Svalbard Odyssey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arctic Expedition12° 16° 20° 24° 28° 32° Spitsbergen U Svalbard Archipelago 80° 80°
distinguished travel for more than 35 years Voyage UNDER THE Midnight Sun Arctic Expedition12° 16° 20° 24° 28° 32° Spitsbergen u Svalbard Archipelago 80° 80° 80° Raudfjorden Nordaustlandet Woodfjorden Smeerenburg Monaco Glacier The Arctic’s 79° 79° 79° Kongsfjorden Svalbard King’s Glacier Archipelago Ny-Ålesund Spitsbergen Longyearbyen Canada 78° 78° 78° i Greenland tic C rcle rc Sea Camp Millar A U.S. North Pole Russia Bellsund Calypsobyen Svalbard Archipelago Norway Copenhagen Burgerbukta 77° 77° 77° Cruise Itinerary Denmark Air Routing Samarin Glacier Hornsund Barents Sea June 20 to 30, 2022 4° 8° Spitsbergen12° u Samarin16° Glacier20° u Calypsobyen24° 76° 28° 32° 36° 76° Voyage across the Arctic Circle on this unique 11-day Monaco Glacier u Smeerenburg u Ny-Ålesund itinerary featuring a seven-night cruise round trip Copenhagen 1 Depart the U.S. or Canada aboard the Five-Star Le Boréal. Visit during the most 2 Arrive in Copenhagen, Denmark enchanting season, when the region is bathed in the magical 3 Copenhagen/Fly to Longyearbyen, Spitsbergen, light of the Midnight Sun. Cruise the shores of secluded Norway’s Svalbard Archipelago/Embark Le Boréal 4 Hornsund for Burgerbukta/Samarin Glacier Spitsbergen—the jewel of Norway’s rarely visited Svalbard 5 Bellsund for Calypsobyen/Camp Millar archipelago enjoy expert-led Zodiac excursions through 6 Cruising the Arctic Ice Pack sandstone mountain ranges, verdant tundra and awe-inspiring 7 MåkeØyane/Woodfjorden/Monaco Glacier ice formations. See glaciers calve in luminous blues and search 8 Raudfjorden for Smeerenburg for Arctic wildlife, including the “King of the Arctic,” the 9 Ny-Ålesund/Kongsfjorden for King’s Glacier polar bear, whales, walruses and Svalbard reindeer. -
Handbok07.Pdf
- . - - - . -. � ..;/, AGE MILL.YEAR$ ;YE basalt �- OUATERNARY votcanoes CENOZOIC \....t TERTIARY ·· basalt/// 65 CRETACEOUS -� 145 MESOZOIC JURASSIC " 210 � TRIAS SIC 245 " PERMIAN 290 CARBONIFEROUS /I/ Å 360 \....t DEVONIAN � PALEOZOIC � 410 SILURIAN 440 /I/ ranite � ORDOVICIAN T 510 z CAM BRIAN � w :::;: 570 w UPPER (J) PROTEROZOIC � c( " 1000 Ill /// PRECAMBRIAN MIDDLE AND LOWER PROTEROZOIC I /// 2500 ARCHEAN /(/folding \....tfaulting x metamorphism '- subduction POLARHÅNDBOK NO. 7 AUDUN HJELLE GEOLOGY.OF SVALBARD OSLO 1993 Photographs contributed by the following: Dallmann, Winfried: Figs. 12, 21, 24, 25, 31, 33, 35, 48 Heintz, Natascha: Figs. 15, 59 Hisdal, Vidar: Figs. 40, 42, 47, 49 Hjelle, Audun: Figs. 3, 10, 11, 18 , 23, 28, 29, 30, 32, 36, 43, 45, 46, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 75 Larsen, Geir B.: Fig. 70 Lytskjold, Bjørn: Fig. 38 Nøttvedt, Arvid: Fig. 34 Paleontologisk Museum, Oslo: Figs. 5, 9 Salvigsen, Otto: Figs. 13, 59 Skogen, Erik: Fig. 39 Store Norske Spitsbergen Kulkompani (SNSK): Fig. 26 © Norsk Polarinstitutt, Middelthuns gate 29, 0301 Oslo English translation: Richard Binns Editor of text and illustrations: Annemor Brekke Graphic design: Vidar Grimshei Omslagsfoto: Erik Skogen Graphic production: Grimshei Grafiske, Lørenskog ISBN 82-7666-057-6 Printed September 1993 CONTENTS PREFACE ............................................6 The Kongsfjorden area ....... ..........97 Smeerenburgfjorden - Magdalene- INTRODUCTION ..... .. .... ....... ........ ....6 fjorden - Liefdefjorden................ 109 Woodfjorden - Bockfjorden........ 116 THE GEOLOGICAL EXPLORATION OF SVALBARD .... ........... ....... .......... ..9 NORTHEASTERN SPITSBERGEN AND NORDAUSTLANDET ........... 123 SVALBARD, PART OF THE Ny Friesland and Olav V Land .. .123 NORTHERN POLAR REGION ...... ... 11 Nordaustlandet and the neigh- bouring islands........................... 126 WHA T TOOK PLACE IN SVALBARD - WHEN? .... -
Through the North Atlantic - from Scotland to Svalbard
THROUGH THE NORTH ATLANTIC - FROM SCOTLAND TO SVALBARD There are few wilder, more magnificent and untouched places than the Arctic Islands of the North Atlantic! And no ships more suited than Ocean Atlantic for such a voyage. Join us for an early summer's cruise from Aberdeen to the lush green Shetland isles, the Faroe Islands small capital Tórshavn and the North Atlantic to the Arctic islands of Jan Mayen and Svalbard. We will travel north along with the migrating birds, and hopefully spot the polar bears hunting from the sea ice in the 24-hour daylight. The cruise starts in Aberdeen on the Scottish East Coast. Here we embark Albatros Expedition's vessel, the comfortable Ocean Atlantic, which is our home for the next 11 days. Our first stop is Smeerenburg and hopefully as far as Yttre Norskøya in the far cozy Lerwick on “main” Shetland, then we venture further north North west corner of Spitsbergen Island. Weather and ice to Tórshavn on the Faroe Islands. After a day at sea spotting for conditions will often dictate the course, but each landing with seabirds and whales we reach the enigmatic and isolated island Zodiac-boats will still be unique and adventurous. of Jan Mayen with its looming 2,200-meter high volcano of Beerenberg. We travel north with the spring and 24-hour The cruise does not have any special requirements for you as a daylight until we reach the snow-covered mountains of participant, but it is assumed that you are in good shape, agile Svalbard. Sea ice will still cover many fjords, but with an ice and good on your legs. -
Petroleum, Coal and Research Drilling Onshore Svalbard: a Historical Perspective
NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 3 https://dx.doi.org/10.17850/njg99-3-1 Petroleum, coal and research drilling onshore Svalbard: a historical perspective Kim Senger1,2, Peter Brugmans3, Sten-Andreas Grundvåg2,4, Malte Jochmann1,5, Arvid Nøttvedt6, Snorre Olaussen1, Asbjørn Skotte7 & Aleksandra Smyrak-Sikora1,8 1Department of Arctic Geology, University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway. 2Research Centre for Arctic Petroleum Exploration (ARCEx), University of Tromsø – the Arctic University of Norway, P.O. Box 6050 Langnes, 9037 Tromsø, Norway. 3The Norwegian Directorate of Mining with the Commissioner of Mines at Svalbard, P.O. Box 520, 9171 Longyearbyen, Norway. 4Department of Geosciences, University of Tromsø – the Arctic University of Norway, P.O. Box 6050 Langnes, 9037 Tromsø, Norway. 5Store Norske Spitsbergen Kulkompani AS, P.O. Box 613, 9171 Longyearbyen, Norway. 6NORCE Norwegian Research Centre AS, Fantoftvegen 38, 5072 Bergen, Norway. 7Skotte & Co. AS, Hatlevegen 1, 6240 Ørskog, Norway. 8Department of Earth Science, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway. E-mail corresponding author (Kim Senger): [email protected] The beginning of the Norwegian oil industry is often attributed to the first exploration drilling in the North Sea in 1966, the first discovery in 1967 and the discovery of the supergiant Ekofisk field in 1969. However, petroleum exploration already started onshore Svalbard in 1960 with three mapping groups from Caltex and exploration efforts by the Dutch company Bataaffse (Shell) and the Norwegian private company Norsk Polar Navigasjon AS (NPN). NPN was the first company to spud a well at Kvadehuken near Ny-Ålesund in 1961. -
Climate in Svalbard 2100
M-1242 | 2018 Climate in Svalbard 2100 – a knowledge base for climate adaptation NCCS report no. 1/2019 Photo: Ketil Isaksen, MET Norway Editors I.Hanssen-Bauer, E.J.Førland, H.Hisdal, S.Mayer, A.B.Sandø, A.Sorteberg CLIMATE IN SVALBARD 2100 CLIMATE IN SVALBARD 2100 Commissioned by Title: Date Climate in Svalbard 2100 January 2019 – a knowledge base for climate adaptation ISSN nr. Rapport nr. 2387-3027 1/2019 Authors Classification Editors: I.Hanssen-Bauer1,12, E.J.Førland1,12, H.Hisdal2,12, Free S.Mayer3,12,13, A.B.Sandø5,13, A.Sorteberg4,13 Clients Authors: M.Adakudlu3,13, J.Andresen2, J.Bakke4,13, S.Beldring2,12, R.Benestad1, W. Bilt4,13, J.Bogen2, C.Borstad6, Norwegian Environment Agency (Miljødirektoratet) K.Breili9, Ø.Breivik1,4, K.Y.Børsheim5,13, H.H.Christiansen6, A.Dobler1, R.Engeset2, R.Frauenfelder7, S.Gerland10, H.M.Gjelten1, J.Gundersen2, K.Isaksen1,12, C.Jaedicke7, H.Kierulf9, J.Kohler10, H.Li2,12, J.Lutz1,12, K.Melvold2,12, Client’s reference 1,12 4,6 2,12 5,8,13 A.Mezghani , F.Nilsen , I.B.Nilsen , J.E.Ø.Nilsen , http://www.miljodirektoratet.no/M1242 O. Pavlova10, O.Ravndal9, B.Risebrobakken3,13, T.Saloranta2, S.Sandven6,8,13, T.V.Schuler6,11, M.J.R.Simpson9, M.Skogen5,13, L.H.Smedsrud4,6,13, M.Sund2, D. Vikhamar-Schuler1,2,12, S.Westermann11, W.K.Wong2,12 Affiliations: See Acknowledgements! Abstract The Norwegian Centre for Climate Services (NCCS) is collaboration between the Norwegian Meteorological In- This report was commissioned by the Norwegian Environment Agency in order to provide basic information for use stitute, the Norwegian Water Resources and Energy Directorate, Norwegian Research Centre and the Bjerknes in climate change adaptation in Svalbard. -
South Spitsbergen S/V Noorderlicht
South Spitsbergen 28 September – 05 October 2008 on board S/V Noorderlicht The Noorderlicht was originally built in 1910, in Flensburg. For most of her life she served as a light vessel on the Baltic. Then, in 1991 the present owners purchased the ship and re-rigged and re-fitted her thoroughly, according to the rules of ‘Register Holland’. Noorderlicht is 46 metres long and 6.5 metres breadth, a well-balanced, two- masted schooner rig that is able to sail all seas. With: Captain: Gert Ritzema (Netherlands) First mate: Dickie Koolwijk (Netherlands) Second mate: Elisabeth Ritzema (Netherlands) Chef: Anna Kors (Niederlande) Expedition leader: Rolf Stange (Germany) And 19 brave polar explorers from Germany, The Netherlands, Spain, Switzerland and The United Kingdom 28. September 2008 – Longyearbyen Position at 1700: 78°14’N /15°37’E. Calm, 6°C he first bit of arctic soil that we set our feet on was the the runway of the little airport near Longyearbyen and there we met by our fearless leader, Rolf Stange from Germany, who Twas easily identified thanks to a Noorderlicht life ring. Soon we were on a bus on the way to the high arctic metropolis of Longyearbyen, where we still had some hours time to explore the settlement with its various excitements such as museum, supermarket and cafes and restaurants. Around 1700, we boarded the Noorderlicht which was alongside in the harbour of Longyearbyen. We moved into our cabins, stored our luggage away and then met the friendly crew for the first time. Captain Gert and Rolf welcomed us once again, introduced the ship and her crew, gave us some information about life on board and about some important safety issues. -
Terrestrial Inputs Govern Spatial Distribution of Polychlorinated Biphenyls (Pcbs) and Hexachlorobenzene (HCB) in an Arctic Fjord System (Isfjorden, Svalbard)*
Environmental Pollution 281 (2021) 116963 Contents lists available at ScienceDirect Environmental Pollution journal homepage: www.elsevier.com/locate/envpol Terrestrial inputs govern spatial distribution of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in an Arctic fjord system (Isfjorden, Svalbard)* * Sverre Johansen a, b, c, Amanda Poste a, Ian Allan c, Anita Evenset d, e, Pernilla Carlsson a, a Norwegian Institute for Water Research, Tromsø, Norway b Norwegian University of Life Sciences, Ås, Norway c Norwegian Institute for Water Research, Oslo, Norway d Akvaplan-niva, Tromsø, Norway e UiT, The Arctic University of Norway, Tromsø, Norway article info abstract Article history: Considerable amounts of previously deposited persistent organic pollutants (POPs) are stored in the Received 20 July 2020 Arctic cryosphere. Transport of freshwater and terrestrial material to the Arctic Ocean is increasing due to Received in revised form ongoing climate change and the impact this has on POPs in marine receiving systems is unknown This 11 March 2021 study has investigated how secondary sources of POPs from land influence the occurrence and fate of Accepted 13 March 2021 POPs in an Arctic coastal marine system. Available online 17 March 2021 Passive sampling of water and sampling of riverine suspended particulate matter (SPM) and marine sediments for analysis of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) was carried out Keywords: Particle transport in rivers and their receiving fjords in Isfjorden system in Svalbard. Riverine SPM had low contaminant < S e Terrestrial runoff concentrations ( level of detection-28 pg/g dw PCB14,16 100 pg/g dw HCB) compared to outer marine Environmental contaminants sediments 630-880 pg/g dw SPCB14,530e770 pg/g dw HCB). -
Seasonal Dynamics of the Marine CO System in Adventfjorden, a West
RESEARCH ARTICLE Seasonal dynamics of the marine CO2 system in Adventfjorden, a west Spitsbergen fjord Ylva Ericson1,2, Melissa Chierici1,3, Eva Falck1,2, Agneta Fransson4, Elizabeth Jones3 & Svein Kristiansen5 1Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Norway; 2Geophysical Institute, University of Bergen, Bergen, Norway; 3Institute of Marine Research, Fram Centre, Tromsø, Norway; 4Norwegian Polar Institute, Fram Centre, Tromsø, Norway; 5Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway Abstract Keywords Marine carbonate system; aragonite; Time series of the marine CO2 system and related parameters at the IsA Sta- net community production; Arctic fjord tion, by Adventfjorden, Svalbard, were investigated between March 2015 biogeochemistry; Svalbard and November 2017. The physical and biogeochemical processes that govern changes in total alkalinity (TA), total dissolved inorganic carbon (DIC) and the Correspondence Ylva Ericson, Department of Arctic saturation state of the calcium carbonate mineral aragonite (ΩAr) were assessed on a monthly timescale. The major driver for TA and DIC was changes in salin- Geophysics, University Centre in Svalbard, ity, caused by river runoff, mixing and advection. This accounted for 77 and PO Box 156, NO-9171 Longyearbyen, Norway. E-mail: [email protected] 45%, respectively, of the overall variability. It contributed minimally to the variability in ΩAr (5%); instead, biological activity was responsible for 60% of Abbreviations the monthly variations. For DIC, the biological activity was also important, con- ArW: Arctic water; AW: Atlantic water; tributing 44%. The monthly effect of air–sea CO2 fluxes accounted for 11 and CC: coastal current; CTD: conductivity– temperature–depth instrument; DIC: 15% of the total changes in DIC and ΩAr, respectively. -
Western Spitsbergen, 2019
Western Spitsbergen, July 2019. Four days, 13 species, including polar bear, bowhead whale, blue whale, Arctic fox. Jon Swenson My wife, brother- and sister-in-law planned a cruise to Svalbard Archipelago. They have “only” an average interest in mammals and birds, so we could not order a specialized mammal-oriented tour. I spoke with colleagues who conduct biological research on Svalbard, considered prices, and considered our interests. We chose a cruise with Hurtigruten along the west coast of Spitsbergen. My colleagues told me that a more designated, mammal-oriented cruise should include the eastern coast, which is more arctic and has more polar bears and seals, but it takes much longer and is considerably more expensive. Our ship, the M/S Nordstjernen, now taken out of service, on the west coast of Spitzbergen Island, Svalbard Archipelago. Our route along the western coast of Spitzbergen Island, Svalbard Archipelago. My colleagues and the personnel on the ship told me that seeing most mammals on Svalbard is “hit or miss”, but that chances to see walrus and seals were good. Therefore, to not be overly optimistic, I made a wish list that included four species; polar bear (50% chance on this cruise, I was told), Arctic fox (“seen sometimes, but especially in Barentsburg”), beluga (“not uncommon along the coast”), and walrus (“should see some”). I asked about blue whale, but this is rare, and bowhead whale, but this pelagic species is almost never seen. Even though this did not sound very promising, it turned out to be a productive and very successful trip for all of us. -
Written Exam SH-201 the History of Svalbard the University Centre in Svalbard, Monday 6 February 2012
Written exam SH-201 The History of Svalbard The University Centre in Svalbard, Monday 6 February 2012 The exam is a 3 hour written test. It consists of two parts: Part I is a multiple choice test of factual knowledge. Note: This sheet with answers to part I shall be handed in. Part II (see below) is an essay part where you write extensively about one of two alternative subjects. No aids except dictionary are permitted. You may answer in English, Norwegian, Swedish or Danish. 1 2 Part I counts approximately /3 and part II counts /3 of the grade at the evaluation, but adjustment may take place. Both parts must be passed in order to pass the whole exam. Part I: Multiple choice test. Make only one cross for each question. In what year was Bjørnøya discovered by Willem 1. 1569 1596 1603 Barentsz? 2. When did land-based whaling end on Svalbard? ca. 1630 ca. 1680 ca. 1720 Which geographical region did most Russian 3. Pechora Murmansk White Sea hunters and trappers come from? When did Norwegian hunters and trappers start 4. ca. 1700 the 1750s the 1820s going to Svalbard regularly? From when dates the first map to show the whole 5. 1598 1714 1872 Svalbard archipelago? A famous scientific expedition visited Svalbard in 6. Chichagov Fram 1838–39. Which name is it known under? Recherche Svalbard was for a long time a no man’s land. In 7. Norway Sweden Russia 1871, who took an initiative to annex the islands? 8. When did Norway formally take over sovereignty? 1916 1920 1925 When was the Sysselmann (Governor of Svalbard) 9. -
Appendix: Economic Geology: Exploration for Coal, Oil and Minerals
Downloaded from http://mem.lyellcollection.org/ by guest on October 1, 2021 PART 4 Appendix: Economic geology: exploration for coal, oil and Glossary of stratigraphic names, 463 minerals, 449 References, 477 Index of place names, 455 General Index, 515 Alkahornet, a distinctive landmark on the northwest, entrance to Isfjorden, is formed of early Varanger carbonates. The view is from Trygghamna ('Safe Harbour') with CSE motorboats Salterella and Collenia by the shore, with good anchorage and easy access inland. Photo M. J. Hambrey, CSE (SP. 1561). Routine journeys to the fjords of north Spitsbergen and Nordaustlandet pass by the rocky coastline of northwest Spitsbergen. Here is a view of Smeerenburgbreen from Smeerenburgfjordenwhich affords some shelter being protected by outer islands. On one of these was Smeerenburg, the principal base for early whaling, hence the Dutch name for 'blubber town'. Photo N. I. Cox, CSE 1989. Downloaded from http://mem.lyellcollection.org/ by guest on October 1, 2021 The CSE motorboat Salterella in Liefdefjorden looking north towards Erikbreen with largely Devonian rocks in the background unconformably on metamorphic Proterozoic to the left. Photo P. W. Web, CSE 1989. Access to cliffs and a glacier route (up Hannabreen) often necessitates crossing blocky talus (here Devonian in foreground) and then possibly a pleasanter route up the moraine on to hard glacier ice. Moraine generally affords a useful introduction to the rocks to be traversed along the glacial margin. The dots in the sky are geese training their young to fly in V formation for their migration back to the UK at the end of the summer. -
Region Building and Identity Formation in the Baltic Sea Region
IJIS Volume 3 REGION BUILDING AND IDENTITY FORMATION IN THE BALTIC SEA REGION ∗ Imke Schäfer Abstract This paper examines the concept of “new region building” in the Baltic Sea region with emphasis on the construction of a collective “Baltic” identity. Possible implications of these processes on Russia as a non-EU member state are discussed. Region building around the Baltic Sea is conceptualised within the framework of social constructivism, and a connection between region building and identity formation is established. Furthermore, an attempt is made to shed light on the way in which a “Baltic identity” is promoted in the region. By means of a short discourse analysis, certain characteristics of the Baltic Sea region are discovered that are promoted as the basis for a regional identity by various regional actors. The impact of these characteristics on relations between Russia, the EU and the other Baltic Sea states are examined and conclusions are drawn in relation to the region building processes in the Baltic Sea area. INTRODUCTION Cooperation in the Baltic Sea region (BSR) has prospered since the independence of the Baltic States in the beginning of the 1990s. Several programmes and initiatives have been established, such as the Northern Dimension initiative (ND), the Council of Baltic Sea States (CBSS) or the Baltic Sea States Subregional Cooperation (BSSSC). The EU actively supports cooperation in this region. In 1997, at the Luxembourg European Council, Finland’s Northern Dimension initiative (ND) was recognized as part of the