<<

Louisiana State University LSU Digital Commons

LSU Historical Dissertations and Theses Graduate School

1997 Phylogeny of the Characeae () and Biogeography of (Characeae) Inferred From Ribosomal RNA Genes. Susan T. Meiers Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation Meiers, Susan T., "Phylogeny of the Characeae (Charophyta) and Biogeography of Chara (Characeae) Inferred From Ribosomal RNA Genes." (1997). LSU Historical Dissertations and Theses. 6583. https://digitalcommons.lsu.edu/gradschool_disstheses/6583

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction.

hi the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Ifigher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zed) Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PHYLOGENY OF THE CHARACEAE (CHAROPHYTA) AND BIOGEOGRAPHY OF CHARA (CHARACEAE) INFERRED FROM RIBOSOMAL RNA GENES

A Dissertation Submitted to the Graduate Faculty of tlie Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in

The Department of Biological Sciences

by Susan T. Meiers B.S., University of niinois-Urbana, 1986 M.S., DePaul University, 1992 December 1997

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 9820737

UMI Microform 9820737 Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized copying under Title 17, United States Code.

UMI 300 North Zeeb Road Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Acknowledgments

I wish to extend my thanks and sincere appreciation to my graduate advisor. Dr. Russell L. Chapman, for his support, guidance and encouragement throughout my studies and research at Louisiana State University, and for taking a chance on a zoologically-minded ex-teacher! I also wish to thank my Dissertation Committee for

their patience, guidance, and suggestions; Drs. Meredith Blackwell, Kam-Biu Liu,

Marshall Sundberg, Lowell Urbatsch, and Magdi Selim. I gratefully acknowledge the assistance of Dr. Vernon Proctor of Texas Tech University for his gracious and unstinting supply of samples and insightful suggestions

that were essential to this study. I wish to thank Drs. Mary Bisson, Monique Feist, and

Richard McCourt for providing some of the samples used in this study. For their many patient hours of manuscript reviewing and helpful discussions, I also thank Debra A.

Waters and Richard McCourt. To Rick McCourt, my thanks for encouraging me to

continue toward my Ph.D., for encouragement and for collaboration. I also thank Fay Kenoyer Daily for her generosity with reprints and comments concerning charophyte research.

For their friendship, discussions of science and research, and for being steadfast

members of the Sanity-Maintenance Crew ("The best thing you've ever done for me is to

help me take my less seriously, it's only life after all..." E. Saliers), I thank: Anna Bass, Atul Batra, Laura Gough, Becky Harger, Ken Karol, Juan Manuel Lopez- Bautista, Kim Madere, Viral Mehta, Linda Meiers, Daphne Mushatt, Margi Oard, Susan

Pell, Sai Pinnapelli, Frank Shaughnessy, Louise Smith, Carolyn Stiglets, Kathy Thompson, Jason Walker, and Debra Waters.

I would especially like to thank: Trudy and Bill Meiers for their example,

support, and acceptance as their crazy daughter went back to school yet again! For their

u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. continuing love, support, and encouragement, I also extend heartfelt thanks: Linda, Chris, Dave and Becky, "AT" (thanks for the proofing!). Grandma and Grandpa, and

(last, but by no means least!) Carolyn.

m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table Of Contents

Acknowledgments ...... ii

List of Tables...... v List of Figures ...... vi Abstract...... viii

Chapter 1 General Introduction ...... I

2 Phylogeny of the Characeae (Charophyta) Inferred from Organismal and Molecular Characters ...... 5 Introduction ...... 6 Materials and Methods ...... 11 Results ...... 17 Discussion ...... 21 3 Phylogeny and Biogeography of Chara (Charophyta) Inferred From 18S rDNA Sequences ...... 25 Introduction ...... 26 Materials and Methods ...... 32 Results ...... 35 Discussion ...... 38 4 Biogeography ofChara haitensis (Characeae, Charophyta) Inferred from ITS Sequences ...... 44 Introduction ...... 45 Materials and Methods ...... 46 Results ...... 54 Discussion ...... 59 5 Summary and Conclusions ...... 62

References ...... 65 Appendix A: Alignment of 18S Ribosomal DNA Sequences for Chapter 2 ...... 73

Appendix B: Alignment of 18S Ribosomal DNA Sequences for Chapter 3 ...... 92

Appendix C: Alignment of ITS-1 Sequences for Chapter 4 ...... 130 Appendix D: Alignment of ITS-2 Sequences for Chapter 4 ...... 132 Appendix E; Letter of permission ...... 134

Vita ...... 136

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. List of Tables

2.1. Table of morphological data...... 12

2.2. Data matrix for parsimony analysis of morphological characters ...... 14 2.3. List of species name, {Chara) subsection, GenBank accession number, and sequence author ...... 15

3.1. Characters used to delimit genera, sections, and subsections for Chara and Lamprothamnium sensu Wood and Imahori (1965) ...... 28

3.2. Species name, authority of name, subsection, sexuality, provenance, GenBank accession number ...... 33

4.1. List of Chara haitensis isolates examined in this study ...... 48 4.2. Length and nucleotide composition for ITS-1 and ITS-2 regions ...... 51 4.3. Table of pairwise distances between ITS-1 regions as calculated by PAUP V. 8.1 for eightChara haitensis isolates. Absolute distances are below the diagonal, and mean distances (adjusted for missing data) are above the diagonal ...... 52

4.4. Table of pairwise distances between ITS-2 regions as calculated by PAUP V. 8.1 for eightChara haitensis isolates. Absolute distances are below the diagonal, and mean distances (adjusted for missing data) are above the diagonal ...... 52

4.5. Table of pairwise distances between ITS-1 regions, with gaps coded as a fifth base, as calculated by PAUP v. 8.1 for eight Chara haitensis isolates. Absolute distances are below the diagonal, and mean distances (adjusted for missing data) are above the diagonal ...... 53

4.6. Table of pairwise distances between ITS-2 regions, with gaps coded as a fifth base, as calculated by PAUP v. 8.1 for eight Chara haitensis isolates. Absolute distances are below the diagonal, and mean distances (adjusted for missing data) are above the diagonal ...... 53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. List of Figures

2.1. Hypothesized phylogeny of genera sensu Wood and Imahori (1965), including pertinent Chara subsections. Note that Chara subsection Braunia is formed by hybridization between subsections Aghardia and Charopsis...... 8

2.2. Hypothesized phylogeny of genera sensu Khan and Sarma (1984), including pertinent Chara subsections ...... 10

2.3. Single most parsimonious tree (Iength=42, CI=0.881) for morphological data Bootstrap values are shown below each node. Note: outgroups not shown ...... 18

2.4. Majority-rule consensus tree of twelve most parsimonious trees (length=1073, CI=0.700). Consensus values are shown to the left of each node, and bootstrap values are shown to the right of each node. Note: outgroups not shown ...... 20 3.1. Wood and Imahori's (1965) phylogeny of Chara ...... 27

3.2. Proctor's (1980) phylogeny of Chara ...... 31

3.3. Majority-rule consensus tree for parsimony analysis of 18S rDNA data. Consensus indices are above each node ("*" indicates 100%) ...... 36

3.4. Maximum likelihood tree for 18s rDNA data ...... 37 4.1. Unrooted topology of hypothetical biogeographic relationships among isolates if isolates in the same region were more closely related to each other ...... 47

4.2. Map of the Americas, with arrows indicating provenance of isolates of Chara haitensis ...... 49

4.3A. Topology of the single most parsimonious tree for parsimony analysis (with and without gaps coded as a fifth base). Values above nodes are bootstrap values (500 replicates) for "regular" parsimony and values below the nodes are for gaps coded as a fifth base ...... 55 4.3B. Single tree from maximum likelihood analysis of the ITS-1 region ...... 55 4.4A. Consensus tree of 51 equally most parsimonious trees for parsimony analysis of the ITS-2 region. Consensus values are presented above the nodes and bootstrap values (500 replicates) below the nodes ...... 57 4.4B. Consensus tree of 3 equally most parsimonious trees for parsimony analysis with of the rrS-2 region with gaps coded as a fifth base. Consensus values are presented above the nodes and bootstrap values (500 replicates) below the nodes 57

4.4C. Single tree from maximum likelihood analysis of the ITS-2 region ...... 57 4.5A. Consensus tree of 3 equally most parsimonious trees for parsimony analysis of the combined ITS-1 and ITS-2 regions. Consensus values are presented above the nodes and bootstrap values (500 replicates) below the nodes ...... 58

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 4.5B. Topology of the single most parsimonious tree for parsimony analysis with gaps coded as a fifth base. Values below nodes are bootstrap values (500 replicates)...... 58 4.5C. Single tree from maximum likelihood analysis of the combined ITS-1 and ITS-2 regions...... 58

vu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Abstract

This dissertation examined generic, subsection, and infraspecific aspects of the phylogeny of the Characeae, and biogeography of Chara subsections and Chara

haitensis. These relationships were inferred from cladistic and maximum likelihood

analyses of sequence data for 18S and ITS regions of nuclear-encoded ribosomal RNA

genes. Morphologically-based phylogenetic hypotheses of Wood and Imahori (1965) and Khan and Sarma (1984) concerning the six extant members of Characeae were tested. The analyses supported: monophyly of family Characeae, tribe Chareae, and of Lamprothamnium; placement of Nitellopsis basal to tribe Chareae; and an unresolved

relationship between Lamprothamnium and Chara. Neither the hypothesis of Wood and

Imahori nor that of Khan and Sarma was strongly supported. Morphology-based hypotheses concerning relationships among Chara subsections by Wood and Imahori (1965) and Proctor (1980) were tested. Analyses

strongly refute Wood and Imahori's emphasis placed on traditional stipulode and

cortication characters as phylogenetically informative. Subsections and species of

different stipulode and/or cortication characters may be very closely related to each other

(ex. Chara hydropitys, C. brittonii, etc.), because stipulodes and/or cortication can be lost without affecting the other character. Lamprothamnium was strongly supported as being within Chara as some authors have suggested (Wood and Imahori 1965). Proctor's biogeographic hypothesis regarding a basic subsection split along a Laurasian

or Gondwanan origin is strongly supported.

The biogeography ofChara haitensis, a monoecious member of subsection

Willdenowia was examined to determine whether isolates from North and Central America showed a strictly geographic relationship. The patchwork pattern of

vm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. relationships found did not follow a strict regional relationship as would be expected if

migrating birds or other dispersal agents, as suggested by Proctor (1959, 1962, 1966), had no effect

Further examination of the monophyly of and tribe Nitelleae, the exact relationship between Chara and Lamprothamnium, identification of new phylogenetically informative morphological characters, and a method to link extant species with fossil data would provide a fuller understanding of this distinctive .

This study complements other molecular studies (McCourt et al. 1996) and has furthered our understanding of this important assemblage of green .

IX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 1

General Introduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2 Charophytes are macrophytic found in freshwater lakes, ponds and

streams. They possess relatively complicated thalli (a main axis with branches and various one-celled processes), and reproductive structures (Wood and Imahori 1965), and have an ancient history, with fossilized oospores (gyrogonites) found from the late (438 million years ago (my a)) (Daily 1970, Gram bast 1974, Feist and Feist 1997) to recent strata (Peck and Rekker, 1948). Presence of these gyrogonites has been

used to indicate strata age and the environmental conditions occurring in that locale

(Garcia 1994a, 1994b). Charophytes, as a group, had a greater species abundance in the mid- (90-110 mya), and the most diversification in the Eocene (58 mya) and Oligocene (37 mya). From the Miocene (24 mya) on, diversity of the group

decreased to its current state (Grambast 1974), though today there are only six extant genera (Wood and Imahori 1965).

Extant charophytes have been used to study ecology and succession in lakes and

ponds (Crawford 1977, Simons etal. 1994), cell physiology (McConnaughey and Falk 1991, Okazaki 1996), development (Kiss and Staehelin 1993, Hodick 1993), and green algal and vascular phylogeny (Mattox and Stewart 1984, Bremer 1985, Bremer et al. 1987, Graham, 1993, Wilcox etal. 1993, Surek etal. 1994).

Despite the wide use of the Characeae in biological studies, there have been some fundamental disagreements on the relationships within the family. Generic and species

phylogenies traditionally have been based on morphological and cellular characters, and the phylogenetic importance placed upon certain characters heavily influenced the resultant hypothesized phylogeny.

At the generic level, the phylogeny proposed by Khan and Sarma (1984) disagreed significantly with the traditional phylogeny presented by Wood and Imahori in

their 1965 Revision of the Characeae. Wood and Imahori, considered the following to

be phylogenetically informative characters: number of cells in the coronula, cortication of the main axis, presence of absence of stipulodes (one-celled processes arising at the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3 nodes of the main axis), monoecism versus dioecism, and branchlet characters such as segment number and branching pattern. Khan and Sarma retained most of the characters

that Wood and Imahori considered to be phylogenetically important, and they also

treated chromosomal and polyploid gradients, and geographic distribution of taxa, as

informative characters in determining phylogeny. However, whereas Wood and

Imahori viewed each genus as raonophyletic, Khan and Sarma interpreted the characters as indicating a polyphyletic origin for the genus Chara.

At the species level, the phylogeny of Chara has proven to be a topic of some debate. The traditional view as stated in Wood and Imahori (1965) assumed monoecism and dioecism were not accurate indicators of separate species. They considered the

number of rows of stipulodes and main axis cortication as the main characters

delineating subsections and phylogeny, and they viewed much of the variation they

noted in morphologically similar species as merely intraspecific variation, leading them to combine many monoecious species into a few "macrospecies." Having decreased the

number of recognized Chara species from 120 to just 19, they viewed the resultant

distribution of these "lumped" species as capable of revealing little of the biogeographic history of this genus.

Proctor, having entered the field of charophytology by studying how algae and small invertebrates can be dispersed by waterfowl (1959, 1962, 1966), undertook a rigorous examination of Wood and Imahori's main premises. He summarized his arguments in his 1980 paper (Proctor 1980) stating that number of rows of stipulodes

and type of main axis cortication are flût phylogenetically accurate characters, and that

monoecism and dioecism are accurate indicators of separate species. He further rejected

Wood and Imahori's "lumping" of monoecious species into "macrospecies." Also, he

hypothesized that the distribution of the dioecious members of Chara subsections could be used to determine the biogeography of the genus Chara, and hypothesized a basic

split among the subsections into those of Laurasian and Gondwanan origin. He called

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 4 on phycologists to test his falsifiable hypotheses, and help illuminate the phylogeny and biogeography of charophytes in general.

As information concerning organismal genomes and their sequences can

potentially yield large numbers of characters, and the rates of evolution for different

genomic regions varies(Miyamoto and Cracraft 1991), molecular data sets can be used to

test hypotheses based on morphological, cellular, ecological, and/or behavioral characters. In order to develop a data set independent of the morphological and cellular characters that have proven so fractious, the sequences of the small subunit and the

internal transcribed spacers of the nuclear-encoded ribosomal tandem repeats were analyzed to infer phylogenetic and biogeographic patterns.

The major foci of this dissertation were as follows: 1) the testing of Wood and

Imahori's (1965) versus Khan and Sarmas (1984) hypothesized phylogenies concerning extant members of the Characeae; 2) the testing of Wood and Imahori's

(1965) versus Proctor's (1980) hypothesized phylogenies among Chara subsections; and 3) an examination of the biogeography of Chara haitensis, a monoecious member of

subsection Willdenowia, found in North, South, and Central America. These three

topics will be considered in the following chapters of this dissertation. Much of the data

generated in this dissertation has been made available in GenBank and, thus, is available for future studies on this unique and evolutionarily fascinating group of green algae. Vouchers for the samples used in this study will be deposited at the Smithsonian

Institution's (US) herbarium.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 2

Phylogeny of the Characeae (Charophyta) Inferred from Organismal and Molecular Characters*

Reprinted by permission of Archiv fiir Protistenkunde

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 6 Introduction The Characeae, commonly known as muskgrasses, stoneworts or bassweeds, are a group of macrophytic green algae that live in freshwater lakes, ponds, and streams

on all continents except Antarctica. The exhibits apical growth, is anchored to the

substrate via rhizoids, and is composed of a central axis with lateral branchlets forming at the nodes (Wood and Imahori 1965). The Characeae are oogamous, have motile sperm cells (antherozoids), and possess sterile cells enclosing their oogonia (forming a

nucule) and their antheridial filaments (forming a globule) (Bold and Wynne 1985). They are among the few green algae that produce a cell plate during

(Chapman and Henk 1983).

Determining the exact relationship among the Characeae, other green algae, and vascular has been problematic. Mattox and Stewart (1984) placed the order within the class of the green algae () based on cellular and morphological characters (flagellar structure, modes of cell division and type of cell covering). Bold and Wynne (1985) elevated the charophycean green algae to a

separate division (Charophyta) citing "significant evolutionary divergence" from

chlorophycean green algae based on their complex cellular and morphological characters (vegetative and reproductive structures, sperm morphology, etc.). Some studies (Chapman and Buchheim 1991, Chapman and Buchheim 1992, Wilcox et al. 1993)

have placed the Charales as sister taxa to vascular plants, while others have placed the as sister taxa to vascular plants (Mishler and Churchill 1985, Bremer 1985, Graham etal. 1991).

Although one or more representatives of the family Characeae have been important in phylogenetic studies of green algae (Chapman and Buchheim 1991; Wilcox etal. 1993; Ragan etal. 1994; Surek et al. 1994), non-vascular plants (Mishler and

Churchill 1985; Graham et al. 1991; Mishler et al. 1994), and vascular plants (Chapman

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 7 and Buchheim 1992; Bremer 1985), only one major molecular study has focused solely on the phylogeny within this family (McCourt et al. 1996).

In their monograph. Wood and Imahori (1965) outlined their hypothesis (Figure 2.1) concerning the phylogenetic relationships within the Characeae. They recognized two tribes: Chareae (comprising Chara, Lamprothamnium, Lychnothamnus, and Nitellopsis) and Nitelleae (comprising and Nitella). Their hypothesis

proposed the six extant genera as separate and monophyletic entities. Wood and Imahori also suggested "independent parallel evolution" of Chara and Nitella after the origin of

the charophytes in the or pre-Triassic (1965).

Wood and Imahori based their hypotheses (Figure 2.1) on extensive morphological comparisons "of widespread taxa and local subtaxa." They noted that widespread taxa exhibit a "continuum of features general to the group, " and isolated taxa

exhibit unusual trends that may vary from the general group. Eleven general trends that Wood and Imahori hypothesized to correlate with the phylogeny of the genera were

noted: 1) a change in gametangial position from "random occurrence" to "localization in

upper regions;" 2) a generalized undifferentiated thallus becoming differentiated into fertile and sterile regions; 3) fertile branchlets becoming reduced and modified in size and shape; 4) fertile whorls forming fertile heads by becoming isolated on reduced and

modified axes; 5) thalli without mucus to thalli with mucus present; 6) axes originally

being a diplostichous cortex (2 tiers of one-celled processes at nodal cells of axes) to

haplostichous; 7) completely corticated to partial or total loss of cortication; 8) monoecism to dioecism; 9) nodes bisexual to nodes unisexual; 10) "much-branched" thallus to thallus with "fewer laterals;" and 11) branching branchlets to non-branching

branchlets. Nonetheless, their extensive study did not include an explicit parsimony

analysis of these morphological characters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chara-Hartmania

Chara-Chara

Chara-Grovesia

Chara- Willdenowia H 2. O’ Chara- Wallmania « 5 Chara-Aghardia I >Chara-Braunia % Chara-Charopsis

Lamprothamnium

Lychnothamnus

Nitellopsis Tolypella I % Nitella

Figure 2.1. Hypothesized phylogeny of genera sensu Wood and Imahori (1965), including pertinent Chara subsections. Note that Chara subsection Braunia is formed by hybridization between subsections and Charopsis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 9 Khan and Sarma (1984) have also proposed a phylogeny for the Characeae (Figure 2.2) based on consideration of the following as valid taxonomic characters: 1) observed gradients in chromosome and polyploid levels; 2) geographical distribution; 3) the acceptance of monoecism and dioecism as indicators of separate species; 4) degree of axial cortication; and 5) thallus branching patterns. Their hypothesis proposed that a subsection of Nitella gave rise to Nitellopsis, which then gave rise to the rest of the tribe

Chareae. They also proposed that the Chara subsection Charopsis gave rise to

Lamprothamnium, and subsection Agardhia eventually gave rise to Lychnothamnus, thus rendering Chara a paraphyletic genus. Since a full examination of all Chara subsections would be beyond the scope of this paper, only pertinent subsections will be

examined to test the phylogenies of Lamprothamnium and Lychnothamnus. Fossil evidence of the origin and evolution of charophytes is based mainly on

characteristics of gyrogonites (fossilized oogonia) (Grambast 1974). Fossilized

gyrogonites of extant species have been found as far back as the Paleocene (66 mya) and Quaternary (1.6 mya) for Nitellopsis, upper Cretaceous (75-80 mya) for Tolypella, lower Cretaceous (120-144 mya) for Lamprothamnium, and mid-Eocene (43 mya) for

Chara (Grambast 1974). Some of the significant characteristics used to delimit species and indicate relationships are: a sinistral or dextral spiral to the gyrogonite cells; a

reduction in number of gyrogonite cells; and modifications of the gyrogonite which

enclose and protect the egg (Feist and Grambast-Fessard 1991). The earliest evidence of either fossilized or extant charophytes dates back to the Upper Siliuian (438 million years ago (mya)) (Feist and Grambast-Fessard 1991), with a greater species abundance

in the mid-Cretaceous (90-110 mya), and the most diversification in the Eocene (58

mya) and Oligocene (37 mya). From the Miocene (24 mya) on, diversity of the group

decreased to its current state (Grambast 1974).

Based on fossil gyrogonite characters. Feist and Grambast-Fessard (1991) hypothesized that extant charophytes originated from the fossil family Porocharaceae,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 10

Chara-Grovesia

Chara- Willdenowia Chara-Hartmania

Chara-Chara

Chara- Wallmania H 2. c r Chara-Braunia sA Lychnothamnus I Chara-Agardhia %

Chara-Charopsis Lamprothamnium

Nitellopsis Tolypella

Nitella

Figure 2.2 Hypothesized phylogeny of genera sensu Khan and Sarma (1984), including pertinent Chara subsections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 11 which contains two distinct subfamilies: Porocharoideae (hypothesized to have given rise to the extant tribe Chareae) and Stellatocharoideae (hypothesized to have given rise to the extant tribe Nitelleae). In the Feist and Grambast-Fessard hypothesis, Tolypella is

polyphyletic, which is supported by rbcL sequencing of extant species (McCourt et al. 1996); however, this particular hypothesis was not addressed in the present study.

In the present study we compared the Wood and Imahori (1965) hypothesis vis-

a-vis the Khan and Sarma (1984) hypothesis concerning generic relationships within the Characeae. Two phylogenetic methods were used in this study: parsimony and maximum likelihood. Parsimony selects the phylogeny that minimizes the number of

evolutionary changes for the given data (Hillis et al. 1993), and permits "a limited

amount of character change and branch-Iength variation" while still performing well

(Huelsenbeck and Hillis 1993). Maximum likelihood chooses the tree that maximizes

the probability of the given data occurring according to a specified evolutionary model (Felsenstein 1988). Maximum likelihood is considered highly efficient at tree evaluation

when its evolutionary assumptions are met (Hillis et al. 1994; Huelsenbeck 1995).

A cladistic analysis of a data set composed of chromosome numbers from Khan and Sarma (1984) and morphological data derived from Wood and Imahori’s

monograph (1965) for extant taxa was completed to determine the level of support for

the hypotheses proposed by Wood and Imahori vis-a-vis that of Khan and Sarma. The nuclear-encoded SSU sequence data for 18 species from all six extant genera were analyzed separately by parsimony and maximum likelihood methods. Also, the

morphological and molecular characters were combined and analyzed by parsimony. Materials and Methods

Morphological Data and Analyses. Morphological characters (Table 2.1) for

each genus in the order Characeae were obtained from A Revision of the Characeae (Wood and Imahori 1965), with basal chromosome numbers obtained from Khan and Sarma (1984). Information on the outgroup for the morphological analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ■DCD O Q. C g Q.

■D CD Table 2.1. Table of morphological data.

C/) C/) Cbaractg; Chara Nitella Ctflwcbagic o ' 3 a. cortication present/absent both absent present absent absent absent absent O b. number of branchlet segments 2-13 2-5 2-5 2-5 3+ 3+ 0 3 c. stipulodes present/absent present present present absent absent absent absent CD d. number of tiers of stipulodes 1-2 1 1 1 0 0 0 g "O e. monoecious/dioecious both monoecious monoecious dioecious both both both cq' f. bract cells present/absent present present present present absent absent absent <—► g. bracteoles present/absent present present present absent absent absent absent h. number of cells in coronula 5 5 5 5 10 10 0 1 CD i. number of tiers in coronula 1 1 1 1 2 2 0 T| j. bulbil shape both simple simple compound absent compound absent C k. branch furcation present/absent absent absent absent absent present absent absent 3" 1. mucus on heads present/absent absent absent absent absent both absent absent CD CD m. antheridial position in rel. below above lateral ? separate below above "O 3 to Q. n. number of cells for 1 1 +1 1 7 1 1 C a gametangial origin o ' o. distribution on continents all except Europe Europe, Asia Europe, Asia Eurupe,Austr all except ? 3 Antarctica Asia, Austr. N. America N/S. America Antarctica "O o p. basal number of chromosomes 7 7 7 7 3 3 or 5 6

1—H q. dimorph. branches absent present absent absent present present absent CD Q. present/absent § r. oospore shape terete terete terete terete lat. compr.* terete round 1—H 3" s. fertile heads present/absent absent present absent absent present present absent O c t. lime present/absent both absent absent present both present both

T3 CD ♦ "lal. corapr." = laterally compressed shape of oospore bract cells = stipulodes/spine like processes located at the nodes (/) bracteoles = stipulodes/spine-like processes that develop from the antheridial laterals. bulbils = vegetative reproduction structures that form on the rhizoids. coronula = 1-2 tiers of 5 or 10 cells respectively, located on top of the oogonium. segment = intemode on the thallus stipulodes = 1-celled processes arising from the peripheral nodal cell of the axes.

W 13 , was obtained from Bold and Wynne (1985) except the monoecious/ dioecious data which was obtained from Smith (1933), and the chromosome number which was obtained from Abbas and Godward (1963). These data were coded as indicated in Table 2.2 and analyzed with PAUP, Version 3.1.1 (Swofford 1993) using an exhaustive search.

DNA Extraction. Purification. Amplification and Sequencing. All taxa

considered in this study are listed in Table 2.3. Samples grown in clonal culture obtained as semidry material, placed in sterile labeled centrifuge tubes, and stored at -70°C. DNA was extracted and purified with a modified Su-Gibor method (Su and Gibor, 1988), using a modified Lee and Taylor (1990) buffer followed by the "Total

Nucleic Acid Extraction Protocol" in the IsoQuick Extraction Kit (ORCA Research, Inc.,

Bothell, WA) and the "Elimination of Residual Organic Solvents" protocol in the Gene

Clean H Kit (LaJolla, CA). All samples were suspended in either 50-100 (J.1 TE buffer (1 mM Tris-HCl, pH 7.5,0.1 mM EOT A) or sterile distilled water, checked for integrity

and visually quantified by electrophoresis in agarose gels stained with ethidium bromide and stored at -20°C.

Nuclear-encoded SSU genes were amplified by PGR with flanking primers 18B

reverse complement and 18L, 18G reverse complement and 18H (Hamby etal. 1988), using dNTPs (Perkin-Elmer) and Taq polymerase (Gibco BRL or Perkin-Elmer) in a DNA Thermal Cycler (Perkin-Elmer Cetus). Genomic DNA was denatured at 95°C;

primers annealed at 52°C; and extension carried out at 72°C. The optimum number of

amplification cycles varied with each isolate, but 25-30 iterations were routinely used. Controls were used to ensure that any amplified product was not a contaminating nucleic

acid. Amplified product was visualized by electrophoresis on agarose gels stained with ethidium bromide, and a 1 kB ladder (Gibco BRL) was used to estimate the length of the amplified product. Double-stranded amplification product was purified using Millipore

Ultrafree-MC LTK 00 (30,000 NMWL filter unit) filter packs in an Eppendorf variable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 14

Table 2.2 Data matrix for parsimony analysis of morphological characters

Character Label: a bcde f g h ii klmno DQ rs t Chora 12 12 1 11112 0030 1 30101 Lamprothanmium 0 1 1 10 11111 00005 3 1100 Lychnothamnus 2 1110 11111 002 14 30 100 Nitellopsis 0 10 12 10113 00703 30 102 Nitella 0200 1 00220 11172 0 12 11 Totypella 0200 1 00223 0030 1 11112 Coleochaete 0000 1 00000 00007 2000 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 7J ■DCD O Q. C g Q.

■D CD

(/) (/) Table 2.3. List of species name, (Chara) subsection, GcnBank accession number, and 18S rDNA sequence author.

Species Subsection Genbank Acc. No. Sequence Author

CD Chara australis X-067 Charopsis-1 U18104 Rootes and Chapman- 1994 (ds) 8 Chara curtssii X-500 Agardhia U18494 Rootes and Chapman- 1994 (ds) ■D Chara connivens X-214 Grovesia U 18493 Rootes and Chapman- 1994 (ds) 3. CÛ Chara drouetii TAMPS-14 Willdenowia U 18495 Rootes and Chapman- 1994 (ds) Chara hispida X-462 Hartmania U 18496 Rootes and Chapman- 1994 (ds) Chara hornemannii 768 Wallmania U 18497 Rootes and Chapman- 1994 (ds) Chara muelleri X-88I Braunia U81270 Meiers and Chapman- 1996 (ds) X-932 Chara U81271 Meiers and Chapman- 1996 (ds)

3. Nitella sp. M9561 Wilcox etal. 1993 3 " CD Nitella axillaris U81269 Meiers and Chapman- 1996 (ds) Niteiia Jlexilis U05261 CD Ragan et al. 1994 ■D 854 U81268 O Meiers and Chapman- 1996 (ds) Q. Lamprothamniurn papulosum U 18509 Rootes and Chapm an-1994 (ds) C a Lamprothamium macropogon X-695 U18508 Rootes and Chapman- 1994 (ds) 3O Lychnothamus barbatus U81272 Meiers and Chapman- 1996 (ds) "O Tolypella porteri X-907 U 18528 Rootes and Chapman- 1994 (ds) o atmophyticus M95612 Wilcox et al. 1993

CD Coleochaete orbicularis M95611 Wilcox et a/. 1993 Q. Glycine max X02623 Eckenrode and Meagher 1884 Klebsonnidium flaccidum X75520 lluss 1993 (ds) Saccharomyces cerevisciae V01335 Rubstov et al.. 1980 ■D grevilleana U 18523 Rootes and Chapman-1994 (ds) CD (ds) denotes direct submission to GcnBank by tlie autliors C/) C/)

LA 16 speed microfuge to remove unincorporated dNTPs and excess primers. Purified, double-stranded product was sequenced with the reagents and protocols that accompany the AmpliCycle Sequencing Kit (Perkin-Elmer Cetus) using internal 18S primers described by Hamby etal. (1988). Primers were labeled with (32p)ATP, and fragments

were separated by electrophoresis on 6% acrylamide or Long Ranger (FMC

BioProducts, Rockland ME) gels, and visualized by exposure to x-ray film (Kodak X- OMatRPXRP-5). Data Handling and Analvses. Sequence data were recorded, stored and aligned

with the Genetics Computer Group (GCG) software package (V. 8.0 1994) mounted on an IBM RS6000 computer. Model 590. Alignment of sequences was facilitated by the

GAP and LINEUP software packages included in the GCG package and refined by

manual alignment. The alignment is available from the authors upon request.

A cladistic approach was used to infer phylogenetic hypotheses regarding the relationships of the taxa in question (see e.g., Hillis 1987; Bremer et al. 1987; Mishler et

al. 1988; Theriot 1989). Aligned sequences of approximately 1774 nucleotide bases

(284 informative sites in the total matrix, 166 for the Characeae and Coleochaete only)

were converted into arrays of unordered character state data (A, G, C, T, X, [gap], or ?

[unknown]) found at a given site for use in cladistic analyses, with Coleochaete scutata, Chlorokybus atmophyticus, Klebsormidlum flaccidum, Spirogyra grevilleana. Glycine maxima, and Saccharomyces cerevisiae as the outgroups, to test the monophyly of the Characeae. Because there were 22 taxa to be analyzed, heuristic searches were

performed using the "general" and "branch swapping" algorithms of PAUP (Swofford

1993). All nucleotide characters were weighted equally. The molecular data were also

analyzed in twenty separate submissions with maximum likelihood (fastDNAml v.

1.0.8, Olsen 1994) based on Felsenstein's (1990) DNAML program that generates trees utilizing a "simple probabilistic model of DMA evolution" (Felsenstein 1981).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 17 The argument for examining the "total evidence" (Kluge 1989) is based on the

idea that a combined analysis may increase the explanatory power of the data (provided the data sets have the same evolutionary histor>'), and a weak phylogenetic signal in one

or both of the data sets may be further amplified by combining the data (Barrett et al.

1991). Although Bull et al. (1993) have raised the question of homogeneity between data sets to be combined, we do not know of any statistical test for homogeniety that is generally accepted. The tree-length distributions for each data set were highly skewed to the left, thus indicating the characters in each data set contain a strong phylogenetic signal (Hillis 1991; Huelsenbeck 1991). In considering that the trees from both our

morphological (20 characters) and molecular (284 informative characters) data sets have

approximately the same topology, and there is some ambiguity as to the monophyly of Chara, the two data sets were combined to further enhance the phylogenetic signal present in both data sets (Barrett etal. 1991).

Results Morphological Data. An exhaustive parsimony search with morphological data

obtained from Wood and Imahori (1965) and chromosome data from Khan and Sarma

(1984) yielded a single most parsimonious tree (Figure 2.3) for the six genera (length =42 steps and consistency index (CI)=0.881). The analysis indicated support (70% Bootstrap value) (Figure 2.3) for the tribe Chareae, and for the tribe Nitelleae (72%

Bootstrap value). However, in disagreement with both the Wood and Imahori and the

Khan and Sarma hypotheses, Lamprothamniurn and Lychnothamnus were supported (80% Bootstrap value) as being more closely related to each other than either was to the

genus Chara. Figure 2.3 agrees with both Wood and Imahori and Khan and Sarma's hypotheses (Figure 2.2) concerning the monophyly of both Chareae and Nitelleae, but disagrees with either hypothesis of relationships for Chara, Lamprothamniurn, and

Lychnothamnus.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 18 Chara

Lychnothamnus 5 7% 80% 70% Lamprothamnium

Nitellopsis

Tolypella

72% Nitella

Figure 2.3. Single most parsimonious tree (Iength=42, CI=0.881) for morphological data. Bootstrap values are shown below each node. Note: outgroups not shown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 19 Parsimony and Maximum Likelihood Analvses of the SSU Data. Parsimony analysis of the SSU sequence data yielded 12 equally most parsimonious trees (length=1073, CI=0.700), of which the majority-rule consensus tree is presented (with consensus

values shown above each node, and bootstrap values from 4000 replications shown below each node) (Figure 2.4). The monophyly of the genus Nitella is not supported. This tree suggests strong support for monophyly of: the Characeae (100% consensus value, 100% Bootstrap value), the tribe Chareae {sensu Wood and Imahori 1965) (100%

consensus value, 98% Bootstrap value) and Lamprothanmium (100% consensus value,

100% Bootstrap value). The placement of Nitellopsis as the basal taxon in the Chareae

is strongly supported (100% consensus value, 98% Bootstrap value) as is the placement of Lychnothamnus basal to the Chara-Lamprothamnium (100% consensus value, 95% Bootstrap value). The monophyly of Chara is not supported as Lamprothanmium and Chara form an unresolved trichotomy.

Maximum likelihood analysis of the SSU sequence data yielded a tree (Ln

likelihood=-8016.66779) that differed from the parsimony tree (Figure 2.4) only in

resolving the Chara-Lamprothamnium trichotomy by placing Chara drouetii basal, with the Lamprothamnium clade sister to the rest of the Chara taxa. This maximum likelihood

tree, as well as the parsimony tree, supports monophyly of the Characeae, the tribe Chareae, and Lamprothanmium, as well as supporting Nitellopsis as basal to the rest of

the Chareae. Also in agreement was the placement of Lychnothamnus basal to a

raonophyletic Chara-Lamprothamnium clade, although the tribe Nitelleae and the genera

Nitella and Chara were not supported as monophyletic. Parsimony Analysis of the Combined Data. Parsimony analysis of the combined morphological and SSU sequence data, each character weighted equally, yielded six

equally most parsimonious trees (length=1126, CI=0.701) which differed from the

parsimony and maximum likelihood trees only in: 1) Nitella axillaris placed basal to a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 20 Chara connivens «% Chara hornemannii 67% Chara hispida 92% 58% Chara vulgaris

92% Chara curtissii 97% 70% 92% Chara australis

75% Chara muelleri

Chara drouetii

Lamp, macropogon

Lamp, papulosum

Lych. barbatus

Nitellopsis obtusa

Nitella axillaris

Nitella sp.

^

* = 100% ^ Tolypella porteri Figure 2.4. Majority-rule consensus tree of twelve most parsimonious trees Gength=I073, CI=0.700). Consensus values are shown to the left of each node, and bootstrap values are shown to the right of each node. Note: outgroups not shown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 21 monophyletic tribe Nitelleae, and 2) Lamprothamnium placed basai to a monophyletic though partially unresolved Chara clade.

The parsimony and maximum likelihood parsimony analysis of the molecular

data, and parsimony analysis of the combined data agree on: 1) monophyly of the Characeae, 2) monophyly of the tribe Chareae, 3) monophyly of Lamprothamnium, 4) placement of Nitellopsis basal to the rest of the Chareae, 5) non-monophyly of Nitella,

and 6) placement of Lychnothamnus basal to a Chara-Lamprothamnium clade.

Discussion

Monophyly of the Characeae, the tribe Chareae, and the genus Lamprothamnium

is in accordance with both Wood and Imahori's and Khan and Sarma's hypotheses, although the monophyly of the tribe Nitelleae and the genera Chara and Nitella remain in question However, neither hypothesis is robustly supported by either the parsimony or

maximum likelihood analysis of the molecular data, or by parsimony analysis of the combined data.

The monophyly of tribe Nitelleae is supported only by the parsimony analysis of

the combined data, and in this analysis it is placed basal to the monophyletic tribe Chareae. This placement is in conflict with both Wood and Imahori's and Khan and

Sarma's hypotheses. The question of monophyly for the tribe Nitelleae may be resolved by further taxon sampling within both Nitella and Tolypella.

In agreement with both Wood and Imahori's and Khan and Sarma's hypotheses,

the parsimony and maximum likelihood analysis of the molecular data, and parsimony

analysis of the combined data indicate strong support for the monophyly of Chareae, with Nitellopsis strongly supported as basal within the clade (100% consensus value in

the parsimony analysis of the molecular data, and in the parsimony analysis of the combined data).

The strongly supported placement of Lychnothamnus basal to the Chara-

Lamprothamnium clade, supports Wood and Imahori's hypothesis of Lychnothamnus

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 22 basal to Chara and Lamprothamnium, but does not support Khan and Sarma's

hypothesis of Lychnothamnus derived from Chara subsection Aghardia. Even at 1077

steps (1577 trees), the node supporting a monophyletic Chara-Lamprothamnium is supported in 100% of the consensus trees, thus indicating robust support for Lychnothamnus as a genus separate from Chara.

The placement of Lamprothamnium relative to Chara is unresolved, being

included in a trichotomy in the parsimony analysis, within the Chara clade in the

maximum likelihood analysis, and basal to Chara in the parsimony analysis of the

combined data. However, placement of Lamprothamnium within the Chara clade is not in agreement with either Wood and Imahori's nor with Khan and Sarma's hypotheses

(in their exact placement of Lamprothamnium as derived from subsection Charopsis).

Lamprothamnium has historically been included within the genus Chara, but was later transferred to the subgenus Lychnothamnus by Ruprecht (1845) and subsequently raised

to genus level by Leonhardi (1863). In the present study, possible placement of

Lamprothamnium within the Chara clade does not support the status of Lamprothamnium as a separate genus, but does suggest its status as a subgenus within Chara as proposed by Ruprecht (1845).

Further support for Lamprothamnium being included within the genus Chara can

be found in observations by Wood and Imahori (1965) that morphological characters

within the Characeae are relatively plastic under varying environmental conditions.

Plasticity of thallus phenotype may be influenced by intense light, wave action, brackish conditions, low water level in conjunction with high water temperatures, nutrient-

impoverished conditions, etc. In compiling the monograph. Wood and Imahori (1965)

commented that "Such plasticity in ecological expression demands care in making

taxonomic decisions, as it is difficult to know which phenotypes' are environmentally

induced and which ones are genetically controlled."

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 23 On the other hand, the fossil record (Feist and Grambast-Fessard 1991; Martin- Closas and Schudack 1991) supports Lamprothamnium as a distinct genus based on gyrogonite characters such as the presence or absence of periapical grooves and apical nodules, variations in the width of cells surrounding the apex, and the structure of the basal plate.

The monophyly of the genus Chara is unresolved in this study: in an unresolved

trichotomy with Lamprothamnium in the parsimony analysis of the molecular data, polyphyletic in the maximum likelihood analysis of the molecular data, and monophyletic in the parsimony analysis of the combined data. Although polyphyly is in

agreement with Khan and Sarma's hypothesis, the exact relationships between the

subsections do not clearly support either hypothesis. A more comprehensive taxon sampling may elucidate the relations among the Chara subsections themselves, and

between the subsections and Lamprothamnium. Data from the rbcL gene (McCourt etal. 1996) also support the monophyly of the Characeae and the tribe Chareae, and for the tribe Nitelleae. In the

McCourt et al. analysis, the node connecting the Chareae to the paraphyletic Nitelleae is not strongly supported, as evidenced by the fact that increasing tree length by only one

step results in a Chareae-Nitella-Tolypella trichotomy. The analysis considered low

decay indices and bootstrap values for the Chareae-Nitelleae node as "weak evidence against the monophyly of Nitelleae,” and the authors recommended additional morphological and molecular analyses to resolve this ambiguity in relationships. The

McCourt et al. analysis also placed Nitellopsis as sister taxon to Lychnothamnus, and not basal to a Chara-Lamprothamnium-Lychnothamnus clade as in Wood and Imahori's

and Khan and Sarma's hypotheses. Lamprothamnium was placed as sister taxon to

Chara, a relationship that is in agreement with Wood and Imahori's hypothesis.

Despite the agreement on the monophyly of the Characeae, the tribe Chareae, and the genus Lychnothamnus, and the placement of Nitellopsis relative to the rest of tribe

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 24 Chareae, the various analyses from this study do not clearly support either Wood and

Imahori's (1965) nor Khan and Sarma's (1984) hypotheses. Although the placement of some taxa are in question {Nitella axillaris and Lamprothamnium), and the monophyly of tribe Nitelleae and the genera Chara and Nitella are not strongly supported, a greater taxon sampling in these areas could provide a more robust resolution of the relationships within and among these taxa than can the present generic level study. Currently, a more

extensive examination of the relationships among the Chara subsections is underway in our laboratory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 3

Phytogeny and Biogeography ofChara (Charophyta) Inferred from 18S rDNA Sequences.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 26 Introduction

Members of the genus Chara are macrophytic green algae living in freshwater lakes, ponds, and streams on aU continents except Antarctica. They are distinguished from other genera of the Characeae by having undivided branchlets arising at the nodes

of the main axis, one to two rows of stipulodes subtending the branchlets, axes corticate or ecorticate, branchlets of one to 18 segments, five to seven bract-ceUs at each node,

and usually two bracteoles arising from the gametangial stalk (Bold and Wynne 1985).

Fossil evidence of characean taxa goes back to the , with fossilized oogonia (gyrogonites) from the mid-Eocene (43 million years ago [mya]) for modem Chara and Lamprothamnium (Grambast 1974).

Traditionally (Braun 1849, Zaneveld 1940, Wood 1962, Wood and Imahori

1965), Chara has been divided into two subgenera, primarily based on the presence of

either one row of stipulodes (subgenus Charopsis sensu Wood and Imahori 1965) or

two (subsection Chara sensu Wood and Imahori 1965). In their 1965 monograph. Wood and Imahori retained this subgeneric split and further delimited sections and subsections (Figure 3.1) based on: 1) corticate vs. ecorticate main axis; 2) type of

cortication, if present, on the main axis; 3) branchlet characters; 4) bract-cell and spine

cell length and arrangement; 5) height of thallus; and 6) in some cases monoecism vs.

dioecism. However, Wood and Imahori did not believe that monoecism and dioecism

were indicators of separate species. Instead, they used the morphological and organismal characters shown in Table 3.1, combining many morphologically similar monoecious and dioecious pairs into one species, and also forming single

"macrospecies" from several morphologically similar monoecious taxa. Ultimately,

Wood and Imahori "lumped" 120 species into just 19, and the distribution of these 19

species was then viewed as revealing little about the evolutionary history of this genus.

Contrary to Wood and Imahori's premises, McCracken et al. (1966) and Proctor

(1971a, 1971b) showed experimentally that monoecism and dioecism validly reflect

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 27

Chara

Subsection Chara

Hartmania

Desvauxia

Kuetzingia

Willdenowia

Grovesia

Agardhia

Wallmania

Braunia

Subsection Charopsis Charopsis

Figure 3.1. Wood and Imahori’s (1965) phylogeny of Chara.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 28 Table 3.1. Characters used to delimit genera, sections, and subsections for Chara and Lamprothamnium sensu Wood and Imahori (1965). Genus Otara - axes corticate or ecorticate - branchlets 1-18 segments, distal segments 1- or more-celled - stipulodes in 1-2 tiers, l-2(-4) per branchlet - bract cells 5-7 at branchlet n o ^ , occasionally rudimentary - monoecious or dioecious - bracteoles usually 2, arising from gametangial stalk - conjoined gam etan^ borne on antheridial stalk, oogonia above antheridia Stfbggnvis C?K?rg - stipulodes in 2 tiers, often with fairly small stipulodes and bract cells - typically corticate, with numerous (4-18) branchlet segments Section Chara - axial cortex 2-corticate Subsection Chara - spine-cells solitary or rarely geminate or fasiculate Subsection Hartmania - spine-cells predominantly fasiculate, rarely solitary or geminate - monoecious SggljppPfsvfwxia - axial cortex 1-corticate (secondary cells absent or not elongated) Section Grovesia - axial cortex 3-corticate Subsection Grovesia - bract cells small or fairly large, rarely as long as branchlet segments, slender - axes to lOOOp. in diameter Subsection Kuetzineia - cortex of basal branchlet segment present, but distinctly discolored or transparent - basal branch often malformed, shortened, or swollen Subsection Willdenowia - cortex absent on basal branchlet segment (gymnopodous) Subgenus Charopsis - stipulodes in 1 tier - typically ecorticate, with cortex restricted to axis (occasionally gymnopodous), with few (1-6) branchlet sepnents - often with large stipulodes and kact cells Section Ctoroprfr - axes and branchlets ecorticate

Subsection (Table con'd.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 29 - axes corticate, branchlets corticate or ecorticate - monoecious or dioecious - plants small or moderately large Subsection Braunia - branchlets ecorticate, with terminal corona of reduced bract cells - monoecious - plants medium to small in size (approx. to 30 cm. high) - axial cortex (2-)3-corticate Subsection Wallmania - branchlets ecorticate, without terminal corona - dioecious - plants medium to large in size (approx. 50- 60 cm. high) - axial cortex 2-3-corticate Genus Lamprothamnium - ecorticate main axis and branchlets - stipulodes in 1 tier, 1 per branchlet, strongly decumbent, opposite - monoecious - gametangia from a single peripheral branchlet node cell - conjoined gametangia generally have oogonia below antheridia

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 30 separate species and further demonstrated that reproductive isolation does not always

parallel morphological variation. Proctor (1967) also found Nitellopsis bulbilifera (which lacks stipulodes) conspecific with Chara buckellii and C. longifolia (both haplostephanous), indicating that neither the presence or absence of stipulodes nor

cortication differences were consistent indicators of reproductive isolation. Proctor et al.

(1971) and Proctor (1971a) experimentally examined reproductive isolation within

subsection Willdenowia and validated at least seven "varieties” sensu Wood and Imahori

as valid species. Similarly, Forsberg (1973) questioned Wood and Imahori's combining of monoecious and dioecious species into a single species. He used the example of monoecious C. globularis and dioecious C. aspera, which were combined into one

species by Wood and Imahori (1965), despite the various morphological, ecological, and reproductive differences between the two.

In 1980, Proctor proposed an alternative phylogeny for Chara (Figure 3.2). He

accepted monoecism and dioecism as valid criteria for delineating species, citing evidence of reproductive isolation in morphologically similar monoecious and dioecious species pairs. Proctor hypothesized that the separation of Pangaea into Gondwana and

Laurasia (ca. 160 mya) led to the initial division of the genus. Subsections Chara,

Desvauxia, and Hartmania were Laurasian in origin, and sections Agardhia, Braunia,

Charopsis, Grovesia, Wallmania, and Willdenowia were Gondwanan. Proctor viewed

the subsequent breakup of both Laurasia and Gondwana as the cause of further divergence into the various subsections. Proctor also hypothesized that the distribution of dioecious species could be biogeographically important, because they are less vagile

and "consequently better indicators of evolutionary tracks." He proposed several

falsifiable hypotheses concerning, among other things, a de-emphasis on the

phylogenetic importance of stipulode and cortication characters, relationships between

subsections, and distribution of dioecious

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 31

Agardhia (S. Australia)

Gondwanana Willdenowia (S. America)

Braunia (Dioec. Rep. Unknown)

Wallmania (NJS. America)

Charopsis (Australia/ S.E. Asia)

Grovesia II (S. Africa)

Grovesia I (Mediterranean)

Desvauxia (Eurasia)

Chara (Eurasia)

Laurasian Hartmania (Dioec. Rep. Unknown)

Figure 3.2. Proctor's (1980) phylogeny of Chara.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 32 species, that could be used to examine the phylogeny and biogeography of this distinctive genus. Although molecular data have been used to infer relationships among genera within

the Characeae (McCourt et aL 1996, Meiers et al. 1997) no molecular studies have focused specifically on subsection relationships within the genus Chara. In the present study we

analyzed 18S rDNA sequence data to compare both Wood and Imahori's (1965) and Proctor's (1980) hypotheses concerning the subsection relationships within the genus Chara, and to test whether the morphological characters of stipulodes and cortication type are phylogenetically informative. Because a previous examination of generic relationships

among the Characeae as inferred from 18S rDNA data (Meiers et al. 1997) was

uninformative concerning Lamprothanmium as a genus separate from Chara, and because,

in contrast, analysis of rbcL data (McCourt etal. 1996) supported Lamprothamnium as sister to Chara, two species of Lamprothamnium were included in this study.

Materials and Methods The protocol for DNA extraction, purification, amplification, and sequencing has

been published (Meiers, etal. 1997). All species used in this study are listed in Table

3.2. Chara australis and C.foetida, submitted to GenBank by Ragan et al. (1994) and Huss (impubl.) respectively, were included to increase the number of taxa sampled and to include as many species of Chara as possible. Species sampling emphasized subsections

Agardhia, Chara, Charopsis, Grovesia, Wallmania, and Willdenowia to provide an appropriate sampling of subgenera Chara and Charopsis for testing the two phylogenetic

hypotheses. These subsections each possess dioecious representatives that may be

helpful in elucidating any biogeographic patterns that may be present Although only one

representative each of subsections Hartmania (C. hispida) and Braunia (C. muelleri) were available for taxon sampling,these subsections have no known dioecious representatives

and would not have been informative in the biogeographic analysis, and were therefore

not considered as essential to this study as were the other subsections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CD ■ D O Q. C g Q.

■ D CD Table 3. 2. Species name, authority, subsection, sexuality, provenance, GenBank acc. number.

C/) C/) Monoecious/ Species Aulhoritv Subsection Dioecious Provenance GenBank Acc. No. C and'ma X-779 A. Braun Chara M Peru - Lake Titicaca AF032723 C. andina X-905 A. Braun Chara M Peru - Lago Umayo AF032724 C. aspera Y-OOl Deth. ex. Willdenow Grovesia D USA-MI AF032725 8 C. australis X-067 R. Brown Charopsis D Australia - NSW U18104 ■D C. australis X-709 R. Brown Charopsis D New Caledonia AF032726 C. australis MR R. Brown Charopsis D Australia - NSW U05260 C. baltica FI 18 Bruzelius Chara M France AF032727 C. braunii 589 Gmelin Charopsis M USA-TX AF032728 C. fcr/Momi X-997 T.F. Allen ex Robinson Willdenowia M USA-Ml AF032729 C. connivens X-214 Salzman ex A. Braun Grovesia D Israel U 18493 C contraria X- 998 A. Braun ex Kutzing Chara M USA-Ml AF032731 3. C. corallina X-656 Klein ex Willdenow Charopsis M Thailand AF032730 3 " C curtissii X-500 T.F. Allen ex Robinson Agardhia MUSA-NC U 18494 CD C. droxer/i TAMPS-14 R.D. Wood Willdenowia D Northern Mexico U18495

CD C. drouetii X-881 R.D. Wood Willdenowia D USA-FL AF032732 ■ D O C. fibrosa X-571 Agardh. ex Bruzelius Agardhia M Sri Lanka AF032733 Q. Cfoefida VH A. Braun Chara M Germany X70704 C a C. foUolosa X-883 Muhl. ex Willdenow Willdenowia MUSA-NC AF032734 O C. globularis X-999 Thuill. Grovesia M USA-M l AF032735 3 C. haitensis 584 Turpin Willdenowia M USA-TX AF032736 "O C. haitensis X-103 TVrpin Willdenowia o M Venezuela AF032737 C. hispida X-462 L. Hartmania M Denmark U18496 C. hornemannii 768 Wallman Wallmania D USA-NM U18497 CD Q. C hydropitys P/CR-1 Reichenbach Agardhia M Panama AF032738 C. imperfecta X-307 A. Braun in Durieu de Maisonneuve Chara D Spain AF032739 C. longifolia X-862 Robinson Wallmania D USA-CO AF032740 C. longifolia MB Robinson Wallmania D Canada - SK AF032741 ■D C. mueileri X-888 (A. Braun) F. Muller Braunia M Australia - NSW U81270 CD C. polyacantha FI 22 A. Braun ex Leonhardi Chara M France AF032742 C. preissii X-237 A. Braun Agardhia D Australia AF032743 C/) C/) C. stuartiana X-659 F. Muller (Ined) Kulzing In herb. Sonder (Ined) Braun Charopsis-3 D Tasmania AF032744 C. tomentosa X-908 L. Chara D Norway AF032745 C. vandlaurensis X-574 Sundaralingam Willdenowia M Sri Lanka AF032746 C. vulgaris X-152 L. Chara M Denmark AF032747 C. vulgaris X-932 A. Braun ex Kutzing Chara M USA-WY U81271 C. leylanica X-251 Klein ex Willdenow Willdenowia M Australia AF032748 Lamp, papulosum MB (Wallroth) J. Groves em. Charopsis(?) M Australia - NSW U 18509 Lamp, macropogon X-695 (A. Braun) Ophel Charopsis(?) M Tasmania U 18508 34 Data Handling and Analvses. Sequence data were recorded, stored, and aligned with the Genetics Computer Group software package (V, 8.0) (1994) mounted on an IBM RS6000, Model 590. Alignment of sequences was facilitated by the GAP and

LINEUP software packages included in the GCG package and refined manually. Aligned sequences of approximately 1776 nucleotide bases (98 informative sites) were converted into arrays of unordered character state data (A, G, C, T, X, . [gap], or ?

[unknown]) found at a given site for use in cladistic analysis, and seven ambiguous sites were deleted from the analyses. The alignment is available from the authors upon request Published sequences for Coleochaete scutata (GenBank acc. number X68828),

Chlorokybus atmophyticus (GenBank acc. number M95612), and Glycine max

(GenBank acc. number X02623) were used as the outgroup taxa (Characeae has been

shown to be monophyletic [McCourt et al. 1996, Meiers et al. 1997]).

Two phylogenetic methods were used in this study: parsimony and maximum likelihood. Parsimony selects the phylogeny that minimizes the number of evolutionary changes for the given data (Hillis et al. 1993) and permits "a limited amount of character change and branch-length variation" while still performing well (Huelsenbeck and Hillis

1993). Maximum likelihood chooses the tree that maximizes the probability of the given data occurring according to a specified evolutionary model (Felsenstein 1988). Maximum likelihood is considered highly efficient at tree evaluation when its evolutionary assumptions are met (Hillis etal. 1994, Huelsenbeck 1995).

Parsimony analysis was performed with PAUP (Swofford 1993). Because the analysis included 41 taxa, heuristic searches were initially performed with the "general"

option to determine an estimate for the most parsimonious tree. Subsequently, 50

replicates using this initial lower limit and the "stepwise" option with "random addition"

of taxa were performed. Uninformative characters were excluded, and all characters were weighted equally. Because performing bootstrap analysis on these 41 taxa was too

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 35 time-consuming (four replicates were completed at the end of two weeks) bootstrap analysis was not performed. The molecular data were also analyzed in twenty separate submissions with maximum likelihood (fastDNAml v. 1.0.8, Olsen 1994) based on Felsenstein's (1990) DNAML program.

Results

Heuristic parsimony analyses using Coleochaete scutata, Chlorokybus atmophyticus, and Glycine max as the outgroup taxa yielded 21153 equally most

parsimonious trees (length=476, consistency index (CI)=0.603), of which the majority-

rule consensus tree is shown in Figm-e 3.3. Maximum likelihood analysis yielded the tree (Ln likelihood=-6617.11075) presented in Figure 3.4. The parsimony and maximum likelihood trees agree on: 1) monophyly of subsection Wallmania and of

Lamprothamnium', 2) non-monophyly of subsections Agardhia, Chara, Charopsis, and Grovesia: 3) two monophyletic composed of subsections Agardhia-Braunia- Charopsis and Chara-Hartmania', 4) placement of C. hydropitys within a monophyletic

Willdenowia', and 5) C. tomentosa basal to a monophyletic Wallmania. The exact status of monophyly for subsection Willdenowia will be considered below.

The parsimony and maximum likelihood trees disagree on the placement of C. globularis and C. conninvens (both in subsection Grovesia). Parsimony analysis places these two species basal to a monophyletic Lamprothamnium, whereas the maximum

likelihood analysis places C. connivens basal to all the non-Willdenowia species, and C. globularis basal to a Lamprothamnium-Agardhia-Braunia-Charopsis clade. The parsimony and maximum likelihood analyses do not support Wood and

Imahori's proposed phylogeny of the initial separation of the genus Chara into

subgenera based on the haplostephanous/diplostephanous state, and not into subsections based on cortication of the main axis. However, these analyses do strongly support

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 36

95 C.foetida C. vulgaris X-152 f C andina X-779 C. andina X-905 Chara C. polyacantha C. vulgaris X-932 ' C. imperfecta C. contraria ' C. baltica ' C. hispida Hartmania ' C. aspera 60 C. connivens Grovesia C. globularis L. macropogon 87 L. papulosum Lamprothamnium'' C. longifolia X-862 C. longifolia MB Wallmania 4 EC. hornemannii C. tomentosa Chara C. australis X-709 C. australis X-067 C. australis MR Charopsis C. stuartiana C. corallina C. braunii C. muelleri Braunia C. fibrosa C. preissii \gardhia C. curtissii C.drouetUT\MPS-U C. haitensis X-103 C haitensis 584 C.foliolosa C. britonnii Willdenowia C. drouetii X-881 C. hydropitys C. vandalurensis C. zeylanica

Figure 3.3. Majority-rule consensus tree for parsimony analysis of 18S rDNA data. Consensus indices are above each node ("*" indicates 100%).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 37 ,0.0096 ‘ c . baltica C. vulgaris X-932 C. imperfecta Chara C. contraria C. hispida Hartmania C. andina X-905 C. andina X-779 C. polyacantha Chara C. vulgaris X-152 C. foetida C. aspera Grovesia IC. longifolia il^Wngifolia Wallmania X-862 C. hornemannii C. tomentosa Chara J * " C. fibrosa Agardhia ■■pi™ C. muelleri Braunia H " " " " C braunii Charopsis C . curtissii C. preissii Agardhia C. australis X-709 P C. australis X-067 | J C. australis MR Charopsis ■ J " C. stuartiarui C. corallina L. papulosum L. macropogon 'Lamprothamnium ' ■ C. globularis C. connivens Grovesia C. vandalurensis C. zeylanica C. hydropitys C. foliolosa C. brittonii Willdenowia C. drouetii X-881 C. haitensis 584 C. haitensis X-103 C. drouetii TAMPS-14

Figure 3.4. Maximum likelihood tree for 18s rDNA data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 38 Proctor's proposed phylogeny of subgenera based on the Laurasian-Gondwana split of Pangaea, with subsection relationships (except C tomentosa) based on the subsequent breakup of these two supercontinents.

Discussion Phylogenetic Utility of Stipulodes and Cortication. Traditionally, the genus Chara has been separated into two subgenera based on whether one row of stipulodes

(haplostephanous) or two (diplostephanous) are present (Braun 1849, Zaneyeld 1940,

Wood and Imahori 1962, 1965). The disjunction of diplostephanous subsections

included in this study {Chara, Grovesia, Hartmania, and Willdenowia) in both analyses

suggests the haplostephanous/diplostephanous condition is not phylogenetically informatiye, thus supporting Proctor's (1980) major premise that stipulode characters are phylogenetically uninformatiye. Stipulode characters, howeyer, are helpful in

identifying unknown samples.

Cortication type of the main axis has traditionally been one of the main criteria

for determining relationships among subsections (Braun 1849, Zaneyeld 1940, Wood

and Imahori 1962, 1965). The scattered distribution of yariously-corticate subsections throughout both parsimony and maximum likelihood trees indicates cortication type is

not phylogenetically informatiye. These results support preyious studies (Forsberg 1973, McCracken et al. 1966; Proctor et al. 1967, 1971; Proctor 1971a; Proctor and

Wiman 1971), discussed aboye, that challenged the phylogenetic importance (i.e.,

homoplasy limits the utility of these characters) placed on both stipulodes and cortication

for determining the eyolutionary history of subgenera and subsections. Implications for partial or total loss of cortication. The yiability, in nature, of a species despite partial or complete loss of cortication is supported by the scattered

placement of C. imperfecta, C. brittonii, C. hydropitys, and especially C. braunii and C.

muelleri among corticate species. Diplostephanous C. imperfecta, with a partially 2-

corticate main axis, is firmly placed by both analyses within the Chara-Hartmania

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 39 polytomy (both subsections are completely 2-corticate on the main axis), supporting C.

imperfecta's traditional placement within subsection Chara despite its partial loss of cortication (i.e., loss of cortication may be an autapomorphy). Chara muelleri, a member of the 2-3-corticate subsection Braunia, in both analyses is solidly placed sister to ecorticate C. braunii, and within an Agardhia-Braunia-

Charopsis clade, suggesting that variously-corticate subsections and species may be

more closely related to each other than to like-corticate subsections or species. Another example of cortication loss is C. brittonli, which was lumped within

corticate C. zeylanica (Willdenowia) by Wood and Imahori (1965) despite its lack of cortication. Chara brittonli also shares Willdenowia's morphological characters of being diplostephanous and producing partially tetrascutate an theridia (Proctor, unpubl.).

Chara brittonli is solidly placed within Willdenowia by both analyses, in agreement with Wood and Imahori.

Another example of how misplaced emphasis on stipulodes and cortication type

may affect phylogenetic hypotheses within the genus Chara is the question of how C hydropitys relates to the monophyly of Willdenowia. The placement of 3-corticate haplostephanous C. hydropitys within 3-corticate diplostephanous Willdenowia by both

analyses is contrary to the work of Braun (1849), Zaneveld (1940), and Wood and Imahori (1965). These authors placed C. hydropitys within Agardhia emphasizing the

importance of its haplostephanous state over all other morphological characters shared with taxa in Willdenowia. Evidence to support the 18S rDNA data which places C. hydropitys within a monophyletic Willdenowia includes: 1) the production of "weak"

Grovesian branches (Proctor 1980) which are only produced by members of Willdenowia; and, 2) a second row of stipulodes may actually be produced

(Sundaralingam 1963) though in a much reduced state, indicating C. hydropitys is

actually diplostephanous and not haplostephanous as traditionally reported.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 40 These examples (i.e., C. imperfecta, C. muelleri, C. brittonii, C. hydropitys,

and especially C. braunii and C. muelleri) clearly show that: 1) partial or total loss of cortication may occur without affecting viability of the organism or the species; 2) although the nodal stem cell gives rise to the branchlets, stipulodes, and axial cortex, stipulodes can be retained despite loss of cortication (Pal et al. 1962); and, 3) the

emphasis on cortication and stipulodes as indicators of phylogenetic relationships is

misplaced.

Monophvlv of Subsections. Both parsimony and maximum likelihood analyses place C. aspera (subsection Grovesia) basal to the Chara-Hartmania clade, instead of in a group with C. conninvens and C. globularis (both Grovesia). This discrepancy may be a result of insufficient taxon sampling, because no morphological, ecological, or other

evidence supports inclusion of C. aspera with subsections Chara and/or Hartmania.

The placement of C. braunii (subsection Charopsis) as sister to C. muelleri

(subsection Braunia) and within the Agardhia-Braunia-Charopsis clade may be explained either by insufficient taxon sampling of subsections Agardhia, Braunia, and Charopsis (three of the six samples for subsection Charopsis are different collections of C.

australis)', or by sequence divergence subsequent to migration from Asia into North

America, or it may indicate a closer relationship between C. braunii and C. muelleri than

to other members of subsection Charopsis.

Both parsimony and maximum likelihood analyses placed C. tomentosa basal to a monophyletic Wallmania instead of monophyletically with the rest of subsection Chara. This result could be caused by insufficient taxon sampling for subsection

Wallmania, or, more intriguingly, it could indicate that C. tomentosa does indeed belong in subsection Wallmania. In support of this relationship, Proctor (unpubl.) has noted C.

tomentosa may be rosy-red in the field, as C. homemannii and to a lesser extent C. longifolia can also be. An examination of the pigments of these three species could shed light on this unexpected result

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 41 Wood and Imahori (1965) admitted to some uncertainty (p. 329) as to whether Lamprothamnium should be considered a genus separate from Chara, possibly derived from subsection Charopsis, because both groups are ecorticate. Previous analysis of

I8S rDNA sequences (Meiers et al, 1997) resulted in a polytomy of Chara and Lamprothamnium, with Lychnothamnus basal. Our parsimony (Figure 3.3) and

maximum likelihood (Figure 3.4) analyses that strongly support the placement of

Lamprothamnium within the genus Chara disagree with the analysis of rbcL sequences (K. Karol and R. McCourt, pers. comm.) that placed Lamprothamnium sister to the

genus Chara. Evidence to support Lamprothamnium's status as a separate genus includes extant and fossilized oogonial characters such as a single-celled basal plate, a

closed apex, and a peripheral depression not possessed by the genus Chara (Martin-

Closas and Schudack 1991). However, Wood and Imahori (1965) did comment that

Lamprothamnium shared many other morphological features (haplostephanous, well- developed bract-cells, a 5-celled coronula in one tier, conjoined gametangia derived from

a single peripheral nodal cell, etc.) with the ecorticate species of the genus Chara, and "could well be construed to be a third subgenus of genus Chara" (p. 329).

Lamprothamnium may most likely be of Gondwanan origin, as shown in Figure

3.4 (maximum likelihood analysis) rather than of Laurasian origin as per Figure 3.3

(parsimony analysis). Migration into Australia and Africa, then through Africa while it was still mesic, around the Mediterranean, into Europe and finally North America is a

more logical and biogeographically sound hypothesis than a Laurasian origin with a

subsequent migration into Asia and through a still-mesic Africa, with long-distance dispersal from those two regions to Australia as suggested in the parsimony analysis

(Figure 3.3). Current distribution of the monoecious Lamprothamnium in North America, Europe, Africa, and Australia (Wood and Imahori 1965) is more parsimoniously explained by a Gondwanan origin and subsequent dispersal into the Northern hemisphere.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 42 Relationships Among Subsections/Biogeography. Assuming monoecious species of Chara are capable of broader dispersal than dioecious species, their present- day distributions are less likely to be representative of spéciation patterns (Proctor

1980). Because Lamprothamnium and subsections Braunia and Hartmania have no known dioecious representatives, they are thus considered biogeographically uninformative, and the rest of this discussion will focus mainly on those subsections with dioecious representatives.

Subsection Grovesia is viewed by Proctor (1980) as the disjunct relict population of a previously widespread group. He hypothesized that Grovesia originated in

Gondwana, migrated up Africa, around the Mediterranean and into Europe where it

speciated and eventually dispersed into North America, which was still united with Europe at that time (138 mya [Smith et al. 1994]). Subsequent desertification within Africa resulted in the current disjunct distribution of Grovesia I (Mediterranean), and Grovesia II (southern Africa), which has been little studied (Groves and Stevens 1926,

1933). This pattern of migration out of Gondwana, through Africa to Europe mirrors the proposed migration of Lamprothamnium as mentioned above.

Both analyses suggest a split into subgenera of possible Gondwanan [Agardhia, Braunia, Charopsis, and Willdenowia) and Laurasian [Chara and Wallmania) origins, although the origin of Grovesia is unclear at the present time. Chara aspera (subsection

Grovesia) is placed basal to Laurasian subsection Chara by both analyses, whereas there is no agreement on the placement of C. connivens and C. globularis by both analyses

(basal to Lamprothamnium in the parsimony analysis, and paraphyletic by maximum

likelihood analysis). These differences between the two analyses provide no clear indication as to the phylogenetic relationships within Grovesia. The consistent placement of these members of this subsection with other Gondwanan subsections suggests a Gondwanan origin for Grovesia.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 43 Wallmania, placed by both analyses in the same clade as subsection Chara and Hartmania and separate from the Gondwanan subsections, may have arisen in

Gondwana, dispersed into South America, or died out in the other Gondwanan

continents, and recently migrated north when the Panamanian land bridge formed approximately five mya (Smith et al. 1994). Dispersal from South America into North America could have been accomplished by migrating waterfowl and by mammals (Ridley 1930; McAtee 1947; Schlichting 1960; deVlaming and Proctor 1968; Proctor

1959, 1962, 1966, 1968; Proctor era/. 1967; Good 1974).

Conclusion. Our results clearly indicate that, as proposed by Proctor (1980),

Forsberg (1973), and others, stipulode and cortication type are not phylogenetically informative characters at the subsection and subspecies level for the genus Chara, despite their usefulness in identification. Monophyly of Lamprothamnium, and

subsections Wallmania and Willdenowia (see discussion above regarding placement of C. hydropitys within Willdenowia) is strongly supported after emphasis on stipulode

and cortication characters is taken into account Wood and Imahori's 1965 hypothesis is not supported. Proctor's 1980 phylogeny is strongly supported, with a clear split between Laurasian and Gondwanan subsections. Further fracturing and subsequent movement of the continents and intracontinental dispersal by waterfowl and mammals could possibly explain the phylogeny and current distribution of the subsections. Additional investigations are needed to identify phylogenetically informative characters

for this genus, such as, but not limited to, chromosome number, conjoined versus

sejoined gametangia, antheridial scute number (Proctor 1975), distribution (Forsberg 1973, Proctor 1980), bulbil and reproductive characters, and ecological conditions (Forsberg 1973). Should a method to identify fossilized oogonia (gyrogonites) to the

subgeneric or subsection level be developed, the phylogeny and biogeographic history

of this distinctive genus could be further clarified by illuminating relationships among

extant, recent, and fossil species.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 4

Biogeography of Chara haitensis (Characeae, Charophyta) Inferred from ITS Sequences

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 45 Introduction Chara haitensis Turpin is a freshwater raacrophytic green alga of the family Characeae, that grows in slow-moving lakes, ponds and streams (Robinson 1906) of

North, Central and South America (south to Uruguay and Venezuela), and the Caribbean

(Wood and Imahori 1965). Despite its extensive range, very little is known about its biogeography.

Proctor and Wiman (1971) examined reproductive compatibility among isolates

of C haitensis from locations within the south central U. S. (Texas, Oklahoma, New Mexico), Mexico (San Luis Potosi, Chiapas, and Vera Cruz), and Venezuela (Merida).

All isolates examined were able to produce fertilized oospores, which germinated into

viable germlings with no obvious vegetative abnormalities, indicating conspecificity. However, it was noted that progeny from crosses between a strain identified as C.

haitensis having a chromosome number of n=42 and one with the normal chromosome number of n=56 were partially sterile.

In 1980, Grant and Proctor used chromosome number and enzyme variation to

study intraspecific variation for five species of Chara (C. zeylanica, C. haitensis, C. globularis, C. contraria, and C. aspera). They found chromosome number and proteins vary within and among locales, and within-site variation highly variable. Most sites showed little genotypic diversity, although a few showed "very high levels." They

sampled sites that had been investigated twelve years previously, and compared variation

across time. They found the temporal variation was lower than spatial variation.

The only other biogeographic examination of this genus was at the subsection level (Meiers et al. unpubl.), and found a primary split between subsections of Gondwanan and Laurasian origin. Subsection Willdenowia, to which C. haitensis

belongs, was hypothesized to have a Gondwanan origin, with subsequent migration of species northward into North America, most likely via migrating waterfowl (deVlaming

and Proctor 1968; Proctor 1959, 1962)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 46 The internal transcribed spacer regions (US) have been used to study closely related and algal species (Baldwin 1992, Zechraan et al. 1994, Stache-

Crain et at. 1997), species or strains (Marks and Cummings 1996, Goff et al. 1994), hybridization (Buckler and Holtsford 1996, Odorico and Miller 1997) and to examine

biogeography (Jeandroz et at. 1997, Lee etal. 1996; Bakker gro/. 1992,1995; Kooistra

et at. 1992). These spacer regions are part of the nuclear-encoded ribosomal tandem

repeats, which are transcribed as a single unit and processed into mature ribosomal RNA. The ITS-1 region is located between the 18S and 5.8S subunit coding regions

and the ITS-2 is located between the 5.8S and 26S subunit coding regions (Gerbi 1985).

Variation in the ribosomal repeats caused by point mutations, indels, slippage in replication, and unequal crossing over (Hillis and Dixon 1991). Although they evolve at a faster rate than either the 18S, 26S and 5.8S subunits of the tandem repeats, their

evolution is slower than the external transcribed spacer regions between the repeats. The evolution of the ITS regions is, to some extent, limited by functional constraints,

because they assist in the maturation of the ribosomal subunits (Veldman et al. 1981, van der Sande, et al. 1992). The present investigation utilized the ITS regions of the nuclear-encoded

ribosomal genes to examine whether the biogeography of Chara haitensis is a reflection

of regional relationships, as per Figure 4.1, or more indicative of dispersal by bird migration, which would be more of a patchwork pattern to the relationships.

Materials and Methods Specimens were collected by Dr. V. Proctor and maintained in soil-water medium in glass jars until they were shipped, slightly damp, in sealed plastic bags via overnight mail to the Chapman laboratory for DNA extraction and sequencing. AH

isolates used in this study are listed in Table 4.1, with a map of isolate provenance shown in Figure 4.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 47

Ohio (X-848) Alabama (X-826)

Florida (X-792) Texas (708) NE Mexico (X-003) NE Mexico (TAMPS-03)

NE Mexico (TAMPS-74)

Panama (PAN-03)

Figure 4.1. Unrooted topology of hypothetical biogeographic relationships among isolates if isolates in the same region were more closely related to each other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 48

Table 4.1. List of Chara haitensis isolates examined in this study Identification number ______Provenance ______X-003 San Luis Potosi, Mexico 708 Texas, USA X-826 Alabama, USA X-848 Ohio, USA PAN-03 Lake Gatun, Panama Canal TAMPS-03 Tamaulipas, Mexico TAMPS-74 Tamaulipas, Mexico

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 49

X-848

708 X-826

X-792 X-003 PAN-03 TAMPS-03 TAMPS-74

Figure 4.2. Map of the Americas, with arrows indicating provenance of isolates of Chara haitensis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 50 The protocol for DNA extraction, purification, amplification, and sequencing has been published elsewhere (Meiers, et al. 1997), and modifications are noted here. PCR primers 18 JRC (Hamby et at. 1988) or 1TS5 were used with ITS4 (White et al. 1990)

to amplify the lTS-1, 5.8S and ITS-2 regions as a uniL The 1TS5 primer was used to

sequence the ITS-1 region, and the ITS3 (White et al. 1990) primer was used to sequence the ITS-2 region. Sequencing in the opposite direction did not produce usable results.

Data Handling and Analyses. Sequence data were recorded and stored with the Genetics Computer Group software package (V. 8.0) (1994) mounted on an IBM

RS6000, Model 590. Alignment of sequences was performed manually using a word

processing program and a colored font Comparison of the ITS-1 region with published Coleochaete scutata (GenBank acc. number X68825) and Chara australis (GenBank acc. number U05260) sequences indicated where the 18S region ended and the lTS-1 regions

began. Comparison of the 5.8S region with published Soybean (GenBank acc. number

X02623) 5.8S region indicated where the ITS-1 region ended and the lTS-2 region began. Comparison with unpublished Chara 26S regions indicated where the lTS-2

region ended and the 26S region began.

Aligned sequences of approximately 166-173 nucleotide bases for lTS-1 (20 informative sites), and 210-227 bases for ITS-2 (14 informative sites), were converted into arrays of unordered character state data (A, G, C, T, X ,. [gap], or ? [unknown])

found at a given site for use in analyses. Table 4.2 lists the sequence lengths, % G+C

content, and number of informative sites for the ITS-1 and ITS-2 regions. Tables 4.3

and 4.4 present the pairwise distance matrices for ITS-1 and ITS-2 respectively. Tables

4.5 and 4.6 present the pairwise distance matrices for ITS-1 and ITS-2 respectively, with gaps coded as a fifth base. The alignment for the ITS-1 region is found in Appendix C, and for ITS-2 in Appendix D.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 51 Table 4.2. Length and nucleotide composition for ITS-1 and ITS-2 regions. ITS-1 region ITS-2 region isolate number I ength %G+C length %G+C X-003 173 34.682 221 43.891 708 170 31.176 227 42.731 X-792 166 31.928 220 43.636 X-826 173 39.884 215 48.372 X-848 173 38.728 211 49.763 PAN-03 171 40.351 215 49.767 TAMPS-03 170 39.411 210 50.000 TAMPS-74 173 33.526 219 44.749 summary: 166-173 31.18-40.35% 210-227 42.73-50.00%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 52

Table 4.3. Table of pairwise distances between ITS-1 regions as calculated by PAUP v. 8.1 for eightChara haitensis isolates. Absolute distances are below the diagonal, and mean distances (adjusted for missing data) are above the diagonal.

X-003 708 _ X-792 X-826 X-848 TAMPS-03 TAMPS-' X-003 0.206 0.306 0.306 0.472 0.429 0.250 708 7 - 0.176 0.441 0.559 0.485 0.235 X-792 11 6 - 0.278 0.389 0.457 0.222 X-826 11 15 10 - 0.167 0.200 0.306 X-848 17 19 14 6 - 0.114 0.444 TAMPS-03 15 16 16 7 4 - 0.314 TAMPS-74 9 8 8 11 16 11 - PAN-03 18 18 15 6 1 4 17

Table 4.4. Table of pairwise distances between ITS-2 regions as calculated by PAUP v. 8.1 for eightChara haitensis isolates. Absolute distances are below the diagonal, and mean distances (adjusted for missing data) are above the diagonal.

X-003 708 X-792 X-826 X-848 TAMPS-03 TAMPS- X-003 0.167 0.182 0.550 0.650 0.700 0.300 708 3 - 0.158 0.294 0.294 0.353 0.278 X-792 4 3 - 0.333 0.476 0.524 0.286 X-826 11 5 7 - 0.000 0.000 0.263 X-848 13 5 10 0 - 0.048 0.368 TAMPS-03 14 6 11 0 1 _ 0.316 TAMPS-74 6 5 6 5 7 6 - PAN-03 14 6 11 0 1 0 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 53

Table 4.5. Table of pairwise distances between ITS-1 regions, with gaps coded as a fifth base, as calculated by PAUP v. 8.1 for eight Chara haitensis isolates. Absolute distances are below the diagonal, and mean distances (adjusted for missing data) are above the diagonal.

X-003 708 X-792 X-826 X-848 TAMPS-03 TAMP! X-003 0.474 0.410 0.816 0.756 0.805 0.610 708 18 - 0.579 0.763 0.825 0.875 0.575 X-792 16 22 - 0.737 0.659 0.659 0.512 X-826 31 29 28 - 0.200 0.200 0.550 X-848 31 33 27 8 - 0.070 0.558 TAMPS-03 33 35 27 8 3 - 0.535 TAMPS-74 25 23 21 22 24 23 - PAN-03 32 32 31 6 5 4 24

Table 4.6. Table of pairwise distances between ITS-2 regions, with gaps coded as a fifth base, as calculated by PAUP v. 8.1 for eight Chara haitensis isolates. Absolute distances are below the diagonal, and mean distances (adjusted for missing data) are above the diagonal.

_X-003 708 X-792 X-826 X-848 TAMPS-03 TAMP X-003 0.370 0.556 0.538 0.704 0.615 0.375 708 10 - 0.393 0.741 0.821 0.704 0.520 X-792 15 11 - 0.593 0.643 0.815 0.320 X-826 14 20 16 - 0.222 0.370 0.542 X-848 19 23 18 6 - 0.222 0.680 TAMPS-03 16 19 22 10 6 - 0.750 TAMPS-74 9 13 8 13 17 18 - PAN-03 21 23 18 8 1 7 18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 54 Two phylogenetic methods were used in this study: parsimony and maximum likelihood. Parsimony selects the phylogeny that minimizes the number of evolutionary

changes for the given data (Hillis et ai 1993) and permits "a limited amount of character change and branch-Iength variation" while still performing well (Huelsenbeck and Hillis

1993). Maximum likelihood chooses the tree that maximizes the probability of the given

data occurring according to a specified evolutionary model (Felsenstein 1988). Maximum likelihood is considered highly efficient at tree evaluation when its evolutionary assumptions are met (Hillis etal. 1994, Huelsenbeck 1995).

Exhaustive parsimony with 500 bootstrap replicate analyses were performed using PAUP (Swofford 1993) on the ITS-1, ITS-2, as well as a combined data set. The

ITS-1, ITS-2, and combined data sets were also analyzed in twelve separate submissions with maximum likelihood (fasiDNAml v. 1.0.8, Olsen 1994) based on

Felsenstein's (1990) DNAML program. In addition, parsimony (exhaustive search) bootstrap analyses (500 replicates) each were performed on the ITS-1, ITS-2 and

combined data sets with gaps coded as a fifth base. Coding gaps as a fifth base resulted

in 30 informative sites for the ITS-1 region, and 43 informative sites for the ITS-2

region. Trees were unrooted in all analyses, as the ITS regions were unalignable with other published sequences for these regions.

Results The ITS-1 region is smaller, and has less length variation than the ITS-2 region, as shown by Table 4.2. The ITS-1 region also has a lower % G+C ratio, though a

slightly higher variation in that ratio than the ITS-2 region.

Parsimony analysis of the ITS-1 region yielded 1 unrooted tree of 40 steps

(CI=0.800), shown in Figure 4.3A, with bootstrap values above the nodes. Parsimony analysis of the ITS-1 region with gaps coded as a fifth base yielded a single unrooted tree (51 steps, CI=0.667) of the same topology as Figure 4.3 A (with bootstrap values

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 55

NE Mexico (X-003) Texas (708) NE Mexico (TAMPS-74) Florida (X-792) Alabama (X-826) NE Mexico (TAMPS-03) Ohio (X-848) Panama(PAN-03)

Figure 4.3A. Topology of the single most parsimonious tree for parsimony analysis (with and without gaps coded as a fifth base). Values above nodes are bootstrap values (500 replicates) for "regular" parsimony and values below the nodes are for gaps coded as a fifth base.

0.013 Ohio (X-848)

Panama(PAN-03) NE Mexico (TAMPS-03) Alabama (X-826) Florida (X-792)

NE Mexico (TAMPS-74) NE Mexico (X-003) — m— Texas (708)

Figure 4.3B. Single tree firom maximum likelihood analysis of the ITS-1 region.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 56 below the nodes). Maximum likelihood analysis of the ITS-1 region yielded a single tree (Ln likelihood=-587.03739) shown in Figure 4.3B, which is also congruent in topology with Figure 4.3 A. Parsimony analysis of the ITS-2 region yielded 51 equally most parsimonious

unrooted trees of 22 steps (CI=0.773), for which the majority-rule consensus tree is shown in Figure 4.4A, with consensus values above the nodes and bootstrap values below the nodes. Parsimony analysis of the ITS-2 region with gaps coded as a fifth

base yielded 3 equally most parsimonious unrooted trees (CI=0.718), for which the majority-rule consensus tree is shown in Figure 4.4B, with consensus values above the nodes and bootstrap the ITS-1 region, values below. Maximum likelihood analysis of

the ITS-2 region yielded a single unrooted tree (Ln likelihood=-643.76270), presented in Figure 4.4C. The relationships among X-826, X-848 PAN-03, and TAMPS-03 were resolved in the maximum likelihood analysis, partially resolved in the parsimony

analysis with gaps coded as a fifth base, but not resolved in parsimony analysis. Parsimony analysis of the combined ITS-1 and ITS-2 regions yielded 3 equally

most parsimonious trees of 63 steps (CI=0.778), for which the majority-rule consensus

tree is shown in Figure 4.5A (consensus values above the nodes, and bootstrap values below), which is congruent with the topology of Figure 4.3A. Parsimony analysis with gaps coded as a fifth base resulted in the single tree (131 steps, CI=0.687) shown in Figure 4.5B, with bootstrap values below. The single uimooted maximum likelihood

tree (Ln likelihood=-1254.4785) is shown in Figure 4.5C. Both the maximum

likelihood tree and the parsimony analysis with gaps coded as a fifth base are congruent

with the tree presented in Figure 4.3A. Despite the fact that all of the trees are unrooted, a consistent biogeographic relationship is found among isolates Alabama (X-826), Ohio (X-848), Panama (PAN-

03), and northeastern Mexico (TAMPS-03) for the ITS-1, ITS-2, and combined data analyses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 57

NE Mexico (X-003) Texas (708) Florida (X-792) NE Mexico (TAMPS-74) 82% Alabama (X-826) I 100% | i NE Mexico (TAMPS-03) Ohio (X-848) Panama(PAN-03)

Figure 4.4A. Consensus tree of 51 equally most parsimonious trees for parsimony analysis of the ITS-2 region. Consensus values are presented above the nodes and bootstrap values (500 replicates) below the nodes.

NE Mexico (X-003) Texas (708) Florida (X-792) 100% NE Mexico (TAMPS-74) 71% 100% NE Mexico (TAMPS-03) 87% 100% Ohio (X-848) 100% 100% Alabama (X-826) 70% Panama(PAN-03)

Figure 4.4B. Consensus tree of 3 equally most parsimonious trees for parsimony analysis with of the ITS-2 region with gaps coded as a fifth base. Consensus values are presented above the nodes and bootstrap values (500 replicates) below the nodes.

NE Mexico (X-003) 0.0099 Florida (X-792) NE Mexico (TAMPS-74)n'ira- Alabama (X-826) Ohio (X-848) Panama(P AN-03) NE Mexico (TAMPS-03) Texas (708)

Figure 4.4C. Single tree from maximum likelihood analysis of the ITS-2 region.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 58 NE Mexico (X-003) Texas (708) NE Mexico (TAMPS-74) 100% Florida (X-792) 85% 6 7 ^ % ^|ioo% Alabama (X-826) NE Mexico (TAMPS-03) 100% # 1**% 67% 95% Ohio (X-848) 59% Panama(PAN-03)

Figure 4.5A. Consensus tree of 3 equally most parsimonious trees for parsimony analysis of the combined ITS-1 and ITS-2 regions. Consensus values are presented above the nodes and bootstrap values (500 replicates) below the nodes.

NE Mexico (X-003) Texas (708) Florida (X-792)

NE Mexico (TAMPS-74) ^ ^ 7 9 ^ 1 ■ Alabama (X-826) 87% NE Mexico (TAMPS-03) 100% Ohio (X-848) 61% Panama(PAN-03)

Figure 4.5B. Topology of the single most parsimonious tree for parsimony analysis with gaps coded as a fifth base. Values below nodes are bootstrap values (500 replicates).

NE Mexico (X-003) 0.01 Texas (708) Florida (X-792) NE Mexico (TAMPS-74) Panama(PAN-03) Ohio (X-848) 1 """" NE Mexico (TAMPS-03) mmm Alabama (X-826)

Figure 4.5C. Single tree from maximum likelihood analysis of the combined ITS-1 and ITS-2 regions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 59 The high consensus (100% in all analyses) and bootstrap (92-100%) values for all analyses of the node that connects these four isolates indicate strong support for this grouping. The isolate from northeastern Mexico (X-003) and the one

from Texas (708), and occasionally the one from Florida (X-792), were unresolved in relation to the other isolates in most analyses. Discussion

One distinct biogeographic grouping contains the isolates from Ohio (X-848),

Alabama (X-826), Lake Gatun (PAN-03), and Tamaulipas (TAMPS-03), although specific relationships are not consistently resolved among the ITS-1, ITS-2, and

combined ITS regions analyzed. This geographic patchwork grouping at first seems

surprising, as one might initially expect the geographic relationships to reflect regional relationships: northeast Mexican isolates together with Texas, Florida with Alabama together, etc.

Potential dispersal of algae by migrating waterfowl and other was

suggested in the literature before it was examined by Proctor (1959, 1962, 1966, 1968)

and others: Ridley (1930) in his thorough treatment of plant dispersal cited numerous

examples of vascular plant and algal dispersal by birds and other animals through ingestion, and adhesion to feet, fur, and feathers. He further described a simple experiment where pieces of Chara thalli were allowed to dry out on a feather for various amounts of time, and then reimmersed in water and allowed to recover. After one hour,

the thallus "was quite recovered," though after 23 hours only the terminal buds

recovered, demonstrating that Chara could withstand some degree of desiccation if adhered to the exterior of an . Kiener (1944) and Daily (1958) in their studies of Nebraskan and Indianan

charophytes respectively, suggested that charophytes could be transported by adhesion, as well as by being ingested and passing through waterfowl digestive tracts. They cited

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 60 the sudden appearance of charophytes in previously empty gravel and sand pits, whereas the nearest charophytes were more than several miles away.

Proctor and others (Proctor 1959, Schlichting 1960, Proctor 1962, 1966; Proctor etal. 1967, deVlaming and Proctor 1968) examined whether such transport by ingestion could occur, and determined that seeds of various aquatic and semi-aquatic vascular plants, eggs of various invertebrates, some desmid species, and charophyte oospores can indeed pass through waterfowl digestive tracts and still maintain viability.

Not only are there obstacles in dispersal to a suitable body of water, but once an

oospore arrives, it may encounter inhibition and competition from already established charophytes or other aquatic plants. Proctor et al. (1971) commented that previously colonized environments "may be essentially closed to further colonization by related

species" as oospores in the presence of actively growing cultures in the greenhouse rarely germinate. Wium-Anderson et al. (1982) reported allelopathic effects of

dithiolane and triihiane produced by some charophytes (C. baltica, C. hispida, Nitella translucens, and Tolypella nidifica) as an inhibitor of diatom photosynthesis. These compounds may also decrease epiphytic load on extensive stands of charophytes. This production of an epiphytic inhibitor may help explain various observations of extensive

raonotypic stands (or groupings of only a few species) of charophytes reported in the literature (Groves and Bullock-Webster 1920, Kiener 1944, Daily 1958, Proctor gr a/.

1971, Proctor 1990, etc.). Thus, even though an oospore from a new locale is

deposited in a body of water, it may stand little chance of actually maturing and becoming established in this new locale.

Added to this difficulty in becoming established once dispersed to a new locale, there also is the resident seed bank with which to contend. In 1975, Proctor called on

charophytologists to test Allen's (1882) "lucid, if pre-Mendelian, suggestion that

charophyte populations must be essentially clonal in structure and so remain for many

years." Similar views were stated by Robinson (1906) and Wood and Imahori (1965).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 61 Proctor pointed out that this aspect had "significant implications with respect to

evolutionary trends." In support of this long-term clonal condition of populations. Grant and Proctor (1983) noted, in his genetic variation study of the same locations over 12 years, that spatial variation was greater than temporal variation.

If an oospore is transported by ingestion or adhesion to a migrating bird, then there could essentially be little chance for that oospore to germinate and survive in an

already occupied body of water, unless conditions in that environment did not favor the

growth of the residents over the dispersant. Thus, current data from the ITS regions may reflect the success of one genotype over others for the conditions in a given body of water.

Past and continuing dispersal of charophyte oospores via migrating birds could, over time, have led to the development of a patchwork pattern of populations throughout

the range of C. haitensis, depending on the ecological and geological history of an area.

The establishment of such a patchwork pattern could explain the consistent grouping of such disparate locales as Alabama, Ohio, Tamaulipas and Lake Gatun by the analyses of the ITS regions.

A sound test of this hypothesis would entail examining the biogeographic

relationships of other charophytes from a similar range as C. haitensis, and determining if a similar patchwork pattern were present As various desmid and ostrocod species are

also able to be transported by birds, they may exhibit a similar patchwork pattern of distribution, though it must be emphasized that their life cycles and ecological parameters may not allow as accurate a test of this hypothesis as would other charophyte species.

The development of an accurate method to identify fossilized oospores to the

species level permit a continuity of the fossil record from the distant past to the present

Such a continuous record would allow a clearer examination of the phylogeny and

biogeography of C.haitensis, as well as other charophytes in this unique and interesting evolutionary group.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 5

Summary and Conclusions

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 63 Sequence data from the small subunit and internal transcribed spacers of the

nuclear-encoded ribosomal tandem repeats were analyzed for phylogenetic patterns to test conflicting hypotheses concerning the generic relationships of the Characeae, the subsection relationships within the genus Chara, and biogeography of Chara subsections and of Chara haitensis, a New World species.

The second chapter of this dissertation reports the results of the analyses testing

Wood and Imahori's (1965) versus Khan and Sarma's (1984) hypotheses concerning

generic relationships within the Characeae. The analyses do not support either of these hypotheses. Tribe Nitelleae, composed of Tolypella and Nitella, is not strongly supported as monophyletic, in disagreement with both hypotheses, though a more extensive taxon sampling of Tolypella and Nitella in the future may resolve this

question. The tribe Chareae, composed of Chara, Lamprothamnium, Lychnothamnus,

and Nitellopsis is strongly supported as monophyletic, which is in agreement with both

hypotheses. Although the monophyly of Chara is not clearly resolved, the analyses does not support Khan and Sarma's hypothesis of Chara's polyphyly. Khan and Sarma's hypothesis of Lychnothamnus being more closely related to one of the

polyphyletic Chara subgroupings is also not supported. Lychnothamnus was found to be basal to a monophyletic Chara-Lamprothamnium clade in the analyses, a placement

that is in agreement with Wood and Imahori's hypothesis.

Analyses testing hypotheses of Chara subsection phylogeny do not support the traditional (Wood and Imahori 1965) importance placed on stipulode and cortication characters as accurate indicators of evolutionary history. The placement of (C. brittonii,

C. hydropitys, C. muelleri, and C. imperfecta) within subsections other than those in which they have traditionally been placed, supports Proctor's assertions that species and

subsections with similar stipulode and cortication characters may not necessarily be

closely related to each other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 64 Wood and Imahori's (1965) "lumping" of several monoecious species into "macrospecies" led them to conclude that the geographic ranges of these taxa could reveal nothing about the biogeographic history of Chara. Proctor's (1980) hypotheses challenged the taxonomic "lumping" and the consequent lack of biogeographic

information. We compared the biogeographic ranges from the subsection analyses, and

found a distinct separation among subsections with a clear Laurasian or a Gondwanan

distribution. This supports Proctor's hypotheses (1980) of a basic split among the subsections based upon either a Laurasian or Gondwanan origin, and that the ranges of the dioecious members of each subsection agree with current plate tectonic theory.

The biogeographic relationships among isolates ofChara haitensis support the hypotheses of Proctor (1959, 1962, 1966) that migrating birds can be instrumental in

charophyte oospore dispersal, as evidenced by a patchwork pattern of relationships among isolates from North, South, and Central America. The possible inhibition of oospore germination by allelopathic chemicals produced by the resident charophyte population, and the long-term clonal conditions of populations were also considered as

limitations on the establishment of newly dispersed oospores. The examination of the

biogeography of other charophytes, desmids, or ostrocods with a range similar to Chara

haitensis may be used to test this hypothesis.

More research into the recent and past charophyte history is needed. A method to identify recently fossilized oospores to the species or even subsection level would greatly increase our understanding of the phylogeny and biogeography of this distinctive

group. Additional examination of generic and specific phylogeny inferred from

molecular and/or those morphological characters newly determined to be phylogenetically informative, or even the sorting out of the "lumped" "macrospecies" of

Wood and Imahori (1965) would help to further clarify charophyte evolution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 65 References

Abbas, A. & Godward, M. B. E. 1963. Cytology in relation to in Chaetophorales. J. Linn. Soc. (Bot.) 58: 499-506. Allen, T. F. 1882. Development of the cortex in Chara. Bull. Torrery Bot. Club 9: 37- 47.

Bakker, F. T., Olsen, J. L., Stara, W. T., & van den Hoek, C. 1992. Nuclear ribosomal DNA internal transcribed spacer regions (TTSl and ITS2) define discrete biogeographic groups inCladophora albida (Chlorophyta). J. Phyc. 28:839-845. Bakker, F. T., Olsen, J. L., & Stam, W. T. 1995. Global phylogeography in the cosmopolitan species Cladophora vagabunda (Chlorophyta) based on nuclear rDNA internal transcribed spacer regions. Eur. J. Phycol. 30: 197-208. Baldwin, B. G. 1992. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol. Phyl. Evol. 1: 3-16.

Barrett, M, Donoghue, M & Sober, E. 1991. Against consensus. Syst. Zool. 40: 486- 493. Bold, H. C. & Wynne, M. J. 1985. Introduction to the Algae, 2nd ed. Prentice-Hall, Englewood Cliffs, 720 pp.

Braun, A. 1849. Characeae Australes et Antarcticae. Hooker's J. of Bot. and Kew Gard. Misc. 1: 193-203. Bremer, K. 1985. Summary of green plant phylogeny and classification. 1: 369-385.

Bremer, K., Humphries, C. J., Mishler, B. D., & Churchill, S. P. 1987. On the cladistic relationships in green plants. Taxon 36: 339-349. Buckler, E. S. and Holtsford, T. P. 1996. Zea systematics: ribosomal ITS evidence. Mol. Biol. Evol. 13: 612-622.

Bull, J. J., Huelsenbeck, J. P., Cunningham, C. W., Swofford, D. L., & Waddell, P. J. 1993. Partitioning and combining data in phylogenetic analysis. Syst. Biol. 42: 384- 397. Chapman, R. L. & Henk, M. C. 1983. Ultrastructure of Cephaleuros virescens (Chroolepidaceae; Chlorophyta). V. Absolute configuration of the cruciate flagellar apparatus and multilayered structures in the pre- and post-release gametes. Amer. J. of 70: 1340-1355. Chapman, R. L. & Buchheim, M. A. 1991. Ribosomal RNA gene sequences: analysis and significance in the phylogeny and taxonomy of green algae. Crit. Rev. in Plant Sci. 10: 343-368.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 66 Chapman, R. L. & Buchheim M. A. 1992. Green algae and the evolution of land plants: inferences from nuclear-encoded rRNA gene sequences. BioSvstems 28: 127- 137.

Crawford, S. A. 1977. Chemical, physical and biological changes associated with Chara succession in farm ponds. Hydrobiol 55: 209-217. Daily, F. K. 1958. Some observations on the occurrence and distribution of the Characeae in Indiana. Indiana Acad. Sci. 68:95-107. Daily, F. K. 1970. Fossil charophytes from South Dakota and Iowa with a review of a modem species. Am. Midi. Nat. 84: 365-375.

deVlaming, V. & V. W. Proctor. 1968. Dispersal of aquatic organisms: viability of seeds recovered from the droppings of captive killdeer and mallard ducks. Amer. J. Bot. 55: 20-26.

Eckenrode, V. K. & Meagher, R. B. 1984. Comparison of the nucleotide sequence of soybean 18S rRNA with the sequences of other small-subunit RNAs. J. Mol. Ev. 21: 259-269. Feist, M. & Grambast-Fessard, N. 1991. The genus concept in Charophyta: evidence from Paleozoic to Recent. In: Riding, R. (Ed.) Calcareous Algae and Stromatolites. Springer-Verlag, New York, pp. 189-203.

Feist, M. & Feist, R. 1997. Oldest record of a bisexual plant. Nature 385: 401.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. of Mol. Ev. 17: 368-376.

Felsenstein, J. 1988. Phylogenies from Molecular Sequences. Ann. Rev. Genet. 22: 521-565.

Felsenstein, J. 1990. PHYUP Manual, NeTsion. 3.3. Berkeley.

Forsberg, C. 1973. Some remarks on Wood's revision of Characeae. Taxon 12: 141- 144.

Garcia, A. 1994a. Charophyta: their use in paleolimnology. J. Paleolimn. 10: 43-52.

Garcia, A. 1994b. Pleistocene Charophyta from Arroyo Pemcho Verna, Province of Entre Elios, Argentina. J. Paleolimn. 10:53-58. Genetics Research Group, Inc. 1994. GCG Program Manual, Version 8.0. Genetics Research Group., Madison.

Gerbi, S. A. 1985. Evolution of ribosomal DNA. In: MacIntyre, R. J. (Ed.) Molecular Evolutionary Genetics. Plenum Press, New York, pp. 419-517.

Goff, L. J., Moon, D. A., & Coleman, A. W. 1994. Molecular delineation of species and species relationships in the red algal agarophytes Gracilariopsis and Gracilaria (Gracilariales). J. Phyc. 30: 521-537.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 67 Good, R. 1974. The Geography o f the Flowering Plants, 4th ed. Longman Group, London, 557 pp.

Graham, L. E., Delwiche, C. F., & Mishler, B. D. 1991. Phylogenetic connections between "green algae" and "." Adv. Bry. 4: 213-244. Graham, L. E. 1993. Origin o f Land Plants. John Wiley and Sons, Inc., New York, 287 pp.

GrambasL L. J. 1974. Phylogeny of the Charophyta. 23: 463-481. Grant, M. C. & Proctor, V. W. 1980. Electrophoretic analysis of genetic variation in the Charophyta I. Gene duplication via polyploidy. J. Phyc. 16: 109-115.

Grant, M. C. & Proctor, V. W. 1983. Genetic studies of the genus Chara: patterns of variation in space and time. J. Phyc. 19 (suppL): 11. Groves, J. & Bullock-Webster, G. R. 1920. The British Charophyta: Volume I- Nitelleae.' The Ray Society, London, 141 pp.

Groves, J & E. L. Stevens. 1926. New and noteworthy South African Charophyta I. Transcr. Roy. S. Africa 13: 145-158, pi. 12-15.

Groves, J. & E. L. Stevens. 1933. New and noteworthy South AfricanCharophyta I. Transcr. Roy. S. Africa 21: 271-289, pi. 13-16.

Hamby, K. R., Sims, L., Issel, L., & Zimmer, E. 1988. Direct ribosomal RNA sequencing: optimization of extraction and sequencing methods for work with higher plants. Plant Mol. Biol. Rep. 6: 175-192. Hillis, D. M. 1987. Molecular versus morphological approaches to systematics. Ann. Rev. Ecol. Syst. 18: 23-42.

Hillis, D. M. 1991. Discriminating between phylogenetic signal and random noise in DNA sequences. In: M. Miyamoto & J. Cracraft [Eds.] Phylogenetic Analysis o f DNA Sequences, Oxford Univ. Press, New York, pp. 278-294.

Hillis, D. M. & Dixon, M. T. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quart. Rev. Biol. 66:411-453. Hillis, D. M., Allard, D. M., & Miyamoto, M. M. 1993. Analysis of DNA sequences: Phylogenetic inferences. Meth. in Enz. 224: 456-487. Hillis, D. M., Huelsenbeck, K, J. P., & Cunningham, C. W. 1994. Application and accuracy of molecular phylogenies. Science 264:671-676.

Hodick, D. 1993. The protonema of Chara fragilis Desv.: regenerative formation, photomorphogenesis, and gravitropism. Bot. Acta 106: 388-393.

Huelsenbeck, J. P. 1991. Tree-length distribution skewness: an indicator of phylogenetic information. Syst. Zool. 40: 257-270.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 68 Huelsenbeck, J. P. 1995. Performance of phylogenetic methods in simulation. Syst. Biol. 44: 17-48. Huelsenbeck, J. P. & Hillis, D. M. 1993. Success of phylogenetic methods in the four-taxon case. Syst. Biol. 42 247-264.

Jeandroz, S., Roy, A., & Bousquet, J. 1997. Phylogeny and phylogeography of the circurapolar genus Fraxiniis (Oleaceae) based on internal transcribed spacer sequences of nuclear ribosomal DNA. Mol. Phyl. Evol. 7: 241-251.

Khan, M. & Sarma, Y. S. R. K. 1984. Cytogeography and cytosystematics of Charophyta. In: D. E. G. Irvine & D. M. John [Eds.] Systematics o f the Green Algae, Academic Press, London, pp. 303-330. Kiener, W. 1944. Notes on distribution and bio-ecology of Characeae in Nebraska. Butler Univ. Bot. Studies 6: 9-14.

Kiss, J. Z. and Staehelin, L. A. 1993. Structural polarity in the Chara rhizoid: a réévaluation. Am. J. Bot. 80: 273-283.

Kluge, A. G. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. ^ o l. 38: 7-25.

Kooistra, A. H. C. P., Stam, W. T., Olsen, J. L., & van den Hoek, C. 1992. Biogeography ofCladophoropsis membranaceae () based on comparisons of nuclear rDNA ITS sequences. J. Phyc. 28: 660-668. Lee, S. B. & Taylor, J. W. 1990. Isolation of DNA from fungal mycelia and single spores. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J., & White, T. J. [Eds.] PCR Protocols: A Guide to Methods and Applications. Academic Press, London, pp. 282- 187.

Leonhardi, H. von. 1863. Die boohmischen characeen. p. 1-20. (Reprinted from Lotos 13: 55-62, 69-80, 110, 111.

Marks, J. C., & Cummings, M. P. 1996. DNA sequence variation in the ribosomal internal transcribed spacer region of freshwater Cladophora species (Chlorophyta). J. Phyc. 32: 1035-1042.

Martin-Closas, C. & Schudack, M. E. 1991. Phylogenetic analysis and systematization of post-paleozoic Charophytes. Bull. Soc. bot. Fr. 138: 53-71. Mattox, K. R. & Stewart, K. D. 1984. Classification of the Green Algae: A Concept Based on Comparative Cytology. In: Irvine, D. G. & John, D. M. (Eds.) Systematics o f the Green Algae, Academic Press, London, pp. 29-72.

McAtee, W. L. 1947. Distribution of seeds by birds. Am. Midi. Nat. 38: 214-223.

McConnaughey, T. A., & Falk, R. H. 1991. Calciura-proton exchange during algal calcification. BioA Bull 180: 185-195.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 69 McCourt, R. M., Karol, K. G., Guerlesquin, M., & Feist, M. 1996. Phylogeny of extant genera in the family Characeae (Characeae, Charophyceae) based on rbcL sequences and morphology. Am. J. Bot: 83: 125-131. McCracken, M. D., Proctor, V. W., & Hotchkiss, A. T. 1966. Attempted hybridization between monoecious and dioecious clones of Chara. Am. J. Bot. 53: 937- 940.

Meiers, S. T., Rootes, W. L., Proctor, V. W., & Chapman, R. L. 1997. Phylogeny of the Characeae (Charophyta) inferred from organismal and molecular characters. Archiv. fur . 148: 309-318.

Mishler, B. D. & Churchill, S. P. 1985. Transition to a land flora: phylogenetic relationships of the green algae and bryophytes. Cladistics 1: 305-328. Mishler, B. D., Bremer, K., Humphries, C. J., & Churchill, S. P. 1988. The use of nucleic acid sequence data in phylogenetic reconstruction. Taxon 37: 391-395.

Mishler, B. D., Lewis, L. A., Buchheim, M. A., Renzaglis, K. S., Garbary, D. J., Delwiche, C. F., Zechman, F. W., Kantz, T. S., & Chapman, R. L. 1994. Phylogenetic relationships of the "green algae" and "bryophytes." Ann. Mo. Bot. Gard. 81: 451-483. Miyamoto, M. M. & Cracraft, J. 1991. Phylogenetic inference, DNA sequence analysis, and the future of molecular systematics. In: Miyamoto, M. M. and Cracraft, J. (Eds.) Phylogenetic Analysis o f DNA Sequences. Oxford Univ. Press, New York, pp. 3-17.

Odorico, D. M. & Miller, D. J. 1997. Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (, Scleractinia) patterns of variations consistent with reticulate evolution. Mol. Biol. Evol. 14: 465-473.

Okazaki, Y. 1996. Turgor regulation in a brackish water charophyte, Lamprothamniiim succinctum. J. Plant Res. 109: 107-112. Olsen, G. 1994. fastDNAral: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput. Biol. Sci. 10: 41-48.

Pal, B. P., Kundu, B. C., Sundaralingam, V. S., & Venkataraman, G. S. 1962. Charophyta. Indian Council of Agr. Res., New Delhi, 130 pp.

Peck, R. E. & Rekker, C. C. 1948. Ecocene Charophyta from North America. J. Paleontol. 22: 85-90.

Proctor, V. W. 1959. Dispersal of fresh-water algae by migratory water birds.Science 130: 623-324.

Proctor, V. W. 1962. Viability of Chara oospores taken from migratory water birds. Ecology 43: 52S-529.

Proctor, V. W. 1966. Dispersal of desmids by waterbirds. Phycologia 5: 227-232.

Proctor, V. W. 1967. Conspecificity of some Charophytes. J. Phycol. 3: 208-211.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 70

Proctor, V. W. 1968. Long-distance dispersal of seeds by retention in digestive tract of birds. Science 160: 321-322.

Proctor, V. P. 1971a. Taxonomic significance of monoecism and dioecism in the genus Chara. Phycologia 10: 299-307. Proctor, V. W. 1971b. Chara globularis Thuillier (= C . Desvaux.): Breeding patterns within a cosmopolitan complex. Limn, and Ocean. 16:422-436. Proctor, V. W. 1975. The nature of charophyte species. Phycologia 14: 97-113.

Proctor, V. P. 1980. Historical biogeography ofChara (Charophyta): An appraisal of the Braun-Wood classification plus a falsifiable alternative for future consideration. J. Phycol. 16: 218-233.

Proctor, V. W. 1990. Characeae of Llano Estacado (Texas and adjacent New Mexico) playas. J. o f Biogeogr. 17: 75-84. Proctor, V. W., Malone, C. R., & DeVlaming, V. L. 1967. Dispersal of aquatic organisms: viability of disseminules recovered from the intestinal tract of captive killdeer. Ecology 48: 672-676.

Proctor, V. W. & Wiman, F. H. 1971. An experimental approach to the systematics of the monoecious-conjoined members of the genus Chara, series Gymnobasalia. Amer. J. Bot. 58: 885-893.

Proctor, V. P., Griffin in, D. G., & Hotchkiss, A. T. 1971. A synopsis of the genus Chara, series Gymnobasalia (Subsection Willdenowia R. D. W.). Amer. J. Bot. 58: 894-901. Ragan, M. A., Parsons, T. J., Sawa, T., & Straus, N. A. 1994. 18S ribosomal DNA sequences indicate a monophyletic origin of Charophyceae. J. Phycol. 30:490-500.

Ridley, H. N. 1930. The Dispersal o f Plants Throughout the World. L. Reeve and Co., Kent, 744 pp.

Robinson, 1906. The Characeae of North America. NY. Bull. NY Bot. Gard. 4: 244- 308.

Ruprecht, F. J. 1845. Distributio Cryptogamarum Vascularium in Imperio Rossico. Petropoli.

Schlichting, H. E. 1960. The role of waterfowl in the dispersal of algae. Transcr. Micros. Soc. 79: 160-166.

Simons, J., Ohm, M., Daalder, R., Boers, P., & Rip, W. 1994. Restoration of Botschol (the Netherlands) by reduction of external nutrient load: recovery of a characean community dominated by Chara cormivens. Hydrobiologia 275/276:243-253.

Smith, A. G., Smith, D. G., & Funnell, B. M. 1994. Atlas of Mesozoic and Cenozoic Coastlines, Cambridge Univ. Press, New York, 99 pp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 71 Smith, G. M. 1933. The Fresh-Water Algae o f the United States, McGraw-Hill, New York, 716 pp. Stache-Crain, B., Müller, D. G., & Goff, L. J. 1997. Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analysis of nuclear-encoded and plastid-encoded DNA sequences. J. Phyc. 33: 152-168.

Su, X. & Gibor, A. 1988. A method for RNA isolation for marine macro-algae. Anal. Biochem. 174: 650-657.

Sundaralingam, V. S. 1963. Studies on Indian Charophytes - EU. Developmental morphology of two ecorticate species ofChara Linn. Phykos 2, 1-15.

Surek, B., Beemelmanns, U., Melkonian, M., & Bhattaccharya, D. 1994. Ribosomal RNA sequence comparisons demonstrate an evolutionary relationship between and charophytes. Pi. Syst. Evol. 191: 171-181. Swofford, D. L. 1993. PAUP — Phylogenetic Analysis Using Parsimony, Version 3.1.1. Champaign, 257 pp.

Theriot, E. 1989. Phylogenetic systematics for phycology.J. Phycol. 25: 407-411. Turpin, P. 1826. In: Curvier (Ed.), Dictionaire des Sciences Naturelles, 1816-1845, Paris (Plate appears in Vol. 8 under the heading "Botanique Acotyledones, Characees".

van der Sande, C., Kwa, M., van Heerikhuizen, R. W., Raue, H. A., & Planta, R. J. 1992. Functional analysis of internal transcribed spacer 2 of Saccharontvces cereviciae ribosomal DNA. J. Mol. Bio. 223: 899-910. Veldman, G. M., Klootwijk, J., van Heerikhuizen, H, & Planta, R. J. 1981. The nucleotide sequence of the intergenic region between the 5.8S and the 26S rRNA genes of the yeast ribosomal RNA operon. Possible implications for the interaction between 5.8S and 26S rRNA and the processing of the primary transcript. Nucl. Acids Res. 9: 4847-4862.

White, T. J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 3-5-322. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J., & White, T. J. [Eds.] PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc., pp. 315-322 Wilcox, L. W., Fuerst P. A., & Floyd, G .L. 1993. Phylogenetic relationships of four charophycean green algae inferred from complete nuclear-encoded small subunit rRNA gene sequences. Amer. J. Bot. 80: 1028-1033

Wium-Anderson, S., Anthoni, U., Christophersen, C., & Houen, G. 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39: 187-190.

Wood, R. D. 1962. New combinations and taxa in the revision of Characeae. Taxon 11: 7-25.

Wood, R. D. & Imahori, K. 1965. A Revision o f the Characeae, Vols. I and II, J. Cramer, Weinheim, 904 pp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 72

Zaneveld, J. S. 1940. The Charophyta of Malaysia and adjacent countries. Blumea 4: 1-224.

Zechman, F. W., Zimmer, E. A., & Theriot, E. C. 1994. Use of ribosomal DNA internal transcribed spacers for phylogenetic studies. /. Phycol. 30:507-512.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix A: Alignment of 18S rDNA Sequences for Chapter 2

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 74 Alignment of 18S Ribosomal DNA Sequences for Chapter 2

5 G C. v u lg a r is CTCAAAGATT AAGCCATGCA CGTCTAAGTG TGAAC..ACT TT. GCACTGT C. m u e lle r i TTCAAAGATT AAGCCATGCA CGTCTAAGTG TGAAC..ACT TT. GCACTGT C. a u s c r a l i s CTCAAAGACT AAGCCATGCA CGTCTAAGTG TGAAC..ACT TT.GCACTGT C. h o rn em a n n ii CTCAAAGACT AAGCCATGCA CGTTTAAGTG TGAAC..ACT TT. GCATTGT C. conn1 vans CTCAAAGACT AAGCCATGCA CGTCTAAGTG TGAAC..ACT T T . GCACTGT C. h is p id a NNNNNAGACT AAGCCATGCA CGTCTAAGTG TGAAC..ACT T T . GCACTGT C. d r o u e c ii CTCAAAGACT AAGCCATGCA CGTCTAAGTG TGAAC..ACT T T . GCACTGT C. c u r c i s s i i CTCAAAGACT AAGCCATGCA CGTCTAAGTG TGAAC..ACT TT. GCACTGT Lamp. macr. CTCAAAGACT AAGCCATGCA CGTCTAAGTG TGAAC..ACT T . . GCACTGT Nicella flex. CTCAAAGACT AAGCCATGCA TGTCCAAGTG TAAGCTG.TT TTTACACTGT Lamp. p a p . CTCAAAGACT AAGCCATGCA CGTCTAAGTG TGAAC..ACT T . . GCACTGT Lyc.^ocftamnus NNCAAAGATT AAGCCATGCA TNTCTAGGTG TGAAC..ACT T T . GCACTGT Nicella axill. NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NT. . CACTGT Nicella sp. CTCAAA'GACT AAGCCATGCA TGTCnAAGTG TAAGCTGTTT TT.ACACTGT Nicellopsis NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNN------. . . GCACTGT T o ly p e lla CTCAAAGACT AAGCCATGCA nGTCTAAGTG TAAGCTGCCT T..ACACTGT Y e a s t CTCAAAGATT AAGCCATGCA TGTCTAAGTA TAAGC.AATT T..ATACAGT S p iro g y ra CTCAAAGATT AAGCCATGCA TGTCTAAGTA TAAA.T.ACT CT.AAA.GGT K1ebsormidium CTCAAAGATT AAGCCATGCA TGTCTAAGTA TAAACT. . CT TTTATACTGT Coleochaece CTCAAAGATT AAGCCATGCA TGTCTAAGTA TAAACTGA. T CT.ATACTGT Chlorokybus CTCAAAGATT AAGCCATGCA TGTCTAAGTA TAAACTG. TT . . .ATACTGT S o y b e a n CTCAAAGATT AAGCCATGCA TGTCTAAGTA TGAACTAATT C. .AGACTGT

IOC C. v u lg a r is GAAACTGCGA ATGGCTCATT AAATCAGTTA TCATTTATTT GGTGGTCTCC C. m u e lle r i GAAACTGCGA ATGGCTCATT AAATCAGTTA TCATTTGTTT GGTGGTCTCC C. a u s c r a l i s GAAACTGCGA ATGGCTCATT AAATCAGTTA TCATTTATTT GGTGGTCTCC C. ho rn em a n n ii GAAACTGCGA ATGGCTCATT AAATCAGTTA TCATTTATTT GGTGGAGTCA C. c o n n iv e n s GAAACTGCGA ATGGCTCATT AAATCAGTTA TCATTTATTT GGTGGAGTCC C. h is p id a GAAACTGCGA ATGGCTCATT AAATCAGTTA TCATTTATTT GGTGGTCTCC C. d r o u e c ii GAAACTGCGA ATGGCTCATT AAATCAGTTA TCATTTATTT GGTGGTCTCC C. c u r c i s s i i GAAACTGCGA ATGGCTCATT AAATCAGTTA TCATTTATTT GGTGGTCTCC Lamp. macr. GAAACTGCGA ATGGCTCATT AAATCAGTTA TCATTTATTT GGTGGTCTCC Nicella flex. GAAACTGCGA ATGGCTCATT AAATCAGTTA TCGTTTATTT GATG. TTCCC Lamp. pap. GAAACTGCGA ATGGCTCATT AAATCAGTTA TCATTTATTT GGTGGTCTCC Lychnochamnus GAAACTGCGA ATGGCTCATT AAATCAGTTA TCATTTATTT GGTGGATTCT Nicella axill. GAAACTGCGA ATGGCTCATT AAATCAGTTA TAGTTTATTT GATGGTC. . . Nicella sp. GAAACTGCGA ATGGCTCATT AAATCAGTTA TCGTTTATTT GATG. TTCCC Nicellopsis GAAACTGCGA ATGGCTCANN AAATCAGTTA TCATTTATTT GGTGGNC. . . T o ly p e lla GAAACTGCGA ATGGCTCATT AAAnCAGTTA TCGTTTATTT GATG.TCCCC Y e a s t GAAACTGCGA ATGGCTCATT AAATCAGTTA TCGTTTATTT GATAGT. TCC S p iro g y ra AAAACTGCGA ATGGCTCATT AAATCAGTTA TAGTTTATTT GATGAT. TCC GAAACTGCGA ATGGCTCATT AAATCAGTTA TAGTTTATTT GATGGT.ACC Coleochaece GAAACTGCGA ATGGCTCATT AAATCAGTTA TAGTTTATTT GATGGT.ACC Chlorokybus GAAACTGCGA ATGGCTCATT AAATCAGTTA TAGTTTATTT GATGGT.ACC S o y b e a n GAAACTGCGA ATGGCTCATT AAATCAGTTA TAGTTTGTTT GATGGT.ATC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 75

101 150 c . v u lq a r is TT.ACCACTC GG.ATAACCG TGGTAATTCT AGAGCTAATA CGTGCAGCAT C. muelleri TT.ACCACTC GG.ATAACCG TGGTAATTCT AGAGCTAATA CGTGCAGCAT C. auscralis IT.ACCACTC GG.ATAACCG TGGTAATTCT AGAGCTAATA CGTGCAGCAT C. hornemannii TT.ACCATTC GG.ACAACCG TGGTAATTCT AGAGCTAATA CGTGCAGCAT C. c o n n iv e n s TT.ACCACTC GG.ATAACCG TGGTAATTCT AGAGCTAATA CGTGCAGCAT C. h is p id a TT.ACCACTC GG.ATAACCG TGGTAATTCT AGAGCTAATA CGTGCAGCAT C. drouecii TT.ACCACTC GG.ATAACCG TGGTAATTCT AGAGCTAATA CGTGCAGCAT C. curcissii TT.ACCACTC GG. ATAACCG TGGTAATTCT AGAGCTAATA CGTGCAGCAT Lamp. macr. TT.ACCACTC GG.ATAACCG TGGTAATTCT AGAGCTAATA CGTGCAGCAT Ificella flex. CCAATTACTC GG.ATAACCG TAGTAATTCT AGCGCTAATA CGTGCAGCAT Lamp. p a p . TT.ACCACTC GG.ATAACCG TGGTAATTCT AGAGCTAATA CGTGCAGCAT Lychnochamnus TT.ACCACTC GG.ATAACCG TGGTAATTCT AGAGCTAATA CGTGCAGCAA fiiCelia axill. GG.ATAACCG TAGTAATTCT AGAGCTAATA CGTGCACCGA Nicella sp. CCAATTACTC GG.ATAACCG TAGTAATTCT AGAGCTAATA CGTGCAGCAT Nicellopsis GG.ATAACCG TGGTAANTCT AGAGCTAATA CGTGCAGCAT T o ly p e lla CCAATTACTC GG.ATAACCG TAGTAATTCT AGAGCTAATA CGTGCAGCAT Y e asc TTTACTACAT GGTATAACCG TGGTAATTCT AGAGCTAATA CATGCTTAAA S p ir o g y r a T . .GCTACTC GG. ATAAnCG TAGTAATTAT AGAGTTAATA CGTGT. GAAA Klebsormidium TT.ACTACTC GG.ATAACCG TAGTAATTCT AGAGCTAATA CGTGCACCAA Coleocnaece . . .ACTACTC GG.ATAACCG TAGTAATTCT AGAGCTAATA CGTGCACCGA Chlorokybus T. .ACTACTC GGTATAACCG TAGTAATTCT AGAGCTAATA CGTGCACAAA S o y b e a n T..ACTACTC GG.ATAACCG TAGTAATTCT AGAGCTAATA CGTGCAACAA

151 200 C. v u lg a r is ATCCCGACTT TT.GGAAGGG ATGTATTTAT TGGATAAAAG GCCGATCCGG C. m u e lle r i ATCCCGACTT CT.GGAAGGG ATGTATTTAT TGGATAAAAG GCCGATCCGG C. auscralis ATCCCGACTT CT.GGAAGGG ATGTATTTAT TGGATAAAAG GCCGATCCGG C. hornemannii ACCCCGACTT CT.GGAAGGG GTGTATTTAT TGGATAAAAG GCCGAnCCGG C. connivens ATCCCGACTT CT.GGAAGGG ATGTATTTAT TGGATAAAAG GCCGATCCGG C. h is p id a ATCCCGACTT TT.GGAAGGG ATGTATTTAT TGGATAAAAG GCCGATCCGG C. d r o u e c ii ATCCCGACCT CT.GGAAGGG ATGTATTTAT TGGATAAAAG GCCGATCCGG C. curcissii ATCCCGACTT CT.GGAAGGG ATGTATTTAT TGGATAAAAG GCCGATCCGG Lamp. macr. ATCCCGACTT CT.GGAAGGG ATGTATTTAT TGGATAAAAG GCCGATCCGG Nicella flex. ATCCCGACCT CT.GGAAGGG ATGTATTTAT TAGATAAAAG GCCAACTCGA Lamp. pap. ATCCCGACTT C T . GGAAGGG ATGTATTTAT TGGAT.^AAAG GCCGATCCGG Lychnochamnus ATCCCGTCTT CT.GGAAGGG ATGTATTTAT TGGATAAAAG GCCGATCCGG Nicella axill. CTCCCGAC.. .T.GGAAGGG ACGTATTTAT TAGATAAAAG ACCAACTC. . Nicella sp. ATCCCGACCT CT.GGAAGsG ATGTATTTAT TAGATAAAAG GCCAACTCGA Nicellopsis ATCCNGAC. . .T.GGAAGGG ATGTATNTAT TGGANAAAAG GCCGATCC. . T o ly p e lla ACCCCGACTT CT.GGAAGGG ATGTATTTAT TAGATAAAAG GCCAATCCGA Y easC ATCTCGACCC TTTGGAAGAG ATGTATTTAT TAGATAAAAA ATCAAT. .G. S p ir o g y r a CGCCCGACTT CT.GGAAGGG CCGTATTTAT TAGATTAAAG ACCAACTCGG Klebsormidium ATCCCGACTT CT.GGAAGGG ACGTATTTAT TAGATAAAAG GCCAATGCGG Coleochaece CTCCCGACTT CT.GGAAGGG ACGTATTTAT TAGATAAAAG ACCAATGCGG Chlorokybus GTCCCGAC.T CTTGGAAGGG ATGTATTTAT TAGATAAAAA ACCAATACGG S o y b e a n ACCCCGACTT CT.GGAAGGG ATGCATTTAT TAGATAAAAG GTCAACACAG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 76

201 250 c . v u lg a r is GCTT •G.CCC GTTGTTGCG GCGAATCATG •GTG.A.CTT TGTCGAATCG C. muelleri GCTT .G.CCC GTTGTTGCG GCGAATCATG •GTG.A.CTT . GTCGAATCG C. auscralis GCTT •G.CCC GTTGTTTCG GCGAATCATG ■ATG.A.CTT . CTCGAATCG C. hornemarjaii GCTT •G.CCC GTTGTTGCG GCGAATCATG •GTG.A.CTT TTTCGAATCG C. connivens GCTT •G.CCC GTTGTTGCG GCGAATCATG •GTG.A.CTC TTTCGAATCG C. h is p id a GCTT •G.CCC GTTGTTGCG GCGAATCATG •GTG.A.CTT TGTCGAATCG C. drouecii GCTT •G.CCC GTTGTTGCG GCGAATCATG •ATG.A.CTA TTTCGAATCG C. c u r c i s s i i GCTT •G.CCC GTTGTTTCG GCGAATCATG •GTG.A.CTT . GTCGAATCG Lamp. macr. GCTT •G.CCC GTTGTTGCG GCGAATCATG •GTG.A.CTT TGTCGAATCG Nicella flex. GCTT •G.CTC GGCGTTGTG GCGAATCATA •GTG.A.CTT T . TCGAATCG Lamp. p a p . GCTT •G.CCC GTTGTTGCG GCGAATCATG •GTG.A.CTT . CTCGAATCG Lychnochamnus GCTT •G.CCC GTTGTTTCG GTGAATCATG •ATG.A.CTT . CTCGAATCG Nicella axill. . TGAATCATG •AT..AACT. CCTCGAATCG Nicella sp. GCTT.G.CTC GGCGTTGTG GCGAATCATA •GTG.A.CTT T . TCGAATCG Nicellopsis . TGAATCATG •ATG.A.CTT . CTCGAATNG T o ly p e lla GCTT.G.CTC GTCGTTCTG GCTAATCATG •GTG.A.CT. CCTCGAATCG Y e asc . .T .C ..T T C G.CACTCTT •TGA.TGATT CAT..AA.TA ACTTT. . TCG S p i rogyra GGTTCGCCCC GAAACTTTG GTGATTCATA •ATGTAA.T. . CTCGGACCG Klebsormidium GCTT.G.CCC GGTATTGCG GTGAATCATG •AT..AACT. CCTCGAATCG Coleochaece GCT.CG.CCC GGTATTGCG GTGAATCATG •AT..AACT. CCTCGAATCG Chlorokybus GTTTCGGCCC GGTATTGCG GTGAATCATA •AT..AACT. CCTCGAATCG S o y b e a n GCT.CTGCCT GTTGCTTTG ATGATTCATG •AT..AACT. CGTCGGATCG

251 300 C. v u lg a r is •CATGGCCTT TGAGCCGGCG ATGTTCCATT CAAATTTCTG CCCTATCAAC C. m u e lle r i ■CATGGCCTT TGAGCCGGCG ATGTTCCATT CAAATTTCTG CCCTATCAAC C. auscralis •CACGGCCTT TGAGCCGGCG ATGTTCCATT CAAATTTCTG CCCTATCAAC C. hornemannii •CATGGCCTT CGAGCCGGCG ATGTTCCATT CAAATTTCTG CCCTATCAAC C. connivens •CATGGCCTT CGAGCCGGCG ATGTTCCATT CAAATTTCTG CCCTATCAAC C. h is p id a •CATGGCCTT TGAGCCGGCG ATGTTCCATT CAAATTTCTG CCCTATCAAC C. d r o u e c ii •CATGGCCTT CGAGCCGGCG ATGTTCCATT CAAATTTCTG CCCTATCAAC C. c u r c i s s i i •CATGGCCTT GGAGCCGGCG ATGTTCCATT CAAATTTCTG CCCTATCAAC Lamp. macr. •CATGGCCTT CGAGCCGGCG ATGTTCCATT CAAATTTCTG CCCTATCAAC Nicella flex. •CATGGCCTA TGCGCCGGCG ATGTTTCATT CAAATTTCTG CCCTATCAAC Lamp. pa p . •CATGGCCTT CGAGCCGGCG ATGTTCCATT CAAATTTCTG CCCTATCAAC Lychnochamnus •CATGGCCTN TGCGCCGGCG ATGTTCCATT CAAATTTCTG CCCTATCAAC Nicella axill. •CACGGCCCT TGCGCCGGCG ATGTTTCATT CAAATTTCTG CCCTATC.AAC Nicella sp. •CATGGCCTT TGCGCCGGCG ATGTTTCATT CAAATTTCTG CCCTATCAAC Nicellopsis NGCTNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN T o ly p e lla •CATGGCCTT TGCGCCGGCG ATGTTTCATT CAAATTTCTG CCCTATCAAC Y e a s t ACATGGCCTT . GTGCTGGCG ATGGTTCATT CAAATTTCTG CCCTATCAAC S p iro g y ra •CACGGCCT. CGCGCCGGTG ATGTTTCATT CAAATTTCTG CCCTATCAAC Klebsormidium •CACGGCCTT TGCGCTGGCG ATGTTTCATT CAAATTTCTG CCCTATCAAC Coleochaece •CACGGCCCA . GCGCTGGCG ATGTTTCATT CAAATTTCTG CCCTATCAAC Chlorokybus •CATGGCCTT CGTGCCGGCG ATGTTTCATT CAAATTTCTG CCCTATCAAC S o y b e a n •CACGGCCTT TGTGCCGGCG ACGCATCATT CAAATTTCTG CCCTATCAAC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 77

301 350 c . v u lg a r is TTTCGAT.GG TAGGATAGAG GCCTACCATG GTGGTAACGG GTGACGGAGA C. muelleri TTTCGATTGG TAGGATAGAG GCCTACCATG GTGGTAACGG GTGACGGAGA C. auscralis TTTCGAT.GG TAGGATATAG GCCTACCATG GTGGTAACGG GTGACGGAGA C. hornemannii TTTCGAT.GG TAGGATAGAG GCCTACCATG GTGGTAACGG GTGACGGAGA C. connivens TTTCGAT.GG TAGGATAGAG GCCTACCATG GTGGTAACGG GTGACGGAGA C. h is p id a TTTCGAT.GG TAGGATAGAG GCCTACCATG GTGGTAACGG GTGACGTAGA C. drouecii TTTCGAT.GG TAGGATATAG GCCTACCATG GTGGTAACGG GTGACGGAGA C. curcissii TTTCGAT.GG TAGGATATAG GCCTACCATG GTGGTAACGG GTGACGGAGA Lamp. macr. TTTCGAT.GG TAGGATAGAG GCCTACCATG GTGGTAACGG GTGACGGAGA Nicella flex. TTTCGAT.GG TAGGATAGAG GCCTACCATG GTGGTAACGG GTGACGGAGA Lamp. p a p . TTTCGAT.GG TAGGATAGAG GCCTACCATG GTGGTAACGG GTGACGGAGA Lychnochamnus TTTCGAT.GG TAGGATAGAG GCCTACCATG GTGGTAACGG GTGACGGAGA Nicella axill. TTTCGAT.GG TAGGATAGAG GCCTACCATG GTGGTAACGG GTGACGGAGA Nicella sp. TTTCGAT.GG TAGGATAGAG GCCTACCATG GTGGTAACGG GTGACGGAGA Nicellops is NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNGG GTGACGGNGA T o ly p e lla CTTCGAT.GG TAGGATAGAG GCCTACCATG GTGGTAACGG GTGACGGAGA Yeasc TTTCGAT.GG TAGGATAGTG GCCTACCATG GTTTCAACGG GTAACGGGGA S p ir o g y r a TTTCGAT.GG TAGGATAGAG GCCTACCATG GTGGTAACGG GTGACGGAGG Klebsormidium TTTCGAT.GG TAGGATAGAG GCCTACC.ATG GTGGTAACGG GTGACGGAGA Coleochaece nTTCGAT. GG TAGGATAGAG GCCTACCATG GTGGTAACGG GTGACGGAGA Chlorokybus TTTCGAT.GG TAGGATAGAG GCCTACCATG GTGGTAACGG GTGACGGAGA S o y b e a n TTTCGAT.GG TAGGATAGTG GCCTACCATG GTGGTGACGG GTGACGGAGA

351 400 C. v u lg a r is ATTAGGGTTC GATTCC. GGA GAGGGAGCCT GAGAGATGGC TACCACATCC C. m u e lle r i ATTAGGGTTC GATTCC.GGA GAGGGAGCCT GAGAGATGGC TACCACATCC C. auscralis ATTAGGGTTC GATTCC. GGA GAGGGAGCCT GAGAGATGGC TACCACATCC C. hornem arsiii ATTAGGGTTC GATTCC.GGA GAGGGAGCCT GAGAGATGGC TACCACATCC C. connivens ATTAGGGTTC GATTCC.GGA GAGGGAGCCT GAGAGATGGC TACCACATCC C. h is p id a ATTAGGGTTC GATTCC.GGA GAGGGAGCCT GAGAGATGGC TACCACATCC C. d r o u e c ii ATTAGGGTTC GATTCC. GGA GAGGGAGCCT GAGAGATGGC TACCACACCC C. c u r c i s s i i ATTAGGGTTC GATTCC.GGA GAGGGAGCCT GAGAGATGGC TACCACATCC Lamp. macr. ATTAGGGTTC GATTCC.GGA GAGGGAGCCT GAGAGATGGC TACCACATCC Nicella flex. ATTAGGGTTC GATTCC.GGA GAGGGAGCCT GAGAGACGGC TACCACATCC Lamp. p a p . ATTAGGGTTC GATTCCCGGA GAGGGAGCCT GAGAGATGGC TACCACATCC Lych.nochamnus ATTAGGGTTC GATTCC.GGA GAGGGAGCCT GAGAGATGGC TACCACATCC Nicella axill. ATTAGGGTTC GATTCC.GGA GAGGGAGCCT GAGAAACGGC TACCACATCC Nicella sp. ATTAGGGTTC GATTCC.GGA GAGGGAGCCT GAGAGACGGC TACCACATCC Nicellopsis ATTNGGGTTC GATTCC.GGA GAGGGAGCCT GAGAGATGGC TACCACATCC T o ly p e lla ATTAGGGTTC GATTCC.GGA GAGGGAGCCT GAGAGACGGC TACCACACCC Y e a s t ATAAGGGTTC GATTCC.GGA GAGGGAGCCT GAGAAACGGC TACCACATCC S p ir o g y r a ATTAGGGTTC GATTCC. GGA GAGGGAGCAT TAGAAACGGC TACCACATCC Klebsormidium ATTAGGGTTC GATTCC.GGA GAGGGAGCCT GAGAAACGGC TACCACATCC Coleochaece ATTAnGGTTC GATTCC.GGA GAGGGAGCCT GAGAAACGGC TACCACATCC Chlorokybus ATTAGGGTTC GATTCC.GGA GAGGGAGCCT GAGAAACGGC TACCACATCC S o y b e a n ATTAGGGTTC GATTCC.GGA GAGGGAGCCT GAGAAACGGC TACCACATCC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 78

401 450 c. v u lg a r is AAGGAAGGCA GCAGGCGCGT AAATTACCCA ATCCTGACAT AGGGAGGTAG C. m u e lle r i AAGGAAGGCA GCAGGCGCGT AAATTACCCA ATCCTGACAT AGGGAGGTAG C. a u s c r a l i s AAGGAAGGCA GCAGGCGCGT AAATTACCCA ATCCTGACAT AG-GGAGGTAG C. h o rn em a n n ii AAGGAAGGCA GCAGGCGCGT AAATTACCCA ATCCTGACAT AGGGAGGTAG C. c o n n iv e n s AAGGAAGGCA GCAGGCGCGT AAATTACCCA ATCCTGACAT AGGGAGGTAG C. h is p id a AAGGAAGGCA GCAGGCGCGT AAATTACCCA ATCCTGACAT AGGGAGGTAG C. drouecii AAGGAAGGCA GCAGGCGCGT AAATTACCCA ATCCTGACAT AGGGAGGTAG C. curcissii AAGGAAGGCA GCAGGCGCGT AAATTACCCA ATCCTGACAT AGGGAGGTAG Lamp. macr. AAGGAAGGCA GCAGGCGCGT AAATTACCCA ATCCTGACAT AGGGAGGTAG Nicella flex. AAGGAAGGCA GCAGGCGCGC AAATTACCCA ATCCTGACAC AGGGAGGTAG Lamp. p a p . AAGGAAGGCA GCAGGCGCGT AAATTACCCA ATCCTGACAT AGGGAGGTAG Lychnochamnus AAGGAAGGCA GCAGGCGCGT AAATTACCCA ATCCTGACAT AGGGAGGTAG Nicella axill. AAGGAAGGCA GCAGGCGCGC AAATTACCCA ATCCTGACAC AGGGAGGTAG Nicella sp. AAGGAAGGCA GCAGGCGCGC AAATTACCCA ATCCTGACAC AGGGAGGTAG Nicellopsis AAGGNAGGCA GCAGGCGCGN ANATTACCCA ATCCTGACAN AGGGAGGTAG T o ly p e lla AAGGAAGGCA GCAGGCGCGC AAATTACCCA AnCCTGACAC AGGGAGGTAG Y e asc AAGGAAGGCA GCAGGCGCGC AAATTACCCA ATCCTAATTC AGGGAGGTAG S p ir o g y r a AAGGAAGGCA GCAGGCGCGC AAATTACCCA ATCCTGATTC AGGGAGGTAG Klebsormidium AAGGAAGGCA GCAGGCGCGC AAATTACCCA a t c c t g a t a c AGGGAGGTAG Coleochaece AAGGAAGGCA GCAGGCGCGC AAATTACCCA ATCCTGATAC AGGGAGGTAG Chlorokybus AAGGAAGGCA GCAGGCGCGC AAATTACCCA ATCCTGATAC AGGGAGGTAG S o y b e a n AAGGAAGGCA GCAGGCGCGC AAATTACCCA ATCCTGACAC GGGGAGGTAG

4 S I 500 C. v u lg a r is TGACAATAAA TAACAATACT GGGCTCTTTC GAGTCCGGTA ATTGGAATGA C. muelleri TGACAATAAA TAACAATACT GGGCTCTTTC GAGTCCGGTA ATTGGAATGA C. auscralis TGACAATA.AA TAACAATACT GGGCTCTTTC GAGTCCGTTA ATTGGAATGA C. hornemannii TGACAATAAA TAACAATACT GGGCTCTTTC GAGTCCGGTA ATTGGAATGA C. c o n n iv e n s TGACAATAAA TAACAATACT GGGCTCTTTC GAGTCCGGTA ATTGGAATGA C. h is p id a TGACAATAAA TnACAATACT GGGCTCTTTC GAGTCCGGTA ATTGGAATGA C. d r o u e c ii TGACAATAAA TAACAATACT GGGCTCTTTC GAGTCCGGTA ACTGGAATGA C. curcissii TGACAATAAA TAACAATACT GGGCTCTTTC GAGTCCGGTA ATTGGAATGA Lamp. macr. TGACAATAAA TGACAATACT GGGCTCTTTC GAGTCCGGTA ATTGGAATGA Nicella flex. TGACAATAAA TAACAATACT GGGCTCTTTC GAGTCCGGTA ATTGGAATGA Lamp. p a p . TGACAATAAA TGACAATACT GGGCTCTTTT GAGTCCGGTA ATTGGAATGA Lychnochamnus TGACAATAAA TAACAATACT GGGCTCTTTC GAGTCTGGTA ATTGGAATGA Nicella axill. TGACAATAAA TAACAATACT GGGCT.T... •AGTCTGGTA ATTGGAATGA Nicella sp. TGACAATAAA TAACAATACT GGGCTCTTTC GAGTCCGGTA ATTGGAATGA Nicellopsis TGACAATAAN TAACAATACT GGGCTCC. . . . .GTCTGGTA ATTGGAATGA T o ly p e lla TGACAATAAA TAACAACACC GGGCTCTTTT GAGTCCGGTA AnCGGAATGA Y e a s c TGACAATAAA TAACGATACA GGGCCCATTC GGGTCTTGTA ATTGGAATGA S p ir o g y r a TCAnAATAAA TAAnAATACC GGTCTCTTAT GTGACTGGTA ATTGGAATGA Klebsormidium TGACAATAAA TAACAATGCT GGGCTTTTCA AAGTCTGGCA ATTGGAATGA Coleochaece TGACAATAAA TAACAATACT GGGCTTTTAC AAGTCTGGTA ATTGGAATGA Chlorokybus TGACAATAAA TAACAATACC GGGCTTTCTA AAGTCTGGTA ATTGGAATGA S o y b e a n TGACAATAAA TAACAATACC GGGCTCATT. GAGTCTGGTA ATTGGAATGA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 79

501 550 c . '/u lg a r is GAACAGTCCT AAACTCCTTC .AACGA.GGA TCCATTGGAG GGCAAGTCTG C. m u e lle r i GAACAGTCGT AAACTCCTT. GAACGA. GGA TCCATTGGAG GGCAAGTCTG C. auscralis GAACAGTCTT AAACTCCTT. GAACGA.GGA TCCATTGGAG GGCA. GTCTG C. h o rn e m a n n ii GAACAGTCCT AAACTCCTTC .AACGA.GGA TCCATTGGAG GGCAAGTCTG C. c o n n iv e n s GAACAGTCCT AAACTCCTT. GGGCGA.GGA TCCATTGGAG GGCAAGTCTG C. h is p id a GnACAGTCCT AAACTCCTT. GAACGA.GGA TCCATTGGAG GGCAAGTCTG C. d r o u e c ii GAACAGCCTT AAACTCCTTC .AACGA.GGA TCCATTGGAG GGCAAGTCTG C. curcissii GAACAGTCTT AAACTCCTT. GAACGA. GGA TCCATTGGAG GGCAAGTCTG Lamp. macr. GnACAGTCCT AAACTCCTT. AAACGA.GGA TCCATTGGAG GGCAAGTCTG nicella £lex. GAACAGTC.T AAACCCCTT. AAACGA. GGA TCCATTGGAG GGCAAGTCTG Lamp. p a p . GnACAGTCCT AAACTCCTT. AAACGA. GGA TCCATTGGAG GGCAAGTCTG Lychnochamnus GAACAGTCGT AAACTCCTT. AAACGA. GGA TCCATTGGAG GGCAAGTCTG Nicella axill. GNACAATC.T AAACCCCTT. AAACGA.GGA TCAATTGGAG GGCAAGTCTG Nicella sp. GAACAGTC.T AAACCCCTT. AAACGA. GGA TCCATTGGAG GGCAAGTCTG Nicellopsis GTACANTC.T AAATCCCTT. NAACGA. GGA TCCATTGGAG GGCAAGTCTG T o ly p e lla GAACAGTC.T AAACCCCT.C AAACGA. GGA TCCATTGGAG GGCAAGTCTG l e a s t GTACAAT.GT AAATACCTT. . AACGA. GvjA ACAATTGGAG GGCAAGTCTG Spi ro g yra GnGGAA.CAT AAATACCTT. . AACnA. GGA TCCATTGGAG GGCAAGTCTG Klebsormidium GTGCAATC.T AAATCCCT.C . AACGA. GGA TCCATTGGAG GGCAAGTCTG Coleochaece GTACAATC.T AAATCTCTT. .AACGA.GGA TCCATTGGAG GGCAAGTCTG Chlorokybus GTACAATT.T AAATCCCTT. •AACGA.GGA TCCATTGGAG GGCAAGTCTG S o y b e a n GTACAATC.T AAATCCCTT. -AACGATGGA TCCATTGAAG GGCAAGTCTG

551 ôûO C. v u lg a r is GTGCCAGCCA GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTTAA.GTT C. m u e lle r i GTGCCAGC. A GCCGCGGTAA TTNCAGCTCC AATAGNNTAT ATTTAANGTT C. a u s c r a l i s GTGCCAGC. A GCCGCGGTAA TTCCAGCTTC AATAGCGTAT ATTTAA.GTT C. h o rn em a n n ii GTGCCAGC.A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTTAA.GTT C. c o n n iv e n s GTGCCAGC.A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTTAA.GTT C. h is p id a GTGCCAGC.A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTTAA.GTT C. d r o u e c ii GTGCCAGC. A GCCGnGGTAA TTCCAGCTCC AATAGCGTAT ATTTAA.GTT C. c u r c i s s i i GTGCCAGC.A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTTAA. GTT Lamp. macr. GTGCCAGC.A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTTAA. GTT Nicella flex. GTGCCAGC.A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTTAA.GTT Lamp. p a p . GTGCCAGC.A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTTAA. GTT Lychnochamnus GTGCCAGC. A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTTAA.GTT Nicella axill. GTGCCAAC.A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTAAA.GTT Nicella sp. GTGCCAGC.A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTTAA. GTT Nicellopsis GTGCCAGC.A GCCGCGGTAA TTCCNNCTCC AATAGNGTAT ATTTAAN.TT T o ly p e lla GTGCCAGC.A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTTAA. GTT Yeasc. GTGCCAGC.A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTAAA.GTT Spi ro g yra GTGCCAGC.A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTTAnn.TT Klebsormidium GTGCCAGC.A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTTAA.GTT Coleochaece GTGCCAGC.A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTTAA.GTT Chlorokybus GTGCCAGC.A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTTAA.GTT S o y b e a n GTGCCAGC.A GCCGCGGTAA TTCCAGCTCC AATAGCGTAT ATTTAA. GTT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 80

ÔQ1 65G v u ig a r is GTTGCAGTTA AAAAGCTCGT AGTTGGATTT TGGG.TGGG. AGGGGTCGGT C. muell'Bri GTTGCAGTTA AAAAGCTCGT AGTTGGATTT TGGG.TGGG. AGGGGTTGGT C. auscralis GTTGCAGTTA AAAAGCTCGT AGTTGGATTT TGGG.TGGG. AGGGGnTGGT C . hornemannii GTTGCAGTTA AAAAGCTCGT AGTTGGATTT TGGG.TGGG. AGGGGTCGGT C. connivens GTTGCAGTTA AAAAGCTCGT AGTTGGATTT TGGG.TGGG. AGGGGTCGGT C. h is p id a GTTGCAGTTA AAAAGCTCGT AGTTGGATTT TGGG.TGGG. AGGGGTCGGT C. drouecii GTTGCAGTTA AAAAGCTCGT AGTTGGATTC TGGG.TGGG. AGGGGTCGGT C. c u r c i s s i i GTTGCAGTTA AAAAGCTCGT AGTTGGATTT TGGG.TGGG. AGGGGTTGGT Lamp. macr. GTTGCAGTTA AAAAGCTCGT AGTTGGATTT TGGG.TGGG. AGGGGTCGGT Sicella flex. GTTGCAGTTA AAAAGCTCGT AGTTGGATTT TGGG.TGGGA AGGA. CTGGT Lamp. p a p . GTTGCAGTTA AAAAGCTCGT AGTTGGATTT TGGG.TGGG. AGGGGTCGGT Lychnochamnus GTTGCAGTTA AAAAGCTCGT AGTTGGATTT TGGG.TGGGA AGGG.CCGGT Nicella axill. GTTGCAGTTA AAAAGCTCGT AGTTGGATTT CTGG.TGCGG AG.. .CCGG. Nicella sp. GTTGCAGTTA AAAAGCTCGT AGTTGGATTT TGGG.TGGGA AGGA.CTGGT Nicellopsis GTTGNAGTTA AAAAGCTCGT AGTTGGATTT NNGG.CNCNG A G .. . CCGGC T o ly p e lla ■GTTGCAGTTA AAAAGCTCGT AGTTGGATTT TGGG.TGGG. AGGGGGCGGT Y e asc GTTGCAGTTA AAAAGCTCGT AGTTGAACTT TGGGCCCGGT TGG..CCGGT S p ir o g y r a GTTGCAGTTA AAAAGCTCGT AGTTGGATTT CGG.AnnGG. AGACGTCGGT Klebsormidi u.m ■GTTGCAGTTA AAAAGCTCGT AGTTGGATTT TGGG.TTGGG .GCAGCCGGT Coleochaece ■GTTGCAGTTA AAAAGCTCGT AGTTGGATTT TGGG.TTGG. AGCGACCGGT Chlorokybus GTTGCGATTA AAAAGCTCGT AGTTGGATTT TGGGATGGGG TG..ATCGGT S o y b e a n GTTGCAGTTA AAAAGCTCGT AGTTGGACCT TGGG.TTGGG T.CGATCGGT

651 700 C. v u lg a r is CC. GCTCTT GCGGGCGTGT .ACTGGCCCT TTCG CCTTT CTTGCCGGGG C. muelleri CC. GCCCTT GCGGGCGTGT .ACCGGCCCT TTCG CCTTT CTTGCCGGGT C. a u s c r a l i s CC. GCTCTT GCGGGCGTGT .ACCGGCCCT TTCG CCTTT CTTGCCGGGG C. hornemannii CC. GTCTTC GCGGGC.TGT CGTAGGCCCT TTCG CTTTT CTTGyGCGGG C. connivens CC. GCCCTT GCGGGCGTG. CACTGGCCCT TTCG CnTTT CTTGCCGGGG C. h is p id a CC. GCTCTT GCGGGCGTGT .ACTGGCCCT TTCG CCTTT CTTGCCGGGG C. drouecii CC. GCCTCT GCGGGCGTG. CACTGGCCCT TTCG CTTTT CTTGCCGGGG C. curcissii CC. GCTCTT GCGGGCGTGT .ACCGGCCCT TTCG CTTTT CTTGCCGGGG Lamp. macr. CCnGCCTT. GCGGGCGTGT .ACTGGCCCT TTCG CCTTT CTTGCCGGGG Nicella flex. CC. GCCTTC GCGG.CGTG. CACCGGCCCT TCCG CCTCT CTTGCCGGGG Lamp. p a p . CCnGCCTT. GCGGGCGTGT .ACTGGCCCT TTCG CCTTT CTTGCCGGGG Lychnochamnus CC. GCCTTC GCGGGCGTGT .ACTGGCCCT TTCG CTTGCCGGGG Nicella axill. Nicella sp. CC. GCCTTC GCGGGCGTG. CACCGGCCCT TCCG.CCTCT CTTGCCGGGG Nicellopsis CCTGNN. . . T o ly p e lla CC.GCCTnC ACGGGCGTG. CACCGGCCCC TCCG.CTTTT CTTGCCGGGG Y e a s t CC. GAT. . . TTTTTCGTGT .ACTGGATTT CCAAGGGCCC TTTCCTTCTG S p ir o g y r a CCTCCCTC. GTGG.TCGAT .ACTGACTCT CT.G.CTTAA t t g c t c g. a Klebsormidium CC. GCCTC. ACGG.TGTG. CACCGGCTGA CCCATCC.TT CTTGCCGGGG Coleochaece CC. GCCTT. TTGGGTGTG. CACTGGTCTC TCCATCC.TT CTTGTCGGGG Chlorokybus CT.GCCGTT TCGG. TATGT .ACTGGTCAC CTTTTCC.TT CTTGTCGGGG S o y b e a n CC.GCCTC. .CGG.TGTG. CACCGGTCGG CTCGTCCCTT C T. GCCGGCG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 81

701 750 c . v u lg a r is ATGTGTTCCT TGCCTTTACT GGCCGGGATC CAGAGCCGGC GCTGTTACTT C. muelleri ATGCGTTCCT TGCCTTTATT GGCTGGGATC CAGAGCCGGC GCTGTTACTT C. a u s c r a l i s ATGCGTTCCT TGCCTTTATT GGCTGGGATC CAGAGCCGGC GCTGTTACTT C. h o rnem annii ATGTGTTCCT TGCTTTTACT GGCTGGGATC CAGAGCCGGC GCTGTTACTT C. c o n n iv e n s ATGTGTTCCT TGCCTTTACT GGCCGGGATC CAGAGCCGGC GCTGTTACTT C. h is p id a ATGTGTTCCT TGCCTTTACT GGCCGGGATC CAGAGCCGGC GCTGTTACTT C. d r o u e c ii ATGCGnnCCT TGCCTTCGCT GGnCGAGGCC CAGAGCCGGC GCTGTTACTT C. c u r c i s s i i ATGCGTTCCT TGCCTTCATT GGCTGGGATC CAGAGCCGGC GCTGTTACTT Lamp. macr. ATGCGTTCCT TGCCTTTATT GGCCGGGATC CAGAGCCGGC GATGTTACTT Nicella flex. ACGTGCTCCT CGCCTTCATT GGCCGGGACG CGGAGCCGGC GCCGTTACTT Lamp. pap. ATGCCGTCCT TGCCTTTATT GGCCGGGATC CAGAGCCGGC GATGTTACTT Lychnochamnus ATGTGGTCCT TGCCTTTGTT GGCCGGGATC CAGAGCCGGC GCTGTTACTT Nicella axill...... C GCTGTTACTT Nicella sp. ACGTGCTCCT CGCCTTCATT GGCCGGGACG CGGAGCCGGC GCCGTTACTT Nicellopsis ...... ACTT T o ly p e lla ACGTGCTCCT CGCCTTCATT GGCCGGGACG CGGAGCCGGC GCTGTTACTT Y e a s c GCTAA..CCT TGAGTCC.TT GTGGCTCTTG GCGAACCAGG ACTTTTACTT S p ir o g y r a GCGTCG.CCT gtc.ttcatt GCCTGCGnCG TACnGC. GGC GCCGTTACCT Klebsormidium ACGCGCTCCT GGCCTTAACT GGTCGGGACG TGGAGTCGGC GATGTTACTT Coleochaece ACGCGCTTCT TGCCTTAACT GGCTGGGACG CGGAGTCGGC GATGTTACTT Chlorokybus ACGCGCTCCT GACCTTAATT GGCTGGGACG CGGAGTCGGC GATGTTACTT S o y b e a n ATGCGCTCCT g t c c t t a a c t GGCCGGGTCG TGCCTCCGGT GCTGTTACTT

751 800 C. vTiigaris TGAAAAAATT AGAGTGTTCA AAGCAGGCCT GTGCTCTGAA CATATTAGCA C. muelleri TGAAAAAATT AGAGTGTTCA AAGCAGGCCT GTGCTCTGAA CATNNTAGCA C. auscralis TGAAAAAATT AGAGTGTTCA AAGCAGGCCT GCGCTCTGAA CATATTAGCA C. hornemannii TGAAAAAATT AGAGTGTTCA AAGCAGGCCT GCGCTCTGAA CATATTAGCA C. connivens TGAAAAAATT AGAGTGTTCA AAGCAGGCCT GTGCTCTGAA CATATTAGCA C. h is p id a TGAAAAAATT AGAGTGTTCA AAGCAGGCCT GTGCTCTGAA CATATTAGCA C. d r o u e c ii TGAAAAAATT AGAGTGTTCA AAGCAGGCCT GAGCTCTGAA CATATTAGCA C. curcissii TGAAAAAATT AGAGTGTTCA AAGCAGGCCT GTGCTCTGAA CATATTAGCA Lamp. macr. TGAAAAAATT AGAGTGTTTA AAGCAGGCCT GTGCTCTGAA CATATTAGCA Nicella flex. TGAAAAAATT AGAGTGTTCA AAGCAGGCCC ACGCTCTGAA TACATTAGCA Lamp. pap. TGAAAAAATT AGAGTGTTTA AAGCAGGCCT GCGCTCTGAA CATATTAGCA Lychnochamnus TGAAAAAATT AGAGTGTTCA AAGCAGGCCT GTGCTCTGAA CATATTAGCA Nicella axill. TGAAAAAATT AGAGTGTTCA AAGCAGGCCC ACGCTCTGAA TACATTAGCA Nicella sp. TGAAAAAATT AGAGTGTTCA AAGCAGGCCC ACGCTCTGAA TACATTAGCA Nicellopsis TGNNNAAATT AGAGTGTTCA AAGCAGGCCT GTGCNCTGAA NNTATTAGCA T o ly p e lla TGAAAAAATT AGAGTGTTCA AAGCAGGCCC ACGCTCTGAA TACATTAGCA Y e a s c TGAAAAAATT AGAGTGTTCA AAGCAGGCCT ATTGCTCGAA TATATTAGCA S p ir o g y r a TGAATAAATT ATGGTGTTCA AAGCAAGCTT ATGCTCTGAG TACATTAGCA Klebsormidium TGAAAAAATT AGAGTGTTCA AAGCAGGCCT ACGCTCTGAA TACATTAGCA Coleochaece TGAAAAAATT AGAGTGTTCA AAGCAGGCAT ACGCTCTGAA TACATTAGCA Chlorokybus TGAAAAAATT AGAGTGTTCA AAGCAGGCCT ATGCTCTGAA TACATTAGCA S o y b e a n TGAAGAAATT AGAGTGCTCA AAGCAAGCCT ACGCTCTGTA TACATTAGCA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 82

901 850 c . v u l g a r i s TGGAATAACG CGATAGGAC. TCNGGTCCTA TTTNNTTGGT CTTC.GGGAT C. muelleri TGGAATAACG CGATAGGAC. TCTGGTCCTA TT.CGTTGGT CNTC.GGGAT C. a u s c r a l i s TGGAATAACG CGATAGGAC. TCTGGTCCTA TTTCGTTGGT CTTC. GGGAT C. h o r n e m a n n ii TGGAATAACG CGATAGGAC. TCTGGTCCTA TTCCGTTGGT CTTC. GGGAT C. connivens TGGAATAACG CGATAGGAC. TCTGGTCCTA TTTCGTTGGT CTTC.GGGAT C. h i s p i d a TGGAATAACG CGATAGGAC. TCCGGTCCTA TTTCGTTGGT CTTC.GGGAT C. d r o u e c ii TGGAATAACG CGATAGGAC. TCTGGTCCTA TTGCGTTGGT CTTC. GGGAT C. c u r c i s s i i TGGAATAACG CGATAGGAC. TCTGGTCCTA TTGCGTTGGT CTTC.GAGAT Lamp. macr. TGGAATAACG CGATAGGAC. TCTGGTCCTA TTTCGTTGGT CTnC.AGGAT nicella flex. TGGAATAACG CGATAGGAC. TCTGGTCCTA TTGTGTTGGT CTTC.GGGAC Lamp. p a p . TGGAATAAnG CGATAGGAC. TCTGGTCCTA TTTCGTTGGT CTnC.AGGAT Lychnochamnus TGGAATAACG CGATAGGAC. TCTGGTCCTA TTTCGTTGGT CTTC. GGGAT nicella axill. TGGAATAACG CGATAGGAC. TC.G ...... TGTTGGT CTTC. GGGAC nicella sp. TGGAATAACG CGATAGGAC. TCTGGTCCTA TTGTGTTGGT CTTC.GGGAC nicellopsis TGGAATAACG CGATAGGACN NNTG...... TTGGT CTTCNGG.AT T o ly p e lla TGGAATAACG CGATAGGAC. TCTGGTTCTA TTGTATTGGT CTTC.GGGAC Y e a s c TGGAATAATA GAATAGGACG TTTGGTTCTA TTTTGTTGGT TT.CTAGGAC S p ir o g y r a TGGAATAACG CTATAGGAC. TCCGGTCCTA TTACGTTGGT CTTCTGG.AC Klebsormidium TGGAATAACG TGATAGGAC. TCTGGTCCTA TTGTGTTGGT CTTC.GGGAC Coleochaece TGGAATAACA TTATAGGAC. TCCGGTCCTA TTGTGTTGGT CTTC.GGGAC Chlorokybus TGGAATAACG TTATAGGAC. TCTGGTCCTA TTTTGTTGGT TTTC. GGGAC S o y b e a n TGGGATAACA CCACAGGAT. TCTGATCCTA TTGTGTTGGC CTTC.GGGAT

851 900 C. vulgaris TGGAGTAATG ATTAATAGAG ANGNTTGGGG GCATTCGTAT TCCATTGTCA C. m u e lle r i TGGAGTAATG ATTAANAGAG ACGGTNGGGG GCATTCGTAT TCCATTGTCA C. a u s c r a l i s TGGAGTAATG ATTAATAGAG ACGGTTGGGG GCATTCGTAT TCCATTGTCA C. h o r n e m a n n ii TGGAGTAATG ATTAATAGAG ACGGTTGGGG GCATTCGTAT TCCATTGTCA C. c o n n iv e n s TGGAGTAATG ATTAATAGAG ACGGTTGGGG GCATTCGTAT TCCATTGTCA C. h i s p id a TGGAGTAATG ATTAATAGAG ACGGTTGGGG GCATTCGTAT TCCATTGTCA C. d r o u e c ii TGGAGTAATG ATTAATAGAG ACGGTTGGGG GCATTCGTAT TCCATTGTCA C. c u r c i s s i i TGGAGTGATG ATTAATAGAG ACGGTTGGGG GCATTCGTAT TCCATTGTCA Lamp. macr. TGGAGTAATG ATTAATAGAG ACGGTTGGGG GCATTCGTAT TCCATTGTnA nicella flex. CGGAGTAATG ATCAATAGGG ACAGTTGGGG GCATTCGTAT TCCATTGTCA Lamp. p a p . TGGAGTAATG ATTAATAGAG AnGGTTGGGG GCATTCGTAT TCCATTGTnA Lychnochamnus CGGAGTAATG ATTAATAGAG ACGGTTGGGG . CATTCGTAT TCCATTGTCA nicella axill. CGGAGTAATG ATCAATAGGG ACAGTTGGGG GCATTCGTAT TCCATTGTCA nicella sp. CGGAGTAATG ATCAATAGGG ACAGTTGGGG GCATTCGTAT TCCATTGTCA nicellopsis CGGAGTAATG ATTAATAGGG ACGGTNGGGG GCATTCGTAT TCCATTGTCA T o ly p e lla CGGAGTAATn nTCAATAGGA ACAGTTGGGG GCATTCGTAT TCCATTGTCA Y easc. CATCGTAATG ATTAATAGGG ACGGTCGGGG GCATCGGTAT TCAATTGTC. S p ir o g y r a CGGAGTAATG ATTAATAGGG ACAGTCGGGG GCATTCGTAC TTCATCGTnA Klebsormidium CGGAGTAATG ATTAATAGGG ACAGTTGGGG ATATTCGTAT TTCATTGTCA Coleochaece CGGAGTAATG ATTAATAGGG ACAGTTGGGG GCATTCGTAT TTCATTGTCA Chlorokybus CGGAGTAATG ATTAATAGGG ACAGTTGGGG GCATTCGTAT TTCGTTGTCA S o y b e a n CGGAGTAATG ATTAACAGGG ACAGTCGGGG GCATTCGTAT TTCATAGTCA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 83

901 c. v u lg a r is GAGGTGAAAT TCTTGGATTT ATGGATGACG AA. CTTCTGC GAAAGCATTT C. muelleri GAGGTGAAAT TCTTGGATTT ATGGATGACG AA. CTTCTGC GAAAGCATTT C. auscralis GAGGTGAAAT TCTTGGATTT ATGGATGACG AA. CTTCTGC GAAAGCATTT C. hornemannii GAGGTGAAAC TCTTGGATTT ATGGATGACG AA.CTTCTGC GAAAGCATTT C. connivens GAGGTGAAAT TCTTGGATTT ATGGATGACG AA.CTTCTGC GAAAGCATTT C. h is p id a GAGGTGAAAT TCTTGGATTT ATGGATGACG AAGCTTCTGC GAAAGCATTT C. drouecii GAGGTGAAAT TCTTGGATTT ATGGATGACG AA.CTTCTGC GAAAGCATTT C. curcissii GAGGTGAAAT TCTTGGATTT ATGGATGACG AA.CTTCTGC GAAAGCATTT Lamp. macr. GAGGTGAAAT TCTTGGATTT ATGGATGACG AA. CTTCTGC GAAAGCATTT Micella flex. GAGGTGAAAT TCTTGGATTT ATGGATGACG AA.CTTCTGC GAAAGCATTT Lamp. p a p . GAGGTGAAAT TCTTGGATTT ATGGATGACG AA.CTTCTGC GAAAGCATTT Lychnochamnus GAGGTGAAAT TCTTGGATTT ATGGATGACG AA.CTTCTGC GAAAGCATTT Nicella axill. GAGGTGAAAT TCTTGGATTT ATGGATGACG AA.CTTCTGC GAAAGCATTT Nicella sp. GAGGTGAAAT TCTTGGATTT ATGGATGACG AA.CTTCTGC GAAAGCATTT Nicellopsis GAGGTGAAAN TCTTGGATTT ATGGATGACG AA.CTTCTGC GAAAGCATTT T o ly p e lla GAGGTGAAAT TCTTGGATTT ATGGATGACG AA. CTTCTGC GAAAGCATTT Y e a s t GAGGTGAAAT TCTTGGATTT ATTGAAGACT AA. CTACTGC GAAAGCATTT S p ir o g y r a GAGGTGAAAT TCTTGGATCG ATGAAAGACG AA. CTTCTGC GAAAGCATTT Klebsormidium GAGGTGAAAT TCTTGGATTT ATGAAAGACG AA. CTTCTGC GAAAGCATTT Coleochaece GAGGTGAAAT TCTTGGATTT ATGAAAGACG AA. CTTCTGC GAAAGCATTT Chlorokybus GAGGTGAAAT TCTTGGATTT ACGAAAGACG AA. CTTCTGC GAAAGCATTT S o y b e a n GAGGTGAAAT TCTTGGATTT ATGAAAGACG AA. CAACTGC GAAAGCATTT

951 1000 C. v u lg a r is GCCAAGGACG TTCTCATTAA TCAAGAACGA AAGTTGGGGG ATCGAAGACG C. muelleri GCCAAGGACG TTCTCATTAA TCAAGAACGA AAGTTGGGGG ATCGAAGACG C. auscralis GCCAAGGACG TTCTCATTAA TCAAGAACGA AAGTTGGGGG ATCGAAGACG C. hornemannii GCCAAGGACG TTCTCGTTAA TCAAGAACGA AAGTTGGGGG ATCGAAGACG C. connivens GCCAAGGACG TTCTCATTAA TCAAGAACGA AAGTTGGGGG ATCGAAGACG C. h is p id a GCCAAGGACG TTCTCATTAA TCAAGAACGA AAGTTAGAGG ATCGAAGACG C. drouecii GCCAAGGACG TTCTCATTAA TCAAGAACGA AAGTTAAGGG ATCGAAGACG C. curcissii GCCAAGGACG TTCTCATTAA TCAAGAACGA AAGTTAGAGG ATCGAAGACG Lamp. macr. GCCAAGGACG TTCTCATTAA TCAAGAACGA AAGTTGGGGG ATCGAAGACG Nicella flex. GCCAAGGATG TTTTCATTAA TCAAGAACGA AAGTTGGGGG ATCGAAGACG Lamp. pap. GCCAAGGACG TTCTCATTAA TCAAGAACGA AAGTTGGGGG ATCGAAGACG Lychnochamnus GCCAAGGACG TTCTCATTAA TCAAGAACGA AAGTTGGGGG ATCGAAGACG Nicella axill. GCCAAGGATG TTCTCATTAA TCAAGNACGA AAGTTGGGGG ATCGAAGACG Nicella sp. ‘GCCAAGGATG TTTTCATTAA TCAAGAACGA AAGTTGGGGG ATCGAAGACG Nicellopsis GCCAAGGATG TTCTCATTAA TCAAGAACGA AAGTTGGGGG ATCGAANACG T o ly p e lla GCCAAGGATG TTTTCATTAA TCAAGAACGA AAGTTGGGGG ATCGAAnACG Y e a s t GCCAAGGACG TTTTCATTAA TCAAGAACGA AAGTTAGGGG ATCGAAGATG S p ir o g y r a GCCAAGGATG TTTTCATTAA TCAAGAACGA AAGTTGGGGG CACGAAGACG Klebsormidium ATCAAGGATG TTTTCATTAA TCAAGAACGA AAGTTGGGGG CTCGAAGACG Coleochaece GCCAAGGATG TTTTCATTAA TCAAGAACGA AAGTTGGGGG CTCGAAGACG Chlorokybus GCCAAGGATG TTTTCATTGA TCAAGAACGA AAGTAGGGGG ATCGAAGACG S o y b e a n GCCAAGGATG TTTTCATTAA TCAAGAACGA AAGTTGGGGG CTCGAAGACG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 84

1001 1050 c. v u i g a r i s ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCNAC TAGGGATTGG C. m u e lle r i ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC TAGGGATTGG C. a u s c r a l i s ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC TAGGGATTGG C. hornemannii ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC TAGGGATTGG C. connivens ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC TAGGGATTGG C. h is p id a ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC TAGCCATTGC C. drouecii ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC TAGGGATTGG C. curcissii ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC TAGGGATTGA Lamp. macr. ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC TAGGGATTGG Nicella flex. ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC TAGGGATTGG Lamp. p a p . ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC TAGGGATTGG Lychnochamnus ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC TAGGGATTGG Nicella axill. ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC TAGGGATTGG Nicella sp. ATCAGATACC GTCCTAGTCT CAACCATAAA CGATnCCGAC TAGGGATTGG Nicellopsis ATTAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC TAGGGATTGG T o ly p e lla ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC TAGGGATTGG Y e asc ATCTGGTACC GTCCTAGTCT TAACCATAAA CTATGCCGAC TAG..ATCGG S p iro g y ra ATTAGATACC GTCCTAGCCC CAACCGTAAA CGATGCCGAC CnnGAATTGG Klebsormidium ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC TAGGGATTGG Coleochaece ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC TAGGGATCGG Chlorokybus ATCAGATACC GTCCTAGTCT CTACCATAAA CGATGCCGAC TAGGGATTGG S o y b e a n ATCAGATACC GTCCTAGTCT CAACCATAAA CGATGCCGAC CAGGGATCAG

1051 1100 C. vulgaris CGGATGTCTA . TTGGATGAC TCTGCCAGCA CCTTGTGAGA AATCAAAG. T C. m u e lle r i CGGATGTCTA .TTGGATGAC TCTGCCAGCA CCTTGTGAGA AATCAAAGNT C. a u s c r a l i s CGGATGTCTA . TTGGATGAC TCTGCCAGCA CCTTGTGAGA AATCAAAG. T C. hornemannii CGGATGTCTA . TTGGATGAC TCCGCCGGCA CCTTGTGAGA AATCAAAG. T C. connivens CAGATGTCTA . TTGGATG.AC TCTGCCAGCA CCTTGTGAGA AATCAAAG. T C. h is p id a CGGATGTCTA .TTGGATGAC TCTGCCAGCA CCTTGTGAGA AATCAAAG. T C. drouecii CGGATGTCTA . TTGGATGAC TCCGCCAGCA CCTTGTGAGA AATCAAAG.T C. curcissii CGGATGTCTA .TTGGATGAC TCTACCGGCA CCTTGTGAGA AACCAAAG.T Lamp. macr. CGGATGTCTA . TTGGATGAC TCTGCCAGCA TCTTGTGAGA AATCAAAG. T Nicella flex. CGGATGTCTA . TTTGATGAC TCCGTCAGCA CCTTGTGAGA AATCAAAG. T Lamp. p a p . CAGATGTC.A . TTGGATGAC TCTGCCAGCA TCTTGTGAGA AATCAAAG. T Lychnochamnus CGGATGTCT. CTTGGATGAC TCTGCCAGCA CCTTGTGAGA AATCAAAG. T Nicella axill. CGGATG____ ATGAC TCCGCCAGCA CCTTGTGAGA AATCAAAG. T Nicella sp. CGGATGTCTA T T T . GATGAC TCCGTCAGCA CCTTGTGAGA AATCAAAG. T Nicellopsis CGGATG____ ATGAC TCTGCCAGCA CCTTNTGAGA AATNAAAG. T T o ly p e lla CGGATGTCTA . TTGGATGAC TCCGTCAGCA CCTTGTGAGA AATCAAAG. T Y e asc GTGGTGT.TT TTTTAATGAC CCACTCGGTA CCTTACGAGA AATCAAAG. T S p iro g y ra CGCACGTATG ACTTGACG.T CGCGCGAGCG CCCGAGGAGA AATCAGAG. T Klebsormidium CGGATGT.TA ATTTGATGAC TCCGCCAGCA CCTTATGAGA AATCAAAG. T Coleochaece CGGATGT.TA ATTTGATGAC TCCGCCAGCA CCTTATGAGA AATCAAAG. T Chlorokybus CAGATGT.TA CTTAGATGAC TCTGCCAGCA CCTTATGAGA AATCAAAG. T S o y b e a n CGGATGT.TG CTTTTAGGAC TCCGCTGGCA CCTTATGAGA AATCAAAG. T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 85

1101 1150 c . v u lg a r is TTACGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT C. muelleri TTACCGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT C. auscralis rrACGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT C. homemarnii TTACGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT C. connivens TTACGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT C. h is p id a TTACGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT C. drouecii TTACGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT C. curcissii TTACGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT Lamp. macr. TTACGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT Nicella flex. TTTCGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT Lamp. pa p . TTACGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT Lychnochamnus TTACGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT Nicella axill. TTCCGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT Nicella sp. TTTCGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT Nicellopsis TTTTGGGTTC CGGGGGGAGT ATGGTCGGAN GGCTGAAACT TAAAGGAATT T o ly p e lla TTTCGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT Y e a s c CTTTGGGTTC TGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT S p ir o g y r a CTTTGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT Klebsormidium TTTTGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT Coleochaece TCTTGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT Chlorokybus TTTTGGGTTC CGGGGGGAGT ATGGTCGCAA GGnnGAAACT TAAAGGAATT S o y b e a n CTTTGGGTTC CGGGGGGAGT ATGGTCGCAA GGCTGAAACT TAAAGGAATT

1151 1200 C . V T i i g a r i s GACGGAAGGG CACC.ACCAG GCGTGGAGCC TGCGGCTTAA TTTGACTCAA C . m u e lle r i GACGGAAGGG CACCCACCAG .CGTGGAGCC TGCGGCTTAA TTTGACTCAA C. auscralis GACGGAAGGG CACC.ACCAG GCGTGGAGCC TGCGGCTTAA TTTGACTCAA C. hornemannii GACGGAAGGG CACC.ACCAG GCGTGGAGCC TGCGGCTTAA TTTGACTCAA C. connivens GACGGAAGGG CACC.ACCAG GCGTGGAGCC TGCGGCTTAA TTTGACTCAA C. h is p id a GACGGAAGGG CACC.ACCAG GCGTGGAGCC TGCGGCTTAA TTTGACTCAA C. drouecii GACGGAAGGG CACC.ACCAG GCGTGGAGCC TGCGGCTTAA TTTGACTCAA C. curcissii GACGGAAGGG CACC.ACCAG GCGTGGAGCC TGCGGCTTAA TTTGACTCAA Lamp. macr. GACGGAAGGG CACC.ACCAG GCGTGGAGCC TGCGGCTTAA TTTGACTCAA Nicella flex. GACGGAAGGG CACC.ACCAG GCGTGGAGC. TGCGGCTTAA TTTGACTCAA Lamp. p a p . GACGGAAGGG CACC.ACCAG GCGTGGAGCC TGCGGCTTAA TTTGACTCAA Lychnochamnus GACGGAAGGG CACC.ACCAG GCGTGGAGCC TGCGGCTTAA TTTGACTC.AA Nicella axill. GACGGAAGGG CACC.ACCAG GCGCGG------CTTAA TTTGACTCAA Nicella sp. GACGGAAGGG CACC.ACCAG GCGTGGAGCC TGCGGCTTAA TTTGACTCAA Nicellopsis GACGGAAGGG CACC.ACCAG ACGCGG____ CTTAA TTTGACTCAA T o ly p e lla GACGGAAGGG CACC.ACCAG GCGTGGAGCC TGCGGCTTAA TTTGACTCAA Y e a s c GACGGAAGGG CACC.ACTAG GAGTGGAGCC TGCGGCT.AA TTTGACTCAA S p ir o g y r a GACGGAAGGG CACC.ACCAG GTGTGGAGCC TGCGGCTTAA TTTGACTCAA Kl ebsorm idi um GACGGAAGGG CACC.ACCAG GAGTGGAGCC TGCGGCTTAA TTTGACTCAA Coleochaece GACGGAAGGG CACC.ACCAG GAGTGGAGCC TGCGGCTTAA TTTGACTCAA Chlorokybus GACGGAAGGG CACC.ACCAG GAGTGGAGCC TGCGGCTTAA TTTGACTCAA S o y b e a n GACGGAAGGG CACC.ACCAG GAGTGGAGCC TGCGGCT.AA TTTGACTCAA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 86

1201 125C c . v u l g a r i s CACGGGGAAA CTCACCAGGT CCAGACATAG CAAGGATTGA CAGATTGAGA C. muelleri CAC5GGGAAA CTCACCAGGT CCAGACATAG CAAGGATTGA CAGATTGAGA C. auscralis CACGGGGAAA CTCACCAGGT CCAGACATAG CAAGGATTGA CAGATTGAGA C. hornemannii CACGGGGAAA CTCACCAGGT CCAGACATAG CAAGGATTGA CAGATTGAGA C. connivens CACGGGGAAA CTCACCAGGT CCAGACATAG CAAGGATTGA CAGATTGAGA C. h i s p i d a CACGGGGAAA CTCACCAGGT CCAGACATAG CAAGGATTGA CAGATTGAGA C. drouecii CACGGGGAAA CTCACCAGGT CCAGACATAG CAAGGATTGA CAGATTGAGA C. curcissii CACGGGGAAA CTCACCAGGT CCAGACATAG CAAGGATTGA CAGATTGAGA Lamp. macr. CACGGGGAAA CTTACCAGGT CCAGACATAG TAAGGATTGA CAGATTGAGA Nicella flex. CACGGGGAAA CTCACCAGGT CCAGACATAG CAAGGATTGA CAGATTGAGA Lam p. p a p . CACGGGGAAA CTTACCAGGT CCAGACATAG TAAGGATTGA CAGATTGAGA Lychnochamnus CACGGGGAAA CTCACCAGGT CCAGACATAG CAAGGATTGA CAGATTGAGA Nicella axill. CACGGGGAAA CTCACCAGGT CCAGACATAG CAAGGATTGA CAGATTGAGA Nicella sp. CACGGGGAAA CTCACCAGGT CCAGACATAG CAAGGATTGA CAGATTGAGA Nicellopsis CACGGGGAAA CTCACCAGGT CCAGACATAG NAAGGATTGA CAGATTGAGA T o l y p e l l a CACGGGGAAA CTCACCAGGT CCAGACATAG CAAGGATTGA CAGATTGAGA Y e a s c CACGGGGAAA CTCACCAGGT CCAGACACAA TAAGGATTGA CAGATTGAGA S p ir o g y r a CACGGGGAAA nTTACCAGGT CCAGACATAG CGACGATTGA CAGACTGATA Klebsormidium CACGGGGAAA CTTACCAGGT CCAGACATAG TAAGGATTGA CAGATTGAGA Coleochaece CACGGGGAAA CTTACCAGGT CCAGACATAG TAAGGATTGA CAGATTGAGA Chlorokybus CACGGGGAAA CTTACCAGGT CCAGACATAG TAAGGATTGA CAGATTGAGA S o y b e a n CACGGGGAAA CTTACCAGGT CCAGACATAG TAAGG.TTGA CAGACTGAGA

1251 1300 C . v u l g a r i s GCTCTTTCTT g a t t c t a t g g GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT C. m u e l l e r i GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT C . a u s c r a l i s GCTCTTTCTT g a t t c t a t g g GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT C. h o rn e m a n n ii GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT C. connivens GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT C. h i s p i d a GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT C. drouecii GCTCTTTCTT g a t t c t a t g g GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT C. curcissii GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT Lamp. m a c r . GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT Nicella flex. GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT Lam p. p a p . GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT Lychnochamnus GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT Nicella axill. GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT Nicella sp. GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT Nicellopsis GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT T o l y p e l l a GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT Y e a s c GCTCTTTCTT GATTTTGTGG GTGGTGGTGC ATGGCCGTTT CTCAGTTGGT S p ir o g y r a GCTCTTTCTT GATnATATGG GTAGTGGTGC ATGGCCGTT. CTTAGTTGGT Klebsormidium GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT Coleochaece GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT Chlorokybus GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCGGTT. CTTAGTTGGT S o y b e a n GCTCTTTCTT GATTCTATGG GTGGTGGTGC ATGGCCGTT. CTTAGTTGGT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 87

1301 135C c. vTiig-aris GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT C . m u e l le r i GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT C. auscralis GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT C. hornemannii GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT C. connivens GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT C. h is p id a GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT C. drouecii GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT C. c u r c i s s i i GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT Lamp. macr. GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT Nicella flex. GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT Lamp. p a p . ,GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT Lychnochamnus GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT Nicella axill. GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT Nicella sp. GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT Nicellopsis GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTACT T o l y p e lla GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT Y e a s c GGAGTGATTT GTCTGGTTAA TTGCGATAAC GAACGAGACC TTAACCTACT S p ir o g y r a GGAGTGATTT GTCTGGTTAA TTCCGTTA.C GAACGAGACC TCAGCCTGCT Klebsormidium GGAGTGATTT GTCTGGTTAA TTCCGATAAC GAACGAGACC TCAGCCTGCT Coleochaece GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT Chlorokybus GGAGTGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT S o y b e a n GGAGCGATTT GTCTGGTTAA TTCCGTTAAC GAACGAGACC TCAGCCTGCT

1351 HOC C. v u lg a r is AAATAGCTAC GCGGGGACCT TTCCTCGTGG CCAGCTTCTT AGAGGGACTG C. muelleri AAATAGCTAC GCGGGGACCT TTCCTCGTGG CCAGCTTCTT AGAGGGACTG C. auscralis AAATAGCTAC GCGGGAATCT TTCCTCGTGG CCATCTTCTT AGAGGGACTG C. h o rn e m a n n ii AAATAGCTAC GCGGGGACCT TTCCTCGTGG CCAGCTTCTT AGAGGGACTG C. connivens AAATAGCTAC GCGGGGACCT TTCCTCGTGG CCAGCTTCTT AGAGGGACTG C. h is p id a AAATAGCTAC GCGGGGACCT TTCCTCGTGG CCAGCTTCTT AGAGGGACTG C. drouecii AAATAGCTAC GCGGGGACCT CTCCTCGTGG CTATCTTCTT AGAGGGACTG C. curcissii AAATAGCTAC GCGGGAACCT TTCCTCGTGG CTATCTTCTT AGAGGGACTG Lamp. macr. AAATAGCTAC GCGGGGATCT TTCCTCGTGG CCAGCTTCTT AGAGGGACTG Nicella flex. AACTAGCTAC GCGAGGATCT TTCCTCGTGG CCAGCTTCTT AGAGGGACTG Lamp. pa p . AAATAGCTAC GCGGGGATCT TTCCTCGTGG CCAGCTTCTT AGAGGGACTG Lychnochamnus AACTAGCTAC GCGAGGACTT TTCCTCGTGG CCAGCTTCTT AGAGGGACTG Nicella axill. AAATAGCTA. . . . GCTTCTT AGAGGGACTG Nicella sp. AACTAGCTAC GCGAGGATCT TTCCTCGTGG CCAGCTTCTT AGAGGGACTG Nicellopsis AAATANNTA. . . . GCTTCTT AGAGGGACTG T o l y p e l l a AACTAGCTAC GCGAGGGTTT TTCCTCGTGG CCAGCTTCTT AGAGGGACTG Y e a s c AAATAGTGGT GCTAGCATTT GCTGGTTAT. CCA.CTTCTT AGAGGGACTA S p ir o g y r a AACTAGTTGC GCGAG.ATTT TTCTTCGCGC ACA.CTTCTT AGAAGGACTn Klebsormidium AACTAGTTAC ACGAAGATTC TTCTCCGTGG CCAACTTCTT AGAGGGACTA Coleochaece AACTAGTTAC ACGAAGGTTC TCCTTCGTGG TCAACTTCTT AGAGGGACTA Chlorokybus AAATAGTTAC GnGAAGATTC TTCTTCGTGG CCAACTTCTT AGAGGGACTA S o y b e a n AAATAGCTAT GTGGAGGTAA CCCTCCACGG CCAGCTTCTT AGAGGGACTA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 88

1401 1450 c. vulgaris T T . GGACGAC TA.GCCAACG GAAGTTTGAG GCAATAACAG GTCTGTGATG C. m u e lle r i TT.GGACGAC TA.GCNAACG GAAGTTTGAG GCAATAACAG GTCTGTGATG C. a u s c r a l i s TT.GGACGAC TA.GCCAACG GAAGTTTGAG GCAATAACAG GTCTGTGATG C. hornemannii T T . GGACGAC TA.GCCAACG GAAGTTTGAG GC.=iATAACAG GTCTGTGATG C. c o n n iv e n s T T . GGACGAC TA.GCCAACG GAAGTTTGAG GCAATAACAG GTCTGTGATG C. h is p id a T T . GGACGAC TA.GCCAACG GAAGTTTGAG GCAATAACAG GTCTGTGATG C. d r o u e c ii T T . GGACGAC TA.GCCAACG GAAGTTTGAG GCAATAACAG GTCTGTGATG C. c u r c i s s i i TT.GGACGAC TA.GCCAACG GAAGTTTGAG GCAATAACAG GTCTGTGATG Lamp. macr. TT.GGACGAC TA.GCCAACG GAAGTTTGAG GCAATAATAG GTCTGTGATG Nicella flex. TT.GGACGAC TA.GCCAATG GAAGTTTGAG GCAATAACAG GTCTGTGATG Lamp. p a p . T T . GGACGAC TA.GCCAAnG GAAGTTTGAG GCAATAATAG GTCTGTGATG Lychnochamnus TT.GGACGAC TA.GCCAACG GAAGTTTGAG GCAATAACAG GTCTGTGATG Nicella axill. TT.GGA____ . .AGTTTGAG GCAATAACAG GTCTGTGATG Nicella sp. TT.GGACGAC TA.GCCAATG GAAGTTTGAG GCAATAACAG GTCTGTGATG Nicellopsis TN.GGA...... AGTNTGAG GC.AATAACAG GTCTGTGATG T o ly p e lla TT.GGACGAC TA.GCCAATG GAAGTTTGAG GCAATAACAG GTCTGTGATG Y easc TC.GG. . . TT T.CGCCGATG GAAGTTTGAG GCAATAACAG GTCTGTGATG S p iro g y ra TG.AG.CGTT TA.GCTCATG GAGGTCTGAG GCAATAACAG GTCTGTGATG Klebsormidi um TTTGG. CGTC TACGCCAATG GAAGTTTGAG GCAATAACAG GTCTGTGATG Coleochaece VC.GC.CTTC TA.GCCCATG GAAGTTTGAG GCAATAACAG GTCTGTGATG Chlorokybus TT.GG.CGTC TA.GCCAGTG GAAGTTTGAG GCAATAACAG GTCTGTGATG S o y b e a n T..GGCCGCT TAGGCCA.CG GAAGTTTGAG GCAATAACAG GTCTGTGATG

1451 1500 C. v u lg a r is CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACNGATG GATCCAACGA C. muelleri CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG AATCCAACGA C. a u s c r a l i s CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG AATCCAACGA C. h o rn em a n n ii CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG GATCCAACGA C. c o n n iv e n s CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG GATCCAACGA C. h is p id a CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG GATCCAACGA C. d r o u e c ii CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG AATCCAACGA C. c u r c i s s i i CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG AATCCAACGA Lamp. macr. CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG AATCCAACGA Nicella flex. CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG AATCCAACGA Lamp. p a p . CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG AATCCAACGA Lychnochamnus CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG AATCCAACGA Nicella axill. CCCTTAGAT. GTTCTGGGNN GCACGCGCGC TACACTGATG AATCCAACGA Nicella sp. CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG AATCCAACGA Nicellopsis CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG AATCCAACGA T o ly p e lla CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG AATCCAACGA Y easc CCCTTAGAAC GTTCTGGGCC GCACGCGCGC TACACTGACG GAGCCAGCGA Spi ro g yra CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACAATGATG nATTCAGCGA Klebsormidium CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG AATTCAACGA Coleochaece CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG AATTCAACGA Chlorokybus CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG GATTCAACGA S o y b e a n CCCTTAGAT. GTTCTGGGCC GCACGCGCGC TACACTGATG TATTCAACGA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 89

1501 1 5 5 0 C. vulgaris GTNG. CTTGC CT.GGGTCG. AAA.GGCCTG GGTAACCTTC TCAAGGTNCA C. m u e l l e r i GTCG. CTTGC CT.GGGTCG. AAA.GGCCTG GGTAACCTTC TTAAGGTTCA C. a u s c r a l i s GTCG. CTTGC CT. GGGTCG. AAA.GGGTCG GGTAACCTTC TTAAGGTTCA C. hornemannii GTCG. CTTGC CT.GGGTCG. AAA.GTCTCG GGTAACCTTC TGAAGGTCCA C. connivens GTCG.CTTGC CT.GGGTCG. AAA.GGCCTG GGTAACCTTC TCAAGGTTCA C. h is p id a GTCG. CTTGC CT.GGGTCG. AAA.GGCCTG GGTAACCTTC TCAAGGTTCA C. drouecii GTCG. CTTGC CT. GGGTCG. AAA.GGCCTG GGTAACCTTC TCAAGGTTCA C. curcissii GTCG. CTTGC CT.GGGTCG. AAA.GGGTCG GGTAACCTTC TTAAGGTTCA Lamp. macr. GTCG. CTTGC CT. GGGTCG. AAA.GGCTTG GGTAACCTTC TCAAGGTTCA tricella flex. GTCG. TGCAC CT.GGGTCG. AAA.GGGTCG GGCAACCTTC TCAAACTTCA Lamp. p a p . G . . GCCTTGC CT.GGGTCG. AAA.GGCTTG GGTAACCTTC TCAAGGTTCA Lychnochamnus GTTG. CATGC CT.GGGTCG. AAA.GGCTTG GGTAACCTTC TCAAGGTTCA Nicalla axill. G ...... C CT.GGGTCG. AAA.GGGTCG GGTAACCTTT CTAAAGTCCA Nicella sp. GTCG.TGCAC CT.GGGTCG. AAA.GGGTCG GGCAACCTTC TCAAACTnCA Nicellopsis GCCT.GGGN. ANA.GGCCTG GGTAACCTCN N.AAGGTTCA T o ly p e lla GTTG.TGCAC CT.GGGTCGG AA. . GGCTCG GGTAATCTTC TCAAACTTCA Y e a s t GTCTA.. .AC CTTGG.CCG. AGA.GGTCTT GGTAATCTTG TGAAACTCCG S p ira g y ra GCGGAATC. C CT.G.ATCGG AAACGGTCGG GG.AATCTT. TGAATCTTTA K1ebsormidiurn GTTTATA.AC CT.GGGCCG. AAA.GGTCTG GGTAATCTTG TGAAATTTCA Coleochaece GTTTATA.AC CT.GGACCG. AAA.GGTCCG GGTAATCTTT TGAAATTTCA Chlorokybus GTATATA.AC CTTGG.CCG. AAA.GGTCCG GGTAATCTTG TGAAATTTCA S o y b e a n GTCTATA.GC CTTGG.CCG. ACA.GGTCCG GGTAATCTT. TGAAATTTCA

15 5 1 1600 C . v u lg a r is TCGTGACGGG GATAGATTGT TGTAATTATC GATCTTGAAC GAGGAATGCC C. muelleri TCGTGACGGG GATAGATTGT TGTAATTATC GATCTTGAAC GAGGAATGCC C. auscralis TCGTGACGGG GATAGATTGT TGTAATTATC GATCTTGAAC GAGGAATGCC C. hornemanni1 TCGTGACGGG GATAGATTGT TGTAATTATC GATCTTGAAC GAGGAATGCC C. connivens TCGTGACGGG GATAGATTGT TGTAATTATC GATCTTGAAC GAGGAATGCC C. h is p id a TCGTGACGGG GATAGATTGT TGTAATTATC GATCTTGAAC GAGGAATGCC C. drouecii TCGTGACGGG GATAGATTGT TGTAATTATC GATCTTGAAC GAGGAATGCC C. c u r c i s s i i TCGTGACGGG GATAGATTGT TGTAATTATC GATCTTGAAC GAGGAATGCC Lamp. macr. TCGTGACGGG GATAGATTGT TGTAATTATC GATCTTGAAC G.AGGAATGCC N'icella flex. TCGTGACGGG GATAGATTGT TGCAATTATC GATCTTGAAC GAGGAATGCC Lamp. p a p . TCGTGACGGG GATAGATTGT TGTAATTATC GATCTTGAAC GAGGAATGCC Lychnochamnus TCGTGACGGG GATAGATTGT TGTAATTATC GATCTTGAAC GAGGAATGCC Nicella axill. TCGTGACGGG GATAGATTGT TGTAATTATC GATCTTGAAC GAGGAATGCC Nicella sp. TCGTGACGGG GATAGATTGT TGCAATTATC GATCTTGAAC GAGGAATGCC Nicellopsis TCGTGACGGG GATAGATTGN NGNAATTATC GATCTTGAAC GAGGAATGCC T o ly p e lla TCGTGACGGG GATAGATTGT TGCAATTATC GATCTTGAAC GAGGAATGCC Y e a s t TCGTGCTGGG GATAGAGCAT TGTAATTATT GCTCTTCAAC GAGGAATTCC S p ir o g y r a TCGTGATGGG GATAGACCCT TGCAATTATT GGTCTCGAAC GAGGAATACC Klebsormidium TCGTGATGGG GATAGATTAT TGCAATTATT AATCTTCAAC GAGGAATTCC Coleochaece TCGTGATGGG GATAGATTAT TGCAATTATT AATCTTCAAC GAGGAATTCC Chlorokybus TCGTGATGGG GATAGATTAT TGCAATTATT AATCTTCAAC GAGGAATTCC S o y b e a n TCGTGATGGG GATAGATCAT TGCAATTGTT GCTCTTCAAC GAGGAATTCC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 90

1601 1650 c. vTjigaris TAGTAAGCGT GAGTCATCAG CTCGCGC.TG ATTACGTCCC TGCCCTTTGT C. m u e lle r i TAGTAAGCGC GAGTCATCAG CTCGCGC.TG ATTACGTCCC TGCCCTTTGT C. auscralis TAGTAAGCGT GAGTCATAAG -TCGCGC.TG ATTACGTCCC TGCCCTTTGT C. hornemannii TAGTAAGCGT GAGTCATCGT CGCGC.. .TG ATTACGTCCC TGCCCTTTGT C. connivens TAGTAAGCGC GAGTCATCAG CTCGCGn.TG ATTACGTCCC TGCCCTTTGT C. h is p id a TAGTAAGCGT GAGTCATAGT CGCGC.. .TG ATTACGTCCC TGCCCTTTGT C. drouecii TAGTAAGCGC GAGTCATCAA CTCGCGC.TG ATTACGTCCC TGCCCTTTGT C. curcissii TAGTAAGCGT GAGTCATCAA GTCGCGC. TG ATTACGTCCC TGCCCTTTGT Lamp. macr. TAGTAAGCGT GAGTCAT.AG . TCGCGC. TG ATTACGTCCC TGCCCTTTGT Nicella flex. TAGTAAGCGC GAGTCATCAG CTCGCGT.TG ATTACGTCCC TGCCCTTTGT Lamp. p a p . TAGTAAGCGT GAGTCATCAG .TCGCGC.TG ATTACGTCCC TGCCCTTTGT Lychnochamnus TAGTAAGCGC GAGTCATCAG CTCGCGC. TG ATTACGTCCC TGCCCTTTGT Nicella axill. TAGTAAGCGT GAGTCATAAA CTCGCGN. TG ATTACGTCCC TGCCCTTTGT Nicella sp. TAGTAAGCGC GAGTCATCAG CTCGCGT.TG ATTACGTCCC TGCCCTTTGT Nicellopsis TAGTAAGCGT GAGTCATCAA CTCGCGT. TG ACTACGTCCC TGCCCTTTGT T o ly p e lla TAGTAAGCGC GAGTCATCAG CTCGCGT.TG ATTACGTCCC TGCCCTTTGT Y e a s c TAGTAA'SCGC AAGTCATCAG CTTGCGT.TG ATTACGTCCC TGCCCTTTGT S p ir o g y r a TAGTAAGCGC NCGCCACCAG CGTGCGCCTG ACTACGTCCC TGCCCTTTGT Klebsormidium TAGTAAGCGC GAGTCATCAG CTCGCGT. TG ATTACGTCCC TGCCCTTTGT Coleachaece TAGTAAGCGC GAGTCATCAG CTCGCGT.TG ATTACGTCCC TGCCCTTTGT Chlorokybus TAGTAAGCGC GAGTCATCAG CTCGCGT.TG ATTACGTCCC TGCCCTTTGT S o y b e a n TAGTAAGCGC GAGTCATCAG CTCGCGT.TG ACTACGTCCC TGCCCTTTGT

1651 1700 C. v u lg a r is ACACACCGCC CGTCGCTCCT ACCGATTGAA TGGTCCGGTG AAGTGTCTGG C. m u e lle r i ACACACCGCC CGTCGCTCCT ACCGATTGAA TGGTCCGGTG AAGTGTCTGG C. auscralis ACACACCGCC NGTCGCTCCT ACCGATTGAA TGGTCCGGTG AAGTGTCTGG C . hornemanni i ACACACCGCC CGTCGCTCCT ACCGATTGAA TGGTCCGGTG AAGTGTCTGG C. connivens ACACACCGCC CGTCGCTCCT ACCGATTGAA TGGTCCGGTG AAGTGTTnGG C. h is p id a ACACACCGCC CGTCGCTCCT ACCGATTGAA TGGTCCGGTG AAGTGTCTGG C. d r o u e c ii ACACACCGCC CGTCGCTCCT ACCGATTGAA TGGTCCGGTG AAGTGTTTGG C. curcissii ACACACCGCC nGTCGCTCCT ACCGATTGAA TGGTCCGGTG AAGTGTCTGG Lamp. macr. ACACACCGCC CGTCGCTCCT ACCGATTGAA TGGTCCGGTG AAGTGTCTGG Nicella flex. ACACACCGCC CGTCGCTCCT ACCGATTGAA TGGTCCGGTG AAGTGTTCGG Lamp. pap. ACACACCGCC CGTCGCTCCT ACCGATTGAA TGGTCCGGTG AAGTGTCTGG Lychnochamnus ACACACCGCC CGTCGCTCCT ACCGA.TTGAA TGGTCCGGTG AAGTGTCTGG Nicella axill. ACACACCGCC CGTCGCTCCT ACCGATTGAA TGGTNCGGTG AAGTGTCTGG Nicella sp. ACACACCGCC CGTCGCTCCT ACCGATTGAA TGGTCCGGTG AAGTGTTCGG Nicellopsis ACACANCNCC CGTCGCTCCT ACCGATTGAA TGNNNNNNNN NNNNNNNNNN T o ly p e lla ACACACCGCC CGTCGCTCCT ACCGATTGAA TGGTTCGGTG AAGTGTTCGG Y e a s c ACACACCGCC CGTCGCTAGT ACCGATTGAA TGGCTTAGTG AGGCCTCAGG S p i r o g y r a ACACACCGCC CGTCGCTCCT ACCGATnGAA TGnnCCGGyG AAGNNNNCGG Klebsormidium ACACACCGCC CGTCGCTCCT ACCGATTGAA TGATCCGGTG AAGTTTTCGG Coleochaece ACACATCGCC CGTCGCTCCT ACCGATTGAA TGATCCGGTG AAGTTTTCGG Chlorokybus ACACANCGCC CGTCGCTCCT ACCGATTGAA TGATCCGGTG AAGTTTTCGG S o y b e a n ACACACCGCC CGTCGCTCCT ACCGATTGAA TGGTCCGGTG AAGTGTTCGG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 91

170 1 1750 c. v u lg a r is ATCGCGGTGA TCTCGGCGGT TTGCCGCTGG GGGTGCTGTG AGAAGTTCAT C. muelleri ATTGCGGTGA TCTCGGCGGT TTGCCGCTCG GGGTGCTGTG AGAAGTTCAT C. auscralis ATCGCGGTGA TCTCGGCGGT TTGCCGCTGG GGGTGCTGTG AGAAGTTCAT C. h o rn em a n n ii ATCGCGGTGA TCTCGGCGGT TTGCCGCTGG GGGTGCTGTG AGAAGTTCAT C. c o n n iv e n s ATCGCGGTGA TCTCGGCGGT TTGCCGCTGG GGGTGCTGTG AGAAGTTCAT C. h is p id a ATCGCGGTGA TCTCGGCGGT TTGCCGCTGG GGGTGCTGTG AGAAGCTTAT C. d r o u e c ii ATCGCGGTGA TCTCGGCGGT TTGCCGCCGG GGGTGCTGTG AGAAGCTCAT C. curcissii ATCGCGGTGA TCTCGGCGGT TTGCCGCTGG GGGTGCTGTG AGAAGCTCAT Lamp. macr. ATCGCGGTGA TCTCGGCGGT TTGCTG..GG GG.TGCTGTG AGAAGTTCAT N ic e lla f i e x . ATTGCGGTGA CCCCGGCGGT TCGCCGCTGG GGGCGCTGTG AGAAGTTCAT Lamp. p a p . ATCGCGGTGA TCTCGGCGGT TTGCTG..GG GG.TGCTGTG AGAAGTTCAT L y c h .n o chamnus ATCGCGGTGA TCCTGGCGGT CTGCTGCCGG GAGCGCTNTG AGAAGTTCAT Nicella axill. ATCNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN Nicella sp. ATTGCGGTGA CCCCGGCGGT TCGCCGCTGG GGGCGCTGTG AGAAGTTCAT Nicellopsis NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN T o ly p e lla ATTGCGGTGA CCCCGGCGGT TCGCCGCTGG GGGCGCTGTG AGAAGTTCAT Y e asc ATCTGCTTAG AGAAGGGGG. . CAACTCCAT CTCAGAGCGG AGAATTTGGA S p iro g y ra ■ATTCnnnnnn n n n n n n n n n n nnnnnnnnnn n n n n n n n n n n n n n n n n n n n n Klebsormidium ATTGCGGCTA CTCCGGCGGT CCGCCGCCGA AGAAGCTGTG AGAAGTTCAT Coleochaece A nnnC C .C T ...... GGT CCGCCGCCGG TGACGCTGTG AGAAGTTCAT Chlorokybus ATCGCGACGA C GCGGT TCGC.GCTGG TGACGCCGTG AGAAGTTCAT S o y b e a n ATTGCGGCGA CGTGAGCGGT TCGCTGCCCG CGACGTTGTG AGAAGTCCAC

1751 1776 C. v u lg a r is TGAACCTTAT CATTTAGAGG AAGGAG C. m u e lle r i TGAACCTTAT CATTTAGAGG AAGGAG C. a u s c r a l i s TGAACCTTAT CATTTAGAGG AAGnnn C. hornemannii TGAACCTTAT CATTTAGAGG AAGGAn C. c o n n iv e n s TGAACCnnnn n n n n n n n n n n n n n n n n C. h is p id a TGAACCTTAT CATTTAGAGG AAGGAn C. d r o u e c ii TGAACCTTAT CATTTAGAGG AAGGAn C. c u r c i s s i i TGAACCTTAT CATTTAGAGG AAGGAn Lamp. macr. TGAACCCTAT CATTTAGAGG AAGGAG Nicella flex. TGAACCTTAT CATTTAGAGG AAGGAG Lamp. pa p . TGAACCCTAT CATTTAGAGG AAGGAG Lychnochamnus TGAACCTTAT CATTTAGAGG AAGGAG Nicella axill. NNNNNNNNNN NNNNNNNNNN NNNNNN Nicella sp. TGAACCTTAT CATTTAGAGG AAGGAG Nicellopsis NNNNNNNNNN NNNNNNNNNN NNNNNN T o ly p e lla TGAACCTTAT CATTTAGAGG AAGGAG Y easc CAAACTTGGT CATTTAGAGG AACTAA S p iro g y ra n n n n n n n n n n n n n n n n n n n n n n n n n n Klebsormidium TAAACCTTAT CATTTAGAGG AAGGAG Coleochaece TAAACCTTAT CATTTAGAGG AAGGAG Chlorokybus TAAACCTTAT CATTTAGAGG AAGGAG S o y b e a n TGAACCTTAT CATTTAGAGG AAGGAG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix B: Alignment of 18S rDNA Sequences for Chapter 3

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 93

Alignment of 18S Ribosomal DNA Sequences for Chapter 3

1 50 C. aspera Y-OCl TCTCAAAGA. NNAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG C. andina X-779 NCTCAAAGA. TTAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG C. andina X-905 NCTCAAAGA. TTAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG C. drouecii X-981 TCTCAAAGA. TTAAGCCATGCACGTCTAAGTGTGAAC. ACTTTTGCACTG C. haicensis X-102 TCTCAAAGA. TTAAGCCATGCACGTCTAAGTGTGAAC. AC . TTTGCACTG C. zeylanica X-251 TCTCAAAGAC. TAAGCCATGCACGTCTAAGTGTGAAC . AC. TTTGCACTG C. drouecii TAMPS-14 TCTCAAAGAC. TAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG C. hydropicys PCR/1 TCTCAAAGA. TTAAGCCATGCACGTCTAAGTGTGAAC . AC. T . TGCACTG C. haicensis 5B4 NCTCNNNGA. TCAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG C. bricconii X-998 TCTCAAAGA. TTAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG C. vandalurensis X-574 TCTCAAAGA. NTAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG C. longifolia MB TCTCAAAGAC. TAAGCCATGCACGTTTAAGTGTGAAC. AC. TTTGCATTG C. longifolia X-862 TCTCAAAGAC. TAA'GCCATGCACGTTTAAGTGTGAAC. AC. TTTGCATTG L. macropogon X-695 TCTCAAAGAC. TAAGCCATGCACGTCTAAGTGTGAAC. AC. T . TGCACTG L. papulosum TCTCAAAGAC. TAAGCCATGCACGTCTAAGTGTGAAC. AC. T . TGCACTG C, auscralis X-067 TCTCAAAGA. TTAAGCCATGCACGTCTAAGTGTGAAC. AC . TTTGCACTG C. corallina X-656 TCTCAAAGA. TTAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG C. auscralis X-709 TCTCAAAGA. TTAAGCCATGCACGTCTAAGTGTGAAC . AC . TTTGCACTG C. auscralis MR TCTCAAAGAC. TAAGCCATGCACGTCTAAGTGTGAAC. AC . TTTGCACTG C. curcissii X-300 TCTCAAAGAC. TAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG C. fibrosa X-571 TCTCAAAGA. NTAAGCCATGCACGTCTAAGTGTGAAC. AC . TTTGCACTG C. preissii X-237 TCNCAAAGAC. TAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG C. pclyacancha F122 NNNCAAAGA. TTAAGCCATGCACGTCTAAGTGTGAAC. AC . TTTGCACTG C. vulgaris X-922 NCTCAAAGA. TTAAGCCATGCACGTCTAAGTGTGAAC .A C . TTTGCACTG C. connivens X-214 TCTCAAAGAC. TAAGCCATGCACGTCTAAGTGTGAAC. AC . TTTGCACTG C. comencosa X-908 TCTCAAAGAC. TAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG C. vulgaris X-152 TCTCAAAGAC. TAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG C. imperfecca X-307 GCTCAAAGA. TTAAGCCATGCACGTCTAAGTGTGAAC. AC . TTTGCACTG C. globularis X-999 NCTCAAAGAC. TAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG C. hornemannii 768 TCTCAAAGAC. TAAGCCATGCACGTTTAAGTGTGAAC. AC . TTTGCATTG C. m uelleri X-S88 CTTCAAAGA. TTAAGCCATGCACGTCTAAGTGTGAAC. AC . TTTGCACTG C. scuarciana X-659 NCTCAANGA. TTAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG C. concraria X-998 GCTCAAAGA. TTAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG C. balcica F-118 NNAGGATGA. GTAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG C. hispida X-462 NNNNNNAGAC. TAAGCCATGCACGTCTAAGTGTGAAC . AC. TTTGCACTG C. foliolosa X-863 NNNNNNNNA. TTAAGCCATGCATGTCTAGGTGTGAAC. AC. TTTGCACTG C. braunii 589 TCTCAAAGACTTAAGCCATGCACGTCTGAGTGTGAAC. AC. TTTGCACTG C. foecida VH TCTCAAAGAC. TAAGCCATGCACGTCTAAGTGTGAAC. AC. TTTGCACTG Coleochaece scu. TCTCAAAGA. TTAAGCCATGCATGTCTAAGTATAAACTGA. TCTATACTG Chlrorkybus acm. TCTCAAAGA. TTAAGCCATGCATGTCTAAGTATAAACTG. . T . TATACTG S o y b e a n TCTCAAAGA. TTAAGCCATGCATGTGTAAGTATGAACTAA. TTCAGACTG Nicella axillaris NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN. T . CACTG Nicella sp. LW NCTCAAAGAC. TAAGCCATGCATGTCNAAGTGTAAGCTGTTTTTACACTG N icellopsis obc. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN...... GCACTG Tolypella por. NCTCAAAGAC .TAAGCCATGCANGTCTAAGTGTAAGCTGC. CTTACACTG Y e asc NCTCAAAGA. TTAAGCCATGCATGTCTAAGTATAAGC. AA. TTTATACAG Spirogyra grev. NCTCAAAGA. TTAAGCCATGCATGTCTAAGTATAAA. TAC. TCTAAA. GG Klebsormidium NCTCAAAGA. TTAAGCCATGCATGTCTAAGTATAAACT. CTTTTATACTG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 94

51 100 aspera Y-OOl TGAA.\CTGCGAATGGCTCATTAAA7CAGTTATCATTTATTTGGTGGTCTC andina X-779 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC andina X-905 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC drouecii X-S81 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGATTC I-. haicensis X-103 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGATTC c . zeylanica X-2S1 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGATTC C. drouecii TAMPS-14 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. hydropicys PCR/1 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGATTC C. haicensis 584 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGATTC C. bricconii X-998 TGAAACTGCGAArGGCTCATTAAATCAGTTATCATTTATTTGGTGGATTC C. vandalurensis X-574 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGACTC c . longifolia MB TGAAACTGCGAATGGC7CATTAAATCAGTTATCATTTATTTGGTGGTGTC c . longifolia X-S62 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTGTC L. macropogon X-695 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC L. papulosum TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. auscralis X-067 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. corallina X-6S6 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. auscralis X-709 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. auscralis MR TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC c . curcissii X-500 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC c . fibrosa X-571 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. preissii X-237 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. polyacancha rl22 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. vulgaris X-932 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. connivens X-214 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGAGTC C. comencosa X-908 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. vulgaris X-152 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. imperfecca X-307 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. globularis X-999 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. hornemannii 768 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGAGTC c . m uelleri X-888 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTGTTTGGTGGTCTC c . scuarciana X-659 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC c . concraria X-998 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. balcica F-118 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. hispida X-462 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. foliolosa X-883 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGATTC C. braunii 589 TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC C. foecida VH TGAAACTGCGAATGGCTCATTAAATCAGTTATCATTTATTTGGTGGTCTC Coleochaece scu. TGAAACTGCGAATGGCTCATTAAATCAGTTATAGTTTATTTGATGGTA. C Chlrorkybus acm. TGAAACTGCGAATGGCTCATTAAATCAGTTATAGTTTATTTGATGGTA. C S o y b e a n TGAAACTGCGAATGGCTCATTAAATCAGTTATAGTTTGTTTGATGGTATC Nicella axillaris TGAAACTGCGAATGGCTCA7TAAATCAGTTATAGTTTATTTGATGGTC. . Nicella sp. LW TGAAACTGCGAATGGCTCATTAAATCAGTTATCGTTTATTTGATGTTCCC N icellopsis obc. TGAAACTGCGAATGGCTCANNAAATCAGTTATCATTTATTTGGTGGNC. . Tolypella por. TGAAACTGCGAATGGCTCATTAAANCAGTTATCGTTTATTTGATGTCCCC Y e a s c TGAAACTGCGAATGGCTCATTAAATCAGTTATCGTTTATTTGATAGTTCC Spirogyra grev. TAAAACTGCGAATGGCTCATTAAATCAGTTATAGTTTATTTGATGATTCC Klebsormidium TGAAACTGCGAATGGCTCATTAAATCAGTTATAGTTTATTTGATGGTACC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 95

101 150 aspera Y-COl CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A andina X-779 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A andina X-905 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGC.AGC. A drouecii X-981 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A haicensis X-103 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A c. zeylanica X-251 CTTACCACTCGG. ATAACCGTGGT.AATTCTAGAGCTAATACGTGCAGC. A c. drouecii TAMPS-14 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A hydropicys PCR/1 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A haicensis 584 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A c. bricconii X-998 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A c. vandalurensis X-574 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A c. longifolia MB ATTACCATTCGG. ACAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A c. longifolia X-862 . TTACCATTCGG. ACAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A L. macropogon X-695 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A p a p u lo s u m CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A C. auscralis X-067 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A C. corailina X-656 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A C. auscralis X-709 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A C. auscralis MR CTTACCACTCGG.ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC.A C. curcissii X-500 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A C. fibrosa X-571 CTTACCACTCGG .ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC .A C. preissii X-237 ATTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A C. polyacancha F122 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A C. vulgaris X-932 CTTACCACTCGG.ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC.A C. connivens X-214 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A C. comencosa X-908 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A C. vulgaris X-152 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A C. imperfecca X-307 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A C. globularis X-999 CTTACCACTCGG .ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC .A C. hornemannii 768 ATTACCATTCGG. ACAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A C. m uelleri X-888 CTTACCACTCGG .ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC .A C. scuarciana X-659 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A C. concraria X-998 CTTACCACTCGG .ATAACCGTGGTAATTCTAGAGCTAATACGTGC.1GC .A C. balcica F-118 CTTACCACTCGG. ATAACCGAGGTAATTCTAGAGCTAATACGTGCAGC. A C. hispida X-462 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A C. foliolosa X-883 TTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A C. braunii 589 CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A C. foecida VH CTTACCACTCGG. ATAACCGTGGTAATTCTAGAGCTAATACGTGCAGC. A Coleochaece scu. C . . ACTACTCGG. ATAACCGTAGTAATTCTAGAGCTAATACGTGCACCGA Chlrorkybus acm. CT. ACTACTCGGTATAACCGTAGTAATTCTAGAGCTAATACGTGCA. CAA S o y b e a n . T . ACTACTCGG. ATAACCGTAGTAATTCTAGAGCTAATACGTGCAACAA Nicella axillaris ...... GG.ATAACCGTAGTAATTCTAGAGCTAATACGTGCACCGA Nicella sp. LW CCAATTACTCGG. ATAACCGTAGTAATTCTAGAGCTAATACGTGCAGC. A N icellopsis obc...... GG.ATAACCGTGGTAANTCTAGAGCTAATACGTGCAGC. A Tolypella por. CCAATTACTCGG. ATAACCGTAGTAATTCTAGAGCTAATACGTGCAGC. A Y e a s c TTTACTACATGGTATAACCGTGGTAATTCTAGAGCTAATACATGCTTA. A Spirogyra grev. T . . GCTACTCGG. ATAANCGTAGTAATTATAGAGTTAATACGTGT. GA. A Klebsormidium T T . ACTACTCGG. ATAACCGTAGTAATTCTAGAGCTAATACGTGCACC . A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 96

151 200 c. aspera Y-OOl TATCCCGAC. TTTTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. andina X-779 TATCCCGAC.TTTTGGAAGGGATGTATTTATTGGATNAAAGGCCGATCCG C. andina X-905 TATCCCGAC. TTNTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C, drouecii X-331 TATCCCGAC. CTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. haicensis X-103 TATCCCGAC. CTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. zeylanica X-251 TATCCCGAC. CTCTGGAAGGGATGTATTT.ATTGGATAAAAGGCCGATCCG C. drouecii TAMPS-14 TATCCCGAC. CTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. hydropicys PCR/1 TATCCCGAC. CTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. haicensis 584 TATCCCGAC. CTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. bricconii X-998 TATCCCGAC. CCTCGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. vandalurensis X-574 TATCCCGAC. CTCTGGAAGGGATGTATTTATTGGATAAAANGCCGATCCG C. longifolia MB TACCCCGAC. TTTTGGAAGGGGTGTATTTATTGGATAAAAGGCCGATCCG C. longifolia X-862 TACCCCGAC. TTTTGGAAGGGGTGTATTTATTGGATAAAAGGCCGATCCG L. macropogon X-695 TATCCCGAC. TTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG L. papulosum TATCCCGAC. TTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. auscralis X-067 TATCCCGAC. TTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. corailina X-656 TATCCCGAC. TTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. auscralis X-709 TATCCCGAC. TTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. australis MR TATCCCGACTTTCTGGAAGGGATGTATTT.ATTGGATAAAAGGCCGATCCG C. curcissii X-500 TATCCCGAC. TTCTGGAAGGGATGTATTT.ATTGGATAAAAGGCCGATCCG C. fibrosa X-571 TATCCCGAC. TTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. preissii X-237 TATCCCGAC. TTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. polyacancha F122 TATCCCGAC. TTTTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. vulgaris X-932 TATCCCGAC. TTTTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. connivens X-214 TATCCCGAC. TTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. comencosa X-908 TATCCCGAC. TTTTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. vulgaris X-152 TATCCCGAC. TTTTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. imperfecca X-307 TATCCCGAC. TTNTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. globularis X-999 TA. CCCGAC. TTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. hornemannii 768 TACCCCGAC. TTCTGGAAGGGGTGTATTTATTGGATAAAAGGCCGANCCG C. m uelleri X-888 TATCCCGAC. TTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. scuarciana X-659 TATCCCGAC. TTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. concraria X-998 TATCCCGAC. TTTTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. balcica F-118 TATCCCGAC. TTTTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. hispida X-462 TATCCCGAC. TTTTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. foliolosa X-883 TATCCCGTC. TTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. braunii 589 TATCCCGAC. TTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG C. foecida VH TATCCCGAC. TTCTGGAAGGGATGTATTTATTGGATAAAAGGCCGATCCG Coleochaece scu. . CTCCCGAC. TTCTGGAAGGGACGTATTTATTAGATAAAAGACCAATGCG Chlrorkybus acm. AGTCCCGAC. TCTTGGAAGGGATGTATTTATTAGATAAAAAACCAATACG S o y b e a n A . CCCCGAC. TTCTGGAAGGGATGCATTTATTAGATAAAAGGTCAACACA Nicella axillaris .CTCCCGAC.T. . .GGAAGGGACGTATTTATTAGATAAAAGACCAACTC. Nicella sp. LW TATCCCGACCTCT. GGAAGSGATGTATTTATTAGATAAAAGGCCAACTCG N icellopsis obc. TATCCNGAC.T. . .GGAAGGGATGTATNTATTGGANAAAAGGCCGATCC. Tolypella por. TACCCCGAC. TTCTGGAAGGGATGTATTTATTAGATAAAAGGCCAATCCG Y e asc AATCTCGACCCTTTGGAAGAGATGTATTTATTAGATAAAAAATCAAT. . G Spirogyra grev. ACGCCCGAC. TTCTGGAAGGGCCGTATTTATTAGATTAAAGACCAACTCG Klebsormidium AATCCCGAC. TTCTGGAAGGGACGTATTTATTAGATAAAAGGCCAATGCG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 97

2 0 1 250 c. aspera Y-OOl GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACTTTGTCGAATCG. C. andina X-779 GGCTT. G . CCCGTTG. .TTGCGGCGAATCATGGTGACTTTGTCGAATCG. C. andina X-905 GGCTT. G . CCCGTTG. .TTGCGGCGAATCATGGTGACTTTGTCGAATCG. C. drouerii X-Sai GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACTTTGTCGAATCG. C. haicensis X-103 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGATGACTTTTTCGAATCG. C. zeylanica X-251 GGCTT. G . CCCGTTG. .TTGCGGCGAATCATGGTGACTTTGTCGAATCG. C. drouecii TAMPS-14 GGCTT. G . CCCGTTG. .TTGCGGCGAATCATGATGACTATTTCGAATCG. C. hydropicys PCR/1 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACTTTGTCGAATCG. C. haicensis 584 GGCTT. G. CCCGTTG. .TTGCGGCGAATCATGATGACTTTTTCGAATCG. C. bricconii X-998 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACTTTGTCGAATCG. C. vandalurensis X-574 GGCTT. A . CCCGTTG. . TTGCGGCGAATCATGGTGACTTTGTCNAATCG. C. longifolia MB NGCTT. G . CCCGTTG. . TTGCGNCGAATCATGGTGACTTTGTCGAATCG. C. longifolia X-862 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACTTTGTCGAATCG. L. macropogon X-695 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACTTTCTCGAATCG . L. papulosum GGCTT. G. CCCGTTG. . TTGCGGCGAATCATGGTGACT. TCTCGAATCG. C. auscralis X-067 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGATGACT. TCTCGAATCG. C. corailina X-656 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACT. TCTCGAATCG. auscralis X-709 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGATGACT. TCTCGAATCG. auscralis MR GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGATGACT. TCTCGAATCG. C. curcissii X-500 GGCTT. G . CCCGTTG. . TTTCGGCGAATCATGGTGACT. TCTCGAATCG. c. fibrosa X-571 GGCTT. G . CCCGTTG. . TTACGGCGAATCATGGTGACT. TCTCGAATCG. preissii X-237 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACT. TTTCGAATCG. polyacancha F122 GGCTT. G . CCCGTTG. . TTGCGACGAATCATGGTGACTTTGTGCAATCG. vulgaris X-932 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACTTTGTCGAATCG. c. connivens X-214 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACTCTTTCGAATCG. c. comencosa X-908 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACTTTATCGAATCG. c. vulgaris X-152 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACTTTGTCGAATCG. c. imperfecca X-307 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACTTTGTCGAATCG. c. globularis X-999 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACTTTCTCGAATCG. hornemannii 768 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACTTTTTCGAATCG. c. m uelleri X-888 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACT. TCTCGAATCG. c. scuarciana X-659 GGCTT. G . CCCGTTG. .TT.CGGCGAATCATGATGACT. TCTCGAATCG. c. concraria X-998 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACTTTGTCGAATCG. c. balcica F-118 GGCTT. G . CCCGTTG. TTTGGCGGGAATCATGGTGACTNTGTCGAATCG. c. hispida X-462 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACTTTGTCGAATCG. c. foliolosa X-883 GGCTT. G . CCCGTTG. . TTTCGGTGAATCATGATGACT. TCTCGAATCG. c. braunii 589 GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACT. TCTCGAATCG. c. foecida VH GGCTT. G . CCCGTTG. . TTGCGGCGAATCATGGTGACTTTGTCGAATCG. Coleochaece scu. GGCT. CG. CCCGGTA. . TTGCGGTGAATCATGATAACTC. CTCGAATCG. Chlrorkybus acm. GGTTTCGGCCCGGTA. . TTGCGGTGAATCATAATAACTC. CTCGAATCG. S o y b e a n GGCT. CTGCCTGTTGCTTTGA. . TGATTCATGATAACTC. GTCGGATCG. Nicella axillaris ...... TGAATCATGATAACT. CCTCGAATCG. N icella sp. LW AGCTT. G . CTCGGCG. . TTGTGGCGAATCATAGTGACTTT. TCGAATCG. N icellopsis obc...... TGAATCATGATGACTT. CTCGAATNGN Tolypella por. AGCTT. G . CTCG. TCG. TTCTGGCTAATCATGGTGACT. CCTCGAATCG. Y e a s c . . .T .C . . TTCG. CACTCTTTGATGATTCATAATAACTTT.TCGA...... Spirogyra grev. GGGTTCGCCCCGAAACTTTGGTGATTCATAATGTAA.T. . CTCGGACCG. Klebsormidium GGCTT. G . CCCGGTATTGCGGTGAATCATGA. . TAACTCG. TCGAATCG.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 98

2 5 1 300 c. aspera Y-OOl CATGGCCTTCGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC c. andina X-779 CATGGCCTTTGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTATTCAAC C. andina X-905 CATGGCCTTTGAGCCGGCGATGTTCCA7TCAAATTTCTGCCCTAT. CAAC C. drouecii X-88I CATGGCCTTCGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC C. haicensis X-103 CATGGCCTTCGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC C. zeylanica X-251 CAT .GCCTTCGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT .CAAC C. drouecii TAMPS-14 CATGGCCTTCGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC C. hydropicys PCR/1 CATGGCCTTCGNGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC C. haicensis 584 CATGGCCTTCGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC C. bricconii X-998 CATGGCCTTCGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC C. vandalurensis X-574 CATGGCCT7CGAGCCGGCGATGTTCCATTCAAATTTCT. CCCTAT. CAAC C. longifolia MB CATGGCCTTTGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CANC C. longifolia X-862 CATGGCCTTTGAGCCGGCGATGTTCCANTCAAATTTCTGCCCTAT. CAAC L. macropogon X-695 CATGGCCTTCGAGCCGGCGATGTTCC.!VTTCAAATTTCTGCCCTAT. CAAC L. papulosum CATGGCCTTCGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC C. auscralis X-067 CACGGCCTTTGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC C. corailina X-656 CACGGCCTTTGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC C. auscralis X-709 CACGGCCTTTGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC c. auscralis MR CACGGCCTTTGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC C. curcissii X-500 CATGGCCTTGGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC c. fibrosa X-571 CATGGCCTTTGCGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC c. preissii X-237 CATGGCCTTTGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC c. polyacancha F122 CATGGCCTTTGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC c. vulgaris X-932 CATGGCCTTTGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC c. connivens X-214 CATGGCCTTCGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC c. comencosa X-908 CATGGCCTTCGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC c. vulgaris X-152 CATGGCCTAACAATACGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC c. im perfecca X-307 CATGGCCTTTGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC c. globularis X-999 CATGGCCTTCGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC hornemannii 768 CATGGCCTTCGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC c. m uelleri X-888 CATGGCCTTTGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC c. scuarciana X-659 CACGGCCTTTGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC c. conCraria X-998 CATGGCCTTTGAGCCGGCGATGTTCCATTCAAATTTCTGCCCT.AT. CA. C c. balcica F-118 CATGGCCTTTGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC c. hispida X-462 CATGGCCTTTGAGCCGGCGATGTrCCATTCAAATTTCTGCCCTAT. CAAC c. foliolosa X-883 CATGGCCTTCGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC c. braunii 589 CATGCCTTTNGAGCNCGCGATGTTCCATTCAAATTTCT. CCCTAT. CAAC c. foecida VH CATGGCCTTTGAGCCGGCGATGTTCCATTCAAATTTCTGCCCTAT. CAAC Coleochaece scu. CACGGCCCT. GCGCCGGCGATGTTTCATTCAAATTTCTGCCCTAT. CAAC Chlrorkybus acm. CATGGCCTTCGTGCCGGCGATGTTTCATTCAAATTTCTGCCCTAT. CAAC S o y b e a n CACGGCCTTTGTGCCGGCGACGCATCATTCAAATTTCTGCCCTAT. CAAC Nicella axillaris C.ACGGCCCTTGCGCCGGCGATGTTTCATTCAAATTTCTGCCCTAT. CAAC Nicella sp. LW CATGGCCTTTGCGCCGGCGATGTTTCATTCAAATTTCTGCCCTAT. CAAC N icellopsis obc. GCT...... Tolypella por. CATGGCCTTTGCGCCGGCGATGTTTCATTCAAATTTCTGCCCTAT. CAAC Y e a s c CATGGCCTT. GTGCTGGCGATGGTTCATTCAAATTTCTGCCCTAT. CAAC Spirogyra grev. CACGGCCT. CGCGCCGGTGATGTTTCATTCAAATTTCTGCCCTAT. CAAC Klebsormidium CACGGCCTTTGCGCTGGCGATGTTTCATTCAAATTTCTGCCCTAT. CAAC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 99

301 350 c. a s p e r a Y-OOl TTTCGA. TCG. TAGGATATAGN. CCT.ACCATGGTG. GTAACGGGTGA. CG C. andina X-77 9 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. andina X-905 TTTCGA. TGG. TAGGATATAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. drouecii X-881 TTTCGA. TGG. TAGGATATAGN. CCTACCATGGTG. GTAACGGGTGA. CG C. haicensis X-103 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. zeylanica X-251 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. drouecii TAMPS-14 TTTCGA. TGG. TAGGATATAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. hydropicys PCR/1 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. haicensis 584 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. bricconii X-998 TTTCGA. TGG. TAGGATAGAGG .CCTACCA.TGGTG. GTAACGGGTGA. CG C. vandalurensis X-574 TTCGGA. TGG. TAGGATAGAGNTCCTACCATGGTG. GTAACGGGTGA. CG C. longifolia MB NNTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. longifolia X-862 TTTCGA. TGG. TAGGATANAGG. CCTACCATGGTG. GTAACGGGTGN. CG L. macropogon X-695 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG L. papulosum TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. auscralis X-067 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. corailina X-656 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. auscralis X-709 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. auscralis MR TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. curcissii X-500 TTTCGA. TGG. TAGGATATAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. fibrosa X-571 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. preissii X-237 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTG. TCG C. polyacancha F122 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. vulgaris X-932 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. connivens X-214 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. comencosa X-908 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. vulgaris X-152 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. imperfecca X-307 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. globularis X-999 TTTCGA. TGG. TAGGATATANG. CCTACCATGGTG. GTAACGGGTGN. CG C. hornemannii 768 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. m uelleri X-888 TTTCGATTGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. scuarciana X-659 TTTCGA. TGG. T.AGGATATAGG. CCT.ACCATGGTG. GTAACGGGTGA. CG C. concraria X-998 TTTCGA. TGG. TAGGATATAGN. CCTACCATGGTG. GTAACGGGTGA. CG C. balcica F-118 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGATCG C. hispida X-462 TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. foliolosa X-883 TTTCGA. TGGTTAGGATAGTAGTCCTACCATGGTGTGTAACGGGTGA. CG C. braunii 589 TTTCGA. TGG.TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG C. foecida VH TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG Coleochaece scu. TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG Chlrorkybus acm. TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG S o y b e a n TTTCGA. TGG. TAGGATAGTGG. CCTACCATGGTG. GTGACGGGTGA. CG Nicella axillaris TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG Nicella sp. LW TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG N icellopsis obc...... GGGTGA.CG Tolypella por. CTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG Y e a s c TTTCGA. TGG. TAGGATAGTGG. CCTACCATGGTTT. CAACGGGTAA. CG Spirogyra grev. TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG Klebsormidium TTTCGA. TGG. TAGGATAGAGG. CCTACCATGGTG. GTAACGGGTGA. CG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 100

351 400 c. aspera Y-OOl GAGAATTAGCGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. andina X-779 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. andina X-905 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. drouecii X-881 GAGAATTAGGGTT, CGATT. CCGGAGAGGGAGCCTGAGAGACGGCTACCA C. haicensis X-103 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGACGGCTACCA C. zeylanica X-251 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGACGGCTACCA C. drouecii TAMPS-14 GAGAA.TTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. hydropicys PCR/1 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGACGGCTACCA C. haicensis 584 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGACGGCTACCA C. bricconii X-998 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAG.AGACGGCTACCA C. vandalurensis X-574 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGACGGCTACCA C. longifolia MB GAGGATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. longifolia X-862 GAGGATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA L. macropogon X-695 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA L. papulosum GAGAATTAGGGTT. CGATTCCCGGAGAGGGAGCCTGAGAGATGGCTACCA C. auscralis X-067 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. corailina X-656 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. auscralis X-709 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. auscralis MR GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. curcissii X-500 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. fibrosa X-571 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. preissii X-237 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. polyacancha F122 GAGAATTAGGGTTCCGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. vulgaris X-932 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. connivens X-214 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. comencosa X-908 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. vulgaris X-152 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. imperfecca X-307 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. globularis X-999 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. hornemannii 768 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. m uelleri X-888 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. scuarciana X-659 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. concraria X-998 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. balcica F-118 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. hispida X-462 TAGAATT.AGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. foliolosa X-883 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGACGGCTACCA C. braunii 589 GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA C. foecida VH GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA Coleochaece scu. GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAAACGGCTACCA Chlrorkybus acm. GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAAACGGCTACCA S o y b e a n GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAAACGGCTACCA Nicella axillaris GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAAACGGCTACCA Nicella sp. LW GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGACGGCTACCA N icellopsis obc. GNGAATTNGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGATGGCTACCA Tolypella por. GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAGACGGCTACCA Y e a s c GGGAATAAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAAACGGCTACCA Spirogyra grev. GAGGATTAGGGTT. CGATT. CCGGAGAGGGAGCATTAGAAACGGCTACCA Klebsormidium GAGAATTAGGGTT. CGATT. CCGGAGAGGGAGCCTGAGAAACGGCTACCA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 101

401 45 aspera Y-OOl CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCA.ATCCTGACATAGGGA andina X-77 9 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA andina X-905 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGNCATAGGGA c. drouecii X-891 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA c. haicensis X-103 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA C. zeylanica X-251 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA C. drouecii TAMPS-14 CACCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA c. hydropicys PCR/1 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA c. haicensis 594 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA c. bricconii X-998 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA c. vandalurensis X-57 4 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA c. longifolia MB CATCCANGGAAGGCAGCAGGCGCGTGAATTACCCAATCCTGACATAGGGA c. longifolia X-862 CATCCAAGGAAGGCAGCAGGCGCGTANATTACCCAATCCTGNCATAGGGA L. macropogon X-695 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA L. papulosum CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA C. auscralis X-067 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA C. corailina X-656 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA C. auscralis X-709 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA C . auscralis MR CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA C . curcissii X-500 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA C . fibrosa X-571 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA C . preissii X-237 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA C. polyacancha F122 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA c. vulgaris X-932 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA c. connivens X-214 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA c. comencosa X-908 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA c. vulgaris X-152 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA C. imperfecca X-307 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA C. globularis X-999 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGNCATAGGGA C. hornemannii 768 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA c. m uelleri X-888 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA c. scuarciana X-659 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA c. concraria X-998 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA c. balcica F-118 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA C. hispida X-462 CATCCAAGGAAGGCAGCAGGCCCGTAAATTACCCAATCCTGACATAGGGA C. foliolosa X-883 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA C. braunii 589 CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA C. foecida VH CATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGACATAGGGA Coleochaece scu. CATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCAATCCTGATACAGGGA Chlrorkybus acm. CATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCAATCCTGATACAGGGA S o y b e a n CATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCAATCCTGACACGGGGA Nicella axillaris CATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCAATCCTGACACAGGGA N icella sp. LW CATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCAATCCTGACACAGGGA N icellopsis obc. CATCCAAGGNAGGCAGCAGGCGCGNANATTACCCAATCCTGACANAGGGA Tolypella por. CACCCAAGGAAGGCAGCAGGCGCGCAAATTACCCAANCCTGACACAGGGA Y e a s c CATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCAATCCTAATTCAGGGA Spirogyra grev. CATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCAATCCTGATTCAGGGA Klebsormidium CATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCAATCCTGATACAGGGA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 102

451 500 aspera Y-OOl CGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG andina X-779 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG L . andina X-905 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. drouecii X-881 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. haicensis X-103 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. zeylanica X-251 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. drouecii TAMPS-14 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAACTGG C. hydropicys FCR/1 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. haicensis 584 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. bricconii X-998 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. vandalurensis X-574 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG c. longifolia MB GGTAGTGACAATNNATGAC.AATATTGGGCTCTTTCGAGTTCGGNNATTGG c. longifolia X-862 GGTAGTGNCAATAAATAACAATATTGGGCTCTTTCGAGTTCGGTAATTGG L. macropogon X-695 GGTAGTGACAATAAATGACAATACTGGGCTCTTTCGAGTCCGGTAATTGG L. papulosum GGTAGTGACAATAAATGACAATACTGGGCTCTTTTGAGTCCGGTAATTGG C. auscralis X-067 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG c. corailina X-656 GGTAGTGACAATAAATAACAATACGGGGCTCTTTCGAGTCCGGTAATTGG c. auscralis X-709 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG c. auscralis MR GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. curcissii X-500 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. fibrosa X-571 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. preissii X-237 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAMTGG C. polyacancha F122 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCTGGTAATTGG C. vulgaris X-932 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. connivens X-214 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. comencosa X-908 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. vulgaris X-152 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. imperfecca X-307 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. globularis X-999 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. hornemannii 768 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. m uelleri X-888 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. scuarciana X-659 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. concraria X-998 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATT. G C. balcica F-118 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. hispida X-462 GGTAGTGACAATAAATNACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. foliolosa X-883 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG C. braunii 589 GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAAT7GG C. foecida VH GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG Coleochaece scu. GGTAGTGACAATAAATAACAATACTGGGCTTTTATAAGTCTGGTAATTGG Chlrorkybus acm. GGTAGTGACAATAAATAACAATACCGGGCTTTCTAAAGTCTGGTAATTGG S o y b e a n GGTAGTGACAATAAATAACAATACCGGGCTCAT. TGAGTCTGGTAATTGG Nicella axillaris GGTAGTGACAATAAATAACAATACTGGGCT. T AGTCTGGTAATTGG Nicella sp. LW GGTAGTGACAATAAATAACAATACTGGGCTCTTTCGAGTCCGGTAATTGG N icellopsis obc. GGTAGTGACAATAANTAACAATACTGGGCTCC GTCTGGTAATTGG Tolypella por. GGTAGTGACAATAAATAACAACACCGGGCTCTTTTGAGTCCGGTAANCGG Y easc GGTAGTGACAATAAATAACGATACAGGGCCCATTCGGGTCTTGTAATTGG Spirogyra grev. GGTAGTCANAATAAATAANAATACCGGTCTCTTATGTGACTGGTAATTGG Klebsormidium GGTAGTGACAATAAATAACAATGCTGGGCTTTTCAAAGTCTGGCAATTGG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 103

501 5 5 0 c. aspera Y-OOl AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. andina X-779 AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. andina X-905 AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. drouecii X-881 AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. haicensis X-103 AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. zeylanica X-251 AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. drouecii TAMPS-14 AATGAGAACAGCCTTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. hydropicys PCR/1 AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGNGGGCA C. haicensis 584 AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. bricconii X-998 AATGAGAACAGTCCTAAACTTCCTTC. AACGA. GGATCCATTGGAGGGCA C. vandalurensis X-57 4 AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. longifolia MB AATGACAGNAGTCCTAAAC. TCCTT. AAACGA. GGNTCCATTGGAGGGCA C. longifolia X-862 AATGAGAACAGTCCTAAAC. TCCTT. AAACGA. GGATCCATTGGAGGGCA L. macropogon X-695 AATGAGNACAGTCCTAAAC. TCCTT. AAACGA. GGATCCATTGGAGGGCA L. papulosum AATGAGNACAGTCCTAAAC . TCCTT. AAACGA. GGATCCATTGGAGGGCA C. auscralis X-067 AATGAGAACAGTCCTAAAC. TCCTTG. AACGA. GGATCCATTGGAGGGCA C. corailina X-656 AATGAGAACAGTCCTAAAC. TCCTTG. AACGA. GGATCCATTGGAGGGCA C. auscralis X-709 AATGAGAACAGTCCTAAAC . TCCTTG. AACGA. GGATCCATTGGAGGGCA C. auscralis MR AATGAGAACAGTCCTAAAC. TCCTTG. AACGA. GGATCCATTGGAGGGCA G . c u r c i s s i i X -5 0 0 AATGAGAACAGTCTTAAAC. TCCTTG. AACGA. GGATCCATTGGAGGGCA C. fibrosa X-571 AATGAGAACAGTCCTAAAC. TCCTTG. AACGA. GGATCCATTGGAGGGCA C. preissii X-237 AATGAGAACAGTCCTAAAC. TCCTTG. AACGA. GGATCCATTGGAGGGCA C. polyacancha F122 AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. vulgaris X-932 AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. connivens X-214 AATGAGAACAGTCCTAAAC. TCCTTG. GGCGA. GGATCCATTGGAGGGCA C. Comencosa X-908 AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. vulgaris X-152 AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. imperfecca X-307 AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. globularis X-999 AATGAGAACAGTCCTAAAC . TCCTT. AAACGA. GGATCCATTGGAGGGCA C. hornemannii 768 AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. m uelleri X-883 AATGAGAACAGTCCTAAAC. TCCTTG. AACGA. GGATCCATTGGAGGGCA C. scuarciana X-659 AATGAGAACAGTCCTAAAC . TCCTTG. AACGA. GGATCCATTGGAGGGCA C. concraria X-998 AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. balcica F-118 AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA C. hispida X-462 AATGAGNACAGTCCTAAAC. TCCTTG. AACGA. GGATCCATTGGAGGGCA C. foliolosa X-883 AATGAGAACAG. C . TAAAC . TCCTTC. AACGA. GGATCCATTGGAGGGCA C. braunii 589 AATGAGAACAGTCCTAAAC. TCCTTG. AACGA. GGATCCATTGGAGGGCA C. foecida VH AATGAGAACAGTCCTAAAC. TCCTTC. AACGA. GGATCCATTGGAGGGCA Coleochaece scu. AATGAGTACAATC. TAAA. .T . . .T . . AACGA. GGATCCATTGGAGGGCA Chlrorkybus acm. AATGAGTACAATT. TAAA. . TCCCTT. AACGA. GGATCCATTGGAGGGCA S o y b e a n AATGAGTACAATC. TAAA. . TCCCTT. AACGATGGATCCATTGAAGGGCA Nicella axillaris AATGAGNACAATC. TAAAC. . CCCTTAAACGA. GGATCAATTGGAGGGCA Nicella sp. LW AATGAGAACAGTC. TAAAC . . CCCTTAAACGA. GGATCCATTGGAGGGCA N i c e l l o p s i s o b c . AATGAGTACANTC. TAAA. . TCCCTTNAACGA. GGATCCATTGGAGGGCA Tolypella por. AATGAGAACAGTC. TAAAC. . CCCTCAAACGA. GGATCCATTGGAGGGCA Y e a s c AATGAGTACAAT. GTAAA. . TACCTT. AACGA. GGAACAATTGGAGGGCA Spirogyra grev. AATGAGNGGAA. CATAAA. . TACCTT. AACNA. GGATCCATTGGAGGGCA Klebsormidium AATGAGTGCAATC. TAAA. . TCCCTC. AACGA. GGATCCATTGGAGGGCA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 104

551 600 c. aspera Y-OOl AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. andina X-77 9 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. andina X-905 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. drouecii X-881 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. haicensis X-103 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. zeylanica X-251 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. drouecii TAMPS-14 AGTCTGGTGCCAG. CAGCCGNGG, TAATTCCAGCTCCAATAGCGTATATT C. hydropicys FCR/1 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. haicensis 584 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT c. bricconii X-998 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT c. vandalurensis X-574 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAAT.AGCGTATATT c. longifolia MB AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT longifolia X-862 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT macropogon X-695 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT p a p u lo s u m AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT a u s c r a l i s X -067 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT c. c o r a i l i n a X -6 5 6 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT r a u s c r a l i s X -7 0 9 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. auscralis MR AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. curcissii X-500 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. fibrosa X-571 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. preissii X-237 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. polyacancha F122 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. vulgaris X-932 AGTCTGGTGCCAGCCAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. connivens X-214 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. comencosa X-908 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. vulgaris X-152 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. im perfecca X-307 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. globularis X-999 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT c. hornemannii 768 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. m uelleri X-888 AGTCTGGTGCCAG. CAGCCGCGG. TAATTNCAGCTCCAATAGNNTATATT C. scuarciana X-659 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. concraria X-998 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT c. balcica F-118 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT c. hispida X-462 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAAiTAGCGTATATT c. foliolosa X-883 AGTCTGG. CCCAG. CAGCCGCGGGTAATTC. AGCTCCAATAGCGTATATT C. braunii 589 AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT C. foecida VH AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT Coleochaece scu. AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT Chlrorkybus acm. AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT S o y b e a n AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT Nicella axillaris AGTCTGGTGCCAA. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT Nicella sp. LW AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT N icellopsis obc. AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCNNCTCCAATAGNGTATATT Tolypella por. AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT Y e a s c AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT Spirogyra grev. AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT Klebsormidium AGTCTGGTGCCAG. CAGCCGCGG. TAATTCCAGCTCCAATAGCGTATATT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 105

6 0 1 650 c. aspera Y-OOl TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. andina X-779 TAA. 'GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. andina X-905 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGNNGGGAGGG C. drouecii X-891 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTCTGGGTGGGAGGA C. haicensis X-103 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTCTGGGTGGGAGGA C. zeylanica X-251 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTCTGGGTGGGAGGA C. drouecii TAMPS-14 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTCTGGGTGGGAGGG C. hydropicys PCR/1 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTCTGGGTGGGAGGA C. haicensis 584 TAA.. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTCTGGGTGGGAGGA C. bricconii X-998 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGAATTCTGGGTGGGAGGG C. vandalurensis X-57 4 TAA. GTTGTTGCAGTTAAAAA. GCTCGT.AGTTGGA.TTCTGGGTGGGAGGA C. longifolia MB TNA. GTTGTTGCAGTTGAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. longifolia X-862 TAA. GTTGTTGCAGTTGAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG L. macropogon X-695 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG L. papulosum TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. auscralis X-067 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. corailina X-656 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. auscralis X-709 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. auscralis MR TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. curcissii X-500 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. fibrosa X-571 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. preissii X-237 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. polyacancha F122 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. vulgaris X-932 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. connivens X-214 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. comencosa X-908 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. vulgaris X-152 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG c . imperfecca X-307 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG c. globularis X-999 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. hornemannii 768 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. m uelleri X-888 TAANGTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. scuarciana X-659 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. concraria X-998 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. balcica F-118 TAA. GTTGTTGCAGTTAAAAAAGCTCGTAGTTGGATTTTGGGTGGGAGGG C. hispida X-462 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. foliolosa X-883 TAA. GTTGTTGCA. TTAAAAA. GCTCGTAGTTGAATTCTGGGTGGGAGGG C. braunii 589 TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG C. foecida VH TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG Coleochaece scu. TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTCGGGTTGGAGCG Chlrorkybus acm. TAA. GTTGTTGCGATTAAAAA. GCTCGTAGTTGGATTTTGGGATGGGGTG S o y b e a n TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGACCTTGGGTTGGGTCG Nicella axillaris AAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTCTGGTGCGGAG. Nicella sp. LW TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAAGG N icellopsis obc. TAAN. TTGTTGNAGTTAAAAA. GCTCGTAGTTGGATTTNNGGCNCNGAG. Tolypella por. TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTGGGAGGG Y e a s c AAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGAACTTTGGGCCCGGTTG Spirogyra grev. TANN .TTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTCGGANNGGAGAC Klebsormidium TAA. GTTGTTGCAGTTAAAAA. GCTCGTAGTTGGATTTTGGGTTGGGGCA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 106

651 7 0 0 c. aspera Y-OOl GTCGGTCC. GCC. TCTTGCGGGCGTGTACTGGCCCTTTCGCCTTTCTT. G C. andina X-779 GTCGGTCCAGC. . TC7TGCGGGCGTGTACTGGCCCTTTCGCCTTTCTT. G C. andina X-905 GTCGGTCC. NCC. TCTTGCGGGCGTGTACTGGCCCTTTCGC. TTTCTT. G C. drouecii X-881 GTCGGTCC. GCCCTC. . GCGGGCGTGCACTGGCCCCTTCGCCTTTCTT. G C. haicensis X-103 GTCGGTCC. GCC. .T.CGCGGGCGTGCACTGGCCCTTTCGCTTTTCTT. G C. zeylanica X-251 GTCGGTCC. GCC. . TTCGCGGGCGTGCACTGGCCCCTTCGCCTTTCTT. G C. drouecii TAMPS-14 GTCGGTCC. GCC. TCT. GCGGGCGTGCACTGGCCCTTTCGCTTTTCTT. G C. hydropicys PCR/1 GTCGGTCC. GCC. TCT. GCGGGCGTGCACTGGCCCCTTCGCCTTTCTT. G C. haicensis 584 GTCGGTCC. GCCCTC. . GCGGGCGTGCACTGGCCCCTTCGCCTTTCTT. A C. bricconii X-998 GTCGGTCC. GC. . TCTCGCGGGCGTGCACTGGCCCCTTCGCCTTTCTT. G C. vandalurensis X-574 GTCGGTCC. GCCCT. . CGCGGGCGTGCACTGGCCCCTTCGCCTTTCTTGG C. longifolia M3 GTTGGTCC.GC. . TCTTGCGGGCGTGTACTGGCCCTTTCGCCTTTCAT. G C. longifolia X-862 GTTGGTCC.GC. . TCTTGCGGGCGTGTACTGGCCCTTTCGCCTTTCAT. G L. macropogon X-695 GTCGGTCCNGCC. . . TTGCGGGCGTGTACTGGCCCTTTCGCCTTTCTT. G L. papulosum GTCGGTCCNGCC. . . TTGCGGGCGTGTACTGGCCCTTTCGCCTTTCTT. G C. auscralis X-067 GCTGGTCC.GC. . TCTTGCGGGCGTGTACCGGCCCTTTCGCCTTTCTT. G C. corailina X-656 GTCGGTCC .G C. . TCT. GCGGGCGTGTACTGGCCCTTTCGCCTTTCTT. G C. auscralis X-709 GCTGGTCC .GC. . TCTTGCGGGCGTGTACCGGCCCTTTCGCCTTTCTT. G C. auscralis MR GCTGGTCC .GC. . TCTTGCGGGCGTGTACCGGCCCTTTCGCCTTTCTT. G C. curcissii X-500 GTTGGTCC .G C. . TCTTGCGGGCGTGTACCGGCCCTTTCGCTTTTCTT. G C. fibrosa X-571 GTTGGTCC .GC. . TCTTGCGGGCGTGTACCGGCCCTTTCGCCTTTCTT. G C. preissii X-237 GTTGGTCC. GCC. TCT. GCGGGCGTGCACCGGCCCTTTCGCCTTTCTT. G C. polyacancha F122 GTCGGTCC .G C. . TCTTGCGGGCGTGTACTGGCCCTTTCGCCTTTCTT. G C. vulgaris X-932 GTCGGTCC .GC. . TCTTGCGGGCGTGTACTGGCCCTTTCGCCTTTCTT. G C. connivens X-214 GTCGGTCC. GCC. . CTTGCGGGCGTGCACTGGCCCTTTCGCNTTTCTT. G C. comencosa X-908 GTCGGTCC .GC. . TCTTGCGGGCGTGTACTGGCCCTTTCGCTTTTCTT. G C. vulgaris X-152 GTCGGTCC .G C . . TCTTGCGGGCGTGTACTGGCCCTTTCGCCTTTCTT. G C. imperfecca X-307 GTCGGTCC .G C . . TCTTGCGGGCGTGTACTGGCCCTTTCGCCTTTCTT. G C. globularis X-999 GTCGGTCC .GC. . TCTTGCGGGCGTGTACTGGCCCTTTCGCCTTTCTT. G C. hornemannii 766 GTCGGTCC .G . . TCTTCGCGGGCTGTCGTAGGCCCTTTCGCTTTTCTT. G C . m u e l l e r i X -8 8 8 GTTGGTCC. GCC. . CTTGCGGGCGTGTACCGGCCCTTTCGCCTTTCTT. G C. scuarciana X-659 GCTGGTCC .G C . . TCTTGCGGGCGTGTACCGGCCCTTTCGCCTTTCTT. G C. concraria X-998 GTCGGTCC .G C . . TCTTGCGGGCGTGTACTGGCCCTTTCGCCTTTCTT. G C. balcica F-118 GTCGGTCC. GCC. TCTTGCGGGCGTCCACTGGCCCTTTCGCCTTTCTT. G C. hispida X-462 GTCGGTCC .G C . . TCTTGCGGGCGTGTACTGGCCCTTTCGCCTTTCTT. G C. foliolosa X-883 GTCGGTCC. GN. . TCTCGCGGGCGTGCACTGGCCC. TTCGCCTTTCTT. G C. braunii 589 GTTGGTCC .G C . . TCTTCCGGGCGTGTACCGGCCCTTTCGCCTTTCTT. G C. foecida VH GTCGGTCC .G C . . TCTTGCGGGCGTGTACTGGCCCTTTCGCCTTTCTT. G Coleochaece scu. ACCGGTCC. GCCCT .T T . . GGGTGTGCACTGGTTTCTCCATCCTTCTT. G Chlrorkybus aCm. ATCGGTCT. GCCGT. TT. CGC. TATGTACTGGTCACCTTTTCCTTCTT. G S o y b e a n ATCGGTCC. GCC. TC. . . CGC. TGTGCACCGGTCGGCTCGTCCCTTCT. G Nicella axillaris .CCGG...... Nicella sp. LW ACTGGTCC. GCC. T . TCGCGGGCGTGCACCGGCCCTTCCGCCTCTCTT. G N icellopsis obc. . CCGGCCCTG...... Tolypella por. GGCGGTCC. GCC. TN. CACGGGCGTGCACCGGCCCCTCCGCTTTTCTT. G Y easc GCCGGTCC.GA. . TTTTT. . . TCGTGTACTGGATTTCCAAGGGCCCTTTC Spirogyra grev. GTCGGTCCTCCC.TC. .GTGGTCG. ATACTGACTCTCT. G. CTTAA.TTG Klebsormidium GCCGGTCC. GCC .T C . . ACGGT. GTGCACCGGCTGACCCATCC. TTCTTG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 107

701 750 aspera Y-OOl CCGGGGATGTGTTCCTTGCCTTTA. . CTGGCCGGGATCCAG. .AGCCGG. andina X-779 CCGGGGATGTGTTCCTTGCCTTTA. .CTGGCCGGGATCCAG. .AGCCGGG andina X-905 CCGGGGATGTGTTCCTTGCCTTTA. . CTGGCCGGGATCCAG. .AGCCGG. drouecii X-981 CCGGGGATGCGGTCCTTGCCTTCG. . CTGGCCGGGGCCCAG. .AGCCGG. haicensis X-103 CCGGGGATGCGGTCCTTGCCTTCA. . CTGGCCGAGGCCCAG. .AGCCGG. c. zeylanica X-251 CCGGGGATGCGGCCCTTGCCTTCG. . CTGGCCGGGGCCCAG. .AGCCGG. c. drouecii TAMPS-14 CCCGGGATGCGNNCCTTGCCTTCG. . CTGGNCGAGGCCCAG. .AGCCGG. c. hydropicys PCR/1 CCGGGGATGCGGTCCTTGCCTTCG. . CTGGCCGGGGCCCAG. .AGCCGG. c. haicensis 584 CCGGGGATGCGGTCCTTGCCTTCA. . CTGGCCGGGGCCCAG. .AGCCGG. c. bricconii X-998 CCGGGGATGCGGTCCTTGCCTTCG. . CTGGCCGGGGCCCAG. .AGCCGG. c. vandalurensis X-574 CCGGGGATGCGGCCCTTGCCTTCG. . CTGGGCCGGGGCCAG. .AGCCGG. c. longifolia MB CCGGGTATGGNTTTNTTNCCTTTA. . TTGGCCGGGATCCAG. .AGCCGG. longifolia X-862 CCGGGTATGGGTTTCTTGCCTTTG. . TTGGCC. GGATCCAG. .AGCCGG. L. macropogon X-695 CCGGGGATGCGTTCCTTGCCTTTA. . TTGGCCGGGATCCAG. .AGCCGG. p a p u lo s u m CCGGGGATGCCGTCCTTGCCTTTA. . TTGGCCGGGATCCAG. .AGCCGG. C. auscralis X-067 CCGGGTATGCGTTCCTTGCCTTTG. . TTGGCTGGGATCCAG. .AGCCGG. C. corailina X-656 CCGGGTATGCGTTCCTTGCC. TTG. . NTGGCTGGGATCCAG. .AGCCGG. C. auscralis X-709 CCGGGTATGCGTTCCTTGCCTTTG. . TTGGCTGGGATCCAG. .AGCCGG. c. auscralis MR CCGGGTATGCGTTCCTTGCCTTTG. . TTGGCTGGGATCCAG. .AGCCGG. C. curcissii X-500 CCCGGGATGCGTTCCTTGCCTTCA. . TTGGCTGGGATCCAG. .AGCCGG. c. fibrosa X-571 CCGGGTATGCGTTCCTTGCCTTTA. . TTGGCTGGGATCCAG. .AGCCGG. C. preissii X-237 CCGGGGATGCGTTCCTTGCCTTTA. . TTGGCTGGGATCCAG. .AGCCGG. c. polyacancha F122 CCGGGGATGTGTTCCTTGCCTTTG. . CTGGCCGGGATCCAG. .AGCCGG. c. vulgaris X-932 CCGGGGATGTGTTCCTTGCCTTTA. .CTGGCCGGGATCCAG. .AGCCGG. c. connivens X-214 CCGGGGATGTGTTCCTTGCCTTTA. . CTGGCCGGGATCCAG. .AGCCGG. c. comencosa X-908 CCGGGGATGTGTTCCTTGCCTTCG. . CTGGCCGGGATCCAG. .AGCCGG. c. vulgaris X-152 CCGGGGATGTGTTCCTTGCCTTTA. . CTGGCCGGGATCCAG. .AGCCGG. c. imperfecca X-307 CCGGGGATGTGTTCCTTGCCTTCA. . CTGGCCGGGATCCAG. . AGCCGG. c. globularis X-999 CCGGGGATGTGTTCCTTGCCTTTA. . CTGGCCGGGATCCAG. .AGCCGG. c. hornemannii 768 GCGGG. ATGTGTTCCTTGCTTTTA. . CTGGCTGGGATCCAG. .AGCCGG. c. m uelleri X-888 CCGGGTATGCGTTCCTTGCCTTTA. . TTGGCTGGGATCCAG. .AGCCGG. c. scuarciana X-659 CCGGGTATGCGTTCCTTGCCTTTG. . TTGGCTGGGATCCAG. .A.CCGG. c. conCraria X-998 CCGGGGATGTGTTCCTTGCCTTTACTCTGGCCGAGGCCCAG. . AGCCGG. C. balcica F-118 CCGGGGATGTGTTCCTTGCCTTTA. . CTGGCCGGGATCCAG. .AGCCGG. C. hispida X-462 CCGGGGATGTGTTCCTTGCCTTTA. . CTGGCCGGGATCCAG. .AGCCGG. C. foliolosa X-883 CCGGGGATGCGGTCCTTGCCTTCG. . CTG. CCGGGGCCCAGC. AGCCGG. c. braunii 589 CCGGGTATGCGTTCCTTGCCTTTA. .TTGGCTGGGATCCAG. .AGCCGG. c. foeCida VH CCGGGGATGTGTTCCTTGCCTTTA. . CTGGCCGGGATCCAG. .AGCCGG. Coleochaece scu. TCGGGGACGCGCTTCTTGCCTTAA. . CTGGCTGGGACGTGG. . AGTCGG. Chlrorkybus acm. TCGGGGACGCGCTCCTGACCTTAA. . TTGGCTGGGACGCGG. .AGTCGG. S o y b e a n CCGG. CATGCGCTCCTGTCCTTAA. . CTGGCCGGGTCGTG. C . CTCCGG. Nicella axillaris Nicella sp. LW CCGGGGACGTGCTCCTCGCCTTCA. . TTGGCCGGGACGCGG. .AGCCGG. N icellopsis obc. Tolypella por. CCGGGGACGTGCTCCTCGCCTTCA. . TTGGCCGGGACGCGG. .AGCCGG. Y e a s c CTTCTGGCTAA. . CCTTGAGTCC. . .TT G . . TGGCTCTTGGCGAACCAGG Spirogyra grev. CTCG. AGCGTCG. CCT. GTCTTCA. . TTGCCTGCGNCGTA. C . NGC. GG. Klebsormidium CCGGGGACGCGCTCCTGGCCTTAA. . CTGGTCGGGACGTGG. .AGTCGG.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 108

7 5 1 300 c. aspera Y-OOl CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGTGCTCT C. andina X-779 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAG. . . CCTGTGCTCT C. andina X-905 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGTGCTCT C. drouecii X-881 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. .CCTGAGCTCT C. haicensis X-103 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGAGCTCT C. zeylanica X-251 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGAGCTCT C. drouecii TAMPS-14 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGAGCTCT C. hydropicys PCR/1 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGAGCTCT C. haicensis 584 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGAGCTCT C. bricconii X-998 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAANGCAGG. . CCTGAGCTCT C. vandalurensis X-574 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGGNNCTC. AGCTCT C. longifolia MB NNCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGCGCTCN C. longifolia X-8Ô2 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGTGCTCT L. macropogon X-695 CGATGTTACTTTGAAAAAATTAGAGTGTTTAAAGCAGG. . CCTGTGCTCT L. papulosum CGATGTTACTTTGAAAAAATTAGAGTGTTTAAAGCAGG. .CCTGCGCTCT C. a u s c r a l i s X -0 6 7 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGCGCTCT C. c o r a i l i n a X -6 5 6 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGCC-CTCT C. auscralis X-709 CGCTGTTACTTTGAAAAAATTAGAGTGTTC.AAAGCAGG. . CCTGAGCTCT c . auscralis MR CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGCGCTCT r curcissii X-500 CgctgtTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG . . CCTGTGCTCT fibrosa X-571 CGCTGTTACTTTG.AAAAAATTAGAGTGTNCAAAGCAGG. . CCTGTGCTCT preissii X-237 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGTGCTCT polyacancha F122 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGTGCTCT '/ulgaris X-932 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGTGCTCT C. connivens X-214 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGTGCTCT r . comencosa X-908 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGCGCTCT vulgaris X-152 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGTGCTCT C. imperfecca X-307 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGTGCTCT C. globularis X-999 CGCTGTTACTTTGAAAAAATTAGAGTNTTCAAAGCAGG. . CCTGTGCTCT C. hornemannii 768 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGCGCTCT C. m uelleri X-888 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGTGCTCT scuarciana X-659 CGCTGTTACTTTGAAAAA. TTAGAGTGTTCAAAGCAGG. . CCTGCGCTCT concraria X-998 CGCTGTTACT'ITGAAAAAATNNNAGTGTTCAAAGCAGG. . CCTGTGCTCT balcica F-118 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGTGCTCT hispida X-462 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGTGCTCT foliolosa X-883 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGAGCTCT braunii 589 CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGTGCTCT C. foecida VH CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTGTGCTCT Coleochaece scu. CGATGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CATAGGCTCT Chlrorkybus aCm. CGATGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAG. . .CCTATGCTCT S o y b e a n TGCTGTTACTTTGAAGAAATTAGAGTGCTCAAAGCAG. . .CCTACGCTCT Nicella axillaris CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCCACGCTCT Nicella sp. LW CGCCGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. .CCCACGCTCT N icellopsis obc...... ACTTTGNNNAAATTAGAGTGTTCAAAGCAGG. . CCTGTGCNCT Tolypella por. CGCTGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCCACGCTCT Y e a s c A . CTTTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CGTATTGCTC Spirogyra grev. CGCCGTTACCTTGAATAAATTATGGTGTTCAAAGCAAG. . CTTATGCTCT Klebsormidium CGATGTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGG. . CCTACGCTCT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 109

301 850 c . a s p e r a Y-OOl GAACATATTAGCATGGAATAACGCGATAGGACTCC. CGTCCTATTTCGTT C. andina X-779 GA. CATATTAGCATGGAATAACGCGATAG. ACTCC. GGTCCTATT. CGTT C. andina X-905 GAACATATTAGCATGGAATAACGCGATAGGACTCC. GGTCCTATTTCGTT C. drouecii X-881 GAACATATTAGCATGGAATAACGCGATAGGACTCC. GGTCCTATTTCGTT C. haicensis X-103 GAACATATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTTCGTT C. zeylanica X-251 GAACATATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTTCGTT C. drouecii TAMPS-14 GAACATATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTGCGTT C. hydropicys PCR/1 GAACATATTAGCATGGAATAACGCGATAGGACTCC. GGTCCTATTTCGTT C. haicensis 584 GAACATATTAGCATGGAATAACGCGATAGGACTCC. GGTCCTATTTCGTT C. bricconii X-998 GAACNT. NTNTCATGGAATATCGCGATAGGACTCC. GGTCCTATTTCGTT C. vandalurensis X-574 TAACATATTAGCATGGAATAACGCGATAGGACTCC. GGTCCTATTTCGTT C. longifolia MB GAACATANTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTTTGTT C. longifolia X-862 GAACATATTAGCATGGAATAACGCGATAGGACTCC. GGTCCTATTTTGTT L. macropogon X-695 GAACATATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTTCGTT L. p a p u lo s u m GAACATATTAGCATGGAATAANGCGATAGGACTCT. GGTCCTATTTCGTT C. auscralis X-067 GAACATATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTTCGTT corailina X-656 GAACATATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTGCGTT auscralis X-709 GAACATATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTTCGTT auscralis MF. GAACATATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTTCGTT i_. curcissii X-500 GAACATATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTGCGTT C. fibrosa X-571 GAACATATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTGCGTT C. preissii X-237 GAACATATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTTCGTT c . polyacancha F122 GAACATATTAGCATGGAATAACGCGATAGGACTCC. GGTCCTATTTCGTT C. vulgaris X-932 GAACATATTAGCATGGAATAACGCGATAGGACTCN. GGTCCTATTTNNTT C. connivens X-214 GAACATATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTTCGTT c. comencosa X-908 GAACATATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTTCGTT C. vulgaris X-152 GAACATATTAGCATGGAATAACGCGATAGGACTCC. GGTCCTATTTCGTT imperfecca X-307 GAACATATTAGCATGGAATAACGCGATAGGACTCC. GGTCCTATTTCGTT C. globularis X-999 GAACATATTAGCATGGAATAACGCGATAGGACTCCGGGTCCTATTTCGTT C. hornemannii 768 GAACATATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTGCGTT c. m uelleri X-888 GAACATNNTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATT. CGTT c. scuarciana X-659 GAACATATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTTCGTT c. concraria X-998 GAACATATTAGCATGGAATAACGCGATAGGACTCCTGGTCCTATTTCGTT c. balcica F-118 GAACATATTAGCATGGAATAACGCGATAGGACTCC. GGTCCTATTTCGTT c. hispida X-462 GAACATATTAGCATGGAATAACGCG.ATAGGACTCC. GGTCCTATTTCGTT c. foliolosa X-883 GAACATATTAGC.ATGGAATAACGCGATAGGACTCC. GGTCCTATTTCGTT c. braunii 589 GAACATATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATT. CGTT c. foecida VH GAACATATTAGCATGGAATAACGCGATAGGACTCC. GGTCCTATTTCGTT Coleochaece scu. GAATACATTAGCATGGAATAACATTATAGGACTCC. GGTTCTATTGTGTT Chlrorkybus aCm. GAATACATTAGCATGGAATAACGTTATAGGACTCT. GGTCCTATTTTGTT S o y b e a n GTATACATTAGCATGGGATAACACCACAGGATTCT. GATCCTATTGTGTT Nicella axillaris GAATACATTAGCATGGAATAACGCGATAGGACTC. . G ...... TGTT N icella sp. LW GAATACATTAGCATGGAATAACGCGATAGGACTCT. GGTCCTATTGTGTT N icellopsis obc. GAANNTATTAGCATGGAATAACCCGATAGGACNNNTG...... TT Tolypella por. GAATACATTAGCATGGAATAACGCGATAGGACTCT. GGTTCTATTGTATT Y e a s c GAATATATTAGCATGGAATAATAGAATAGGACGTTTGGTTCTATTTTGTT Spirogyra grev. GAGTACATTAGCATGGAATAACGCTATAGGACTCC. GGTCCTATTACGTT Klebsormidium GAATACATTAGCATGGAATAACGTGATAGGACTCT. GGTCCTATTGTGTT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 110

951 900 c. aspera Y-OOl GGTCTTC. GGGATTGGAGTAATGATTAAT.AGAGACGGTTGGGGGCATTCG C. andina X-779 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. andina X-905 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. drouecii X-881 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. haicensis X-103 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. zeylanica X-251 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. drouecii TAMPS-14 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. hydropicys PCR/1 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. haicensis 584 GGTCTTC. GGGATTGGAGTAATGATNAATAGAGACGGTTGGGGGCATTCG C. bricconii X-998 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. vandalurensis X-57 4 GGTCTTC. GGGATTGGAGTAACGATTAATAGAGACGGTTGGGGGCATTCG C. longifolia MB GGTCTTC. GGGATTGGAGTAATGATTA.ATAGAGACGGTTGGGGGCATTCG C. longifolia X-862 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG L. macropogon X-695 GGTCTNC. AGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG L. papulosum GGTCTNC. AGGATTGGAGTAATGATTAATAGAGANGGTTGGGGGCATTCG C. auscralis X-067 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. corailina X-656 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. auscralis X-709 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. auscralis MR GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. curcissii X-500 GGTCTTC. GAGATTGGAGTGATGATTAATAGAGACGGTTGGGGGCATTCG C. fibrosa X-571 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. preissii X-237 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. polyacancha F122 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. '/ulgaris X-932 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGANGNTTGGGGGCATTCG C. connivens X-214 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. comencosa X-908 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. vulgaris X-152 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. imperfecca X-307 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. globularis X-999 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTT. GGGGCATTCG C. hornemannii 768 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C . m u e l l e r i X -8 8 8 GGTCNTC. GGGATTGGAGTAATGATTAANAGAGACGGTNGGGGGCATTCG C. scuarciana X-659 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. concraria X-998 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. balcica F-118 GGTCTTC. GGGATTGGAGTAATGA. TAATAGAGACGGTTGGGGGCATTCG C. hispida X-462 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. foliolosa X-883 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. braunii 589 GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG C. foecida VH GGTCTTC. GGGATTGGAGTAATGATTAATAGAGACGGTTGGGGGCATTCG Coleochaece scu. GGTCTTC. GGGACCGGAGTAATGATTAATAGGGACAGTTGGGGGCATTCG Chlrorkybus acm. GGTTTTC. GGGACCGGAGTAATGATTAATAGGGACAGTTGGGGGCATTCG S o y b e a n GGCCTTC. GGGATCGGAGTAATGATTAACAGGGACAGTCGGGGGCATTCG Nicella axillaris GGTCTTC. GGGACCGGAGTAATGATCAATAGGGACAGTTGGGGGCATTCG Nicella sp. LW GGTCTTC. GGGACCGGAGTAATGATCAATAGGGACAGTTGGGGGCATTCG N i c e l l o p s i s o b c . GGTCTTCNGG. ATCGGAGTAATGATTAATAGGGACGGTNGGGGGCATTCG Tolypella por. GGTCTTC. GGGACCGGAGTAATNNTCAATAGGAACAGTTGGGGGCATTCG Y e asc GGTTT. CTAGGACCATCGTAATGATTAATAGGGACGGTCGGGGGCATCGG Spirogyra grev. GGTCTTCTGG. ACCGGAGTAATGATTAATAGGGACAGTCGGGGGCATTCG Klebsormidium GGTCTTC. GGGACCGGAGTAATGATTAATAGGGACAGTTGGGGATATTCG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Ill

9 01 950 C. aspera Y-OOl TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. andina X-779 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. andina X-905 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. drouecii X-881 TATTCCATAGTCAGAGGTGAAATTCTTGGATTTATGGATGACG.AA. CTTC C. haicensis X-103 TATTCCATAGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. zeylanica X-251 TATTCCATAGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. drouecii TAMPS-14 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. hydropicys PCR/1 TATTCCATAGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. haicensis 584 TATTCCATAGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. bricconii X-998 TATTCCATAGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. vandalurensis X-574 TATTCCATAGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. longifolia ME TATTCCATTGTCAGAGGTNAAACTCTTGGANTTATGGATGACGAA. CTTC C. longifolia X-862 TATTCCATTGTCAGAGGTGAAATTCTTGGATNTATGGATGACGAA. CTTC L. macropogon X-695 TATTCCATTGTNAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC L. papulosum TATTCCATTGTNAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. auscralis x-067 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. corailina X -6 5 6 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. auscralis X-709 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. auscralis MR TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. curcissii X-500 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. fibrosa X-571 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. preissii X-237 TATTCCATTG. CAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. polyacancha F122 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. vulgaris X-932 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. connivens X-214 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. comencosa X-908 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. vulgaris X-152 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. imperfecca X-307 TATTCCATTGTCAGAGGCGAAATTCTTGGATTTATGGATGACGAA. CTTC C. globularis X-999 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. hornemannii 768 TATTCCATTGTCAGAGGTGAAACTCTTGGATTTATGGATGACGAJi. CTTC C. m uelleri X-888 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. scuarciana X-659 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. concraria X-998 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. balcica F-118 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. hispida X-462 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACG.A.AGCTTC C. foliolosa X-883 TATTCCATAGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. braunii 589 TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC C. foecida VH TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC Coleochaece scu. TATTTCATTGTCAGAGGTGAAATTCTTGGATTTATGAAAGACGAA. CTTC Chlrorkybus acm. TATTTCGTTGTCAGAGGTGAAATTCTTGGATTTACGAAAGRCGAA. CTTC S o y b e a n TATTTCATAGTCAGAGGTGAAATTCTTGGATTTATGAAAGACGAA. CAAC Nicella axillaris TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC Nicella sp. LW TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC N icellopsis obc. TATTCCATTGTCAGAGGTGAAANTCTTGGATTTATGGATGACGAA. CTTC Tolypella por. TATTCCATTGTCAGAGGTGAAATTCTTGGATTTATGGATGACGAA. CTTC Y e asc TATTCAATTGTC. GAGGTGAAATTCTTGGATTTATTGAAGACTAA. CTAC Spirogyra grev. TACTTCATCGTNAGAGGTGAAATTCTTGGATCGATGAAAGACGAA. CTTC Klebsormidium TATTTCATTGTCAGAGGTGAAATTCTTGGATTTATGAAAGACGAA . CTTC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 112

95 1 100 0 c. a s p e r a Y-CCl TGCGAAAGCATTTGCCAAGGACGTTCTC.ATTAATCAAGAA.CGAAAGTTGG C. andina X-779 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG C. andina X-905 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. drouecii X-881 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. haicensis X-103 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTAA c. zeylanica X-251 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. drouecii TAMPS-14 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTAA r hydropicys PCR/1 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG haicensis 584 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG bricconii X-998 TGCGAAAGC.ATTTGCCAAGGACGTCCTCATTAATCAAGAACGAAAGTTGG C. vandalurensis X-574 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG C. longifolia MB TGCGAAAGCATTTGCCAAGGACGTTCTCGTTAATCAAGAACGAAAGTTGG longifolia X-862 TGCGAAAGCATTTGCCAAGGACGTTCTCGTTAATCAAGAACGAAAGTTGG L. macropogon X-695 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG L. p a p u lo s u m TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATC.AAGAACGAAAGTTG-G C. auscralis X-067 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG C. corailina X-656 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG C. auscralis X-709 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. auscralis MR TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. curcissii X-500 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTAG fibrosa X-571 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. preissii X-237 TGNGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. polyacancha F122 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. vulgaris X-932 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. connivens X-214 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. comencosa X-908 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. vulgaris X-152 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. imperfecca X-307 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. globularis X-999 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. hornemannii 768 TGCGAAAGCATTTGCCAAGGACGTTCTCGTTAATCAAGAACGAAAGTTGG c. m uelleri X-888 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. scuarciana X-659 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. concraria X-998 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. balcica F-118 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. hispida X-462 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACG.AAAGTTAG c. foliolosa X-883 TGCGAAAGCATTTNCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. braunii 589 TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG c. foecida VH TGCGAAAGCATTTGCCAAGGACGTTCTCATTAATCAAGAACGAAAGTTGG Coleochaece scu. TGCGAAAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTGG Chlrorkybus aCm. TGCGAAAGCATTTGCCAAGGATGTTTTCATTGATCAAGAACGAAAGTAGG S o y b e a n TGCGAAAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTGG Nicella axillaris TGCGAAAGCATTTGCCAAGGATGTTCTCATTAATCAAGNACGAAAGTTGG Nicella sp. LW TGCGAAAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTGG N icellopsis obc. TGCGAAAGCATTTGCCAAGGATGTTCTCATTAATCAAGAACGAAAGTTGG Tolypella por. TGCGAAAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTGG Y e a s c TGCGAAAGCATTTGCCAAGGACGTTTTCATTAATCAAGAACGAAAGTTAG Spirogyra grev. TGCGAAAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTGG Klebsormidium TGCGAAAGCATTTATCAAGGATGTTTTCATTAATCAAGAACGAAAGTTGG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 113

1001 1050 c. aspera Y-OOl GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. andina X-779 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. andina X-905 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. drouecii X-881 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. haicensis X-103 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. zeylanica X-251 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. drouecii TAMPS-14 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. hydropicys PCP./l GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATNCC C. haicensis 584 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACC.ATA.AACGATNCC C. bricconii X-998 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. vandalurensis X-574 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. longifolia MB GGGATCGAANACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. longifolia X-862 GGGATCGAAGACGATCAGATACCGTCCTAGTCTNAACCATAAACGATGCC L. macropogon X-695 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC L. papulosum GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. auscralis X-067 GGGATCGAAGACG.ATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. corailina X-656 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. auscralis X-709 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. auscralis MR GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. curcissii X-500 AGGATCGAACACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. fibrosa X-571 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. preissii X-237 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. polyacancha F122 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. vulgaris X-932 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. connivens X-214 GGGATCGAACACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. comencosa X-908 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. vulgaris X-152 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. imperfecca X-307 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. globularis X-999 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. hornemannii 768 GGGATCGAACACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. m uelleri X-888 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. scuarciana X-659 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. concraria X-998 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. balcica F-118 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. hispida X-462 AGGATCGAACACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. foliolosa X-883 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. braunii 589 GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C. foecida VH GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC C o1e o c h a e c e s c u . GGGCTCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC Chlrorkybus acm. GGGATCGAAGACGATCAGATACCGTCCTAGTCTCTACCATAAACGATGCC S o y b e a n GGGCTCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC Nicella axillaris GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC Nicella sp. LW GGGATCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATNCC N icellopsis obc. GGGATCGAANACGATTAGATACCGTCCTAGTCTCAACCATAAACGATGCC Tolypella por. GGGATCGAANACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC Y e a s c GGGATCGAAGATGATCTGGTACCGTCGTAGTCTTAACCATAAACTATGCC Spirogyra grev. GGGCACGAAGACGATTAGATACCGTCCTAGCCCCAACCGTAAACGATGCC Klebsormidium GGGCTCGAAGACGATCAGATACCGTCCTAGTCTCAACCATAAACGATGCC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 114

1051 HOC C. aspera Y-OOl GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. andina X-779 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. andina X-905 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. drouecii X-881 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCCGCCAGCACCTTGTG C. haicensis X-103 GACTAGGGATTGNCGGATGTCTATT. GGATGACTCCGCCAGCACCTTGTG C. zeylanica X-251 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCCGCCAGCACCTTGTG C. drouecii TAMPS-14 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCCGCCAGCACCTTGTG C. hydropicys PCR/1 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCCGCCAGCACCTTGTG C. haicensis 584 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCCGCCAGCANCMTGTG C. bricconii X-998 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. vandalurensis X-574 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCCGCCAGCACCTTGTG C. longifolia MB GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. longifolia X-862 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG L. macropogon X-695 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCA.TCTTGTG L. papulosum GACTAGGGATTGGCAGATGTC. ATT. GGATGACTCTGCCAGCATCTTGTG C. auscralis X-067 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. corallina X-656 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. auscralis X-709 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. auscralis MR GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. curcissii X-500 GACTAGGGATTGACGGATGTCTATT. GGATGACTCTACCGGCACCTTGTG C. fibrosa X-571 GACTAGGGATTGGCAGATGTCTATT. GGATGACTCCGCCAGCACCTTGTG C. preissii X-237 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. polyacancha F122 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. vulgaris X-932 NACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. connivens X-214 GACTAGGGATTGGCAGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. comencosa X-908 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. vulgaris X-152 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. imperfecca X-307 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. globularis X-999 GACTAGGGATTGGCAGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. hornemannii 768 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCCGCCGGCACCTTGTG C. m uelleri X-888 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. scuarciana X-659 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. concraria X-998 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. balcica F-118 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. hispida X-462 GACTAGCCATTGCCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. foliolosa X-883 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. braunii 589 GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG C. foecida VH GACTAGGGATTGGCGGATGTCTATT. GGATGACTCTGCCAGCACCTTGTG Coleochaece scu. GACTAGGGATCGGCGGATGTTAATTT. GATGACTCCGCCAGCACCTTATG Chlrorlcybus acm. GACTAGGGATTGGCAGATGTT. ACTTAGATGACTCTGCCAGCACCTTATG S o y b e a n GACCAGGGATCAGCGGATGTTG. CTTTTAGGACTCCGCTGGCACCTTATG M icella axillaris GACTAGGGATTGGCGGATG...... ATGACTCCGCCAGCACCTTGTG M icella sp. LW GACTAGGGATTGGCGGATGTCT. ATTTGATGACTCCGTCAGCACCTTGTG M iCellopsis obc. GACTAGGGATTGGCGGATG...... ATGACTCTGCCAGCACCTTNTG Tolypella por. GACTAGGGATTGGCGGATGTCT. ATTGGATGACTCCGTCAGCACCTTGTG Y e a s c GACTAG. . ATCGGGTGGTGT. TTTTTTAATGACCCACTCGGTACCTTACG Spirogyra grev. GACCNNGAATTGGCGCACGTATGACTTGACG. TCGCGCGAGCGCCCGAGG Klebsormidium GACTAGGGATTGGCGGATGT. TAATTTGATGACTCCGCCAGCACCTTATG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 115

1101 1150 u . aspera Y-OOl AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA c. andina X-77 9 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. andina X-905 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. drouecii X-881 AGAAATCACAAGTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. haicensis X-1G3 AGAAATCACAAGTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. zeylanica X-251 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. drouecii TAMPS-14 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. hydropicys PCR/1 ACAAANCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. haicensis 584 AGAAATCANAAGTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. bricconii X-998 AGAAATCACAAG. TTNCGGGTTCCGGGGGGAGTATGG. CGCAAGGCTGAA C. vandalurensis X-574 AGAAATCACAAGTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA c. longifolia MB AGAAATCAAA. GTGTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGNA c. longifolia X-862 AGAAATCAAA. GTGTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA L. macropogon X-695 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA L. papulosum AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. auscralis X-067 ANAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA c. corallina X-656 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA c. auscralis X-709 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA c. auscralis MF. AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA c. curcissii X-500 AGAAACCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA c. fibrosa X-571 AGAAATC.AAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA c. preissii X-237 AGAAATCAAA. GTTTACGGGGTCCGGGGAGTATATGGTCGCAAGGCTGAA C. polyacancha F122 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. vulgaris X-932 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. connivens X-214 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. comencosa X-908 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. vulgaris X-152 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. imperfecca X-307 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. globularis X-999 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. hornemannii 768 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. m uelleri X-888 AGAAATCAAAGNTTTACCGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. scuarciana X-659 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C. concraria X-998 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA C . balcica F-118 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCCCAAGGCTGAA c. hispida X-462 AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA c. foliolosa X-883 AGAAATCACAAGTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA c. braunii 589 AGAAATCAAA .GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTG. . c. foecida VH AGAAATCAAA. GTTTACGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA Coleochaece scu. AGAAATCAAA. GTTCTTGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA Chlrorlcybus acm. AGAAATCAAA. GTTTTTGGGTTCCGGGGGGAGTATGGTCGCAAGGNNGAA S o y b e a n AGAAATCAAA. GTCTTTGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA Nicella axillaris AGAAATCAAA. GTTTCCGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA Nicella sp. LW AGAAATCAAA. GTTTTCGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA N icellopsis obc. AGAAATNAAA. GTTTTTGGGTTCCGGGGGGAGTATGGTCGGANGGCTGAA Tolypella por. AGAAATCAAA. GTTTTCGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA Y e a s c AGAAATCAAA. GTCTTTGGGTTCTGGGGGGAGTATGGTCGCAAGGCTGAA Spirogyra grev. AGAAATCAGA. GTCTTTGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA Klebsormidium AGAAATCAAA. GTTTTTGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 116

115 1 1200 c. aspera Y-OOl ACTTA.AAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. andina X-779 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. andina X-905 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. drouecii X-881 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC c. haicensis X-103 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC c. zeylanica X-251 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. drouecii TAMPS-14 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. hydropicys PCR/1 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. haicensis 584 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCCNTGCGGC L . . bricconii X-998 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC c . vandalurensis X-574 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC c. longifolia M3 ACTTAAAGGAATTGACGGAAGGGCACC. ACCANGCGTGGAGCC. TGCGGC c. longifolia X-862 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC L. macropogon X-695 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC L. p a p u lo s u m ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. auscralis X-067 ACTTAAAGGAATTGACGGAAGGGCACC .ACCAGGCGTGGAGCC. TGCGGC C. corallina X-656 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. auscralis X-709 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. auscralis MR ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. curcissii X-500 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. fibrosa X-571 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. preissii X-237 ACTTAAAGGAATTGACGGAAGGGCNCCN. CCAGGCGTGGAGCC. TGCGGC c. polyacancha F122 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. vulgaris X-932 ACTTAAAGGAATTGACGGAAGGGCACC .ACCAGGCGTGGAGCC. TGCGGC C. connivens X-214 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. comencosa X-908 ACTTAAAGGAATTGACGGAAGGGCACC .ACCAGGCGTGGAGCC. TGCGGC C. vulgaris X-152 ACATAAAGGAATTGACGGAAGGGCACC. ACCAGCCGTGGAGCC. TGCGGC C. imperfecca X-307 ACTTAAAGGAATTGACGGAAGGGCACC .ACCAGGCGTGGAGCC. TGCGGC C. globularis X-999 ACTTAAATGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. hornemannii 758 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. m uelleri X-888 ACTTAAAGGAATTGACGGAAGGGCACCCACCAG. CGTGGAGCC. TGCGGC C. scuarciana X-659 ACTTAAA. GAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. concraria X-998 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. balcica F-118 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC C. hispida X-462 ACTTAAAGGAATTGACGGAAGGGCACC. .ACCAGGCGTGGAGCC. TGCGGC c. foliolosa X-883 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC c. braunii 589 ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC c. foecida VH ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC Coleochaece scu. ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGAGTGGAGCC. TGCGGC Chlrorlcybus acm. ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGAGTGGAGCC. TGCGGC S o y b e a n ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGAGTGGAGCC. TGCGGC Nicella axillaris ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGCGG...... C Nicella sp. LW ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC N icellopsis obc. ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGACGCGG...... C Tolypella por. ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGCGTGGAGCC. TGCGGC Y e a s c ACTTAAAGGAATTGACGGAAGGGCACC. ACTAGGAGTGGAGCC. TGCGGC Spirogyra grev. ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGTGTGGAGCC. TGCGGC Klebsormidium ACTTAAAGGAATTGACGGAAGGGCACC. ACCAGGAGTGGAGCC. TGCGGC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 117

1201 50 c. aspera Y-OOl TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. andina X-779 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. andina X-905 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGNCATAGCAA C. drouecii X-881 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCGA C. haicensis X-103 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCGA C. zeylanica X-251 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCGA C. drouecii TAMPS-14 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. hydropicys PCR/1 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCGA C. haicensis 584 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCGA C. bricconii X-998 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCNA C. vandalurensis X-574 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCGA C. longifolia MB TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. longifolia X-862 TTAATTTGAC. TCAACACGGGG .AAACTCACCAGGTCC .AGACATAGCAA L. macropogon X-695 TTAATTTGAC. TCAACACGGGG. AAACTTACCAGGTCC. AGACATAGTAA L. papulosum TTAATTTGAC. TCAACACGGGG. AAACTTACCAGGTCC. AGACATAGTAA C. auscralis X-067 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. corallina X-656 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. auscralis X-709 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. auscralis MR TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. curcissii X-500 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. fibrosa X-571 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCCGAGACATAGCAA C. preissii X-237 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. polyacancha F122 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. vulgaris X-932 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. connivens X-214 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. comencosa X-908 TTAATTTGAC .TCAACACGGGG .AAACTCACCAGGTCC .AGACATAGCAA C. vulgaris X-152 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. imperfecca X-307 TTAATTTGAC. TCAACACGGGGAAAACTCACCAGGTCC. AGACATAGCAA C. globularis X-999 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. hornemannii 768 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. m uelleri X-888 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. scuarciana X-659 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. concraria X-998 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA C. balcica F-118 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC . AGACATAGCAA C. hispida X-462 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA. C. foliolosa X-883 TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCGA C. braunii 589 TTAATTTGACCTCAACACGGGG .AAACTCACCAGGTCC .AGACATAGCAA C. foecida VH TTAATTTGA. . TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA Coleochaece scu. TTAATTTGAC. TCAACACGGGG. AAACTTACCAGGTCC. AGACATAGTAA Chlrorlcybus acm. TTAATTTGAC. TCAACACGGGG .AAACTTACCAGGTCC .AGACATAGTAA S o y b e a n T .AATTTGAC. TCAACACGGGG.AAACTTACCAGGTCC .AGACATAGTAA Nicella axillaris TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA Nicella sp. LW TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA N icellopsis obc. TTAATTTGAC. TCAACACGGGG .AAACTCACCAGGTCC .AGACATAGNAA Tolypella por. TTAATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACATAGCAA Y e a s c T . AATTTGAC. TCAACACGGGG. AAACTCACCAGGTCC. AGACACAATAA Spirogyra grev. TTAATTTGAC. TCAACACGGGG. AAANTTACCAGGTCC. AGACATAGCGA Klebsormidium TTAATTTGAC. TCAACACGGGG. AAACTTACCAGGTCC. AGACATAGTAA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 118

1 2 5 1 1300 c. aspera Y-OOi GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. andina X-779 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. andina X-905 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. drouecii X-881 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C . haicensis X-103 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG c . zeylanica X-251 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. drouecii TAMPS-14 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. hydropicys PCR/1 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. haicensis 584 GGATTGACAGATTGNGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG c. bricconii X-998 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG c. vandalurensis X-574 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG c. longifolia MB GGATTGACAGATTGAGAGCTCTTTCTTGANTNNATGGGTGGTGGTGCATG c. longifolia X-862 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG L. macropogon X-695 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG L. papulosum GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. auscralis X-067 ■GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. corallina X-656 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. auscralis X-709 GGATTGACAGATTGAGAGCTCTTTCTTNATTCTATGGGTGGTGGTGCATG C. auscralis MR GGATTGACAGATTGAGAGCTCTTTCTTGA. TCTATGGGT. GTGGNGNATG C. curcissii X-500 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. fibrosa X-571 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. preissii X-237 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. polyacancha F122 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. vulgaris X-932 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. connivens X-214 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. comencosa X-908 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. vulgaris X-152 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. imperfecca X-307 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. globularis X-999 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. hornemannii 768 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. m uelleri X-888 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. scuarciana X-659 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. concraria X-998 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. balcica F-118 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. hispida X-462 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. foliolosa X-883 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. braunii 589 GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG C. foecida VH GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG Coleochaece scu. GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG Chlrorlcybus aCm. GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG S o y b e a n GG. TTGACAGACTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG Nicella axillaris GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG Nicella sp. LW GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG N icellopsis obc. GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG Tolypella por. GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG Y e a s c GGATTGACAGATTGAGAGCTCTTTCTTGATTTTGTGGGTGGTGGTGCATG Spirogyra grev. CGATTGACAGACTGATAGCTCTTTCTTGATNATATGGGTAGTGGTGCATG Klebsormidium GGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 119

1301 1350 c. a s p e r a Y-OOi GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. andina X-779 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. andina X-905 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. drouecii X-881 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. haicensis X-103 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. zeylanica X-251 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. drouecii TAMPS-14 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. hydropicys PCR/1 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. haicensis 584 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. bricconii X-998 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTT.AATTCCGTTAACGAA C . vandalurensis X-574 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C . longifolia MB GCCGTT. CTTAGTTGCTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C . longifolia X-862 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA L . macropogon X-695 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA p a p u lo s u m GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. auscralis X-067 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. corallina X-656 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA c. auscralis X-709 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA c. a u s c r a l i s MR GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA c. c u r c i s s i i X -5 0 0 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA c. fibrosa X-571 GCCGTT. CTTAGTNGGTGGAGT'GATTTGTCTGGTTAATTCCGTTAACGAA C. preissii X-237 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. polyacancha F122 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. vulgaris X-932 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. ccnnivens X-214 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. comencosa X-908 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. vulgaris X-152 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. imperfecca X-307 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. globularis X-999 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. hornemannii 768 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. m uelleri X-888 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. scuarciana X-659 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. concraria X-998 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. balcica F-118 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. hispida X-462 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. foliolosa X-883 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. braunii 589 GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA C. foecida VH GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA Coleochaece scu. GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA Chlrorkybus acm. GCGGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA S o y b e a n GCCGTT. CTTAGTTGGTGGAGCGATTTGTCTGGTTAATTCCGTTAACGAA Nicella axillaris GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA Nicella sp. LW GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA N icellopsis obc. GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA Tolypella por. GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAA Y e a s c GCCGTTTCTCAGTTGGTGGAGTGATTTGTCTGCTTAATTGCGATAACGAA Spirogyra grev. GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTA. CGAA Klebsormidium GCCGTT. CTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGATAACGAA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 120

135 1 1400 C. aspera Y-OOl CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. AC. CTTTCC. TCGTGG C. andina X-77 9 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. AC. CTTTCC. TCGTGG C. andina X-905 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. AC. CTTTCC. TCGTGG C. drouecii X-881 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGGGA. . CTCTCC. TCGTGG C. haicensis X-103 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGGG. C . CTTTCC. TCGTGG C. zeylanica X-251 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGGGA. . CTTTCC. TCGTGG C. drouecii TAMPS-14 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. AC. CTCTCC. TCGTGG C. hydropicys PCR/1 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGGG. . . CTTTCC. TCGTGG C. haicensis 584 CGAGACCTCAGCCTGCTAAATACTAGCGCGGGGGA. . CTTTCC. TCGTGG C. bricconii X-998 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGGGA. . CTTTCC. TCGTGG C. vandalurensis X-574 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGGGA. . CTTTCC. TCGTGG C. longifolia MB CGAGACCTCAGCCTGCTAAATAGCTANGCGGGG. AC. CTTTCC. TCGTGG c. longifolia X-862 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. AC. CTTTCCCTCGCGG L. macropogon X-695 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. A T . CT T T C C . TCGTGG L. p a p u lo s u m CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. A T. CTTTCC. TCGTGG C. auscralis X-067 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. A T . CTTTCC. TCGTGG C. corallina X-656 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. A T. CTTTTC. TCGTGG C. auscralis X-709 CAGAGCCTCAGCCTGCTAAATAGCTACGCGGGG. A T . CTTTCC. TCGTGG C. auscralis MR CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. A T. CTTTCC. TCGTGG C. curcissii X-500 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGA. AC. CTTTCC. TCGTGG C. fibrosa X-571 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGN. AC. CTTTCC. TCGTGG C. preissii X-237 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. AC. CTTTCC. TCGTGG C. polyacancha F122 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. AC. CTTTCC. TCGTGG C. vulgaris X-932 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. A C . C T T T C C . TCGTGG C. connivens X-214 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. A C. CTTTCC . TCGTGG C. comencosa X-908 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. A T . CTTTCC . TCGTGG C. vulgaris X-152 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. A C . C T T T C C . TCGTGG C. imperfecca X-307 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. A C. CTTTCC . TCGTGC C. globularis X-999 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. A T . C T T T C C . TCGTGG C. hornemannii 768 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. AC. CTTTCC. TCGTGG C. m uelleri X-888 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. A C. CTTTCC . TCGTGG C. scuarciana X-659 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. ACTCTCTCC. TCGTGG concraria X-998 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG .A C . CTTTCC . TCGTGG c. balcica F-118 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. A C . C T T T C C . TCGTGG c. hispida X-462 CGAGACCTCAGCCTGCTAAAT.AGCTACGCGGGG. A C. CTTTCC . TCGTGG c. foliolosa X-883 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGGGA, . CTTTCC. TCGTGG C. braunii 589 CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. A C . C T T T C C . TCGTGG C. foecida VH CGAGACCTCAGCCTGCTAAATAGCTACGCGGGG. AC. CTTTCC. TCGTGG Coleochaece scu. CGAGACCTCAGCCTGCTAACTAGTTACACAAAGG. TTCTC. C T . TTGTGG Chlrorkybus acm. CGAGACCTCAGCCTGCTAAATAGTTACGNGAAG. ATTCTT. C T . TCGTGG S o y b e a n CGAGACCTCAGCCTGCTAAATAGCTATGTGGAGG. TAACC. C T . CCACGG Nicella axillaris CGAGACCTCAGCCTGCTAAATAGCTA...... Nicella sp. LW CGAGACCTCAGCCTGCTAACTAGCTACGCGA. GGATCTTT. CC. TCGTGG N icellopsis obc. CGAGACCTCAGCCTACTAAATANNTA...... Tolypella por. CGAGACCTCAGCCTGCTAACTAGCTACGCGAGGG. T TTTT. CC. TCGTGG Y e a s c CGAGACCTTAACCTACTAAATAGTGGTGCTA. GCATTTGCT. GGTTAT. . Spirogyra grev. CGAGACCTCAGCTTGCTAACTAGTTGCGCGA. G . ATTTTT. C T . TCGCG. Klebsormidium CGAGACCTCAGCCTGCTAACTAGTTACACGAAG. ATTCTT. C T . CCGTGG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 121

1401 1450 c. aspera Y-OOl CCAGCTTCTTAGAGGGACTGTTG. GACGACTAG. CCAACGGAAGTTTGAG C. andina X-779 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG C. andina X-905 CTAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG C. drouecii X-881 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG C. haicensis X-103 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG C. zeylanica X-251 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG C. drouecii TAMPS-14 CTATCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG C. hydropicys PCR/1 CCANCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAA. TNTGAG C. haicensis 564 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG C. bricconii X-998 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG C. vandalurensis X-574 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG C. longifolia MB CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG C. longifolia X-862 CCANCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG L. macropogon X-695 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG L. papulosum CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAANGGAAGTTTGAG C. auscralis X-067 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG C. corallina X-656 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG auscralis X-709 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAJVCGGAAGTTTGAG C. auscralis MR CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG C. curcissii X-500 CTATCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG C. fibrosa X-571 CNAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTNTGAG C. preissii X-237 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG c. polyacancha F122 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG c. vulgaris X-932 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG c. connivens X-214 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG c. comencosa X-908 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG c. '/ulgaris X-152 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG c. imperfecca X-307 CTAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG c. globularis X-999 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG hornemannii 768 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG m uelleri X-888 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CNAACGGAAGTTTGAG scuarciana X-659 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG c. concraria X-998 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG C. balcica F-118 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG C. hispida X-462 CC.AGCTTCTTAGAGGGACTGTT. GGACGACT.AG. CCAACGGAAGTTTGAG c. foliolosa X-883 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG braunii 589 CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG c. foecida VH CCAGCTTCTTAGAGGGACTGTT. GGACGACTAG. CCAACGGAAGTTTGAG Coleochaece scu. TCAACTTCTTAGAGGGACTATC. GG. CTTCTAG. CCGATGGAAGTTTGAG Chlrorkybus acm. CCAACTTCTTAGAGGGACTATT. GG. CGTCTAG. CCAGTGGAAGTTTGAG S o y b e a n CCAGCTTCTTAGAGGGACTAT. .GGCCGCTTAGGCCA. CGGAAGTTTGAG Nicella axillaris . . . GCTTCTTAGAGGGACTGTT. GGA...... AGTTTGAG Nicella sp. LW CCAGCTTCTTAGAGGGACTGTT. GGACGACTA. GCCAATGGAAGTTTGAG N icellopsis obc. . . . GCTTCTTAGAGGGACTGTN. GGA...... AGTNTGAG Tolypella por. CCAGCTTCTTAGAGGGACTGTT. GGACGACTA. GCCAATGGAAGTTTGAG Y e asc CCA. CTTCTTAGAGGGACTATC. GG. . . TTT. CGCCGATGGAAGTTTGAG Spirogyra grev. CACACTTCTTAGAAGGACTNTG. AG. CGTTTA. GCTCATGGAGGTCTGAG Klebsormidium CCAACTTCTTAGAGGGACTATTTGG. CGTCTACGCCAATGGAAGTTTGAG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 122

1451 1500 c. aspera Y-OOi G . CAATAACAGGTCTGTGATGCCCNTAGAT. GTTCTGGGCCGCACGCGCG C. andina X-779 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGG. CCGCACGCNCG C. andina X-905 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. drouecii X-881 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. haicensis X-103 G. CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGC.ACGCGCG C. zeylanica X-251 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. drouecii TAMPS-14 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. hydropicys PCR/1 G . CAATAACAGGTCTGTGATGCCCTTAGAT. TTTCTGGGCCGCACGCGCG C. haicensis 584 GCCAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCC. NACGCGCG C. bricconii X-998 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. vandalurensis X-574 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. longifolia MB G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. longifolia X-862 G . CAATAACAGGTCTGTGATGCCCTTAGAN. GTTCTGGGCCGCACGCGCG L. macropogon X-695 G . CAATAATAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG L. papulosum G . CAATAATAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. auscralis X-067 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. corallina X-656 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. auscralis X-709 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. auscralis MR G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. curcissii X-500 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. fibrosa X-571 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. preissii X-237 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. polyacancha F122 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. vulgaris X-932 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. connivens X-214 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG c. comencosa X-908 G . CAATAACAGGNCTGTGATGCCCTTAGAT. GNTCTGGGCCGCACGCGCG vulgaris X-152 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG c. imperfecca X-307 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG c. globularis X-999 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG c. hornemannii 768 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG c. m uelleri X-888 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG c. scuarciana X-659 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG c. concraria X-998 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. balcica F-118 G . CAATAACAGGTCTGTNATGCCCTTAGAT. GTTCTGGGCCGCACGCGCN C. hispida X-462 G . C.AATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG C. foliolosa X-883 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTNGGCCGCACGCGCG C. braunii 589 G . CAATAACAGGTCTGTGATGCCCTTAGAT. GGTCTGGGCCGCACGCGCG C. foecida VH G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG Coleochaece scu. G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG Chlrorkybus acm. G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG S o y b e a n G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG Nicella axillaris G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGNNGCACGCGCG Nicella sp. LW G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG N icellopsis obc. G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG Tolypella por. G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG Y easc G . CAATAACAGGTCTGTGATGCCCTTAGAACGTTCTGGGCCGCACGCGCG Spirogyra grev. G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG Klebsormidium G . CAATAACAGGTCTGTGATGCCCTTAGAT. GTTCTGGGCCGCACGCGCG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 123

1501 155 0 c. aspera Y-OOl C . TAOVCN. GA. TGGATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. andina X-779 C . TACA. T . GA. TGGATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. andina X-905 C . TACACT. GA. TGAATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. drouecii X-881 C . TACACT. GA. TGAATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. haicensis X-103 C . TACACT. GA. TGAATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. zeylanica X-251 C . TACACT. GA. TGAATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. drouecii TAMPS-14 C . TACACT. GA. TGAATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. hydropicys PCR/1 C . TACACT. GA. TGAATCCAACGAGTCGCTTG. CCT. GGTCG. AAA. GGC C. haicensis 584 C . TACACT. GA. TGAATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. bricconii X-998 C . TACACT. GA. TGAATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. vandalurensis X-574 C . TACACT. GA. TGAATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. longifolia ME C . TACANN. GA. TGAATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GTT C. longifolia X-362 C . TACACT. GA. TGAATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GTT L. macropogon X-695 C . TACACT. GA. TGAATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC L. papulosum C . TACACT. GA. TGAATCCAACGAGGC. CTTG. CCTGGGTCG. AAA. GGC C. auscralis X-067 C . TACACT. GAATGAATCCAACGAGTCGCTTT. CCTGGGTCG. AAA. GGC C. corallina X-656 C . TACACT. GA. TGAATCCAACGAGTCGCTTT. CCTGGGTCG. AAA. GGC C. auscralis X-709 C . TACANT. GA. TGAATCCAACGAGTCGCTTT. CCTGGGTCG. AAA. GGC C. auscralis MR C . TACACT. GA. TGAATCCAACGAGTCGCTTT. CCTGGGTCG. AAA. GGC C. curcissii X-500 C . TACACT. GA. TGAATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. fibrosa X-571 CAT. CACT. GA. TGAATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. preissii X-237 C . TACACT. GA. TGAATCCAACGNGTCGCTTG. CCTGGGTCG. AAA. GGC C. polyacancha F122 C . TACACT. GA. TGGATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. vulgaris X-932 C . TACACN. GA. TGGATCCAACGAGTNGCTTG. CCTGGGTCG. AAA. GGC C. connivens X-214 C . TACACT. GA. TGGATCCAACGAGTCGCTTG. CCfGGGTCG. AAA. GGC C. comencosa X-908 C . TACACT. GA. TGAATCCAACGAGTCGCTTT. CATGGGTCG. AAA. GGC C. vulgaris X-152 C . TACACT. GA. TGGATCCAACGAGTTGCTTG. CCTGGGTCG. AAA. GGC C. imperfecca X-307 C . TACACT. GA. TGGATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. globularis X-999 C . TACACNNGA. TGGATCCAACGAGTCGNTTG. CCTGGGTCG. AAA. GGC C. hornemannii 768 C . TACACT. GA. TGGATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GTC C. m uelleri X-888 C . TACACT. GA. TGAATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. scuarciana X-659 C . TACACT. GA. TGAATCCAACGAGTCGCTTT. CCTGGGTCG. AAA. GGC C. concraria X-998 C . TACACT. GA. TGGATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. balcica F-118 . . TACACT. GA. TGGATCCAACGAGTCGNTTG. CCTGGGTCG. AAA. GGC C. hispida X-462 C . TACACT. GA. TGGATCCAACGAGTCGCTTG. CCTGGGTCG. AAA . GGC C. foliolosa X-883 C . TACACT. GA. TGAATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. braunii 589 C . TACACT. GA. TGGATCCAACGAGTCGCTTG. CCTGGGTCG. AAA. GGC C. foecida VH C . TACACT. GA. TGGATCCAACGAGTTGCTTG. CCTGGGTCG. AAA. GGC Coleochaece scu. C . TACACT. GA. TGAATTCAACGAGTTTATAA. CCTGGACCG. AAA. GGT Chlrorkybus acm. C . TACACT. GA. TGGATTCAACGAGTATATAA. CCTTGGCCG. AAA. GGT S o y b e a n C . TACACT. GA. TGTATTCAACGAGTCTATA. GCCTTGGCCG. ACA. GGT Nicella axillaris C . TACACT. GA. TGAATCCAACGAG...... CCTGGGTCG. AAA. GGC Nicella sp. LW C . TACACT. GA. TGAATCCAACGAGTCG. TGCACCTGGGTCG. AAA. GGC N icellopsis obc. C . TACACT. GA. TGAATCCAACGAGCCT . GGGN...... CG. ANA. GGC Tolypella por. C . TACACT. GA. TGAATCCAACGAGTTG . TGCACCTGGGTCGGAA. . GGC Y e a s c C . TACACT. GA. CGGAGCCAGCGAGTCTA. . . ACCTTGGCCG. AGA. GG. Spirogyra grev. C . TACAAT. GA. TGNATTCAGCGAGCGGAATC .C C T. GATCGGAAACGG. Klebsormidium C . TACACT. GA. TGAATTCAACGAGTTTATA. ACCTGGGCCG. AAA. GG.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 124

1551 1 6 0 0 c. aspera Y-OOl CT.GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT C. andina X-779 C T.G G G .. -TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT C. andina X-905 CT.GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT drouecii X-881 CT.GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT C. haicensis X-103 CT.GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT C. zeylanica X-251 TT.GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT C. drouecii TAMPS-14 CT.GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT c. hydropicys PCR/1 TT.GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT C. haicensis 584 CT.GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT c. bricconii X-998 N T .G G G .. .TAACCTTNTNAAGGTTCATCGTGACGGGGATAGATTGTTGT c. vandalurensis X-574 T T .G G G .. .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGT7C-T longifolia MB CC. GGG. . .TAACCTTCTCAAGGTCCATCGTGACGGGGATAGATTGTTGT c. longifolia X-862 CCNGGG. , .TAACCTTCTCAAGGTCCATCGTGACGGGGATAGATTGTTGT L. macropogon X-695 TT.GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT L. p a p u lo s u m TT.GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT c. auscralis X-067 CC.GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT corallina X-656 CN.GGG. . .TAACCCTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT c. auscralis X-709 CC.GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT c. auscralis MR CC.GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT c. curcissii X-500 TC.GGG. . .TAACCTTGTTAAGGTTCATCGTGACGGGGATAGATTGTTGT c. fibrosa X-571 C C .G G G ., .TAACCTTCTTAAGGTTCATCGTGACGGGGATAGATTGTTGT preissii X-237 C C .G G G ., .TAACCTTGTTAAGGNNCATCGTGACGGGGATAGATTGTTGT c. polyacancha F122 C T . GGG. , .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT c. vulgaris X-932 C T . GGG., .TAACCTTCTCAAGGTNCATCGTGACGGGGATAGATTGTTGT c. connivens X-214 C T . GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT c. comencosa X-908 C C .G G G .. .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT C. vulgaris X-152 C T . GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT C. imperfecca X-307 C T .G G G .. .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT c. globularis X-999 C T .G G G ., .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGNNGT c. hornemannii 768 T C . GGG. . .TAACCTTGTGAAGGTCCATCGTGACGGGGATAGATTGTTGT c. m uelleri X-888 C T .G G G ., .TAACCTTCTTAAGGTTCATCGTGACGGGGATAGATTGTTGT c. scuarciana X-659 C C .G G G .. .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT c. concraria X-998 C T . GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT c. balcica F-118 C T . GGG. . .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT c. hispida X-462 C T . GGGCCCTAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT c. foliolosa X-883 CT.GGG. . .TAACCTTCTCAAGGTCCATCGTGACGGGGATAGATTGTTGT c. braunii 589 CT.GGG. .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT c. foecida VH CT.GGG. .TAACCTTCTCAAGGTTCATCGTGACGGGGATAGATTGTTGT Coleochaece scu. CC.GGG. .TAATCTTTTGAAATTTCATCGTGATGGGGATAGATTATTGC Chlrorkybus acm. CC.GGG. .TAATCTTGTGAAATTTCATCGTGATGGGGATAGATTATTGC S o y b e a n CC.GGG. . TAATCTTT. GAAATTTCATCGTGATGGGGATAGATCATTGC Nicella axillaris TC.GGG. .TAACCTTTCTAAAGTCCATCGTGACGGGGATAG.ATTGTTGT Nicella sp. LW TC.GGG. .CAACCTTCTCAAACTNCATCGTGACGGGGATAGATTGTTGC N icellopsis obc. CT.GGG. . TAACCTCNN. AAGGTTCATCGTGACGGGGATAGATTGNNGN Tolypella por. TC.GGG. .TAATCTTCTCAAACTTCATCGTGACGGGGATAGATTGTTGC Y e a s c TCTTGG. .TAATCTTGTGAAACTCCGTCGTGCTGGGGATAGAGCATTGT Spirogyra grev. TCGGGG------AATCTT. TGAATCTTTATCGTGATGGGGATAGACCCTTGC Klebsormidium TCTGGG. . .TAATCTTGTGAAATTTCATCGTGATGGGGATAGATTATTGC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 125

1 60 1 1650 c. a s p e r a Y-CCl AATT . ATCGATCTTGAACGAGGAATGCCTAGT.AAGCGTGAGTCATC. AGT C. andina X-779 AATT . ATCGATCTTGAACGAGG.AATGCCTAGTAAGCGTGAGTCATC. AGC C. andina X-905 AATT -ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCATC. AGC C. drouecii X-881 AATT -ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC. AGC C. haicensis X-103 AATT . ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC. AGC C. zeylanica X-251 AATT .ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC .AGC C. drouecii TAMPS-14 AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC. AAG C. hydropicys PCR/1 AATT .ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC .AGC C. haicensis 584 AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC .AGC C. bricconii X-998 AATT .ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC .AGC C. vandalurensis X-57 4 AATTAATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC. AGC C. longifolia MB AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCATC. AGC C. longifolia X-862 AATT .ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCATC .AGC L. macropogon X-695 AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCAT. .AG. L. papulosum AATT . ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCATC. AG. C. auscralis X-067 AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTNATC. AGC C. corallina X-656 AATT.ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC.AGC C. auscralis X-709 AATT .ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC .AGC C. auscralis MR AATT. ATCGATCTTGAACGAGGAATGCCTAGTAA .CGCGAGTCATC .AGC C. curcissii X-500 AATT .ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCATC .AAG C. fibrosa X-571 AATT.ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC.AGC C. preissii X-237 AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATCAAGC C. polyacancha F122 AATT .ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCATC .AGC C. vulgaris X-932 AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCATC .AGC C. connivens X-214 AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC .AGC C. comencosa X-908 AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCATC. AGC C. vulgaris X-152 AATT.ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCATC.AGC C. imperfecca X-307 AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCATC .AGC C. globularis X-999 AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCATC .AGC C. hornemannii 768 AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCATC. .G . C. m uelleri X-888 AATT .ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC .AGC C. scuarciana X-659 AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC .AGC C. concraria X-998 AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCATC. AGC C. balcica F-118 AATT .ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTNAGTCATC. AGC C. hispida X-462 AATT.ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCAT..AG. C. foliolosa X-883 AAT. AATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC. AGC C. braunii 589 AATT .ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC .AGC C. foecida VH AATT .ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCATC .AGC Coleochaece scu. AATT .ATTAATCTTCAACGAGGAATTCCTAGTAAGCGCGAGTCATC .AGC Chlrorkybus acm. AATT.ATTAATCTTCAACGAGGAATTCCTAGTAAGCGCGAGTCATC.AGC S o y b e a n AATT. GTTGGTCTTCAACGAGGAATTCCTAGTAAGCGCGAGTCATC. AGC Nicella axillaris AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCATA.AAC Nicella sp. LW AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC.AGC N icellopsis obc. AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGTGAGTCATC. AAC Tolypella por. AATT. ATCGATCTTGAACGAGGAATGCCTAGTAAGCGCGAGTCATC. AGC Y e asc AATT. ATTGCTCTTCAACGAGGAATTCCTAGTAAGCGCAAGTCATC. AGC Spirogyra grev. AATT. ATTGGTCTCGAACGAGGAATACCTAGTAAGCGCNCGCCACC. AGC Klebsormidium AATT .ATTAATCTTCAACGAGGAATTCCTAGTAAGCGCGAGTCATC .AGC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 126

165 1 1700 c. a s p e r a Y-OOl CCTCGCGC. TGATTACGTCCCTGCCCTTTGNACACACCGCCCGTCGCTCC C. andina X-779 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. andina X-905 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. drouecii X-881 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. haicensis X-103 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. zeylanica X-251 . . TCGCGC. TGATTACGT. CCTGCCCTTTGTACACACCGCCCGTCGCTCC C. drouecii TAMPS-14 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. hydropicys PCR/1 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. haicensis 584 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. bricconii X-998 . . TCGCGC. TGATTACGTCCCTGCCC. TNNNACACACCGCCCGTCGCTCC C. vandalurensis X-574 . .TCGCGC.TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. longifolia MB . . TCGCGC. TGATTACGTCCCTGCTCTTTGTACACACCGCCCGTCGCTCC C. longifolia X-862 . . TCGCGC. TGATTACATCCCTGCCCTTTGTACACACCGCCCGTCGCTCC L. macropogon X-695 . .TCGCGC.TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC L. papulosum . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. auscralis X-067 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCG. CCGTCGCTCC C. corallina X-656 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. auscralis X-709 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. auscralis MR . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. curcissii X-500 . .TCGCGC .TGATTACGTCCCTGCCCTTTGTACACACCGCCNGTCGCTCC C. fibrosa X-571 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. preissii X-237 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. polyacancha F122 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. vulgaris X-932 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. ccnnivens X-214 . . TCGCGN. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. comencosa X-908 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. vulgaris X-152 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. imperfecca X-307 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. globularis X-999 . . TCGCGC. TGATTACGTCCCTGCCCTTNGTACACACCGCCGGTCGCTCC C. hornemannii 768 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. m uelleri X-888 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. scuarciana X-659 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCG. CCGTCGCTCC C. concraria X-998 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. balcica F-118 . . TCGCGC. TGATTACGTCCCTGCCCTNAGTACACACCGCCCGTCGCTCC C. hispida X-462 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. foliolosa X-883 . . TCGCGC. TGATTACGTCCCTGCCCTTTNTACACACCGCCCGTCGCTCC C. braunii 589 . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC C. foecida VH . . TCGCGC. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC Coleochaece scu. . . TCGCGT. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC Chlrorkybus acm. . . TCGCGT. TGATTACGTCCCTGCCCTTTGTACACANCGCCCGTCGCTCC S o y b e a n . . TCGCGT. TGACTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC Nicella axillaris . . TCGCGN. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC Nicella sp. LW . . TCGCGT. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC N icellopsis obc. . . TCGCGT. TGACTACGTCCCTGCCCTTTGTACACANCNCCCGTCGCTCC Tolypella por. . . TCGCGT. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC Y e a s c . . TTGCGT. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTAG Spirogyra grev. . . GTGCGCCTGACTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC Klebsormidium . . TCGCGT. TGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 127

1 701 1750 c. aspera Y-OOl TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG C. andina X-779 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG C. andina X-905 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG C. drouecii X-881 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTCATCTCGGCGG C. haicensis X-103 TACCGATTGAATGGTCCGGTGAAGTGTTTGGATCGCGGTGATCTCGGCGG C. zeylanica X-251 TACCGATTGAATGGTCCGGTGAAGTGTTTGGATTGCGGCGATCTCGGCGG C. drouecii TAMPS-14 TACCaATTGAATGGTCCGGTGAAGTGTTTGGATCGCGGTGATCTCGGCGG C. hydropicys PCR/1 TACCGATTGAATGGTCCGGTGAAGTGTTTGGATCGCGGTGATCTCGGCGG C. haicensis 584 TACCGATTGAATGGTCCGGTGAAGTGTTTGGATCGCGGTGATCTCGGCGG c. bricconii X-998 TACCGATTGAATGGTCCGGTGAAGTGTTTGGATCGCGGTGATCTCGGCGG c. vandalurensis X-574 TACCGATTGAATGGTCCGGTGAAGTGTTTGGATCGCGGTGATCTCGGCGG c. longifolia MB TACCGATTGAATGGTCCGGTGAAGTGTCTGGATTGCGGTGATCTTGGCGG c. longifolia X-862 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG L, macropogon X-695 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG L. papulosum TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG C. auscralis X-067 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG C. corallina X-656 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG C. auscralis X-709 TACCGATTGAATGGTCCGGTGAAGTGTCT. GATCGCGGTGATCTCGGCGG C. auscralis MR TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG c. curcissii X-500 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG c. fibrosa X-571 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATTGCGGTGATCTCGGCGG C. preissii X-237 ATCCGATTGAATGGTCCGGTGAAGTGTTTGGATCGCGGTGATCTCGGCGG C. polyacancha F122 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG C. vulgaris X-932 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG C . c o n n iv e n s X -214 TACCGATTGAATGGTCCGGTGAAGTGTTNGGATCGCGGTGATCTCGGCGG C. comencosa X-908 TACCGATTG.AATGGTCCGGTGAAGTGTTTGGATCGCGGTGATCTCGGCGG C. vulgaris X-152 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG C. im perfecca X-307 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG C. globularis X-999 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG C. hornemannii 768 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG C. m uelleri X-888 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATTGCGGTGATCTCGGCGG C. scuarciana X-659 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG C. concraria X-996 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG C. bale ica F-118 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG C. hispida X-462 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG c. foliolosa X-883 TACCGATTGAATGGTCCGGTGAAGTGTTTGGATCGCGGTGATCTCGGCGG C. braunii 589 TACCGATTGAATGGTCCGGTGAAGTGTCTGGATTGCGGTGATCTCGGCGG C. foecida VH TACCGATTGAATGGTCCGGTGAAGTGTCTGGATCGCGGTGATCTCGGCGG Coleochaece scu. TACCGATTGAATGATCCGGTGAAGTTTTCGGATTGCGGCGACCCTGGCGG Chlrorkybus acm. TACCGATTGAATGATCCGGTGAAGTTTTCGGATCGCGACGAC. . . . GCGG S o y b e a n TACCGATTGAATGGTCCGGTGAAGTGTTCGGATTGCGGCGACGTGAGCGG Nicella axillaris TACCGATTGAATGGTNCGGTGAAGTGTCTGGATCNNNNNNNNNNNNNNNN Nicella sp. LW TACCGATTGAATGGTCCGGTGAAGTGTTCGGATTGCGGTGACCCCGGCGG N icellopsis obc. TACCGATTGAATGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Tolypella por. TACCGATTGAATGGTTCGGTGAAGTGTTCGGATTGCGGTGACCCCGGCGG Y e a sc TACCGATTGAATGGCTTAGTGAGGCCTCAGGATCTGCTTAGAGAAGGGGG Spirogyra grev. TACCGATNGAATGNNCCGGYGAAGNNNNCGGATTCNNNNNNNNNNNNNNN Klebsormidium TACCGATTGAATGATCCGGTGAAGTTTTCGGATTGCGGCTACTCCGGCGG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 128

1751 ISOO c. a s p e r a Y-OOl TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG C. andina X-779 TTTGCCGTCGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG C. andina X-905 TTTGCCGTCGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG C. drouecii X-881 TTTGCCGCCGGGGGTGCTGTGAGAAGCTCATTGAACCTTATCATTTAGAG C. haicensis X-103 TTTGCCGCCGGGGGTGCTGTGAGAAGCTCATTGAACCTTATCATTTAGAG C. zeylanica X-251 TTTGCCGCCGGGGGTGCTGTGAGAAGCTCATTGAACCTTATCATTTAGAG C. drouecii TAMPS-14 TTTGCCGCCGGGGGTGCTGTGAGAAGCTCATTGAACCTTATCATTTAGAG C. hydropicys PCR/1 TTTGCCGCCGGGGGTGCTGTGAGAAGCTCATTGAACCTTATCATTTAGAG C. haicensis 534 TTTGCCGCNGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG C. bricconii X-996 TTTGCCGCCGGGGGTGCTGTGAGAAGCTCATTGAACCTTATCATTTAGAG C. vandalurensis X-574 TTTGCCGCCGGGGGTGCTGTGAGAAGCTCATTGAACCTTATCATTTAGAG C. longifolia M3 TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG c. longifolia X-862 TTTGCCGCCGGGGGTGCTGTGAGAAGCTCATTGAACCTTATCATTTAGAG L. macropogon X-695 TTTGC. . .TGGGGGTGCTGTGAGAAGTTCATTGAACCCTATCATTTAGAG L. papulosum TTTGC. . . TGGGGGTGCTGTGAGAAGTTCATTGAACCCTATCATTTAGAG C. auscralis X-067 TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG C. corallina X-656 TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG c. auscralis X-709 TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATT. AACCTTATCA. TTAGAG c. auscralis MR TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACCTTATC.ATTTAGAG c. curcissii X-500 TTTGCCGCTGGGGGTGCTGTGAGAAGCTCATTGAACCTTATCATTTAGAG c. fibrosa X-571 TTTGCCGCCGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG c. preissii X-237 TTTGCCGCCGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG C. polyacancha F122 TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG C. vulgaris X-932 TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG c. connivens X-214 TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACC...... c. comencosa X-908 TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG c. vulgaris X-152 TTTGCCGCTGGGGGTGCTGT. AGAAGTTCATTGAACCTTATCATTTAGAG c. imperfecca X-307 TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG C. globularis X-999 TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG C. hornemannii 768 TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG c. m uelleri X-888 TTTGCCGCTCGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG c. scuarciana X-659 TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG c. concraria X-998 TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG c. balcica F-118 TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG C. hispida X-462 TTTGCCGCTGGGGGTGCTGTGAGAAGCTTATTGAACCTTATCATTTAGAG C. foliolosa X-883 TTTGCCGCCGGGGGTGGTGTGAGAAGCTCATTGAACCTTATCATTTAGAG C. braunii 589 TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG C. foecida VH TTTGCCGCTGGGGGTGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG Coleochaece scu. TTCGCCGCCGGTGACGCTGTGAGAAGTTCATTAAAiCCTTATCATTTAGAG Chlrorkybus acm. TTCGC. GCTGGTGACGCCGTGAGAAGTTCATTAAJVCCTTATCATTTAGAG S o y b e a n TTCGCTGCCCGCGACGTTGTGAGAAGTCCACTGAACCTTATCATTTAGAG Nicella axillaris NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Nicella sp. LW TTCGCCGCTGGGGGCGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG N icellopsis obc. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Tolypella por. TTCGCCGCTGGGGGCGCTGTGAGAAGTTCATTGAACCTTATCATTTAGAG Y e a s c . . CAACTCCATCTCAGAGCGGAGAATTTGGACAAACTTGGTCATTTAGAG Spirogyra grev. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Klebsormidium TCCGCCGCCGAAGAAGCTGTGAGAAGTTCATTAAACCTTATCATTTAGAG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 129

1801 1! C. aspera ï-001 CAAGGAGAAG. TCGTAACAAGG C. andina X-779 GAAGGAGAAG. TCGTAACAAGG C. andina X-905 GAAGGAGAAGGTCGTAACAAGG C. drouecii X-881 GAAGGAGAAG. TCGTAACAAGG C. haicensis X-103 GAAGGAGAAG. TCGTAACAAGG C. zeylanica X-251 GAAGGAGAAGG. CGGAACAANN C. drouecii TAMPS-14 GAAGGANNNNNNNNNNNNNNNN C. hydropicys PCR/1 GAAGGAGAAG. TCGTAACAAGG C. haicensis 5S4 GAAGGAGAAGATCGTAACAANN C. bricconii X-999 GAAGGAGAAG. TCGTAACAAGG C. vandalurensis X-57 4 GAAGGAGAAG. TCGTAACAAGG c. longifolia MB GAAGGAGNNNNNNNNNNNNNNN c. longifolia X-862 GAAGGAGAAGN. CGTAACAAGG L macropogon X-695 GAAGGAGNNNNNNNNNNNNNNN L. papulosum GAAGGAGNNNNNNNNNNNNNNN C. auscralis X-067 GAAGGAGAAGGTCGTAGCAAGG C. corallina X-656 GAAGGAGAAGATCGTAACAAGG C. auscralis X-709 GAAGGAGAAG. NCGTAACAAGG C. auscralis MR GAAGGAGAAG. TCGTAACAAGG C. curcissii X-500 GAAGGANNNNNNNNNNNNNNNN C. fibrosa X-571 GAAGGAGAAG. TCGTAACAAGG C. preissii X-237 GAAGGAGAAG. TCG. AACAAGG C. polyacancha F122 GAAGGAGAAG. TCGTAACAAGG C. vulgaris X-932 GAAGGAGAAG. TCGTAACAAGG C. connivens X-214 NNNNNNNNNNNNNNNNNNNNNN C. comencosa X-908 GAAGGAGAAG.TCGTAACAAGG C. vulgaris X-152 GAAGGAGAAG. TCGTAACAAGG C. imperfecca X-307 GAAGGAG TCGTAAC..GG C. globularis X-999 GAAGGAGAAG. TCGTAACAAGG C. hornemannii 768 GAAGGANNNNNNNNNNNNNNNN C. m uelleri X-888 GAAGGAGNAG. TCGTAACAAGG C. scuarciana X-659 GAAGGAGAAG. TCGTAACAAGG C. concraria X-998 GAAGGAGAAG. TCGTAACAAG. C. balcica F-118 GAAGGAGAAGNN. GTAATAAN. C. hispida X-462 GAAGGANNNNNNNNNNNNNNNN C. foliolosa X-883 GAAGGAGAAG. TCGTAACAAG. C. braunii 589 GAAGGAGAAG.TCGTAACAA.. C. foecida VH GAAGGAGAAG. TCGTAACAAGG Coleochaece scu. GAAGGAGAAG. TCGTAACAAGG Chlrorkybus acm. GAAGGAGAAG. TCGTAACAAGG S o y b e a n GAAGGAGAAG. TCGTAACAAGG Nicella axillaris NNNNNNNNNNNNNNNNNNNNNN Nicella sp. LW GAAGGAGNNNNNNNNNNNNNNN N icellopsis obc. NNNNNNNNNNNNNNNNNNNNNN Tolypella por. GAAGGAGNNNNNNNNNNNNNNN Y e a s c GAACTAANNNNNNNNNNNNNNN Spirogyra grev. NNNNNNNNNNNNNNNNNNNNNN Klebsormidium GAAGGAGNNNNNNNNNNNNNNN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix C: Alignment of ITS-1 Sequences for Chapter 4

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 131

Alignment of the U S-l region for the eight Chara haitensis isolates.

X -0 0 3 gaggaccat:tACACAAATATNAAGGCNNNCTGCTA?CCTATCGATA?TAC 7 0 8 ?7ggatcaCtACACAATTATNAAGGCTNGGTGCTAA?TTATTNATATTAC X -7 9 2 ? ? g g A c c a t tACACAANTATGAAGNNNGGNTGGNAACTTATTGATATTAC X -8 2 6 gaggatcaCtACACAAATATGAAGGCGNGCTGG?AACCTATCGATGTTAC X -8 4 8 ? a g g a C c a 11ACACANATATGAAGGCGNGCTGG ? AACCTNTCGGGGTTAC TAMPS03 ? ? a g a c c a c tACACANATATGAAGGCGNGCTGG?AACCTCTCGGGGTTAC TAMPS7 4 gaggaCcatCACACAAATATGAAGGCGGNNTGN?AACCTATTGATATTAC PAN-03 g a g g a t ca C CACACANNTNTGAAGGCGGGNTGG ? AACCTCTCGGGGTTAC aaggatcact =end 18S

X -0 0 3 AGTC?TGTTGAATTATTTAGCCTTCTCTGN?GNC?GTACT?CTTTGTTTG 7 0 8 ATTCTTGTTCGATTATTTANCCTTCTNTTT?GACCGTACTT?TT?GTrTG X -7 9 2 AGTCTTGTTCAATTATTTACCCTTCTCTTTT?AC?GTANTT?TTTGTTTC X -8 2 6 AGCCTTGCTNAATTATTCACCCTTCTCTNTGG?C?GTACTCCTT?GTTTC X -8 4 8 AGTCTTGCTGAATTATTCACCCTTrTNTTTTG ? C ? GTACTTCTT ? GTTTC TAMPS03 AGTCTTGCTGAATT.ATTCACCTTTNT ?TT ? ?G? C ? GTACTTGTT ? GTGTG TAMPS7 4 AGTCTTGTTCAATTATTTAGCCTTCTCTTTT?AC?GTACT?CTTTGTGTN PA N-03 AGNCTTGCTGAATTATTCACCCTTGTCT'rTTG?C?GTACTTCTT?GTTTC

X -0 0 3 CTTGGTGGGTTCGGCCACCACAAGGTCAAACATAAACCTTTAGTAATTGN 7 08 CT7GGTGGGTTCGGCCACTNCAAGGTCAAACATAAACCTTATGTANTAGT X -7 9 2 CTTGGTGGGTTCGG ? ? ACCACAAGGTC ? AACATAAACCTTTAGT ? 7T7GC X -8 2 6 CGNGGTGGGTTCGGCC.iVCCACTAGGNCAAACATAAACCTTTAGTAATTGC X -8 4 8 CTTGGTGGGTTCGCCCACCACTAGGACAAACATAAACCTTTTGTAATTGC TAMPSO 3 C7GGGTGGGTNCGGCCACCACNAGGNCAAACATAAANCTTTTGTAATTGC TAMPS7 4 CTNGGTCGGTGCGGCCACCACAAGGTCAAACATAAATCTTTAGTAATTGT PA N-0 3 CTTGGTGGGTTCG7CCACCACTAGGACAAACATAAACCTTTTGTAATTGC

X-00 3 AANCAGAATCAATAACAAATTAATAATTAACAACTGGCAAcaacggat 7 0 8 AATCAGAGTTA 7TAACAA 7TTAATAAT ? AACAACGGNNAAcaacgga C X -7 9 2 AATCAGCGTC.AATAACAA 7TTAATAAT7 7 ACAACTTTTAAcaacgga t X-826 AATCAGAGTCAGTAACAAATTAATAATT?ACAACTTTCAAcaacggat X-848 AATCAGCGTCAGTAACAAATTAATAATT7ACAACTTTCAAcaacggat TAMPSO 3 AATCAGAGTCAGTAACAAATTAATAATTAACAACTTTCAAcaacggaC TAMPS7 4 AATCAGNGTCAGTAACAAATTAATAATN7ACAACTTTCAAcaacggat PAN-03 AATCAGCGTCAGTAACAAATTAATAAT77ACAACTTTCAAcaacggaC begin 5.8s = caacggac

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix D: Alignment of 18S rDNA Sequences for Chapter 4

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 133

Alignment of the ITS-2 region for eight Chara haitensis isolates.

x-003 gaatccccgacgcacaTg?gCCCTTTGGTATTCCAAAGGGCATGCCTGTG 708 gaaccttCgacgcacaTgcgCCCTTTGGTATTCCAAAGGGCATGCGTGTT X-792 gaa t c t t cgacgcacaTgcNCCCTTTGGTATTCCAAAGGGCATGCCTGTT X-826 gaaCCCCC.gacgcacaTgcgCCCTTTGGTATTCCAAAGGGCATGCCTGTT X-848 gaaC.cCttgacgcacaTgcNCCCTTTGGTATTCCAAAGGGCATGCCTGTT TAMPS-03 ???????? ?acgcacaTgcgCCCTTTGGTATTCCAAAGGGCATGCCTGTT TAMPS-74 g a a CCC t C gacgcacaTgcgCCCTTTGGTATTCCAAAGGGCATGCCTGTT PAN-03 gaa?cCCCgacgcacaTgcgCCCTTTGGTATTCCAAAGGGCATGCCTGTT gaacccccga=end 5.3s

X-003 TGAGCGTCATTTGAACCCTCAAGCTTTGCTTGGTATTGGGCATCGTGGNN 70S CGAGCGTCATTTAAACCCTCAAGCTTTGCTTGGTATTGGGCATCTTGTTC X-792 CGAGCGTCATTTGAACCCTC.AAGCTTTGCTTGGTNTTGGGCNTCTTG7TC X-826 CGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGCGTCTTG7TN X-848 CGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGCGTCTTG7TC TAMPS-03 CGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGCGTCTTG7TC TAMPS-74 CGAGCGTCATTTGAACCCTCAAGCTTTGCTTGGTGTTGGGCGTCNTG7TN PAN-03 CGA ? CGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGCGGCTTG ? TC

X -0 0 3 TCTNGCTTGNCTCAAN?A 7CNCGCCTTAAAGTAATTTGTA ?AGCCC ?NAA 7 0 8 TCTAGCTTTNNT?GGAG?TCTCGCCTTAAAGTAATTTGTGCAGCCC?TAA X -7 9 2 TCTAGCTTTCCT7GAAGA7CTCGCCTTAAAGTAATTTG? 7CA7CCC 7TGA X -8 2 6 TCTAGCTTTGNT7GGAGATCTCGCCTTAAAGTAATT7G7GCAGCCGG7G7 X -8 4 8 TCTAGCTTTGCT7GGAGA 7CTCGCCTTAAAGTAATT 7G 7GCAGCCGG ? 7C TAM PS-03 TCTAGCTTTGCT7GGAGA7CTCGCCTTAAAGTAATT7G7GCAGCCGG77C TAM PS-74 TCTAGCNTTGNT7GAAGN7CTCGCCTTAAAGTAATT7G7GCACCCCGTAA PA N -03 TCTAGCTTTGCTCGGAGA 7CTCGCCTTAAAGTAATT7G 7 GCAGCCGG 7 7C

X-003 CNACTTGGTNNACANCTG7CTACAGCATCAAG 7T 7 GCGAC 7TGG 77 7 707 708 CTN7TTGGTNTNCGGN7G7TNGCAG7ATCAAGGTNGC7ANTCTCTNNTCT X-792 CTNCT7GGTTTTCG7CTAACTTCA7CA7CAAG7TCGN77CTA7GTNT7CT X-826 CTACT7GGTTT7CGGN7G7C7GCAGCA7CAAG7TCGC7ACTCTNTATT77 X-848 CTACT7GGTTT7CGGA7G7C7GCAGCA7CAAG7TCGC7ACTCTCTAT7C7 TAMPS 03 CTACT7GGTTT7CGGA7G7C7GCA7CA7CAAG7TCGC7ACTCTCTAT7C7 TAMPS -7 4 CTN7TTGGTTTTCGG7TGAC7GCAGN7TCAAG7TCGC7ACTCTGTAT7CT PAN-0 1 CTANT7GGTTT7CGGA7G7C7GCAGCA7CAAG7TCGC7ACTCTCTATTC7

X -0 0 3 AAT7CACAACG7 77TAAAAGCAA7CCCAATTAAG7 7AGN7TTTTTTCCAA 7 0 8 7A 7 7 C 7GAA 7 GGANTA 7 TAG 7 AATCCCAATTAAG 7 C ANTGTTTTTTC 7 AT X -7 9 2 CAT7C77AACAGAATACTAGCAATCC7A7TTA7GACA7 7GTTTTTTCCAT X -3 2 6 7AG7C7GAAAGG77TGCTAGCA7TCC7A7TTAAG7C7 7T7TTTTTTCAA? X-848 7AG7C77AAAGG77T7CTAGCA7TCC7A7TTAAG7C7777TTTTTTCAA7 TAMPS-03 7AG7C7 7AAAGG77T7CTAGCA7TCC7A7TTAAG7C7777TTTTTTCAA7 TAM PS-7 4 7A77C7GAAAGGA7TAATAG7AATCC 7A7TTAAGTC 77 7 7TTTTTTCAA? PAN-03 7AGNC7 7AAAGG77T7CTAGCA7TCC7A7TTAAGCC77T7TTTTTTCAA7

X-003 CTT7TC7ACCTAGG 708 CGCATCAGC7TAGG X-792 CTTTTC7ACCTAGG X-826 CTTTT7GACCTNGG X-848 CTTTTTGACCTAGG TAMPS-03 CTTTT7GACCTCGG TAMPS-74 CTTTT7GACCTCGG PAN-03 CTTTT7GACCTCGG begin LSU = ccgacccgag

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix E: Letter of Permission

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. L jd j j I siANA St a t e U n i v e r s i t y r m R W * *c..cu.ru..L .~o co.c.c. Department of Biological Sciences

September 11, 1997

Susan T. Meiers Dept, of Biological Sciences Louisiana State University Raton Rouge, LA 70803

Frau Monica Luck Gustav Fischer Verlag Niederlassung Jena Postfach 10 05 37 D-07705 Jena, Germany

Dear Frau Luck,

I am seeking permission to include the following article, originally published in the Archiv fur Protistenkunde in 1997, as a chapter of my doctoral dissertation at Louisiana State University:

Meiers, S. T., Rootes, W. L., Proctor, V. W„ & Chapman, R. L. 1997. Phylogeny of the Characeae (Charophyta) inferred from organismal and molecular characters. Archiv. fiir Ftotist. 148: 309-318.

Thank you very much for your assistance.

Sincerely,

Susan T. Meiers Gustav Fischer Verlag Niederlassung Jena Villengang 2. 07745 Jen a /" / / ^ / Approval;______' Frau Monica Luck Editor, Archiv fiir Protistenkunde

5 08 L-le Sc'fncei Sutidmg • Baron 9 a age • touM/ono • r 0 8 Q i-ir tS • USA • • fa* 5 0 ■* i 3 3 ■ 2 5 9 .*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Vita

Susan Therese Meiers was bom on April 9th, 1963, in Chicago, Illinois, to

Gertrude Margaret and William Charles Meiers. Susan grew up in Chicago, worked in an animal hospital through high school, and attended the University of Illinois at Urbana, where she studied for her bachelor of science in Animal Science. During the summer of her Junior year, she had an internship at the Brookfield Zoological Gardens

Commissary, where she prepared various diets for the animals there. After not being accepted into veterinary school, Susan taught high school science at Good Counsel High

School in Chicago, Illinois. She taught basic, regular and advanced , zoology,

advanced health and independent study to sophomores, juniors and seniors. She worked for one year as a research technician in Dr. Arthur Veis' lab in the Department of Oral Biology at Northwestern University, Chicago. Susan began her masters work in

1989, in Dr. Richard McCourt's lab at DePaul University, studying puma and snow leopard behavior at the Lincoln Park Zoo. Sue received a Dr. Scholl Fellowship for her

research in the Fall of 1990, and she graduated in May 1992, "With Distinction." Susan began her doctoral work in Dr. Russell L. Chapman's laboratory at Louisiana State University in July 1992, studying the phylogeny and biogeography of the Characeae, particularly in reference to Chara. Susan received the Department of Plant Biology's

William J. Luke Botany Teaching Assistant Award in the Spring of 1994, and the College of Basic Sciences' Award for Excellence in Teaching in the Spring of 1996.

She will receive her doctor of philosophy degree in December 1997.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DOCTORAL EXAMINATION AND DISSERTATION REPORT

Candidate: Susan T. Meiers

Major Field: Plant Biology

Title of Dissertation: Phylogeny of the Characeae (Charophyta) and Biogeography of Chara (Characeae) Inferred from Ribosomal RNA Genes

Approved:

Major Professor any rhai mmrt

Oean^or the Graduate School

EXAMINING COMMITTEE:

Date of Examinâtion:

October 24, 1997

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. IMAGE EVALUATION TEST TARGET (QA-3) / A#: / < ? ■

%

1.0 M Kâ 2.2

■ a o 2.0 l.l 1.8

1.25 1.4 1.6

150mm

V

< 9 /A PP L IE D A IIWIGE . Inc 1653 East Main Street Roctiester, NY14609 USA ■ A Phone: 716/482-0300 ------Fax: 716/288-5989

0 1993, Applied Image. Inc.. Ail Rights Reserved

O/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.