beregnet til 10-15 % (Cramp 1985). En ringrnerket fugl ble Status i Gipsdalen I Templet nærmere 34 år, en annen merket som unge på Svalbard ble gjenfanget i live etter 21 år. Eneste kj ente koloni i Isfjordområdet ligger ifølge Løvenskiold (1964) ved Ebbabreen innerst i Bille­ Monogam, med tendens til fast parbinding. fjorden. Vi observerte voksne ismåker i Gipsvika Hekker fø rste gang to til fem år gammel, som ved tre anledninger i 1989: to individer 21.7, og regel som fireåring. Etablerer territorium allerede enkeltindivider 5.8 og 11.8. Utenom studie­ fø r reirplassene blir snøbare. Reiret plasseres området så vi minst 30 individer under et besøk åpent på bakken, og er lite annet enn en grunn i Pyramiden 12.8.. grop med noen få sammenraskede strå eller skjellrester. Eggleggingstidspunktet varierer, men er vanligvis fra slutten av juni. Som regel 1-2 Sårbarhet egg, som legges med et intervall på opptil fem dager. Eggene klekkes likevel omtrent samtidig, Ingen informasjoner. Arten opptrer ofte nær etter drøyt 20 døgns ruging av begge fo reldrene. bebyggelse og fysiske installasjoner under matsøk, Ungene holder seg i reiret til de er et par dager og vil således lett kunne komme i kontakt med gamle, og forflytter seg deretter rundt i reir­ lokale forurensningskilder. Se også polarmåke området inntil de blir flydyktige ca. 3 uker (s. 99) for generell beskrivelse av måkefuglers gamle. sårbarhet overfor oljeforurensninger. Observa­ sj oner på Svalbard i seinere år tyder ellers på et visst konkurranseforhold mellom krykkje og Status i Gipsdalen I Templet ismåke om reirhyller (Mehlum 1989), og en bedre oversikt over ismåkas status på øygruppa er Hekkeforekomst på Gåsøyane nevnes kort av påkrevet. Løvenskiold (1964). Lokaliteten ble i 1973 vernet som fuglereservat med fe rdselsforbud om som­ meren (Prestrud 1989). Gåsøyane ble ikke besøkt RØDNEBBTERNE Sterna paradisaea i 1989, og antall ternepar der er ikke kjent.

Utbredelse og vandringer Hekking ble i 1989 påvist på strandvollene ca. 2 km øst fo r Gipshukodden hvor en dununge ble Holarktisk utbredelse i arktiske og nordlige funnet 9.8, og i Gipsvika øst fo r Gipsdalselva tempererte strøk. I Europa hekker arten på hvor en nesten flydyktig unge ble sett' 10.8 (Fig. Island, Færøyane, Jan Mayen, Svalbard og Frans 8). På begge lokalitetene opptrådte fire voksne Josefs land, og langs kystene fr a Sibir sør til De terner aggressivt. Paret (eller parene) øst fo r britiske øyer, Nederland og østersjøen. På Island, Gipsdalselva har trolig ruget på elvevifta neden­ i Fennoskandia og øst fo r Kvitsjøen fins den fo r Dalkallen, da rødnebbterner ble jevnlig sett i dessuten mange steder langt inne i landet, dette partiet av elva fr a de første dagene vi var hovedsakelig på tundra og i høyfjellet. Er delvis i området. Høyst sannsynlig hekket det dessuten i tilbakegang i de sørlige delene av utbredelses­ to eller tre par på Gipshuksletta, etter fuglenes området, og har fo rsvunnet som hekkefugl i adferd der 20.7 å dømme. Frankrike (Cramp 1985). Rødnebbterna utfører det lengste av alle fugletrekk: fra hekkeplassene Rødnebbterner ble ellers ofte sett i Gipsvika og på inntil ca. 83°N til vinterkvarterene som langs stranda innunder Templet, som regel i hovedsakelig ligger i den antarktiske drivissonen. svært små antall. Under trekket kan den ses overalt langs Vest­ Europas kyster og i de åpne havfarvannene. Sårbarhet

Forekomst og status på Svalbard De indirekte konsekvenser av olj eforurensninger er generelt vurdert som svært betydelige fo r Vanlig hekkefugl på strand og tundra nær sjøen terner, selv om fu gl ene normalt ikke kommer og på holmer og skjær langs kysten over hele direkte i kontakt med oljen (Anker-Nilssen 1988). øygruppa. Hekker parvis eller i kolonier på opptil Deres fisketeknikk gjør at selv en tynn oljehinne flere hundre par. Ankommer Svalbard i slutten . på sj øen vanskeliggjør matsøk. av mai eller begynnelsen av juni, og forlater øyene igjen fra slutten av august til midten av Rødnebbternene er også sårbare overfor fo rstyr­ september. relser på hekkeplassene (Anker-Nilssen 1988). De hekker ofte i kolonier og er svært aggressive mot inntrengere som derfor normalt holdes effektivt The Fa una of Gipsdalen, Svalbard 103 på avstand. Ved større fo rstyrrelser kan stor utfor hyllekanten når fo reldrene flyr av. Eggene skade påføres ved at samtlige egg og unger legges på omtrent samme tid av alle hunnene i blottlegges samtidig. Rødnebbterner hekker en koloni, og klekkingen er derfor noenlunde likevel ofte i nær tilknytning til menneskelig synkron fo r hele kolonien. Egget klekkes etter virksomhet. Eksempelvis ble unger registrert i et 30-35 døgns ruging av begge kj ønn. Ungen passes tankområde nær havna i Longyearbyen 17.8.89 og fOres av begge foreldrene. Ved ca. 20-21 døgns (egen obs.), og det er en koloni også midt i alder hopper ungen fra reirhylla uten ennå å Ny-Ålesund (R. Hansson pers. med.). kunne fly, og fø lges av hannen til havet. Enkelte kolonier ligger så langt fra sjøen at ungene ikke når fr am direkte; under vandringen ned til sj øen POLARLOMVI Una lomvia er de da sterkt utsatt fo r predasjon fra fjellrev og polarmåke. Det er ikke kj ent når de blir flydyk­ Utbredelse og vandringer tige. Ungene passes av fo reldrene flere uker etter at de har fo rlatt kolonien. Holarktisk utbredelse langs arktiske og sub­ arktiske kyster. I Europa hekker polarlomvien på Novaja Semlja, Frans Josefs land, Svalbard, Jan Status i Gipsdalen I Templet Mayen og Island, og fåtallig langs Barent­ shavkysten fra Kolahalvøya til Vest-Finnmark og Polarlomvien var svært tallrik ("immense num­ på Røst i Lofoten. Pelagisk utbredelse for disse bers") i Templet i 1957 (Løvenskiold 1964), men bestandene ligger i Barentshavet og det nordlige bestanden later ikke til å være talt opp tidligere Atlanterhavet sør til New England (USA), Fær­ (Mehlum & Fjeld 1987). øyane og Midt-Norge, hovedsakelig over konti­ nentalsoklene. Koloniene i Templet (Fig. 9) ble talt opp 15.-23.7.89. Polarlomviene hekket i fe m små og artsrene kolonier (koloni 1-5) og i to mindre klart Forekomst og status på Svalbard avgrensede hvor det også hekket krykkjer (koloni 6-7). Tabell 1 gir resultatene for to uavhengige En svært tallrik hekkefugl på klippehyller i opptellinger. Høyeste telleresultat ligger ca. 10 % bratte fjellvegger over hele øygruppa. "Danner over laveste, både fo r totalbestanden og fo r den kolonier i størrelse fra noen få hundre par til største enkeltkolonien alene. I sum ble Templets flere hundre tusen par. De største koloniene er polarlomvibestand opptalt til 2.952 individer.Ved på Bjørnøya, , langs vestkysten av Spits­ et nytt besøk i koloni 7 for ringmerking 11.8 ble bergen, og i - og Hinlopenområdet. det oppdaget at deler av kolonien hadde vært i Polarlomviene ankommer hekkeplassene på Sval­ skjul fo r oss under takseringen. Templets total­ bard i april, og fo rlater dem igjen i løpet av bestand av polarlomvier i 1989 var fø lgelig klart august. Resten av året tilbringer de trolig i i overkant av 3.000 individer. farvannene sørvest fo r Grønland og i Barents­ havet. Tabell 1 Kolonier av polarlomvi Una lomvia Biologi og levevis Templet 15.-25.7.89 (antall voksne individer).

Ernærer seg hovedsakelig på fisk, men tar også Minimum Maksimum endel virvelløse dyr. Fisk er dominerende i kost­ Koloni holdet i hekkesesongen, mens virvelløse dyr trolig 322 358 l har størst betydning om vinteren. Byttedyrene 2 164 200 fanges under dykk fra overflate (regelmessig ned 3 60 90 til minst 30 rn dyp). Fisker alene eller i løse 4 69 69 flokker. 5 198 199 6 366 379 Som hos annen sjøfugl er den årlige dødeligheten 7 1.506 1.657 hos voksne svært lav (9 % i et kanadisk stu­ SUM 2.685 2.952 dium). Eldste ringmerkede fugl som er gjenfunnet ble over 23 år gammel, men arten kan sikkert bli atskillig eldre. Hos den nær beslektede lomvien Koloniene 1-2 og 7 lå i umiddelbar nærhet av (Uria aalge) er en alder av 32 år påvist (Cramp revehi. Især ungene fra koloni 1 ville være svært 1985). utsatt fo r predasjon når de hoppet, idet den lå i en fjellvegg som vender bort fra sj øen. Lever i monogame parforhold gjennom hekke­ sesongen. Alder for første hekking er ikke kj ent. Parene hekker tett på smale -fjellhyller, i rene Sårbarhet polarlomvikolonier eller i blanding med andre sj øfuglarter. Tilstede på hekkeplassene allerede " Fj eld et al. (1988) studerte effekten åv helikopter­ tidlig på våren, men eggleggingen finner ikke trafikk og simulert helikopters tøy på hekke­ sted før i månedsskiftet mai/juni. Det enslige suksess og fuglenes adferd i en mindre polar­ egget er pæreformet, og ruller derfor ikke så lett lomvikoloni ved Ny-Ålesund. De kunne ikke 104 Environmental Atlas Gipsdalen, Svalbard påvise tap av egg eller unger som direkte fø lge vann. I hvor stor grad de trekker lenger sør er av utførte eksperimenter, og fant ingen effekter ikke kjent. på hekkesuksessen. Både hekkende og ikke­ hekkende fugler reagerte likevel på provoka­ sj onene, og visuelle såvel som auditive signaler Forekomst og status på Svalbard var av betydning. Det ble funnet en klar sammenheng mellom støynivå (desibelstyrke) og Hekker spredt langs kystene over det meste av fluktreaksjon. Betydningen av lavfrekvent infra­ Svalbard, trolig tallrike st i nord og øst. Opptrer lyd ble også fr amhevet, men endelige analyse­ flere steder i løse kolonier på flere hundre par. resultater er ikke presentert. I ekstreme tilfeller De fleste er tilstede i kystfarvannene fr a midt i kunne polarlomvier fo rlate hyllene allerede mens mars til seinhøstes, og en del individer kan støykilden var på 6 km avstand. Reaksjonene var observeres i åpne råker omkring øygruppa om sterkest i de tilfellene hvor helikopteret hadde vinteren. kurs rett mot kolonien og lyd- og synsinntrykk ble gradvis fo rsterket. Helikoptre som beveget' seg parallelt med fjellveggen i 500 m avstand avsted­ Biologi og levevis kom nesten ingen reaksjon. En opportunistisk fiske- og krepsdyrspiser, som Undersøkelsen konkluderer med at eksisterende raskt skifter næring etter tilgjengelighet. På bestemmelser med nedre tillatt flyavstand på 500 Svalbard tar den i stor grad bunnfisk som ulker, m fra sjøfuglkolonier bør økes til 2 km. I i drivisen mest polartorsk og krepsdyr (Mehlum områder hvor det er mange og/eller store kolonier 1989). Fisker ved dykk fr a overflaten, fo r det bør helikoptertrafikk dirigeres til spesielle traseer meste ned til 10 m dyp, og nesten alltid alene. i minst 6 km avstand fra koloniene (Fjeld et al. 1988). Teisten er monogam, og parbindingen varer som regel flere år. Første hekking vanligvis fire år Alkefugler er generelt svært sårbare for olje­ gammel. Alder på opptil 20 år er kj ent. Som reir­ fo rurensninger i sj øen. Mytende bestander (alle plass velges utilgjengelige sprekker i fjell, stein­ arter) og flyveudyktige unger av polarlomvi, urer, eller andre naturlige eller menneskeskapte lomvi og alke Alca torda på svømmetrekk tidlig hulrom, parvis eller i løse kolonier. Hekker som på høsten er ekstra utsatt. Både de direkte regel nær sj øen, men iblant opptil 2-3 km inne i effekter fo r bestand og reproduksjon, og mer landet. De to eggene legges direkte på under­ indirekte fø lger som f. eks. fo rringet nærings­ laget, på Svalbard trolig fr a slutten av mai, og grunnlag vurderes som svært betydelige ruges av begge kj ønn i 28-31 døgn. Ungene fOres (Anker-Nilssen 1988). i reiret inntil de blir flydyktige ca. 40 døgn gamle. Diverse

Ifølge Maleolm A Ogilvie (upubl.) skal både Status i Gipsdalen I Templet lomvi og polarlomvi hekke i Templet. I juli 1983 observerte han lomvi ved to anledninger i Løvenskiold (1964) gir ikke konkrete opplysninger Isfjorden: seks individer ved 12.7 om hekking i området, men nevner at arten opp­ og et enkeltindivid nær Templet 26.7. Arten ble trer på Gåsøyane. imidlertid ikke sett ved et besøk i Templet 13.7 (Maleolm A Ogilvie upubl.). Hekking ble ikke påvist i 1989, men små antall kunne ses langs strendene i Gipsvika og ved Polarlomvien er på Svalbard jaktbar i perioden Templet. Det antas at enkelte par kan ha hekket 11. august - 31. oktober (Prestrud 1989). ved Templet og Gipshukodden, hvor mulighetene fo r å gjemme bort reir i fjellsprekker og mellom steinblokker var gode. TEIST Cepphus grylle 1 Utbredelse og vandringer Sårbarhet

Holarktisk utbredelse langs arktiske og nordlige Teist, alkekonge og lunde hekker bortgjemt i tempererte kyster, hovedsakelig i Atlanterhavet. hulrom, og løper derfor ikke den samme risiko I Europa hekker teisten fra Island, Jan Mayen, fo r tap av egg og unger som polarlomviene når Svalbard, Frans Josefs land og Novaja Semlja sør de flyr opp fr a sine smale åpne hyller i stup­ til østersjøen, Kattegat, Færøyane og De britiske bratte fjellvegger. De tre artenes adferdsmessige øyer. Arten er mindre pelagisk enn andre alke­ reaksjoner ved fo rstyrrelser på hekkeplassene fugler. I hekkesesongen, er den mest å finne i later imidlertid ikke til å være studert. Videre er fjæreregionen, og den oppviser ikke like kiare deres unger flydyktige allerede når de forlater vandringer som andre arter. Sørlige bestander reiret. Dette kan bidra til å redusere risikoen fo r overvintrer relativt nær hekkeplassene og i oljetilgrising fordi fuglene er mer mobile. En kystnære farvann. Fugler fr a arktiske bestander generell beskrivelse av konsekvenser av oljesøl har trolig tilhold så langt nord de finner åpent fo r alkefugl er gitt under polarlomvi. The Fa una of Gipsdalen, Svalbard 105

grunnlag fo r et bestandsestimat. Vi registrerte Teist, alkekonge og lunde kan jaktes på Svalbard 427 voksne alkekonger i Templet under opptel­ i perioden 1. september - 31. oktober (Prestrud ling 15.-25.7 (Bjonadalen ikke fø r 6.8). De to 1989). uavhengige observatørene kom ofte til vidt for­ skjellige resultater; høyeste telleresultat lå rundt 150 % over laveste. Arten var også noenlunde ALKEKONGE Alle alle jevnt fordelt i fjellet, men fæ rre fugler ble observert rett øst for Skiltvakten enn generelt i Utbredelse og vandringer Templet. Svært få alkekonger ble registrert i Bj onadalen og på nordsida av dalen nord fo r En arktisk art som hekker på Grønland

Monogam; alder for fø rste hekking ikke kj ent. En Forekomst og status på Svalbard utpreget kolonial art. Reirene plasseres skjult i urer, mellom steinblokker eller i fjellsprekker. Mindre tallrik på Svalbard enn andre hekkende Alkekongen legger bare ett egg, på Svalbard i alkefugler bortsett fr a alke. Hekker spredt langs annen halvdel av juni eller i begynnelsen av juli, klippekyster, spesielt på vestkysten av Spits­ som ruges av begge kj ønn i 29 døgn. Ungen fOres bergen og nord til Sj uøyane, og på Bjørnøya. i reiret inntil den kan fly etter ca. 4 uker. De Bestandens størrelse og når lundene ankommer fleste ungene fo rlater gjeme kolonien i løpet av og fo rlater hekkeplassene på Svalbard er ikke bare 2-3 dager. kj ent.

Status i Gipsdalen I Templet Biologi og levevis

Hekker i Templet (Løvenskiold 1964). Lever hovedsakelig av fisk, men de voksne spiser også en del virvelløse dyr, særlig krepsdyr og Alkekongen er en vanskelig art å taksere, og vingesnegl. Fisker i hekkesesongen ofte i løse våre tellinger i Templet i 1989 gir ikke noe godt flokker, helst nokså nær kolonien (2-10 km). 106 Environmental Atlas Gipsdalen, Svalbard

Dykker trolig ikke dypere enn 15 m. Lunden kan Forekomst og status på Svalbard fange flere fisker på under ett dykk, og holder disse på tvers i nebbet når den flyr tilbake til Den eneste spurvefugl som har vid hekkeut­ . kolonien. bredeIse på Svalbard, og fins over så godt som hele øygruppa. Ankommer tidlig på våren, mange Monogam; fast parbinding. Kj ønnsmoden 4-5 år allerede i april, og forlater øygruppa igjen seint gammel. Lundene hekker i større eller mindre på høsten. Hannene kan ankomme flere uker fø r kolonier som vanligvis vender ut mot sjøen; hunnene. Opptrer ofte flokkevis i åpent terreng reirplass i gresskledte skråninger hvor de selv og i fjæra utenom hekkesesongen. Ringrnerkings­ graver en reirgang (i områder hvor det ikke er gjenfunn tyder på at snøspurvene på Svalbard permafrost), blant steinblokker eller i fjell­ trekker i sørøstlig retning over Kola-halvøya om sprekker. Hekkebiologien er lite studert på høsten. . Svalbard. Det enslige egget ruges av begge foreldrene i rundt 40 døgn, og ungen fOres i reiret omtrent like lenge. Ungen er dårlig i stand Biologi og levevis til å fly når den fo rlater reiret, men den er selvstendig med det samme. De voksne er hovedsakelig fr øspisere, men tar også en del insekter, særlig som fOr til ungene.

Status i Gipsdalen I Templet Territoriell. Hekker parvis, på Svalbard i steinet tundraterreng, i fjellsider, og ved fu glefjell og Løvenskiold (1964) oppgir hekkeforekomster i bebyggelse. Reiret plasseres godt skjult i fjell­ Templet og på Gåsøyane. Gåsøyane ble ikke sprekker, under steinheller, i urer eller besøkt i 1989. bygninger. Det er godt isolert, gjerne med fjær og hår. Legger 4-7 (som regel 5-6) egg i juni, men De fo rbehold som er gitt fo r alkekongen gjelder kan ha flere kull i løpet av sommeren. Eggene også lunden. I alt ble det registrert 893 voksne ruges av hunnen i 12-14 døgn. Ungene mates av lunder i Templet 15.-25.7.89 (Bjonadalen 6.8). begge fo reldrene. De er ofte lite flydyktige når de Tallet ligger 41.5 % over vårt laveste telle­ etter 12-14 døgn fo rlater reiret. resultat. Fordelingen i fjellet var annerledes enn fo r alkekongen: Svært få fugler ble sett rundt Templets vestre hjørne og rett øst for Skilt­ Status i Gipsdalen I Templet vakten, eller i Bjonadalen; noen flere lunder hadde tilhold i dalen nord for Skiltvakten og Løvenskiold (1964) nevner forekomster i Templet omtrent midt på fjellets fa sade mot sj øen; mens og på Gåsøyane. 477 lunder (46 % av totalen) ble opptalt i fjellets sørøstre hj ørne ved Bjonapynten. Lunder ble også Snøspurver ble observert over så godt som hele observert i Sindballefjellet 6.8.89, og i den studieområdet sommeren 1989 (Fig. 6). Det ble sørøstre eggen av Dalkallen i september 1989 (R. ikke fu nnet reir, men 8-10 kull ble registrert i Hansson pers. med.; Fig. 10). perioden 9.7-9.8. Par eller enkeltindivider ble sett på ytterligere minst 8-10 lokaliteter. Hekke­ En mindre lundeflokk hadde tilhold på sj øen rett bestanden i området antas derfor å ha ligget på utenfor Gipshukodden og Gåsodden 20.7.89. Noen . minst 15-20 par. De fleste observasjonene ble få par kan muligens hekke mellom steinblokkene gjort i Gipsdalen eller dens sidedaler fra Aitken­ på Gipshukodden. fjellet til Gipsvika og Templet. En ung hunn ble ringrnerket. Sårbarhet Sårbarhet En generell beskrivelse av oljeforurensning og alkefugl er gitt under polarlomvi. Se også teist Snøspurven er tallrik på Svalbard og vel tilpasset (s. 104). det barske klimaet i Arktis. Arten er ikke spesielt hensynskrevende ved menneskelig virk­ somhet: Et tilfelle av en oljetilgriset snøspurv er SN0SPURV Plectrophe1UU nivalis beskrevet fra Svalbard (Ree 1986). Utbredelse og vandringer FJELLREV Alopex lagop us Holarktisk utbredelse i arktisk og nordlige tempererte strøk. I Europa hekker snøspurven fra Utbredelse og vandringer Island, Jan Mayen, Svalbard og sovjetisk Arktis sør til Fennoskandias og Skottlands fjellområder. Holarktisk utbredelse i arktiske og høyalpine Trekkfugl som overvintrer i tempererte strøk, områder. Vanlig på Svalbard, Island, Grønland, f. eks. Mellom-Europa. i arktisk Canada og Sovjet, og i nordlige deler av Alaska; få tallig i Fennoskandia. Massevandringer mot sør og langt inn i de kanadiske og sovjetiske The Fauna of Gipsdalen, Svalbard 107

barskogssonene forekommer i år med store konstatert fø r 11.8 da en valp dukket opp ved bestander, og det er også vanlig å treffe på arten hytta i Gipsvika og (formodentlig den samme) ute i drivisen. seinere på dagen søkte tilflukt i hiet.

Hi 2: Ovenfor Bj onasletta, ved Templets østlige Forekomst og status på Svalbard hj ørne. Funnet 24.7, da det inneholdt minst to valper; en voksen rev varslet intenst. Følgende Vanlig. Forekommer over hele øygruppa, også i byttedyr ble registrert i hiområdet: 1 havhest­ de høyeste fjellpartiene og i drivisen. Tallrikest unge, 4-5 voksne havhester, 1 polarmåke, 1 kryk­ i områder med god mattilgang, dvs. der det kj eunge, 4-5 voksne krykkjer, og 4 voksne hekker konsentrasjoner av sjøfugl, ærfugl og gjess polarlomvier. på vestkysten av Spitsbergen, og i gode rein­ distrikter i sentrale deler av Spitsbergen og på Sj øfuglrester ble også funnet i Dalkallens øst­ Edgeøya/Baren tsøya. vendte fjellside, men hi kunne ikke lokaliseres. En fjellrev i sommerpels ble i juli og august 1989 flere ganger sett på dalbunnen mellom Dalkallenl Biologi og levevis Usherfjell og Leirflata, og eventuell yngling i dette området kan ikke utelukkes. Fj ellreven er en utpreget opportunist og generalist som spiser det som byr seg, og den er Voksne fjellrever ble iakttatt ved ytterligere både toppredator og åtsel eter. På Svalbard utgjør tretten anledninger i Gipsvika og Gipsdalen sj øfugl og ærfugl/gjess den viktigste nærings­ nedenfor Leirflata sommeren 1989, men spor og kilden om sommeren. Utover høsten avtar til­ sportegn ble funnet nesten helt inn til dal­ gangen på byttedyr, og om vinteren fanger den bunnen. Sj u av observasjonene dreier seg om rev ryper og lever på reinkadavre og isbjørnens som fremdeles helt eller delvis bar vinterpels. etterlatenskaper etter selslakt. På våren er unger Etter pelstegningene å dømme omfattet observa­ av ringsel et viktig byttedyr. Denne ekstreme sj onene 3-6 voksne individer (hiene ikke variasjonen i næringstilgang møter fjellreven på medregnet). Den blå fa rgevarianten ble ikke Svalbard med hamstring og fe ttlagring, og trolig observert. også redusert aktivitet og metabolisme i vinter­ halvåret (Hansson et al. 1989). Matavfall fr a menneskelige bosetninger har også blitt en viktig Sårbarhet næringskilde om vinteren. Fj ellreven på Svalbard kan jaktes og fanges i

Fj ellreven hevder et territorium som i perioden 1. november - 15. mars (Prestrud 1989). gjennomsnitt er 10-20 km2 stort (Mehlum 1989). Fangsten er viktig fo r fangstmennene på Sval­

. Hannen kan ha flere tisper innenfor territoriet, bard (Hansson et al. 1989), og utgjør øyensynlig men normalt er det bare en som pares. På ingen fare for bestanden. Det er imidlertid sann­ Svalbard legges hiene gjerne i steinurer nær synlig at arten kan bli skadelidende ved oljeforu­ fuglefjell eller oppe i dalsidene, iblant også rensninger i sj øen, fordi sj øfugl utgjør en så utgravd i løsmasser (Hansson et al. 1989). viktig del av kostholdet. Rev kan også bli fo r­ Paringen finner sted i mars, og ungene fø des i giftet ved å spise oljeskadd fugl eller sel, eller mai. Kullet består av 8-10 valper, som overlates selv bli tilgriset og dermed utsatt fo r redusert til seg selv og forlater hiet i juli - august. Når isolasjon, hudirritasjoner og økt energiforbruk. det er dårlig med mat overlever få valper Effekten kan i alle tilfeller bli økt dødelighet hiperioden, mens næringstilgangen vinterstid er lokalt (Hansson et al. 1989). avgjørende fo r bestandsstørrelse og -tetthet neste ynglesesong. Fj ellreven har et svært høyt reproduksjonspotensiale, og den kan derfor raskt Diverse øke bestanden når de bestandsregulerende faktorene er gunstige (Hansson et al. 1989). Fj ellreven på Svalbard utnytter ofte fo rsøplings­ avfall fra fe rdsel og bosetting. Det er derfor sannsynlig at økt turisme og industriell aktivitet Status i Gipsdalen I Templet lokalt vil medføre økt innvandring, reproduksjon og fo rekomst av rev (Hansson et al. 1989). Dette To hi ble funnet sommeren 1989 (Fig. 11). Begge kan igjen få konsekvenser fo r lokale bestander av lå i tilknytning til fuglefjellene i Templet, og var gjess og ærfugl, og kanskje fo r sj øfugl og ringsel. plassert innunder steinblokker på "moreneter­ Videre er det påvist rabiesvirus i fjellrev­ rasser" godt hevet over strandflaten. Avstanden bestanden på Svalbard, og det ser ut til å være mellom hiene var ca. 5 km. en sammenheng mellom antall rabiestilfeller hos rev og bestandens størrelse. Økt fo rekomst av Hi 1: · Ved Skiltvakten i Templets vestende, rev, spesielt i og nær bebyggelse, vil derfor øke fu nnet 15.7. Hiet ble lokalisert på grunn av risikoen fo r overføring av rabiesvirus (Hansson et byttedyrrester i terrenget. En voksen rev ble al. 1989). observert i området uten å vise tegn til aggres­ sivitet eller nervøsitet. Yngling ble ikke En fjellrev i sommerdrakt ble 26.7.89 observert 108 Environmental Atlas Gipsdalen, Svalbard mens den utvungent la på svøm over Gipsdals­ Lønø, O. 1959: Reinen på Svalbard. Norsk elva nedenfor Usherfjellet. For observasjoner av Polarinstitutt Meddelelser 83, 1-31. predasjon på gjess, se korlnebbgås (s. 88). Løvenskiold, H.L. 1964: Avifauna Svalbardensis. Norsk Polarinstitutt Skrifter 129, 1-460.

REFERANSER Madge, S. & Bum, H. 1988: Wildfowl. An identification guide to the ducks, geese and swans of Anker-Nilssen, T. (ed.) 1988: Konsekvensanalyse the world. Cristopher He im, 298 pp. olje/sjøfugl ved petroleumsvirksomhet i Barentshavet sør for 74°30'N. Viltrapporl 46, Dir. Naturforvaltning, Madsen, J. 1984: Study of the possible impact of oil Trondheim. 146 pp. exploration on goose populations in Jameson Land, East Greenland. A progress report. Norsk Polarinstitutt Cramp, S. & Simmons, K.E.L. (eds.) 1977: The Skrifter 181, 141-151. Birds of the We stern Palearctic, Vol. l. Oxford Uni­ versity Press. 722 pp. Mehlum, F. 1989: Svalbards fugler og pattedyr. Polar­ håndbok nr. 3, Norsk Polarinstitutt. 139 pp. Cramp, S. & Simmons, K.E.L. (eds.) 1983: The Birds of the Western Palearctic, Vol. Ill.. Oxford Uni- Mehlum, F. & Fjeld, P.E. 1987: Catalogue of seabird versity Press. 913 pp. colonies in Svalbard. Norsk Polarinstitutt Rapportserie 35, 1-222. Cramp, S. (ed.) 1985: The Birds of the Wes tern Mehlum, F. & Giertz, I. 1984: Feeding ecology of Palearctic, Vol. IV. Oxford University Press. 960 pp. seabirds in the Svalbard area - a preliminary report. Norsk Polarinstitutt Rapportserie 16, 1-41. Ekker, A.T. 1981: Svalbard-bestanden av kortnebbgås. Vå r Fuglefauna 4, 104-108. Mosbech, A., Clausen, P., Glahder, C. & Witting, L. 1989: Gåseundersøgelser i Jameson Land 1988. Fjeld, P.E., Gabrielsen, G.W. & 0rbæk, J.B. 1988: Grønlands Miljøupndersøgelser, 98 pp. Noise fr om helicopters and its effect on a colony of Brunnich's Guillemots Uria lomvia on Svalbard. Norsk Norderhaug, M. 1969: Svalbard-reinens utbredelse i Polarinstitutt Rapporlserie 41, 115-153. 1960-årene. Fa una 22, 132-139.

Franeker, J.A. van, Camphuijsen, K. & Mehlum, Norderhaug, M. 1982: Svalbard-ærfuglen og dens F. 1986: Status over Jan Mayens fugler. Vå r Fugle­ fo rvaltning. Vår Fuglefauna 5, 158-162. fa una 9, 145-158. Norderhaug, M. 1983: Endringer i fo rekomstene av Frantzen, B., Nilsen, K. & Kolbjørnsen, P. 1986: stotjo og svartbak på Svalbard. Vår Fuglefauna 6, Havhest på hekkeplassen i januar. Vå r Fuglefauna 9, 30-33. 192. Norderhaug, M., Brun, E. & Møllen, G.U. 1977: Gabrielsen, G.W. 1987: Reaksjoner på menneskelige Barentshavets sjøfuglressurser. Forhold i tilknytning til for styrrelser hos ærfugl, svalbardrype og krykkje i status, miljøproblemer og forskningsoppgaver. Norsk egg/ungeperioden. Vår Fuglefauna 10, 153-158. Polarinstitutt Meddelelser 104, 1-119.

Gullestad, N., Owen, M. & Nugent, M.J. 1984: Ogilvie, M.A. 1984: Summary and conclusions at Numbers and distribution of Barnacle Geese Branta Arctic Geese Symposium in Oslo, Norway, 24-26 leucopsis on Norwegian staging islands and the October 1983. Norsk Polarinstitutt Skrifter 181, importanee of the staging area to the Svalbard 165-168. population. Norsk Polarinstitutt Skrifter 181, 57-65. Owen, M. 1984: Dynamics and age structure of an Hansson, R., Prestrud, P. & 0ritsland, N.A. (eds.) increasing goose population - the Svalbard Barnacle 1989: Analysesystem fo r miljø- og nærings- virksomhet Goose Branta leucopsis. No rsk Polarinstitutt Skrifter på Svalbard - Versjon 2. Norsk Polarinstitutt Rapport­ 181, 37-47. serie 48, 1-274. Owen, M. & Gullestad, N. 1984: Migration routes of Karlsen, H.E. 1984: Flytaksering av ærfuglflokker Svalbard Barnacle Geese Branta leucopsis with a langs vestkysten av Spitsbergen. Norsk Polarinstitutt preliminary report on the importance of the Bj ørnøya Rapportserie 17A, 1-6. staging area. Norsk Polarinstitutt Skrifter 181, 67-77.

Karlsen, H.E. & Mehlum, F. 1986: Helikopter­ Prestrud, P. 1989: Naturvern på Svalbard. Pp. 117- takseringer av ærfugl langs Vestkysten av Spitsbergen, 133 i Mehlum, F. (ed.): Svalbards fugler og pattedyr. august 1984. Vå r Fuglefauna 9, 159-162. Polarhåndbok nr. 3, Norsk Polarinstitutt.

KAlAs, J.A. & .Byrkjedal, I. 1981: Vadefuglenes Prestrud, P. & Børset, A. 1984: Status of the goose hekkestatus i Norge med Svalbard. Proc. Second populations in the bird sanctuaries in Svalbard. Norsk Nordic Congr. Ornithol. 1979, 57-74. Polarinstitutt Skrifter 181, 129-133.

Larsen, T. & Norderhaug, M. 1963: The ringing of Prop, J., Eerden, M.R. van & Drent, R.H. 1984: Barnacle Geese in Spitsbergen, 1962. Wildfowl Trust Reproductive success of the Barnacle Goose Branta 14th Ann. Rep. , 98-104. leucopsis in relation to foo d exploitation on the ' breeding grounds, western Spitsbergen. Norsk Lorentsen, S.H. 1982: Hekket alkekongen i Norge i Polarinstitutt Skrifter 181, 87-117. 1981? Vå r Fuglefauna 5, 271. The Fa una of Gipsdalen, Svalbard 109

Ree, V. 1986: Oljeskadet snøspurv på Svalbard. Vå r Fuglefauna 9, 193.

Rikardsen, F. 1982: Trekkstudier av kortnebbgås på Andøya, Nordland. Vå r Fuglefauna 5, 163-168.

Staaland, H. 1985: Svalbardreinens ernæring. Pp. 97- 128 in N.A. Øritsland (ed.): Svalbardreinen dens og livsgrunnlag, Avslutnings-rapport fo r MAB -Svalbard­ prosjektet 1975-1985. Norsk Polarinstitutt.

Staaland, H. &; Røed, 1985: Om svalbard- reinens K. slektskapsforhold og opprinnelse. Pp. 78-96 in N.A Øritsland (ed.): Svalbardreinen dens livsgrunnlag, og AvslutningsrappoH fo r MAB-Svalbard-prosjektet 1975- 1985. Norsk Polarinstitutt.

Tyler, N.J.C. 1987: Status forekomst av reinsdyr og i Reindalen. Rapport fra reinsdyr- undersøkelsene 1986. Miljø undersøkelser i tilknytning til petroleumsvirksom­ het på Svalbard: Reinsdyr-prosjektet. Store Norske Spitsbergen Kulkompani AlS - Norsk Hydro. 60 pp.

Unander, S. 1987: Svalbardrypenes hekkebiologi . Vå r Fuglefauna 10, 37-42.

0ritsland, N.A. (ed.). 1985: Svalbardreinen dens og livsgrunnlag. Avslutningsrapport fo r MA B-Svalbard­ prosjektet 1975-1985, Norsk Polarinstitutt. 278 pp.

0ritsland, NÅ. & Alendal, E. 1985: Bestandens størrelse og livshistorie. Pp. 62-77 in N .A. Øritsland (ed.): Svalbardreinenog dens livsgrunnlag, Avslutnings­ rapport fo r MAB -Svalbard-prosjektet 1975-1985. Norsk Polarinstitutt.

Ahlund, M. &; Gutmark, F. 1989: Gull Predation on Eider Ducklings Somatena mollissima: Effects of Human Disturbance. Biol. Conserv. 48, 115-127.

SUMMER ENVIRONMENTAL SURVEY OF GIPSVIKA, SVALBARD

THE MOST PROMINENT MACROFAUNA

FIG.2I THE II-PRE SSION VIE\� ON THE GIPSVIKA AND KAIN NATURAL PROCESSES WITHIN THE BAY

l - O().1!NANT WINO DIRECTIONS 2 - FRE51iWATER OUTFLO\� J - lOCAL UPWElLING AND EDDlES " - TIOAL lONE IlInI GAI+1ARUS 5 - PHYTAL lONE WITH CAPREllA 6- HARD BOTTIl-! \:IITH STRONGYLOCENTROIUS 7 - SOFT BOTT()ot WITH MALDAN::: 8 - DEEP SOFT BOTTCJ.1 IHTH LARGE SHRlt-PS

by iJ . Marcin Weslawski, Slawek Kwasniewski, Slawek Swerpwl, Jozef Wiktor, Marek Zajaczkowski, Marek Ostrowski and Ryszard Siwecki.

Institute of Oceanology Polish Academy of Sciences Sopot 81-967 Powstancow Warszawy 55, p.b. 68 Polen 112 , Environmental Atlas Gipsdalen, Svalbard

SUMMARY AND CONCLUSIONS areas of the Gipsvika ecosystem are:

The marine ecological survey was conducted at 1) the deep water channel supporting the bay . 30 sampling stations situated in Gipsvika, the with highly saline transformed atlantic waters largest bay of Sassen�orden, in August 1989. The carrying plankton fr om the Spitsbergen shelf, bay covers 3.2 km , and its water volurne amounts to 6x107 m3• Its coasts are of low, 2) the outflow channel along Tempelfjellet, where gravel and stony beaches with small spots of the majority of fr esh-water runoff goes. rocks and two river mouths. Surrounding moun­ tains and the opening towards Isfjorden cause There investigations of the summer of 1984, left the prevailing wind directions SW and NW. The three important gaps in our knowledge : bottom of the bay is covered by stones on eastern, shallow parts, while deeper down mud The hard bottom fauna; we suggest that this is investigated with SCUBA technics. and silt occur. The hydrology of Gipsvika is J governed by local waters of Sassenfjorden. No direct inflow fr om the open sea was found during Seasonal patterns of the Gipsvika ecosystem. our study. In the centre of the bay local In particular we suggest . an early spring upwelling and temporaI eddies occur, which study to investigate how the bay is influenced might be responsible fo r aggre­ by open sea waters. gations. Berithic fauna consisted of over 160 species grouped in three main communities. A deeper understanding of Gipsvikas position Macrobenthos densit y was low; only: one species within th e Isfjord ecosystem. We suggest a was found in more than 1000 ind/m2• The occur­ marine ecological survey throughout, the rence frequency was also lciw fo r all speeies. Only Isfjorden. 3 species were fo und in more than 50 % of coll­ ected samples. The Shannon-Wienner diversity coefficients were exceptionally high ranging fr om INTRODUCTION 2 to 8. Phytobenthos occurrence was restricted to the shallower and sheltered part of the bay, 14 The present study is one of fe w marine-ecological common and widely distributed taxa were surveys perform ed in Svalbard coastal waters. So noticed. The meiofauna from the tidal zone of far, the majority of marine biological studies in Gipsvika was similar to that of other Svalbard Svalbard have been faunistic (Stephensen 1935- localities with regard to its abundance and 1938-1942, Birula 1907, Bruggen 1907, Hognestad taxonomical composition. Zooplankton communi­ 1961, Christiansen & Christiansen 1962). The tie!! were typical fo r inn er fjord pools, dominated exception was a study performed in Hornsund, by small copepods. Unusually high concentrations where extensive ecological investigations were of Bivalvia larvae were found in the centre of th e conducted by polish expeditions (review in bay. The amount of phytoplankton was high Swerpel & Weslawski 1989). Marine biological despite late summer sampling. It was dominated data about Gipsvika are absent in the literature. by minor flagellates resembling the post bloom However, some studies have be en conducted assemble. Gipsvika might be described as a nearby in Billefjorden (Stott 1936) and Sassen­ subarctic bay with rich and very diversified fjorden (Wiktor and Bancer in prep., Weslawki et marine fa Una. It inc1udes potential fe eding al. 1989a). The aim of the present work is to grounds fo r ringed and bearded seals as weU as give background information about hydrology, fo r seabirds. marine life, and the most important processes of Gipsvika - th e harbour of the planned mining Gipsvika is a subarctic bay under indirect area. influence of the . It has rich and diversified fa una compared to other Svalbard fjords. Low density, few dominants and MATERIALS AND METHODS a great number of rare species in the benthos shows an untypical pattem fo r an Arctic Materials were collected 3. and 4. of August 1989 ecosystem. The fr esh and cold water runoff with from the rIv "Oceania", and later between 30. of suspensions is not as stressing here as in other August to 5. of September by a team equipped fjord pools. Cooled brackish and muddy waters of with a small boat based in Gipsvika. Obser­ fjord pools usually reduce both the pelagic and vations gathered during fieldwork carried out in benthic life. An illustration of what we observed spring 1987 and 1988 were also included in the summer 1989 is shown on th e fr ont page. discussion of th e 1989 data. Bathymetry and coast line data were based on the Sea Chart of It is difficult to establish the role of Gipsvika fo r Isfjorden, edited by Norwegian Polar Research the neighbouring areas since we do not know Institute, Oslo. much about the marine ecology of Isfjorden. However, we can state that Gipsvika serves as a Sediments were collected with a Petersen grab, nursery ground fo r numerous Bivalvs, and some described macroscopically in the field, and 100 g areas within the bay are of importance as samples were dried, and burned at 600°C to fe eding grounds for seabirds and seaIs. The key obtain their organic matter contents. Coastal Summer Environmental Survey of Gipsvika, Svalbard 113 geomorphology was studied in September 1989 These samples were later stained with Rose and described according to the system proposed Bengal, elutriated, and the animals were collected in Weslawski et al. 1988a. in a set of sieves of 0.5 mm, 0.2 mm, 0.1 mm and 0.057 mm mesh sizes. Hydrology was sampled using a CTD Guideline 8770 system and a Rosette water sampler. Sus­ Phytoplankton was collected within O-50 m water pension amount was established in samples of 1 depth with 10 intervals. A Rosette sampler of ro dm3 surface water, sieved through a 0.45 um 12 l bottles was used. Subsamples from each Millipore filter, dried at 120°C and weighted to layer were fIX ed with a Lugol solution. 16 get the dry weight of suspensions in mg per samples were collected at three chosen stations dm3• Transparency was measured with a Sechchi at the entranee to the bay. disc. Zooplankton samples were collected by use of a Bottom fauna was sampled quantatively us ing a WP-2 net with 200 Jlm mesh size gauze, equip­ Petersen grab (3 1 per 30 cm). Three samples ped with a closing device. Hauls were made were taken from each locality, mixed and sieved vertically, through the layers determined by through a Q.5 mm mesh sieve. Animals were previous temperature and salinity measurements. fixed in a 4 % formaldehyde solution and The layers distinguished were: 1) from bottom to weighed wet to 1 mg accuracy. Altogether 26 the lower limit of th ermo- and halocline (referred quantitative benthos samples were analyzed. to as BL in text), 2) within thermo/halocline (IL Qualitative samples were obtained from a in the text), and 3) from 2) up to the surface (SL rectangular light dredge (80x30cm mouth size in the text). and 0.5 gauze mesh size). Faunal fixation was as described above. 14 dredgings were analyzed. RESULTS AND DISCUSSION Meiofauna was sam�led by use of a steel tube sampler of 2.38 cm diameter during low tide Geographical position, area, bathymetry. fr om three points: low, mean and high water mark. Samples were taken down to 5 cm depth Gipsvika, 78°25'N (Fig. 1), is the large st bay in and fIX ed with a 4 % solution of fo rmaldehyde. Sassenfjorden. !ts surface covers 3.2 km2• Gips-

Figure 1 The geographical position of Gipsvika, sarnplingstations and bathymetry. 114 Environmental Atlas Gipsdalen, Svalbard

vika is widely exposed to SW, towards th e inner semiexposed beaches. Near the peninsulas and part of Isfjorden. There is no sill or other river mouths there are spots of rocks and skjerra. structure isolating the bay from Sassenfjorden Towards west, finer sediments occur on the low waters. A shallow spot with some rocks (Minis­ beaches (Fig. 2). tergrunnen) is located fu rther into Sassenfjorden, outside the Gipsvika area. The water volurne of Gipsvika (Fig. 1) is approximately 6x107 m3, Hydrology within the borderline of two peninsulas. Most of the bay area lays between 5-25 m contour lines. Basic temperature and salinity values are given Along the entrance to the bay a channel of 60-70 in Table 1. The fo llowing hydrological phen omena m depth occurs. Orography of the Gipsvika area occur in the bay: indicates the predominant wind directions; NW along the river valley, and SW fr om the mouth generally temperature decreased and salinity of Isfjorden. increased from surface to bottom in all exam­ ined stations. There was no clear temperature or salinity inversion as earlier observed in Sediments Svalbard fjords (Swerpel 1985, . TRO MURA 1986), Shallower and coastal parts of the bay is covered with stones and gravel. At greater depth mud sampling stations at the western and eastern and silt prevailed, usually above a layer of stones outermost part of Gipsvika had high er bottom or boulders. The amount of organic matter salinity values than those in Gipsvika, ranged between 5 and 20% of soft sediments thermo-and halocline was present in the (Fig. 2). centre and western part of the area,

water density was strongly connected to sali­ o ts nity (typical fo r arctic and subarctic waters), e as Most of Gipsvikas shoreline consists of low,gravel, only strong salinity gradients existed at the

° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° .00000 00' 0'0, 0,0, 0 0 , 0. 0,0.0.0.0, ,

-- 6

7 2 lllll

.I:.I:I:l:L 3 8 ° ° ° ° 4 �)-J..- ° ° 9 DCO o'V o 5 AUB1\

Figure Coast types and bottom sediments in Gipsvika. 2

1 slit 4 gravel 7 abrassive cliff A organic mud 5 stones 2 8 clift', rock slide B mineral matter 3 sand 6 low heach 9 river mouth Summer Environmental Survey of Gipsvika, Svalbard 115

surface; strong temperature gradients were salinity gradient (runofftongue) and at the depth typical for the lower layers. Surface and near of 10-15 m an isoline hump existed, were deep bottom T and S fields are presented in' Fig. 3 waters sloped upwards. Fig. 5 shows the T and S water analysis of those waters. The basic water Strong influence of runoff was observed at the mas ses of th e west coast of Spitsbergen are the surface, especially along the coast. In the outside Atlantic and Local Waters (AW and LW). Atlan­ parts a channel effect appeared. The direction of tic waters (AW) are connected with the West runoff was paralleI to the Gipsvika Channel axis Spitsbergen Current and dominate along the and caused a strong hydrological front in the continental slope. They are often present in outer, eastern part of the bay. Spitsbergen firds. The Local Waters (LW) mainly occupy the Spitsbergen and Barents Sea Shelf, The bottom distribution of temperature and sali­ and their origin is connected with transformation nity were typical fo r Spitsbergen fjords. Isolines of the Atlantic Waters (AW), particularly during were almost paralleI to isobathes. Temperature the winter sea son (Swerpel 1985, Tsecotskaya & increased and salinity decreased towards the Zlobin 1977). For Isfjorden the following para- coasts, The bottom effect gave some perturbations in T and S distributions - in the eastern part of the bay high salinity water flowed in through the Table 1 Values of T and S parameters in Gipsvika small bottom hollow, separated from the western during fieldwork in August 1989. part by a small ridge. The ridge also gave some hydrological effects (upwelling). High salinity West Center East values near the bottom were observed in the st. 1 st. 5 st. 11 inner part of the bay. Fig. 3 (the sections across the bay and the channel) gives a picture of Depth (m) 17 16 25 hydrological situations during the measurements. Surface temp. (OC) 7.13 6.45 6.06 Strong surface salinity gradients appeared all over the area. The most cool arid salty waters Surface salin. (ppt) 26.61 29.10 30.15 occurred outside Gipsvika in the western part of Depth (OC) bottom bottom bottom the area. Max. salin. (ppt) 33.38- 31.87 33.13 Depth (m) bottom bottom bottom The horizontal course of isolines is disturbed in Min. depth (OC) 2.52 4.79 2.64 the centre of the section (station (st.) 6; Fig. 3 and Fig. 4). On the surface there was a strong Subsurfa ce depth (m) 14-15 5-6

Sa /mity Temperafure [oe-=----J ------, [,0,01J Sf2 SN- Sf6 Si g SI 12 1 Sf 2 Sf4 Sf 6 Sig SI 12 -;;=----- o O �- - 6- 55 70 -'0

-20 -20 �;p-----::::::: � 25 & 2 -30 ---- -30 1S _ '------���------41} -{{} -5 -so 0 [ml [ml

SI5 Sf 6 Sf ? 0:- ---= -10"��- 55 -20 i

__ 2 - -30 i ����������------3� 1 �� -40i - I ----- [�i

Figure 3 Temperature and salinitysections in Gipsvika, August 34 1989. 116 Environmental Atlas Gipsdalen, Svalbard meters can be determinated' from those waters: volurne of water in the levels used in the AW T>0.5, S>34.0, LW T<0.5 and S>34.0. It is calculations was determined by planimetry. seen from the T/S diagram (Fig. 5) that deep Average salinity was calculated from the STD waters in Sassenfjorden and Tempelfjorden have data applied to appropriate segments within characteristics of both AW and LW. All th ese leveIs. measuring points from Gipsvika lie beyond the

AW range (Fig. 5). The water in Gipsvika can be TEM PERA T(JRE divided into three characteristic water layers :

1) SURFACE LAYER: T>6, S<31.5: temperature is almost constant, salinity increases very quickly with depth,

2) INTERMEDlATE LAYER: 0.5

3) LOCAL WATERS LAYER: T<0.5, S>34: salinity is almost constant and temperature decreases with depth.

Fresh water volume, river plume and circulation.

Fresh water volurne(FWW). Runoff caused strong temperature and salinity gradients in the Gips­ vika waters. On basis of field observations of Figure 4 Temperature and salinity distributions on salinity, the FWV can be estimated in various the surface and near the bottom in Gipsvika, August layers of the bay fo r the time of observation. The 3-4 1989.

3';;0 34.5 35.0 SA L /N/TY [ppf] Figure 5 Temperature and salinity diagram of waters in the Sassenfjorden area.

Gipsvika AW Atlantic waters Tempelfjorden (based on TROMURA 1986) LW Local waters Gåsøyane (based on TROMURA 1986) Summer Environmental Survey of Gipsvika, Svalbard 117

The fr esh water fraction (FWF) of each segments were specific conditions to fo rm vertical struc­ can be calculated by the fo rmula: tures.

FWF = (So - S)/So or Circulation. The circulation pattem changed with time, dep ending on tidal phase and wind FI=FWFx100%where S is the base salinity of the conditions. The density data fr om the moored source water and So is the observed average ship, obtained at locations in the central part of salinity of the water. The highest value of the the bay are depicted in Fig. 8. The leftmost curve salinity recorded during observations was us ed in (O) represents low run off conditions; there was no the calculations. By multiplying the FWF by the pronounced picnocline and density increased volume of each segment, the actual quantity of evenly with depth. At one time the density inter­ FWV in the segments was determined. The total fa ce developed at a depth of about twenty value within each level was obtained by summing meters. Curve 4, obtained at the onset of the the fresh water in each segment. Percent part of plume discharge (GMT 0445) indicates trans­ fr esh water volume in Gipsvika is 10 %. fo rmation of the surface layer towards the inter­ Obviously the highest quantity of freshwater mediate layer. occurs in the upper 10 m layer (14 %).

River Plumes. In Gipsvika, water from Gipselva Suspensions and water transparency. is the main source of runoff. We observed a typical mechanism of plume fo rmation due to · The amount of suspended matter ranged from 8 river discharge. The state of plume fr onts in th e to 40 mg/dm3, usually 10 mg/dm3. The sechchi bay is determined by tidal phase, quantity of disc was visible down to 3 m, although at some discharge and wind driven circulation as is spots 8 m transparency was observed. Table 2 characteristic at sea coastal areas (Bowman & shows data on suspended matter amount. Iverson 1978). The fe ature of Gipselva's plume was observed during hydrological observations Sediments were most abundant in the eastem August 3-5 1989, at nearly the same time part of the bay, suggesting that a main stream between 14 and 18 GMT, and 04 and 06 GMT. of suspensions flows in this direction. Beyond these periods th e brackish water was confined to the close vicinity of the river mouth . The pattem is shown in Fig. 6. The plume Benthic fauna curved along the shoreline on the eastem side of the river mouth with the transverse extend The biomass exceeded 100g/m2 in most stations ranging between 200 and 300 meters. After (Fig. 9). No clear pattem was found in relation leaving the eastem end of the bay the plume did to the depth, substrate or distance fr om shore, not spre ad over the open waters but continued although higher values were fo und at stations southwards. In the second case the plume where large animals occurred (sea urchins, large advanced westwards from th e river mouth and decapods). Compared to other coastal regions of spread over most of the bay. The difference Svalbard the Gipsvika benthic biomass was high, between salinity of the samples taken at the like the richest stations in Hornsund or entrance surface across the plume boundary, ranged to Kongsfjorden (Gorlich et al. 1987, Weslawski between 4 and 6 parts per th ousand (ppt). The et al. 1989a). The density of benthos was not average surface salinity of 25-28 ppt was typical especially high. The highest values fo und were in the plume, and th at of 19 ppt was typical near the rivermouth. On August 5., a strong surface fr ont, extending over a mile along th e eastern edge of the plume was formed in less than 15 minutes. A distinguished fo am line indi­ cated the presence of the convergent velocities on each side of the fr ont. At this time the water level at Gipselva's mouth was high, and a strong ebb current was pushing waters out into the bay. After approximately one hour, this current died out and the plume was gradually depleted. The general pattern of the bay water and circulation remarks are drafted in Fig. 7. An isometric per­ spective seemed to be the best fit. N otice the plotting of three different water layers and their changeable thickness in the bay. The most inter­ esting part of the bay was the centre. Deep waters flow upwards above the small bottom ridge, giving strong picnocline on the interaction Figure 6 The approximate location of the plume in with surface waters (sts. 5 and 6). Nearby sur­ Gipsvika. fa ce water tongues fe ll down (st. 7). So there 1 - August 4-5 1989, 04:06 GMT 2 - August 3-4 1989, 13:18 GMT 118 Environmental Atlas Gipsdalen, Svalbard

Table 2 Suspensions amount in Gipsvika's surface waters, August-September 1989. 24 25 26, 27 6f 0 ,------St. 3. Aug. 31. Au�. -5 no. mg/dm3 mg/dm -10

8.3 - l 15 2 15.0 3 13.1 -20 4 14.1 5 11.0 �25 8 11.7 -JO 7 14.3 8 48.3 -� O 1 2 3 4< 9 13.2 Cm] 10 10.5 11 41.0 Figure 8 Density plots of water from stations 5 and 12 14.7 6 from Gipsvika, August 4-5 1989. 14 12.4 15 14.4 O - 23:17 GMT 3 - 03:11 GMT 18 12.7 1 - 00:39 GMT 4 - 04:19 GMT 17 16.0 2 - 02:20 GMT 18 16.3 19 8.4 20 17.0 21 0.4

-----...... 0 o

80

Figure 7 180metric perspective of the waters in Gipsvika, and a general scheme of water layers and circulation. Summer Environmental Survey of Gipsvika, Svalbard 119

fo r Gammarus setosus in the tidal zone (over These values are lower than density data from 2000 individuals (ind) per m2). The mean densi­ other coastal localities in Svalbard, where single ties of Polychaets and Molluscs did not exceed speeies commonly have be en observed in great 20-60 ind/m2. Overall benthic fauna density amounts (Gromisz 1983, Gulliksen et al. 1984, ranged fr om 100 to 700 ind/m2 (Fig. 10, Table 3, Legezynska et al. 1984, Weslawski et al. Table 4).

• • _

G I p S • y

• +" • • _.. / •

• 4 • _3 • • 2 • •

Figure 9 The biomass of bentie fauna from Gipsvika. Data fr om triplicate Petersen grab samples, August 1989. glm2 l < l 3 10.1 - 100 g/m2 2 1.1 - 10 g/m2 4 100.1 g/m2 \ >

GRAB SAMPLES no. OREDGE SAMPLES no. of of species • species 40 40 • • •• • • • 30 • 30 •

• • • •

• 20 20 • • • •

• • • •

• • 10 • 10 • • • • ... • •

O 10 20 30 40 50 60 depth1m) O 10 20 :ri 40 50 60 depthlm)

Figure 10 The relation between depth and number of species in benthos in Gipsvika. 120 Environmental Atlas Gipsdalen, Svalbard

Table 3 Characteristic of benthic stations sampled in Gipsvika in August 1989.

St. S-W Biomass Depth Substrate Density St.' S-W Biomass Depth Substrate densit; no. coeff. g/m2 m indlm2 no. coeff. g/m2 m indlm

1 3.8 542.0 20 sand 238 14 4.8 1.5 5 stones 22 2 3.8 51.0 53 silt 165 15 4.4 200 3.5 stones 215 3 4.3 107.3 68 silt 508 16 6.3 200 17 rock 66 4 4.1 156.0 58 silt+stones 228 17 5.2 26.1 6 mud+stones 719 5 4.1 401.0 16 silt+sand 400 18 2.3 10 1.5 gravel+mud 135 6 7.5 56.5 48 silt 350 19 3.6 10 3.5 gravel+mud 63 7 8.3 88.2 54 silt 508 20 6.2 50 6.5 gravel+mud 231 8 6.8 155.0 18 mud 670 21 6.9 50 12 stones 162 9 6.8 112.0 47 silt 587 27 O 20 O stones 2800 10 6 168.7 57 silt 660 28 O 1.5 O stones 50 11 6.5 226.7 25 silt+stones 710 29 1.5 O stones 100 12 8.2 33.8 56 silt 429 30 O 20 O rock 1850 13 4.8 200 11.5 stones 26

indicated in Table 5, and their distributionshown in Fig. 11. The herbivores were restricted to the Table 4 The most prorninent species of Gipsvika. shallower, western part of the bay, filter fe eders were most numerous on the outer and eastern GRAB SAMPLES: stations, while deposit fe eders were dominant in Density Freq. areas with heavy sedimentation. Taxon % indlm2

Polychaeta Chaetozone setosa 50 55 Prominent species and communities. Lumbrinereis (ragilis 50 54 Terebellides stroemi 50 30 10 species were considered to be of biological Ma ldane sarsi 35 40 imporlance; the taxa with highest frequency and Nep thys ciiliata 35 16 dominance values in the quantitative samples. Bivalvia Their characteristics are given in Table 4. The Thyasira flexuosa 42 11 results from a cluster analyses of species co­ Astarte montagui 27 37 occurrence is shown in Fig. 12, wh ere three major assemblies have been distinguished. The DREDGE SAMPLES: similarity between sampling stations shows the Freq. Density distribution of faunal assemblies in the bay (Fig. Taxon % indll00rn2 13). The shallow hard bottom community associ­ Decapoda ated with macrophytes was represented both with Eualus gaimardi 71· 40 Caprella septentrionalis and Ma rgarites groen­ Sclerocrangon ferox 57 9 landica. Soft bottom communities were distin­ Amphipoda guished on low sedimentation areas with Fora­ Ha lirages fu luocinctus 35 48 miniferans and Ophiurids, and heavy sedimen­ Pleustes panoplus 57 20 tation areas with large Molluscs and sedentary Caprella septentrionalis 50 32 Polychaets. The deepest parts of the bay with Mysidae more stable sediments were occupied with My sis oculata 86 500 Ma ldane sarsi communities, characteristic fo r Pisces most deep fjord biota of Spitsbergen (Gromisz My oxocephalus scorpius 64 14 1983). unpubl.). The species list of Gipsvika August Specific biota. 1989 contains 162 taxa fo und in 26 triplicate grab samples and 14 dredgins (Table 5). 59 The "ryzoid communities" were observed on species were Polychaets species (35 %), 50 were stones covered with laminarians. Such microbiota Crustaceans (32 %) and 23 were Molluscs (20%). are considered to be important as shelter and The majority of the benthic fauna was of boreo­ nursery ground fo r numerous benthic species arctic origin and widely distributed forms. (Rozycki & Gruszczynski 1986). Of the examined Atlantic species like Sclerocrangon boreas were ryzoids, 50 % were without any attached animals, numerous. Arctic species like S. fe rox were also others were inhabited rather scarcely (Table 6). present, particularly in shallower parts of the This supports th e assumption that th ere are no bay. large and old macrophytes in Gipsvika, due to the heavy waving and semiexposed character of Different fe eding types of benthic fauna are the bay. Summer Environmental Survey of Gipsvika, Svalbard 121

Table 5 List of benthic species obtained from grab and dredge samples in Gipsvika August-September 1989.

Legends: A arctic Ca carnivore 1 high importance arctic-boreal Fi filter feeder medium importance AB 2 BA boreo-arctic De deposit fe eder 3 low importance B boreal Om omnivore Ko cosmopolitic He herbivore

Zoo.l Fee- Impor- Zool Fee- Impor- geogr. ding tantce geogr. ding tance No. Species status type c1ass No. Species status type c1ass

AMPmpODA 1 Acanthonotozoma serratum AB Om 3 54 Nuculoma tenuis Fi 2 2 Acanthostepheia malmgreni A Ca 3 55 Portlandia arctica A Fi 3 3 Ampelisca eschrihti AB De 3 56 Serripes groenlandicus AB Fi 3 4 Anonyx nugax AB Ne 3 57 Thyasira fe rruginea AB Fi 3 5 Anonyx sarsi AB Ne 3 58 Thyasira flexuosa Ko Fi 3 Apherusa sarsi A Om 3 59 Yoldia hyperborea A Fi 3 &- 7 Arrhis phyllonyx A Fi 3 60 Yoldiella fraterna A Fi 3 8 Byblis gaimardi AB De 3 61 Yoldiella lenticula A Fi 3 9 Caprella septentrionalis BA Ca 2 10 Corophium crassicorne B De 3 BRYOZOA 11 Gamarellus homarii AB Om 3 62 Bryozoa not cktermined (A) Fi 3 12 Gammarus oceanicus BA Om 3 63 Bryozoa not determined (Bl Fi 3 13 Gammarus setosus AB Om 1 64 Cellepora ssp. AB Fi 3 14 Goessia depressa AB De 3 65 Leieschara coarctata A Fi 3 15 Ha lirages fulvocinctus AB Om 2 66 Me mbranipora sp. Fi 3 16 Haploops tubicola AB De 3 17 Is chyrocerus spp. He 3 CIRRIPEDIA 18 Lepidepecrenum umbo A De 3 67 Balanus balanoides AB Fi 3 19 Me lita dentata AB De 3 AB De 3 20 Me lita formosa CUMACEA 21 Me lita palmata AB De 3 68 Campylaspis rubicunda AB De 3 22 Mo noculodes borealis AB De 3 69 Diastylis goodsiri AB De 3 23 Mo noculodes longirostris A De 3 70 Diastylis scorpwnides AB De 3 24 Mo noculodes sp. De 3 72 Eudorella emarginata AB De 3 25 Odius carinatus AB Om 3 71 Diastylis spp. AB De 3 26 Onisimus caricus A Ne 3 27 Onisimus edwardsi A Ca 3 DECAPODA 28 Orchomene minuta AB Ca 3 73 Enalus gaimardi AB Ca 1 29 Parapleustes biscupis BA He 3 74 Eupagurus pubescens AB Ca 3 30 Paroediceros lynceus AB De 3 75 Hy as araneus AB Ca 3 31 Pleustes panoplus BA Om 2 76 Lebbeus polaris AB Ca 3 32 Pleusymptes glabroides BA He 3 77 Sabinea septemcarinata AB Ca 3 33 Pontoporeia fe morata AB De 3 78 Sclerocrangon boreas AB Ca 2 34 Syrrhoe crenulata AB Om 3 79 Sclerocrangon fe rox A Ca 2 35 Themisto libellula AB Ca 3 80 Spirontocaris turgida AB Ca 3 36 Unciola leucopis AB De 3 37 Weyprechtia pinguins A Om 3 ECIDNODERMATA 81 Strongylocentrotus droeb AB He 3 BIVALVIA 82 Thysanoessa inermis BA Ca 3 38 Arctinula groenlandica A Fi 3 39 Astarte borealis AB Fi 3 FORAMINIFERA 40 Astarte crenata A Fi 3 83 Dentalina obligua AB Fi 3 41 Astarte montagui A Fi 1 84 Hyperamina spp. AB Fi 3 42 Ciliatocardium ciliatum A Fi 3 43 Cuspidaria subtorta Fi 3 GASTRO PODA 44 Dacrydium vitreum BA Fi 3 85 Acmaea rubella A He 3 45 Hiatella arctica Ko Fi 3 86 Admeta viridula He 3 46 Hiatella striata A Fi 3 87 Cylichna alba AB He 3 47 Ma coma calcarea AB "Fi 2 88 Cylichna occulta AB He 3 48 Ma coma moesta A Fi 3 89 Lacuna pallidula B He 3 49 Ma coma torelli A Fi 3 90 Lepeta caeca AB He 3 50 Musculus corrugatus A Fi 3 91 Lunatia pallida AB He 3 51 My a pseudoarenaria AB Fi 3 92 Margarites groenlandica AB He 3 52 My a truncata AB Fi 3 53 Nuculana pemula AB Fi 1 122 Environmental Atlas Gipsdalen, Svalbard

Table 5 (cont.)

Zoo.l Fee- Impor- Zool Fee- Impor- geogr. ding tantce geogr ding tance No. Species status type class No. Species status type class

HOLOTHURIOIDEA 93 My riotrochus rinckii AB De 3 128 Gattyana amondseni AB Ca 3 129 Gattyana cirrosa AB Ca 3 HYDROZOA 130 Glycera capitata AB De 3 94 Actinia sp. Ca 3 131 Goniadidae sp. 3 95 Cerianthus lloydi Ca 3 132 Ha rmathoe sp. AB Ca 3 96 Hy dropolipae 00. 3 133 Ha rmatoe imbricata Ca 3 134 Laena ebranchiata AB Fi 3 ISOPODA 135 Lanice conchylega AB Fi 3 97 Is opoda parasitica · Pa 3 136 Laonice cirrata AB De 3 138 Leichone polaris A De 3 MYSIDEA 139 Lumbrineris {ragilis BA Ca 1 98 My sis oculata AB Om 1 140 Lysippe labiata AB Fi 3 141 Ma ldane sarsi Ko De 1 OPHIUROIDEA 142 My riohele heeri AB De 3 99 Ophiocten sericeum AB De 3 143 Nemertini sp. AB Ca 3 100 Ophiura robusta AB De 3 144 Neoamphitrite affi nis AB De 3 145 Neoamphitrite figulus AB Fi 3 PISCES 146 Neoamphitrite groenlandica AB Fi 3 101 Anisarchus medius AB Ca 3 147 Nep htys ciliata AB De 1 102 Eumicrotremus spinosus A Ca 3 148 Nereimyra punctata B De 3 103 Liparis liparis AB Ca 3 149 Nereis succinea AB Ca 3 104 Lycodes sp. Ca 3 150 Nereis zonata AB Ca 3 105 My xocephalus scorpius AB Ca 2 151 Ophelina accuminata AB De 3 152 Orbinia norvegica AB De 3 153 Pectinaria belgica AB De 3 POLYPLACOPHORA 154 Pherusa pulmosa AB De 3 106 Tonicella marmorea AB He 3 155 Polycirrus arcticua A Fi 2 107 Tonicella rubra AB He 3 156 Polycirrus medusa AB Fi 3 157 Polyphyssia crassa AB Fi 3 POLYCHAETA 158 Potamiile venifo rmis AB Fi 3 108 Aglaophamus malmgreni AB De 3 159 Praxiella gracilis AB De 3 109 Ampharete finmarhica AB De 3 160 Priapulus caudatus AB De 3 110 Ampharetinae 3 161 Rhodine gracilior AB De 3 nd. 111 Amphitrite cirrata AB Ca 3 162 Samytha sexcirrata B Fi 3 112 Anaitides groenlaOOica AB Ca 3 163 Scalibregma inflatum AB De 3 113 Anaitides maculata Ko Ca 3 164 Scoloplos armiger Ko De 2 114 Anaitides mucosa AB Om 3 165 Spiochaetop terus tipicus AB De 3 115 Arcidea jeffreysi AB Fi 3 166 Sp irobis sp iryllum BA De 3 116 Artacama proboscidea AB Fi 3 167 Terebelldomorpha n.d. Fi 3 117 Axiothela catenata A De 3 168 Terebellides stroemi Ko Fi 1 118 Axonice flexuosa A Fi 3 169 Travissia fo rbesi AB De 3 119 Brada inhabilis AB De 3 170 Trichobranchus glacialis AB De 3 120 Brada villosa AB De 3 171 Typ osyllis armillaris AB De 3 121 Chaetozone setosa Ko De 1 122 Chone duneri AB Fi 3 PRIPULIDA 123 ehone infundibulifo rmis AB Fi 3 172 Priapulus caudatus AB De 3 124 Cirratulus cirratus AB De 3 125 Enipo torelli AB Ca 3 SIPUNCULIDA 126 Etone longa AB Ca 3 173 Phascolosoma sp. AB De 3 127 Euchone papillosa AB Fi 3

Feeding grounds. Phytobenth08

Some key species were investigated to estimate On the hard bottom of the western part of the their biomass and density distribution within the bay, a rich phytal zone occurred, dominated with bay. Fig. 14 shows the results fr om these estima­ Laminaria sacchanna and 12 other species tions for hyperbenthic Amphipods, My sis oculata (Table 7). In shallow water Fucus distiehus pre­ and Decapods. The most important areas for vaiIs. Very rich assemblies of periphytic diatoms these species were the grounds in the central and were fo und on tiny brown algae (Polysyphonia, eastern part of the bay. Pylayella). Since the SW winds create heavy Summer Environmental Survey of Gipsvika, Svalbard 123

Table 6 Inhabitants of laminarian ryzoids sampled in Table 7 List of the most common phytobenthic taxa 0-5 m depth range in Gipsvika, stations fo und in dredging samples from Gipsvika. 13 and 14. Chlorophyta Epifitic Freq.(%) Cladophora rupestns taxon N=20 Monostroma sp. Phaeophyta 1 Lithothamnium sp. 15 Alaria asculenta 2 Periphiton red algae 25 Laminana digitata 3 Periphiton brown algae 10 Fucus distiehus 4 Bryozoa n.d. 1 30 Laminana saccharina 5 Bryozoa n.d. 2 20 Desmarestia aculeata 6 Bryozoa n.d. 3 5 Pilayella Utoralis 7 Hydroidea 5 Sphacellana arctiea 8 Foraminifera 5 Rhodophyta 9 Gastropoda eggs 10 Phycodrys plumosa 10 Spirobis spiryllum 25 Polysyfonia nigrescens Anaites groenlandica 10 Il Ceramium sp. 12 Ma rgarites groenlandica 30 Ptilota plumosa 13 Hiatella striata 25 14 Thyasira fleruosa 5 15 My a pseudoarenaria 5 16 Caprella septentrionalis 5 17 Diastylis sp. 5 18 Onisimus sp. 5 19 Strongylocentrotus sp. 5 20 Empty 50

ti - - e ,e- _- el l) e2 e e .3 e 04 - es e •

Figure 11 The distribution of fe eding types among benthos in Gipsvika. Expressed as % of density (individuals/m2). � � .9 .8 .7 .6 .5 .4 .3 .2 .1 I-' I-'1oJ!j t..:> 0tI I'%j ... Chaetozone setosa � [ o + Terebell ides stroemi �� �� �� Thyas ira. flexuosa o­ + Lumbrineris fragi lis · o + 8"�00 ;:sli" .... I-' å ; Nephtys ciliata [ [ � o + Ma dane sars i � 2. � 1 � o + - Nucu l ana pernu l a ::r'5.8" 8" <::: s �s ..... Prax i ella graei l is .. \Ilif � "" Astarte montagui [}f). � I: Myr iohele heeri e.. ""' ...... (Il Øl aq <:::- ., Ampharete flnlllarhica � p.. Priapu lul caudatus ;:J Ax lothe la catenata O- Ophe l ina accumlnata � �.e.o Scoloplos armiler Gammarua aeto.us a. !l. Macoma Ølo.ata t: Paraoni. Iraci lis � C11 011oo Gattyana clrro.a e..� � g. � Sealibrelma inf latum ..... '1:;j o Gattyana amondaeni aqoq- . ::s (Il ... Neoamphitrite fllulus "C 00(Il � å Areidea jeffreysi o . 00 Cyl ichna oeeulta ... 0 Orcholllene minuta "C ::s � .§ Port landia aretiea ne: Polychaeta .edentaria p..0-: Oe­ �. Eupa,urul pubeleen. Me lita formola e...... MYlil oculata H:acoma ealcarea � �[ Me l i ta dentata !. Trichobraachul ,Iaeialis Neoamphitrite aftini. p..oo � �. Ampharetinae tra, . i Laeuna pallidula §.::r' Laonome kroyeri � o: � " Pontoporeia femorata 00 � Li thotamnion ca I careum e..p.. Q Hø.rmathoe ap. � Membranipora sp. �. Spirobia ap. g Marlari tea Iroen l andica (Il� co pt 00 Sympleultea Ilaber 8� Capre lla leptentrional IlO Q Mu aculu8 .pp . ��.. Hiatella app . ::r' 3. i'(Il Polyehaeta errantia I &chyrocerua .pp. � Gamare llua homarii S"' � rd5Travi aaia forbeaai � � Mya paeudoarenaria l-' Thyaa ira ferru,inea I C.:l Serri pel ,roen l andi eus � � ':-' Anaitidea ,roenlandiea b � � h a ;::;: : �:���;�!: Etone 10nl"& c; > Prax lellella praeterniSS4 n til(1)� ... � » Artacoma prabo.eidea �CONl.... �CONl.... �CONlI-' Trebe lildae n.d. �. � �. m Pherula pulmoaa v ...... " v � !'"" " v ...... " �WN - 00 � C i l iat ocardium ciliatum en· .... O .... Et. � � Admeta viridulo .... 0 · ...... o O .... . O '0 NI Ampe lisa �.hrihti i-o 7' Campyl alpi a rublcunda 0 . .... � O' g� � g ...... Cyl 1 chna alba . .... O ..... O ::s n­ �o !a. Dia5tylis spp . .... 0 ooe:: 'O O..... o 00i O ..... '"i 'O Hydropo l i pae nd . O O O (1) til Lithotamnion frut iculosum ;; Yo ldiella (raterne O "" O '< ;S. '-' "" .... ;>;" Mus culus corrul"atus S"Øl Laonice cirrata Et S � Eudore lla ...arl'inata i A,laophamu8 ma l .,reni Arctinula I'roenlandica g.Øl A.tart. er.nata CUlpldoria lubtorto �. 1E' Myriotrochul 11nekll �e: Lent e. conchy l ••a . Ampe l ilea .achrlhti ::s Bryo%oa nd . A CItI Diaatylia Ipp . Cerianthul lloydi Dia.tylla ,.ood.iri å Euchone papi llol'" Euchy•• ne ap. [ Onlaillul edward. i Onupia eonehyle,a o- Rhodine ,raei l ior Cl.) '"i Orbinia norve,iea Mye. truncata I: < Hiatella aret iea � Tonieella marmorea � Ton ie l le rubra � Cirratulua. eirratul ., Nereis auee inea. Hiatella atrlata. Le i ehone po lari. �tIl� � Terebe lldoøorpha n.d. <::: i Lyaippe labiata CD Anaitidea maeulata å· m (") m Diaatylia app . ;:s ..... WN- ..... Wfrt-.)- Arrhia phyl10nyx ""e lita polmota. Phaaeololoma ap. � Bryozoa non det . ;:s Baianul ba lanoides S" Nemertini ap. - Oreidea lp. Cl.) Typosyl liø arm5.11aris Lepeta eaeea I: Aetinio ap . Iaopoda poroøitieo ;J Maeoma tore Il i Me lita spp . � Po lyphyssia erassa Gattyana eirroBa. � Sealibr e,mo inflatum � Harmatoe imbrieata -ti. Se l eraeran,on boreos Cl> Aemaea rube 11 a <::: Stronryloeentrotus droeoe .... Apheruøa sarsi � Ophe lia limoe ina .? Gl ieera eapit8to Amphitrite eirrate Cl.) <::: Chane infundibu liformis Nereis zonata � Nere imyra punetata Axonice flexoosa Chone duneri g- on ad i ae sp . GPo lycirrusd medUSd a. Neoamph i tri te groen l and ic Potami Ile veni f ormi s Neoamph t r ite sp. .... i t-:> Ol .9 .R .7 .6 . , .4 .3 .2 .l i 126 Environmental Atlas Gipsdalen, Svalbard

waving, no rich macrophytes were fo und on the cer in prep.) and coastal localities on the open windward side of the bay, and algae deposits on west coast of Spitsbergen under the direct · the shore were scarce compared to sheltered influence of the sea (Weslawski et al. 1988a). coasts off West Spitsbergen (Weslawski et al. . Densities of the most prominent species are 1988b). shown in Fig. 15.

The species given in Table 6. are among the The high amount of Phaecystis pouchetti, most cornmon and abundant algae of Svalbards Dinobryon baltiea and rninor flagellates resemble coasts (Svendsen 1959, Florczyk & Latala 1989) the post bloom phytoplankton assemble observed in Sassenfjorden in late May 1987 (Wiktor and Bancer in prep.). St. 3 is situated at the border Phytoplankton between Sassenfjorden and Billefjorden. This may cause a "frontal effect" and explain the enrich­ Along with the 14 taxa of phytoplankton ment of algae observed there. representatives of Ciliata were also considered (Table 8). Meiofauna.

Nannoplanktonic algae constituted the dominant A list of taxa fo und in 18 samples is given 10 fraction of the examined material, with th e minor Table 9, together with data frequency-data of admixture of pyrrophytes and diatoms. Density th etaxon, and their abundance values (minimum, ranged from 85 mIn cells/m3 in st. 10, to 1000 maximum and average); mIn cells/m3 in st. 3. The most important taxa were Nematoda, Turbel­ The density and taxonomic set of species are laria and Oligochaeta. Concerning fre quency and similar tophytoplankton assemblages observed abundance parameters of the remaining taxa, ne ar the mouth of Hornsund (Wiktor and Baun- Acarina should be noticed. The estimated densi­ ties of the total meiofauna and the proportion of taxa for each station are shown at Fig. 16.

Table 8 Phytoplankton taxa fo und in the exarnined Only an introductionary description of the meio­ samples from Gipsvika, in 1x103 ind.lm3• fauna of Gipsvika is possible from these samples, but the data presented are ascertained in the Stationfl'axon St.3 St.7 St.10 literature of intertidal zones of Spitsbergen

1 Flagellatae non det.3um 135.9 182.9 47.0 ·2 Cryptomonas sp.small 40.8 53.8 5.9 3 Pyrarnimonas sp. 54.4 10.8 17.6 4 Phaeocystis pouchetti 27.2 5.9 5 Ni tzchia delicatissima 1.6 2.2 6 Tintinide 0.4 0.1 7 Dirwbryon baltica 462.1 8 Flagellatae non det.3-7 258.3 �E �li; 600 9 Gymrwdinium simplex 27.2 o 10 Cryptomonas pelagica 5.9 'b 11 Navicula sp. 1.2 12 Nitzchia longissima 0.4 Ei!:- 13 Gyrodinium sp. 0.1 ni 14 Dirwphysis rotundatum 0.1 TOTAL 1009.1 247.5 85.2 8

Table 9 The characteristic of taxa composition of meiofauna from Gipsvika's tidal zone. 3 7 10 Taxon Freq. Min. Max. Avg. SD Sampling station indl1Ocm2

Foraminifera 16.67 3 10 6.33 2.87 Nematoda 72.22 3 579 104.08 193.05 _ F'/;::';\,:;'�:{'I 1..... _ ...... Turbellaria 77.78 3 107 31.50 31.52 Flagellata Pyramimona Gymnodinium Oligochaeta 55.56 3 1487 171.30 439.94 Harpacticoida 16.67 3 8 5.33 2.05 Ostracoda 16.67 3 3 3.00 ��I >iLl Acarina 50.00 3 22 7.78 7.25 Cryptomona Dinobryon Phaeocystic Rotatoria 27.78 3 8 4.00 2.00 Tardigrada 5.56 3 3 3.00 Figure 15 The phytoplancton abundance on three Bivalvia veliger 27.78 3 37 14.00 12.62 stations in Gipsvika, August 1989. Summer Environmental Survey of Gipsvika, Svalbard 127

(Radziejewska & Stankowska-Radziun 1979, the intertidal zone of Recherche Fj orden Radziejewska & Stankowska-Radziun 1985, (Radziejewska & Stankowska-Radziun 1979). Kwasniewski 1988) and Port Valdez, Alaska (Feder & Paul 1980). Mesozooplankton. It seems that the pattern of density-distribution and proportions of meiofaunal organisms is a In the analyzed samples from Gipsvika 15 taxa reflection of types of habitats observed in of mesozooplankton organisms were present Gipsvika. Stations with low densities of meio­ (Table 10). fauna were sts. 25, 26, 27 and 30. The two first sites are situated on very exposed gravel beaches. In the bay, mesozooplankton dominated the The remaining two were localized at exposed holoplanctonic Copepoda, typical for the fjord places: st. 27 was a cliff with abrasive shelfs , st. waters of the Western Spitsbergen. Of greatest 30 was a rock slide cliff. These places are not imporlance were Calanus finmarchicus / glacialis, favourable for meiofauna, because the bottom Pseudocalanus minutus and Oithona similis. sediments are too coarse and almost continuously Acartia longiremis, Microcalanus pygmaeus, moving. The more organic matter that is present Calanus hyperboreus, Metridia longa and Oncaea at a place, the higher is the' proportion of borealis, plus two not determined species of Nematoda (sts. 27, 30). If not, the proportion of Harpacticoida are the other copepoda fo und in Turbellaria increases. The two stations with Gipsvika. Other groups of animals represented in highest densitis of meiofaunal organisms were the samples, were (apart from juveniles of localized at the shore line, sheltered from the Pteropoda ) exclusively mero­ prevailing waves action. Detritus deposition at planktonic, developmental stages of benthic these places is more effective and substratum not Bivalvia, Polychaeta and Echinodermata, and so moving. This is preferred by Nematoda and parasitic Isopoda. The total abundances of the Oligochaeta. mesozooplankton . organisms estimated for the samples are shown in Fig. 17. Similer pattems of distribution of the meiofauna are testified in the tidal zone in South Spits­ The abundance values differed greatly and varied bergen National Park (Kwasniewski 1988) and in from 1160 ind/m3 (st. 3, BL) to 19981 ind/m3 (st.

• e2

cq[7-o

Figure The distribution of meiofauna and its abundance within the tidal zone of Gipsvika, August 1989. 18 10 - 100 ind/lO cm2 A N ematoda C Turbellarla 1 2 101 - 1000 ind/10 cm2 BOligochaeta D others 128 Environmental Atlas Gipsdalen, Svalbard

7, SL), with the surface layers having the highest sarnples. The group of sarnples fr om all surface values. Among the deterrnined taxa th e rn9st layers and intermediate layers at st. 7, separated abundant were: veliger larvae of Bivalvia (9340 in both clustering is characterized by 1) high ind/rn3 at st. 7, SL), Pseudocalanus minutus abundance values of rnesozooplankton, arnounting (4360 ind/rn3 at st. 12, SL), Oithona similis (3780 fo r the four major taxa, i.e. Calanus {inmar­ ind/rn3 at st. 7, SL) and Calanus chicus /glacialis, Pseudocalanus minutus, Oithona {inmarchicus/glacialis (1901 ind/rn3 at st. 7, SL). similis and Bivalvia veliger at 1082, 2571, 2481, These fo ur taxa always constituted more than 68 . 5224 ind/rn3 in average, respectively, and 2) the % of th e abundance proportion in the analyzed high proportion of Bivalvia larvae (39.88 % in sarnples (Fig. 18). average), and the proportions of the remaining taxa as fo llows: Calanus {inmarchicus /glacialis Results of the cluster analyses are shown at Figs. 10.30 %, Pseudocalanus minutus 21.20 % and 19 and 20. The analyses show clear differenti­ Oithona similis 23.08 % (in average). In that ation of the sarnples. The values of abundance as group of sarnples Echinodermata larvae and a fe ature . characterizing the sarnples resulted Limacina helicina juveniles also play an irnpor- indivision into two groups. The values of propor­ tion taken as a feature, distinguished three groups, at the 75 % level of sirnilarity arnong the

20r------��------�

o o o,.... � Ol g !1l -g :::l o .o « I Sampling station

Sampling stat ion h::·\:�:�:��;:j , Calanus Oithona Other copepoda

- t;.:)\·><·,�;J � fWN& . > \ Copepoda Others Pseudocalanus Bivalvia Others./ ••.•• / . Figure 17 The abundance of mesozooplancton in Figure 18 The proportion of mesozooplankton taxa in Gipsvika, August 1989. Gipsvika, August 1989.

Table 10 Charakteristic of Mesozooplankton sampled in Gipsvika.

Abundance of taxa Proportion of taxa Taxon Freq. Min. Max. Avg. Std. Min. Max. Avg. Std.

Calanus finm.lglac. tot. 100.00 159 1901 674.27 496.50 5.67 32.27 58 8.11 Ca lanus hyperboreus 53.33 1 34 17.38 11.27 0.00 2.59 0.51 0.75 Pseudocalanus min. tot. 100.00 131 4360 1394.00 1346.55 8.33 35.78 19.75 7.82 Microcalanus spp. 60.00 8 103 45.67 26.42 0.00 8.88 1.68 2.41 Me tridia longa 33.33 12 20 16.40 2.94 0.00 1.28 0.31 0.46 Acartia longiremis 100.00 18 279 91.20 71.69 0.36 17.64 3.53 5.19 Oithona similis 100.00 355 3780 1701.67 1023.37 12.74 65.04 36.57 15.76 Oncaea borealis 53.33 9 16 11.25 2.38 0.00 1.03 0.30 0.35 Harpacticoida 6.67 12 12 12.00 0.00 0.00 0.18 0.01 0.04 Copepoda nauplii 46.67 6 40 16.43 10.29 0.00 0.52 0.16 0.19 Isopoda juv. 6.67 9 9 9.00 0.00 0.00 0.50 0.03 0.12 Bivalvia veliger 100.00 38 9340 2164.80 3189.04 0.94 56.13 19.18 18.98 Limacina helicina juv. 100.00 6 260 82.07 70.24 0.46 2.60 1.32 0.61 Polychaeta larvae . 46.67 6 40 15.29 10.48 0.00 0.88 0.20 0.28 Echinodermata larvae 93.33 10 740 174.29 216.49 0.00 4.33 1.88 1.41 Summer Environmental Survey of Gipsvika, Svalbard 129

E .c .c g.- g, -40 Cl Cl -50

3 4 7 10 12 3 4 7 10 12 Sampling station Sampling stat ion

- r',:',�:::':; ;1 - L:::;':,:,;,J c=J Surface layer Under layer Surface layer Intermediate Bottom layer layer Figure 19 The result of duster analysis for the Figure The result of duster analysis for the 20 abundance of mesozooplankton taxa in Gipsvika, proportion of taxa; Gipsvika, August 1989. August 1989. tant role. The samples fr om the intermediate Spitsbergen (Calanus (inmarchicus / glaci-alis) is layers grouped together with th ose fr om the higher than 60% (eslawski et al. unpublished bottom layers for clustering with abundance data). This results in a proportion of the above values as a characterizing fe ature, but separated mentioned speeies lower than or equal to that of fo r clustering, with proportion values, differ with Pseudocalanus minutus. A proportio-nally high high er proportions of Pseudocalanus minutus percentage of Oithona similis (in all cases in (27.73 %, in average), Oithona similis (51.64 %, intermediate layers) seems typical fo r this in average) and lower proportions of Acartia cosmopolitic species, which is very resistant to longiremis (1.87 %, in average) and Microcalanus variable environmental conditions. Very notice­ pygmaeus (0.57 %, in average). Additionally, the able, and samples from bottom layers were distinguished different from our fo rmer observations from West by a high proportion of Calanus {inmarchicus/ Spitsbergen, is a high er proportion of Bivalvia glacialis (20. 10 %, in average), with 8.35 % veliger. It might be that we accidentally came Acartia longiremis and 4.68 % Microcalanus upon the bloom of that larvae, which take place pygmaeus (in average). The values of abundance at the end of the arctic summer (Smidt 1979, of the mesozooplankton taxa which gathered the Vinogradov 1977). Except fo r some values fr om intermediate and bottom layers samples into one the surface layer fo r Bivalvia veliger and Calanus group, are distinctly lower than those fo r surface {inmarchicus/ glacialis, the estimated abundance layer and amount, in average, 367 ind/m3 fo r of mesozooplankton taxa is similar to that Calanus {inmarchicus/ glac ialis, 1181 ind/m3 fo r presented in the works cited above, and our data Oithona similis and 125 ind/m3 , fo r Bivalvia from West Spitsbergen fjords. It might be that veliger. the pattern of water circulation in Gipsvika, governed by bottom contours, tides and winds, The quantitative composition of mesozooplankton resulted in ascending of amourits of plankton from Gipsvika did not differ very much from that organisms by creating small, local upweIIings and known fo r mesozooplankton of other arctic and eddies. subarctic waters of the Canadian Arctic, coasts of Greenland, White Sea, Hornsund (Digby 1954, The cluster analysis showe clear differentiation of Koszteyn & Kwasniewski 1989, Kwasniewski in mesozooplankton in the vertical axis. The water press, Prygunkova 1974, Smidt 1979, Ussing layers described on the basis of salinity­ 1938), and from our unpublished data from Horn­ temperature measurements is reflected in the sund and Kongsfjorden. Probably, the hydrological structure of the distribution of both fe atures of regime prevailing in a particular locality, creates plankton communities, i.e. abundance and quanti­ the proportion of taxa in the water body, appro­ tative composition. The surface layer, character­ priately bringing in open sea plankton or ized by high abundance of plankton organisms removing th em by means of not suitable environ­ and a high proportion of Bivalvia veliger, Pseudo­ mental conditions. The composition of mesozoo­ calanus minutus and noticeably proportion of plankton in Gipsvika seems typical fo r inner fjord Echinodermata larvae and Limaeina helicina juv­ waters with small inflow fr om open' sea, at the enes, is strictly limited to the isothermal surface time of investigation. The proportion of the main layer. The exception is the intermediate iayer at component of open sea mesozooplankton of West st. 7. This layer has the same fe atures as the 130 Environmental Atlas Gipsdalen, Svalbard

surface layer, which might be evidence of diver­ Gorlich, K.A., Weslawski J.M. &; Zajaczkowski M. ging surface waters in this lokal area. The inter­ 1987: Suspension settling effect on macrobenthos mediate layers are linked to the hydrologically biomass distribution in the Hornsund fjord, described thermo- and haloclyne layers, and Spitsbergen. Po lar Research, 175-192. might be described as layers of low abundance, Gromisz, S. 1983: The benthic fauna of Hyrnevika, with high proportion of Oithona similis and Hornsund, Spitsbergen. Ma terials from the 10th Polar Pseudocalanus minutus. The bottom layers, with Symposium of Polar Club, University of Torun, much lower temperatures and much higher salin­ Rozprawy. ities, are populated mostly by Calanus finmar­ chicus /glacialis, Acaria longiremis and Micro­ Gulliksen, B., Holte B. &; Jakola K. J. 1984: The calanus pygmaeus, as weU as by Calanus hyper­ soft bottom fa una in Van Mijenfjord and Raudfjord, boreus and Polychaeta larvae. The abundance of Svalbard. In J. Gray (ed.): Proceedings of the EMB organisms in that layer is very small. The quali­ Symposium. tative and quantitative structure of mesozoo­ Hognestad, P.T. 1961: Contribution to the fish fauna plankton in Gipsvika indicates that the area, and of Spitsbergen. Part The fish fauna of Isfjorden. Acta l the surface layer in particular, is importance to Borealia Acta Scientia 18, 1-36. the neighbouring marine ecosystem, because it might be a breeding ground of larvas of bottom Koszteyn, J. &; Kwasniewski, S. 1989: Comparison organisms, and a fe eding ground for sea birds, of fjord and shelf mesozooplankton communities of the especially in the eddy area. Southem Spitsbergen region. Rapp et Proc. -u.. Reun. Cons. int. Explor. Mer 188, 164-169.

Kwasniewski, S. 1988: The meiofauna of South Spits­ ACKNO�DGEMENTS bergen National Park tidal zone. In J.M. Weslawski et al. (eds.): South Spitsbergen National Park tidal Zone. Authors are greatly indebted to S. Gromisz and Group scientific report nr 1 /88. E. Legezynska fo r the determination of Poly­ chaeta and to O. Rozycki for the identification of Kwasniewski, S.: Zooplankton of Hornsund and its Mollusca from our collections. R. Hansson helped seasonal changes. Zesz. Na uk. Wy dz. BGiO ser. us with data programrnes, and the Governor of Oceanografia University of Gdansk, in press. Svalbard, L. Eldring, kindly permitted us to use the hut in Gipsvika fo r the field study. The crew Legezynska, E., Moskal W., Weslawski J.M. &; Legezynski P. 1984: The influence of environmental and scientific staff of riv Oceania were of great conditions on the di stribution of benthos in the help at Spitsbergen. J. Koszteyn gave us valuable Nottingham Bay (Spitsbergen). Zesz. Nauk. Wy dz. comments on the manuscript. BGiO, University of Gdansk, ser. Oceanografia 10, 157- 172. Polish witll english summary.

REFERENCES Prygunkova, R.V 1974: Certain peculiarities in the seasonal development of zooplankton in the chupa inlet Birula, 1907: Zoologische Ergebnisse der of the White Sea. Exploration of the fa una of the Seas A. (2 1), Russischen Expedition nach Spitsbergen. Crustacea of USSR 13 4-55. In Russian. Decapoda. Ann. Mus. Zool. Acad. Imp. Sci. St. Petersburg 11, 1-68. Radziejewska, T. &; Stankowska-Radziun, M. 1979: J.M. &; Iverøon R.L. 1978: Estuarine and Intertidal meiofauna of Rechrchefjorden and Malbukt;a, Bowman, Vest Spitsbergen. Sarsia 253-258. plume fronts. In: Ocean fronts in coastal processes. 64, Springer verlag, Berlin, Heidelberg, NY. Radziejewska, T. &; Stankowska-Radziun, M. 1985: Bruggen, E. von 1907: Zoologische Ergebnisse der Preliminary investigations on the Hornsund region Russischen Expedition nach Spitsbergen. Amphipoda. meiofauna. Ma terials from the XII Polar Symposium, Ann. Mus. ZooL Acad. Imp. Sci. St Petersburg 11, 214- Szczecin, 106-111. In Polish. 244. Rozycki, O. &; Gruszczynski, M. 1986: Macrofauna Christiansen, M. &; Christiansen, B.O. 1962: The associated with laminarians in the coastal waters of Crustacea and Decapoda of Isfjorden. A comparison West Spitsbergen. Pol. Polar Res. 7 (4) , 337-351. with the Swedish Spitsbergen Expedition in 1908. Acta Borealia Acta Scientia 19, l-53. Smidt, E.L.B. 1979: Annual cycles of and of zooplankton of southwest Greenland. Digby, P.S.B. 1954: The biology of the marine Medd. Grønland, Bioscence 1, l-56. planktonic copepods of Scoresby sound, East­ Greenland. Journal of Animal Ecology 23, 298-338. Stephensen, K. 1935-1938-1942: The Amphipod of Northem Norway and Spitsbergen with adjacent Feder, M.H. &; Paul, AJ. 1980: Seasonal trends in waters. Tromsø Mus. Skr. 1, 2, 3, 525 pp. meiofaunal abundance on two beaches in Port Valdez ' Alaska. Syesis 13, 27-36. Stott, F.C. 1936: The marine foods of birds in an inland fjord region in West Spitsbergen, part 1. Food. Florczyk, I &; Latala, A 1989: The phytobenthos of Jo urn. Animal Ecol. 5, 356-369. the Hornsund fiord, SW Spitsbergen. Polar Research, 7 (1), 29-42. Summer Environmental Survey of Gipsvika, Svalbard 131

Svendsen, P 1959: The algal vegetation of Spitsbergen. Norsk Polarinstitutt Skrifter 116. 47 pp.

Swerpel, S. 1985: The Hornsund fjord: water masses. PoL Polar Res. 6 (4) , 475-496.

Swerpel, S. &; Weslawski J.M. 1989: Polish marine ecological work on Spitsbergen. Rapp. et P. -v. Reun. Cons. Int. Explor. Mer. 188, 177-179.

TROMURA 1986: Hydrografiske observasjoner fr a Svalbard 1984-1985. Tromsø University Reports, Tromsø.

Tsecotskaja, L.K. &; Zlobin, V.S. 1977: The application of the method of expansion of oceanological fields using orthogonal fu nction to the analyses of the Barents Sea water masses. Trudy PINR O 38, 45-57.

Ussing, H.H. 193'8: The biology of some important plankton animals in the fjords of east Greenland. Me ddelelser om Grønland, 100 (7) , 1-49.

Vinogradov, V.V. (ed.) 1977: The biology of the Ocean. Pa rt 2. Moskov, SSSR. In Russian. AN Weslawski, J.M., Jankowski A., Kwasniewski S., Swerpel, S. &; Ryg, M. 1989a: Summer hydrology and zooplankton of two Svalbard fjords. Submitted to Polar Research.

Weslawski, J. M., Jezierski J., Kwasniewski S., Swerpel S., Wiktor J. &; Zajaczkowski M. 1988b: South Spitsbergen Na tional Park tidal zone. Arctic

Ecology Group se. report 1188, unpublished manuscript.

Weslawski, J.M., Zajaczkowski, M., Kwasniewski, S, Jezierski, J. &; Moskal W. 1988a: Seasonality in an Arctic fjord ecosystem, Hornsund, Spitsbergen. Polar Research 6, 185-189.

Weslawski, J.M., Zajaczkowski, M. &; Wiktor J.: Spring bloom under fast ice in Sassenfjorden, Svalbard. Unpublished.

Wiktor, J. &; Bancer, B.: Chlorophyll and phytoplankton during sp ring bloom in Hornsund and Sassenfjorden, Svalbard. Unpublished.