Petroleum, Coal and Research Drilling Onshore Svalbard: a Historical Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Handbok07.Pdf
- . - - - . -. � ..;/, AGE MILL.YEAR$ ;YE basalt �- OUATERNARY votcanoes CENOZOIC \....t TERTIARY ·· basalt/// 65 CRETACEOUS -� 145 MESOZOIC JURASSIC " 210 � TRIAS SIC 245 " PERMIAN 290 CARBONIFEROUS /I/ Å 360 \....t DEVONIAN � PALEOZOIC � 410 SILURIAN 440 /I/ ranite � ORDOVICIAN T 510 z CAM BRIAN � w :::;: 570 w UPPER (J) PROTEROZOIC � c( " 1000 Ill /// PRECAMBRIAN MIDDLE AND LOWER PROTEROZOIC I /// 2500 ARCHEAN /(/folding \....tfaulting x metamorphism '- subduction POLARHÅNDBOK NO. 7 AUDUN HJELLE GEOLOGY.OF SVALBARD OSLO 1993 Photographs contributed by the following: Dallmann, Winfried: Figs. 12, 21, 24, 25, 31, 33, 35, 48 Heintz, Natascha: Figs. 15, 59 Hisdal, Vidar: Figs. 40, 42, 47, 49 Hjelle, Audun: Figs. 3, 10, 11, 18 , 23, 28, 29, 30, 32, 36, 43, 45, 46, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 75 Larsen, Geir B.: Fig. 70 Lytskjold, Bjørn: Fig. 38 Nøttvedt, Arvid: Fig. 34 Paleontologisk Museum, Oslo: Figs. 5, 9 Salvigsen, Otto: Figs. 13, 59 Skogen, Erik: Fig. 39 Store Norske Spitsbergen Kulkompani (SNSK): Fig. 26 © Norsk Polarinstitutt, Middelthuns gate 29, 0301 Oslo English translation: Richard Binns Editor of text and illustrations: Annemor Brekke Graphic design: Vidar Grimshei Omslagsfoto: Erik Skogen Graphic production: Grimshei Grafiske, Lørenskog ISBN 82-7666-057-6 Printed September 1993 CONTENTS PREFACE ............................................6 The Kongsfjorden area ....... ..........97 Smeerenburgfjorden - Magdalene- INTRODUCTION ..... .. .... ....... ........ ....6 fjorden - Liefdefjorden................ 109 Woodfjorden - Bockfjorden........ 116 THE GEOLOGICAL EXPLORATION OF SVALBARD .... ........... ....... .......... ..9 NORTHEASTERN SPITSBERGEN AND NORDAUSTLANDET ........... 123 SVALBARD, PART OF THE Ny Friesland and Olav V Land .. .123 NORTHERN POLAR REGION ...... ... 11 Nordaustlandet and the neigh- bouring islands........................... 126 WHA T TOOK PLACE IN SVALBARD - WHEN? .... -
Air Ambulance Services in the Arctic 1999-2009: a Norwegian Study Jan Norum1,2,3*, Trond M Elsbak3
Norum and Elsbak International Journal of Emergency Medicine 2011, 4:1 http://www.intjem.com/content/4/1/1 ORIGINALRESEARCH Open Access Air ambulance services in the Arctic 1999-2009: a Norwegian study Jan Norum1,2,3*, Trond M Elsbak3 Abstract Background: Air ambulance services in the Arctic have to deal with remote locations, long distances, rough weather conditions and seasonable darkness. Despite these challenges, the people living in the area expect a high quality of specialist health care. Aims: The objective of this study was to analyse the air ambulance operations performed in the Norwegian Arctic and study variations in diagnoses and flight patterns around the year. Methods: A retrospective analysis. All air ambulance operations performed during the time 1999 – 2009 period were analysed. The subjects were patients transported and flights performed. The primary outcome measures were patients’ diagnoses and task patterns around the year. Results: A total of 345 patients were transported and 321 flights performed. Coronary heart and vascular disease, bone fractures and infections were the most common diagnoses. Most patients (85%) had NACA score 3 or 4. Half of all fractures occurred in April and August. Most patients were males (66%), and one fourth was not Norwegian. The median flying time (one way) was 3 h 33 m. Ten percent of the flights were delayed, and only 14% were performed between midnight and 8.00 AM. The period April to August was the busiest one (58% of operations). Conclusions: Norway has run a safe air ambulance service in the Arctic for the last 11 years. In the future more shipping and polar adventure operations may influence the need for air ambulances, especially during summer and autumn. -
South Spitsbergen S/V Noorderlicht
South Spitsbergen 28 September – 05 October 2008 on board S/V Noorderlicht The Noorderlicht was originally built in 1910, in Flensburg. For most of her life she served as a light vessel on the Baltic. Then, in 1991 the present owners purchased the ship and re-rigged and re-fitted her thoroughly, according to the rules of ‘Register Holland’. Noorderlicht is 46 metres long and 6.5 metres breadth, a well-balanced, two- masted schooner rig that is able to sail all seas. With: Captain: Gert Ritzema (Netherlands) First mate: Dickie Koolwijk (Netherlands) Second mate: Elisabeth Ritzema (Netherlands) Chef: Anna Kors (Niederlande) Expedition leader: Rolf Stange (Germany) And 19 brave polar explorers from Germany, The Netherlands, Spain, Switzerland and The United Kingdom 28. September 2008 – Longyearbyen Position at 1700: 78°14’N /15°37’E. Calm, 6°C he first bit of arctic soil that we set our feet on was the the runway of the little airport near Longyearbyen and there we met by our fearless leader, Rolf Stange from Germany, who Twas easily identified thanks to a Noorderlicht life ring. Soon we were on a bus on the way to the high arctic metropolis of Longyearbyen, where we still had some hours time to explore the settlement with its various excitements such as museum, supermarket and cafes and restaurants. Around 1700, we boarded the Noorderlicht which was alongside in the harbour of Longyearbyen. We moved into our cabins, stored our luggage away and then met the friendly crew for the first time. Captain Gert and Rolf welcomed us once again, introduced the ship and her crew, gave us some information about life on board and about some important safety issues. -
Icepeople Stormy Sendoff
FREE Weather summary Cloudy and partly cloudy with occasional snow and temperatures near -10C through next week. icepeople Full forecast page 3 The world's northernmost alternative newspaper Vol. 9, Issue 1 January 3, 2017 www.icepeople.net 'Longyearbyen at its best:' Modern SVALBARD'S 10 STRANGEST STORIES OF 2016 tragedies, triumphs part of traditional tributes during Syttende Mai celebration Page 7 “ To believe that the governor can rescue people out, regardless of circumstances, is wrong. There is no guarantee for that. - Per Andreassen, police lieutenant Svalbard governor's office ” Late update: 12 apartments vacated again due to building, infrastructure damage. icepeople.net GREENPEACE BRITISH ANTARCTIC SURVEY MARK SABBATINI / ICEPEOPLE A pianist on a glacier, a research vessel suffering from an identity crisis and a gigantic mailbox belonging to the outlaw Santa kept things weird in 2016. WIGGINGWIGGING OUTOUT See DOCK, page 12 Boaty McBoatface, Aquaman, Pokémon among stars in Svalbard's version of the year of surreality By MARK SABBATINI will of the people. A political ad where an in- yet again. Nuclear armageddon, yet again. Editor nocent little girl was obliterated by a weapon When it came to the ways we were weird, A travesty of an election that ignored the of mass destruction. Battling alien invaders, See SURREAL, page 6 Related coverage: • Letters to the Future: grope and change...7 Stormy sendoff • Fleeing Svalbard is easy – sort of……....11 Blizzard buries cars and homes, exposes kindness and resolve By MARK SABBATINI fatal avalanche a year ago. But it didn't cause Editor any tragedies and, while many experienced has- ROLF STANGE MAKSYM BOREIKO Of course, 2016 had to screw us over one sles and minor damage, it was also indiciative A tourist is dwarfed by a drift near Spitsbergen last time with a storm resembling that from the See STORM, page 4 Hotel after a major snowstorm last week. -
Terrestrial Inputs Govern Spatial Distribution of Polychlorinated Biphenyls (Pcbs) and Hexachlorobenzene (HCB) in an Arctic Fjord System (Isfjorden, Svalbard)*
Environmental Pollution 281 (2021) 116963 Contents lists available at ScienceDirect Environmental Pollution journal homepage: www.elsevier.com/locate/envpol Terrestrial inputs govern spatial distribution of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in an Arctic fjord system (Isfjorden, Svalbard)* * Sverre Johansen a, b, c, Amanda Poste a, Ian Allan c, Anita Evenset d, e, Pernilla Carlsson a, a Norwegian Institute for Water Research, Tromsø, Norway b Norwegian University of Life Sciences, Ås, Norway c Norwegian Institute for Water Research, Oslo, Norway d Akvaplan-niva, Tromsø, Norway e UiT, The Arctic University of Norway, Tromsø, Norway article info abstract Article history: Considerable amounts of previously deposited persistent organic pollutants (POPs) are stored in the Received 20 July 2020 Arctic cryosphere. Transport of freshwater and terrestrial material to the Arctic Ocean is increasing due to Received in revised form ongoing climate change and the impact this has on POPs in marine receiving systems is unknown This 11 March 2021 study has investigated how secondary sources of POPs from land influence the occurrence and fate of Accepted 13 March 2021 POPs in an Arctic coastal marine system. Available online 17 March 2021 Passive sampling of water and sampling of riverine suspended particulate matter (SPM) and marine sediments for analysis of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) was carried out Keywords: Particle transport in rivers and their receiving fjords in Isfjorden system in Svalbard. Riverine SPM had low contaminant < S e Terrestrial runoff concentrations ( level of detection-28 pg/g dw PCB14,16 100 pg/g dw HCB) compared to outer marine Environmental contaminants sediments 630-880 pg/g dw SPCB14,530e770 pg/g dw HCB). -
First Record of Vulgarogamasus Immanis (Acari, Mesostigmata) in Svalbard
vol. 33, no. 1, pp. 35–39, 2012 doi: 10.2478/v10183−012−0001−8 First record of Vulgarogamasus immanis (Acari, Mesostigmata) in Svalbard Dariusz J. GWIAZDOWICZ 1, Torstein SOLHØY 2, Stephen J. COULSON 3, Natalia V. LEBEDEVA4 and Elena N. MELEKHINA5 1 Uniwersytet Przyrodniczy w Poznaniu, Zakład Ochrony Lasu, ul. Wojska Polskiego 71c, 60−625 Poznań, Poland <e−mail: [email protected]> 2 Department of Biology, University of Bergen, Box 7800, 5200 Bergen, Norway 3 University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway 4 Russian Academy of Sciences, Southern Scientific Center, Chekhov str., 344006 Rostov on Don, Russia 5Russian Academy of Science, Institute of Biology, Komi Science Center, Kommunisticheskaya str., 28, 167928 Syktyvkar, Russia Abstract: The mesostigmatid mite Vulgarogamasus immanis (Berlese, 1904) is reported in Svalbard for the first time. The gamasid mite community of Svalbard is amongst the best known of invertebrate groups of the archipelago due to recent revisions based on fresh sam− pling campaigns. Nonetheless, a hitherto unrecorded species of gamasid mite was recently found along the strandline in Barentsburg. This record brings the total gamasid mite inven− tory of Svalbard to 23 species. The current inventory of Svalbard is bedeviled with syn− onyms and misidentifications. Nevertheless, resolving these confusions and maintaining an accurate and updated species inventory is of prime importance in understanding the ecology of this region. Especially in a period of rapid environmental change. Key words: Arctic, Spitsbergen, Barentsburg, mite, Gamasida. Introduction Svalbard lies in the high Arctic between latitudes 74° N and 81° N and longi− tudes 10° E and 35° E, some 700 km north of the Norwegian mainland. -
Svalbard (Norway)
Svalbard (Norway) Cross border travel - People - Depending on your citizenship, you may need a visa to enter Svalbard. - The Norwegian authorities do not require a special visa for entering Svalbard, but you may need a permit for entering mainland Norway /the Schengen Area, if you travel via Norway/the Schengen Area on your way to or from Svalbard. - It´s important to ensure that you get a double-entry visa to Norway so you can return to the Schengen Area (mainland Norway) after your stay in Svalbard! - More information can be found on the Norwegian directorate of immigration´s website: https://www.udi.no/en/ - Find more information about entering Svalbard on the website of the Governor of Svalbard: https://www.sysselmannen.no/en/visas-and-immigration/ - Note that a fee needs to be paid for all visa applications. Covid-19 You can find general information and links to relevant COVID-19 related information here: https://www.sysselmannen.no/en/corona-and-svalbard/ Note that any mandatory quarantine must be taken in mainland Norway, not on Svalbard! Find more information and quarantine (hotels) here: https://www.regjeringen.no/en/topics/koronavirus-covid- 19/the-corona-situation-more-information-about-quarantine- hotels/id2784377/?fbclid=IwAR0CA4Rm7edxNhpaksTgxqrAHVXyJcsDBEZrtbaB- t51JTss5wBVz_NUzoQ You can find further information regarding the temporary travel restrictions here: https://nyalesundresearch.no/covid-info/ - Instrumentation (import/export) - In general, it is recommended to use a shipping/transport agency. - Note that due to limited air cargo capacity to and from Ny-Ålesund, cargo related to research activity should preferably be sent by cargo ship. -
Variability of Fast-Ice Thickness in Spitsbergen Fjords
Annals of Glaciology 44 2006 231 Variability of fast-ice thickness in Spitsbergen fjords Sebastian GERLAND, Richard HALL* Norwegian Polar Institute, Polar Environmental Centre, NO-9296 Tromsø, Norway E-mail: [email protected] ABSTRACT. Detailed measurements of sea-ice thickness and snow on sea ice were recorded at different locations in fjords along the western coast of Spitsbergen, the largest island in the Svalbard archipelago, in 2004. Data corresponding to the ice situation before and after melt onset were collected for Kongsfjorden and Van Mijenfjorden, while Hornsund was investigated once during early spring. Profiles of total thickness (snow plus ice thickness) were measured, together with some snow-thickness measure- ments. Total thicknesses were measured with a portable electromagnetic instrument and at selected sites by drilling. The three fjords show some differences in measured thicknesses, connected to individual conditions. However, total thickness does not differ substantially between the three fjords before melt onset. The modal total thickness for all three fjords before melt onset was 1.075 m, and the corresponding modal snow thickness was 0.225 m (bin width 0.05 m). Long-term Kongsfjorden ice-thickness data since 1997 show that the maximum ice thickness varies significantly interannually, as observed at other Arctic sites. The average maximum ice thickness for Kongsfjorden was 0.71 m (years 1997–98, 2000 and 2002–05), and the respective average maximum snow thickness was 0.22 m. In Kongsfjorden, 2004 was the year with highest maximum total thickness and snow thickness relative to the other years. INTRODUCTION Characteristics of fast-ice formation and evolution in The variability, distribution and trends of sea-ice thickness Kongsfjorden differ from those in most other high-Arctic are central issues in current polar climate research (e.g. -
Written Exam SH-201 the History of Svalbard the University Centre in Svalbard, Monday 6 February 2012
Written exam SH-201 The History of Svalbard The University Centre in Svalbard, Monday 6 February 2012 The exam is a 3 hour written test. It consists of two parts: Part I is a multiple choice test of factual knowledge. Note: This sheet with answers to part I shall be handed in. Part II (see below) is an essay part where you write extensively about one of two alternative subjects. No aids except dictionary are permitted. You may answer in English, Norwegian, Swedish or Danish. 1 2 Part I counts approximately /3 and part II counts /3 of the grade at the evaluation, but adjustment may take place. Both parts must be passed in order to pass the whole exam. Part I: Multiple choice test. Make only one cross for each question. In what year was Bjørnøya discovered by Willem 1. 1569 1596 1603 Barentsz? 2. When did land-based whaling end on Svalbard? ca. 1630 ca. 1680 ca. 1720 Which geographical region did most Russian 3. Pechora Murmansk White Sea hunters and trappers come from? When did Norwegian hunters and trappers start 4. ca. 1700 the 1750s the 1820s going to Svalbard regularly? From when dates the first map to show the whole 5. 1598 1714 1872 Svalbard archipelago? A famous scientific expedition visited Svalbard in 6. Chichagov Fram 1838–39. Which name is it known under? Recherche Svalbard was for a long time a no man’s land. In 7. Norway Sweden Russia 1871, who took an initiative to annex the islands? 8. When did Norway formally take over sovereignty? 1916 1920 1925 When was the Sysselmann (Governor of Svalbard) 9. -
Appendix: Economic Geology: Exploration for Coal, Oil and Minerals
Downloaded from http://mem.lyellcollection.org/ by guest on October 1, 2021 PART 4 Appendix: Economic geology: exploration for coal, oil and Glossary of stratigraphic names, 463 minerals, 449 References, 477 Index of place names, 455 General Index, 515 Alkahornet, a distinctive landmark on the northwest, entrance to Isfjorden, is formed of early Varanger carbonates. The view is from Trygghamna ('Safe Harbour') with CSE motorboats Salterella and Collenia by the shore, with good anchorage and easy access inland. Photo M. J. Hambrey, CSE (SP. 1561). Routine journeys to the fjords of north Spitsbergen and Nordaustlandet pass by the rocky coastline of northwest Spitsbergen. Here is a view of Smeerenburgbreen from Smeerenburgfjordenwhich affords some shelter being protected by outer islands. On one of these was Smeerenburg, the principal base for early whaling, hence the Dutch name for 'blubber town'. Photo N. I. Cox, CSE 1989. Downloaded from http://mem.lyellcollection.org/ by guest on October 1, 2021 The CSE motorboat Salterella in Liefdefjorden looking north towards Erikbreen with largely Devonian rocks in the background unconformably on metamorphic Proterozoic to the left. Photo P. W. Web, CSE 1989. Access to cliffs and a glacier route (up Hannabreen) often necessitates crossing blocky talus (here Devonian in foreground) and then possibly a pleasanter route up the moraine on to hard glacier ice. Moraine generally affords a useful introduction to the rocks to be traversed along the glacial margin. The dots in the sky are geese training their young to fly in V formation for their migration back to the UK at the end of the summer. -
The Late Weichselian Glacial Maximum in Western Svalb Ar D
The Late Weichselian glacial maximum in western Svalbar d JAN MANGERUD, MAGNE BOLSTAD, ANNE ELGERSMA, DAG HELLIKSEN, JON Y. LANDVIK, ANNE KATRINE LYCKE, IDA LBNNE, Om0 SALVIGSEN, TOM SANDAHL AND HANS PETTER SEJRUP Mangerud, J., Bolstad, M., Elgersma, A., Helliksen, D., Landvik, J. Y., Lycke, A. K., L~nne,I.. Salvigsen, O., Sandahl, T. & Sejrup, H. P. 1987: The Late Weichselian glacial maximum in western Svalbard. Polar Research 5 n.s., 275-278. Jan Mangerud, Magne Bolstad, Anne Elgersma, Dog Helliksen, Jon Y. Landoik, Anne Katrine Lycke, Ida Lpnne, Tom Sandahl and Hans Pener Sejrup, Department of Geology, Sect. B, Uniuersiry of Bergen, Allkgaten 41, N-5007 Bergen, Norway; Otto Saluigsen, Norsk Polarimtitutt, P.O. Box 158, N-1330 Oslo lufthaun, Norway. The glacial history of Svalbard and the Barents Sea during the Linnkdalen is the westernmost valley on the south shore of Late Weichselian has been much debated during the last few Isfjorden (Fig. 1). All mapped glacial striae and till fabrics years; reviews are presented by Andersen (1981), Boulton et al. indicate an ice movement towards the north, i.e. down valley. (1982), ElverhBi & Solheim (1983) and Vorren & Kristoffersen We assume that they exclude the possibility of an ice stream (1986). In our opinion (Mangerud et al. 1984) it is now demon- coming out of Isfjorden at the time of their formation. Strati- strated that a relatively large ice-sheet complex existed over graphic sequences along the river Linntelva cover much of most of Svalbard and large parts (if not all) of the Barents Sea. the Weichselian; all pebble counts, till fabric analyses and One of the main arguments for a large ice sheet is the pattern sedimentary structures measured in these sediments record a of uplift, including the 9,800 B.P. -
Winning Coal at 78° North : Mining, Contingency and the Chaîne Opératoire in Old Longyear City
Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2009 Winning coal at 78° North : mining, contingency and the Chaîne Opératoire in old Longyear City Seth C. DePasqual Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Archaeological Anthropology Commons Copyright 2009 Seth C. DePasqual Recommended Citation DePasqual, Seth C., "Winning coal at 78° North : mining, contingency and the Chaîne Opératoire in old Longyear City", Master's Thesis, Michigan Technological University, 2009. https://doi.org/10.37099/mtu.dc.etds/308 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Archaeological Anthropology Commons Winning Coal at 78˚ North: Mining, Contingency and the Chaîne Opératoire in Old Longyear City By Seth C. DePasqual A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN INDUSTRIAL ARCHAEOLOGY MICHIGAN TECHNOLOGICAL UNIVERSITY 2009 This thesis, “Winning Coal at 78˚ North: Mining, Contingency and the Chaîne Opératoire in Old Longyear City” is hereby approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN INDUSTRIAL ARCHAEOLOGY. DEPARTMENT: Social Sciences Signatures: Thesis Advisor: ________________________________ Dr. Patrick E. Martin Department Chair: ______________________________ Dr. Patrick E. Martin Date: ______________________________ Acknowledgements This thesis would not have been possible without the encouraging words and guidance of my advisor Patrick Martin. His unremitting support saw me through a number of matters both academic and personal. I’d like to thank Carol MacLennan, who fostered my attention to socialized aspects of the Arctic Coal Company mining system and those related to the environment.