<<

Les ANNALES POLONICI MATHEMATICI constituent une continuation des \ centerlineANNALES{ DELes LA ANNALES SOCI -acute POLONICI acute-E MATHEMATICI POLONAISE DE MATH t t e n E-acute t une MATIQUE c o n t i n u a topen i o n parenthesis des } vol period I endash XXV closing parenthesis \ centerlinefond acute-e{ANNALES en 1 92 1DE par LA Stanis SOCI -suppress $ \acute sub aw{E} a$ emb T$ a period\acute{E} $ POLONAISE DE MATH $ \acute{E} $ MATIQUE ( vol . I −− XXV ) } Les ANNALES POLONICILes ANNALES MATHEMATICI POLONICI publient MATHEMATICI en constituent langues des une congr continuation to the power des of grave-e s \ centerlineinternationaux{ANNALESfond comma $ des DE\acute travaux LA SOCI{e} consacr$E´ T es acute-eE´ POLONAISE en 1 s a-grave 92 1 par DEl quoteright MATH StanisE Analyse´ MATIQUE $ \ l Math{ (aw e-acute vol} .$ I matique– Z XXV a r ) et emb a-grave a . la} G acute-e ometrie period fonde ´ es en 1 92 1 par Stanis law Z a r emb a . \ centerlineChaque volume{ Les paraLes ANNALES to ANNALES the power POLONICI POLONICI of circumflex-dotlessi MATHEMATICI MATHEMATICI t en u 3 fasciculesl ipublient e n t , period, en en langues des des congre` $s congr ˆ{\grave{e}}$ s } Les manuscritsinternationaux dactylographi , des acute-e travaux s consacrcomma pre ´ s toa ` thel ’ Analyse power of Math e-acutee´ matique c acute-eet da `e-acutela G de´ ometrie quoteright. un r acute-e sum e-acute ne surpassant\ centerline pas{ 200internationaux mots comma sont , desChaque travaux volume consacr paraˆı t en 3 $ fascicules\acute{ .e} $ s $ \grave{a} $ l ’ Analyse Math $ \grave-aacuteLes{ exponente manuscrits} $ matique to the dactylographi power et of acute-e$ e ´\sgrave, pr diere´ c{e ´a commad} e ´$ ’ en lun a deux rGe ´ sum exemplaires$ \e ´acutene surpassant{ commae} $ pas grave-a ometrie 200 lmots quoteright . ,} sont adresse : R e-acute daction des ANNALES POLONICI MATHEMATICIa` expe´ dier , en deux exemplaires , a` l ’ adresse : Re ´ daction des \ centerlineS-acute sub{ wChaque period Tomasza volume 30 $ comma paraANNALES 3 ˆ 1{\ hyphenhat POLONICI{\ 27imath Krak MATHEMATICI}} o-acute$ tw commaen 3 fascicules Pologne . } ´ Toute la correspondance concernantS lesw. Tomasza abonnements 30 , 3 comma 1 - 27 lKrak quoterighto ´ , Pologne sub acute-e change et l quoteright achat \noindent Les manuscrits dactylographi $ \acute{e} $ s $0 , pr ˆ{\acute{e}}$ c $ \acute{e} $ des fascicules ant acute-eToute rieurs la correspondance est grave-a exponent concernant to lesthe abonnements power of e-acute , l e´ dierchange grave-a et l ’ l achat quoteright adresse : dINSTITUT $ \acute{ DESe} $ MATH d ’ E-acute undes r MATIQUES fascicules $ \acute ant{ee ´} rieurs$ sum esta ` exp $ \e´ acutediera ` {le ’} adresse$ ne : surpassant pas 200 mots , sont ACAD E-acute MIE POLONAISE DESINSTITUT SCIENCES DES MATH E´ MATIQUES \ centerlineS-acute niadeckich{ $ \grave 8 comma{a}\ B periodACADexp P periodˆ{\E´ MIEacute 1 37 POLONAISE comma{e}}$ 0 dier DES SCIENCES950 , en Warszawa deux exemplairescomma Pologne comma $ , telex\grave 8 1 6{ 1a} 1 2$ panim l ’ pl adresse :R $ \Publicationacute{e} de$ ´ quoteright dactionniadeckich Institut des 8 , B} . P des . 1 Math 37 , 0 acute-e - 950 Warszawa matiques de , Pologne l quoteright , telex Acad 8 1 6 e-acute 1 1 2 panim mie Polonaise pl des Sciences Composition enPublication T-E- a-grave de l ’ l Institut quoteright des InstitutMathe ´ matiques de l ’ Acade ´ mie Polonaise des Sciences \ centerlineImprim acute-e{ANNALES en Pologne POLONICI par MATHEMATICIComposition en} T − E − X`a l ’ Institut Imprime ´ en Pologne par \ centerline { $ \acute{S} { w . }$ Tomasza 30 , 3 1 − 27 Krak $ \acute{o} $ w , Pologne }

\ centerline {Toute la correspondance concernant les abonnements , l $ ’ {\acute{e}}$ change et l ’ achat }

\ centerline { des fascicules ant $ \acute{e} $ rieurs est $ \grave{a}\exp ˆ{\acute{e}}$ d i e r $ \grave{a} $ l ’ adresse : }

\ centerline {INSTITUT DES MATH $ \acute{E} $ MATIQUES }

\ centerline {ACAD $ \acute{E} $ MIE POLONAISE DES SCIENCES }

\ centerline { $ \acute{S} $ niadeckich 8 ,B . P . 1 37 , 0 − 950 Warszawa , Pologne , telex 8 1 6 1 1 2 panim pl }

\ centerline { Publication de l ’ Institut des Math $ \acute{e} $ matiques de l ’ Acad $ \acute{e} $ mie Polonaise des Sciences }

\ centerline { Composition en $ T−E−X \grave{a} $ l ’ Institut }

\ centerline {Imprim $ \acute{e} $ en Pologne par } ANNALES \ centerlinePOLONICI{ MATHEMATICIANNALES } 55 open parenthesis 1 99 1 closing parenthesis \noindentFOREWORDPOLONICI MATHEMATICI The Tenth Conference on Analytic Functions was heldANNALES in Szczyrk from \ centerlineAprilPOLONICI 22 to April{55 MATHEMATICI ( 27 1 comma 99 1 1 ) 990} period Organizing Committee : C period Andreian Cazacu55 open ( 1 99 parenthesis 1 ) Bucharest closing parenthesis comma Z period Charzy n-acute ski\ centerline {FOREWORD } FOREWORD open parenthesisThe Tenth to Conference the power of on L-suppress Analytic Functions acute-o d was z-acute held closing in Szczyrk parenthesis from April comma 22 to P April period 27 Dolbeault , 1 990 . open parenthesis Paris closingThe Tenth parenthesis Conference comma onperiod AnalyticOrganizing W period Functions Gehring Committee open was : parenthesis C . held Andreian in Ann Cazacu Szczyrk Arbor ( closing Bucharest from parenthesis ) , Z . Charzy comman ´ Aski period A period Gonchar Aprilopen( parenthesisL 22o´ d toz ´), AprilP Moscow . Dolbeault 27 closing , (1 Paris 990 parenthesis ) . , F . W comma . Gehring L period ( Ann Iliev Arbor open ) , parenthesis A . A . Gonchar Sofia closing parenthesis comma Z period period Jakubowski( Moscow open parenthesis ) , L . Iliev to ( Sofiathe power ) , Z of. J L-suppress . Jakubowski o-acute (L o´ d dz ´ z-acute), . Jarnicki closing parenthesis ( Krako ´ w comma ; M period Jarnicki open parenthesis \ hspace ∗{\ f i l l } Organizing Committee : C . Andreian Cazacu ( Bucharest ) , Z . Charzy $ \acute{n} $ Krak o-acuteVice w- Chairman semicolon ) , C . O . Kiselman ( Uppsala ) , J . Krzyz ˙ ( Lublin ) , O . Lehto s iVice hyphen Chairman closing parenthesis comma .... C period .... O period .... Kiselman .... openL parenthesis Uppsala closing ( Helsinki ) , J . Leiterer ( Berlin ) , P . Lelong ( Paris ) , J .L awrynowicz( o´ dz ´), parenthesis comma .... J period .... Krzy z-dotaccent open parenthesis Lublin closing parenthesis comma .... O period .... Lehto \noindentS . L $ojasiewicz ( ˆ{\(L Krak}\o ´acutew ) ,{o} P .$ d Pflug $ \acute ( Vechta{z} ) ,) W , . $ Ple P .s ´ niak Dolbeault ( Krak (o ´ Parisw ) , ) , F .W. Gehring ( Ann Arbor ) , A . A . Gonchar openK parenthesis . Rusek ( Helsinki Krako ´ w closing ; Secretary parenthesis ) , J . comma Siciak ( .... Krak J periodo ´ w ; ChairmanLeiterer open ) , W parenthesis . Tutschke Berlin closing parenthesis comma P period Lelong open( Halle parenthesis ) , . S . Paris Vladimirow closing ( parenthesis Moscow ) , comma T . Winiarski .... J ( period Krako ´ L-suppressw ) . sub awrynowicz open parenthesis to the power of suppress-L\noindent o-acute( Moscow d acute-z ) closing, L . parenthesis Iliev ( Sofia comma ) , Z . J . Jakubowski $ ( ˆ{\L }\acute{o} $ d $ \acute{z} ) , $ M.The main Jarnicki topics were ( Krak : geometric $ \acute function{o} $ theory w ; of one complex vari - able , quasiconformal S period L-suppress sub oj asiewicz open parenthesis Krak acute-o w closing parenthesisn comma .... P period .... Pflug .... open parenthesismappings Vechta , closing complex parenthesis analysis comma in several .... variablesW period and .... potentialPle s-acute theory niak in....C open parenthesis Krak acute-o w closing parenthesis . comma\noindent Vice − Chairman ) , \ h f i l l C. \ h f i l l O. \ h f i l l Kiselman \ h f i l l ( Uppsala ) , \ h f i l l J. \ h f i l l Krzy 140 mathematicians from 20 countries participated in the Conference . They delivered 28 one - hour $ \Kdot period{z} Rusek( $ open Lublin parenthesis ) , Krak\ h f o-acute i l l O. w semicolon\ h f i l l SecretaryLehto closing parenthesis comma J period Siciak open parenthesis Krak lectures and 87 short communications . o-acute w semicolon Chairman closing parenthesis comma W period Tutschke The organizer of the Conference was the Institute of Mathematics of the Jagiellonian University . \noindentopen parenthesis( Helsinki Halle closing ) , parenthesis\ h f i l l J comma . Leiterer V period ( S Berlin period Vladimirow ) , P . openLelong parenthesis ( Paris Moscow ) , closing\ h f i l l parenthesisJ $ . comma\L { awrynowicz } The Conference was sponsored by the Institute of Mathematics of the Polish Academy of Sciences as T( period ˆ{\L Winiarski}\acute open{o parenthesis} $ d $ Krak\acute acute-o{z} w closing) parenthesis , $ period well as by the Universities ofL dz ´ and Lublin and by the Technical University of Rzeszo ´ w . The main topics were : .. geometrico´ function theory of one complex vari hyphen The Organizing Committee expresses its gratitude to all these institu - tions and t o all people who \noindentable .. $ quasiconformal . \L { mappingso j a s i comma e w i c z ..} complex( $ analysis Krak in $ several\acute variables{o} $ and w ) , \ h f i l l P. \ h f i l l Pflug \ h f i l l ( Vechta ) , \ h f i l l W. \ h f i l l Ple helped the organizers in their efforts . $ \potentialacute{ s theory} $ in niak Case\ 1h n f iCase l l ( 2 periodKrak $ \acute{o} $ w ) , 140 mathematicians from 20 countries participated in the Conference period ∗ \noindentThey deliveredK . 28 Rusek one hyphen ( Krak hour $ lectures\acute and{o} 87$ short w communications ; Secretary period ) , J . Siciak ( Krak $ \acute{o} $ w ; Chairman ) ,W . Tutschke The organizerThe Proceedings of the Conference consist was of the the list Institute of participants of Mathematics , the li ofst theof all lectures and communications and of \noindentJagiellonian36 papers( University Halle submitted ) period , tV o .this S volume . Vladimirow . Most of ( the Moscow papers ) contain , T . original Winiarski results announced ( Krak during$ \acute the {o} $ w ) . The ConferenceConference was ; only sponsored a few of by them the are Institute of survey of Mathematics character . of the ThePolish main Academy topics of were Sciences : \ asquad well asgeometric by the Universities functionKamil Rusekof L-suppress theory sub of o-acuteone complex d z-acute vari and Lublin− ableand by , the\quad Technicalquasiconformal University of Rzesz mappings acute-o , w\ periodquadSecretarycomplex analysis in several variables and potentialThe Organizing theory Committee in $\ expressesl e f t .C\ itsbegin gratitude{ a l i gto n alle d } these& institu n \\ hyphen &.tions and\end t o{ alla l people i g n e d who}\ right helped. $ the organizers in their efforts period * 140The mathematicians Proceedings consist from of the 20 list countries of participants participated comma the li st in of theall lectures Conference . Theyand communications delivered 28 and one of− 36hour papers lectures submitted t and o this 87 volume short period communications .. Most of . the papers contain original results announced during the Conference semicolon only Thea few organizer of them are of of the survey Conference character period was the Institute of Mathematics of the JagiellonianKamil Rusek University . Secretary The Conference was sponsored by the Institute of Mathematics of the Polish Academy of Sciences as well as by the Universities of $ \L {\acute{o}}$ d $ \acute{z} $ and Lublin and by the Technical University of Rzesz $ \acute{o} $ w .

The Organizing Committee expresses its gratitude to all these institu − tions and t o all people who helped the organizers in their efforts .

\ [ ∗ \ ]

The Proceedings consist of the list of participants , the li st of all lectures and communications and of 36 papers submitted t o this volume . \quad Most o f the papers contain original results announced during the Conference ; only a few of them are of survey character .

\ centerline {Kamil Rusek }

\ centerline { S e c r e t a r } CONTENTS \ centerlineList of participants{CONTENTS period} period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period\noindent periodListofparticipants...... period period period period period period period period period period period period period period period period period \quad i v −− v period period period period period period period ..CONTENTS iv endash v \ beginProgram{Lista l i : of g n participants∗} ...... ProgramI period. . . Lectures : iv – v open parenthesis 45 min period closing parenthesis period period period period period period period period period period\end{ a period l i g n ∗} period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period\noindent periodI.Lectures(45min.)...... period period period period period periodProgram period period : period period period .. vi \quad v i II period Communications open parenthesis 20 min period closing parenthesis period period period period period period period period I . Lectures ( 45 min . ) ...... period\noindent periodII.Communications(20min.)...... period period period period period period period period period period period period period period period period period \quad v i i −− i x . . . . . vi periodPapers period submitted period period to theperiod Proceedings period period period: period period period period period period period period period period period II . Communications ( 20 min . ) ...... periodC . A period n d period r e i period a n ..\quad vii endashCazacu,Onthedisctheorem...... ix \quad 1 −− 1 0 . vii – ix Papers submitted to the Proceedings : C . A n d r e i a n C a z a c u , On the disc theorem . . . APapers . B o submitted i v i n to and the ProceedingsR . Dw i : l ew i c z , Holomorphic approximation of CR functions ...... 1 – 1 0 A . B o i v i n and R . D w i l ew i c z , Holomorphic C period A n d r e i a n .. C a z a c u comma On the disc theorem period period period period period period period period period approximation of CR functions period\ centerline period period{on tubular period period submanifolds period period of period $ C period ˆ{ 2 period} ...... period period period period period period period period period on tubular submanifolds of 2...... 11 – 1 8 period...... period period period period .. 1 endash 1 0 C R . B r ummelhui s and J . Wi e g e r i n c k , Representing measures for the disc .A .period . B o . i v i n . and . R period 1 D 1 w $ i l−− ew i1 c 8z comma} Holomorphic approximation of CR functions algebra and for the ball algebra ...... 1 9 – 35 on tubular submanifolds of C to the power of 2 period period period period period period period period period period period period P . C a r am a n , New cases of equality between p− module and p− capacity ...... 37 – 56 S . C y period\noindent periodR period . B period r ummelhui period period s and period J . Wi period e g period e r period i n c period k , Representing period period period measures period period for the period disc period period n k and P . Twor z e w s k i , Diagonal series of rational functions ...... 5 7 – 63 S . D i m i e v , period period period period period period period period period period period period period period 1 1 endash 1 8 Holomorphic non - holonomic differential systems on complex man - \noindentR period Balgebraandfortheballalgebra. r ummelhui s and J period Wi e g e r i n c k comma . . . Representing . . . . . measures . . . for. . the . disc ...... \quad 1 9 −− 35 ifolds...... 65–73 Palgebra . C a and r am for a the n ball , New algebra cases period of period equality period between period period $ p period− period$ module period andperiod $ period p − period$ periodcapacity period . period ...... \quad 37 −− 56 G . D i mkov , On products of starlike functions . I ...... 75 – 79 periodS . Cy period n period k andP period . Twor period z period ews period k i period , Diagonal period period series period of period rational period functions period period . period . . . period . . .period . . period\quad 5 7 −− 63 G . D i mkov , J . S t an k i e w i c z and Z . S t a n k i e w i c z , On a class of starlike periodS . D period i m period i e v period , Holomorphic period period nonperiod− periodholonomic period period differential .. 1 9 endash systems 35 on complex man − functions defined in a halfplane ...... 8 1 – P period C a r am a n comma New cases of equality between p hyphen module and p hyphen capacity period period period period 86 M . M . Dj r b a s h i an and A . H . K a r a p e t y a n , Integral representations for some period\ centerline period period{ ifolds...... 37 endash 56 \quad 65 −− 73 } weighted classes of functions holomorphic in matrix domains ...... 87 – 94 L . M . D r u S period C y n k and P period Twor z e w s k i comma Diagonal series of rational functions period period period period period period z˙ k o w s k i , A geometric approach to the Jacobian Conjecture period\noindent periodG.Dimkov period .. 5 7 endash ,Onproducts 63 of starlike functions . I ...... \quad 75 −− 79 in 2...... 95 – 1 1 G.Dimkov,J.StankiS period D i m i e v comma Holomorphic ewi non hyphen cz \Cquad holonomicandZ differential . S t systems ank on i ewcomplex i c man z ,Onahyphen class of starlike M . F r o n t c z ak and A . M i o d e k , Weil ’ s formulae and multiplicity ...... 1 3 – 1 8 J . F ifolds period period period period period period period period period period period period period period period period period period u k a and Z . J . J a k u b o w s k i , On certain subclasses of bounded univalent period\noindent periodfunctionsdefinedinahalfplane period period period period period period period . . . period . . period. . . period . . . period . .period . . . period . . . period . . period . . . period . . . period ...... \quad 8 1 −− 86 functions ...... periodM.M. period Dj period r b perioda s h period i an period andA period . H period. Ka period r a p period e t yperiod a n period , Integral period period representations period period period for some period period ..... 19–115 period period period period period period period period period period period period period period period .. 65 endash 73 A . Z . G r i n s h p a n , Univalent functions with logarithmic restrictions ...... 1 1 7 – 1 38 C . D . \noindentG period Dweighted i mkov comma classes On products of functions of starlike holomorphic functions period in I period matrix period domains period period . . . period . . period . . . period . . . period . . period\quad 87 −− 94 H i l l and S . R . S i manc a , The super complex Frobenius theorem ...... 1 39 – 1 55 W . H y b , On the periodL. \ periodquad periodM. \ periodquad D period r u period $ \ period{z} period$ k period o w s period k i period , \quad periodA \ periodquad periodgeometric period\ periodquad periodapproach period\quad periodto \quad the \quad Jacobian \quad Conjecture spectral properties of translation operators in one - dimensional period period .. 75 endash 79 tubes...... \ hspaceG period∗{\ Df i l mkov l } in comma $ C J ˆ period{ 2 } S t...... an k i e w i c z .. and Z period S t a n k i e w i c z comma On a class of starlike ...... 1 5 7 – 1 61 ...... functions defined in a halfplane period period period period period period period period period period period period period period A . J a n i k , On approximation of analytic functions and generalized orders . . . . 1 63 – 1 67 M . J a r n period...... period period period period period period period period period period period period period period period period period period i c k i and P . P fl u g , Invariant pseudodistances and pseudometrics period. 9 period 5 $ period−− period1 1 period period period period period period period .. 8 1 endash 86 — completeness and product property ...... 1 69 – 1 89 M period M period Dj r b a s h i an and A period H period K a r a p e t y a n comma Integral representations for some M.J e − cedilladrzejowski, N...... The.....homogeneous...... transfinitediameter...... of a compact subsetof .. 191 \noindentweighted classesM. Fr of functions on t cholomorphic zC akandA.Mi in matrix domains odek period , Weil period ’ period...... s formulae period period... and.. period multiplicity...... period period...... period . . period ...... \quad 1 3 −− 1 8 – 205 S . K o l d z i e j , Jung ’ s type theorem for polynomial transformations of 2.... 27 – 2 1 2 T . K r a periodJ . F period u k period a and .. Z 87o . endash J . 94J a k u b o w s k i , On certain subclassesC of bounded univalent s i n´ s k i , On branches at infinity of a pencil of polynomials in two com - L period .. M period .. D r u z-dotaccent k o w s k i comma .. A .. geometric .. approach .. to .. the .. Jacobian .. Conjecture plex variables ...... \ hspacein C to∗{\ thef power i l l } functions...... of 2 period period period period period period period period period period period period period period period period \quad 1 9 −− 1 1 5 . . . 2 1 3 – 220 A . K r o k and T . M a z u r , The kaehlerian structures and reproducing kernels . 2 2 1 period period period period period period period period period period period period period period period period period period period – 224 period\noindent periodA period . Z period . Gr period i n s period h p period a n , period Univalent period period functions period with period logarithmic period period period restrictions period period . .period . . period ...... \quad 1 1 7 −− 1 38 periodC . D period . H period i l l period and period S . R period . S periodi manc period a , period The super period period complex period Frobenius period period theorem period period . . . period . . 9. 5\quad endash1 1 139 −− 1 55 WM . period H y b F , r oOn n t the c z ak spectral and A period properties M i o d e kof comma translation Weil quoteright operators s formulae in and one multiplicity− dimensional period period period period period period period period period period period period .. 1 3 endash 1 8 \ hspaceJ period∗{\ Ff u i kl l a} andtubes...... Z period J period J a k u b o w s k i comma On certain subclasses of bounded univalent \quad 1 5 7 −− 1 61 functions period period period period period period period period period period period period period period period period period period\noindent periodA period . J perioda n i period k , On period approximation period period period of analytic period period functions period period and periodgeneralized period period orders period . .period . . period\quad 1 63 −− 1 67 periodM. \ periodquad periodJ a r period n i cperiod k i period\quad periodand P period . \quad periodP period f l u period g , \ periodquad periodInvariant period pseudodistances period period period and period pseudometrics period period period period period period period period period period period period period .. 1 9 endash 1 1 5 −−−Acompletenessandproduct period Z period G r i n s h p a n comma property Univalent . . functions . . . . with . . logarithmic . . . . restrictions . . . . period . . . period . . period. . . period . . . period . . period ...... \quad 1 69 −− 1 89 periodM . Jperiod $ e period− period .. drzejowski 1 1 7 endash 1 38 , { C } N...... ˆ{ The } ... .C period. ˆ{ homogeneous D period H i l l} and. S period . R . period . S i .manc . a comma . The . super . complex . . Frobenius . . theorem . transfiniteperiod period period{ period. period...... period .. 1 39 endash 1 55 }ˆ{ diameter } ...... of { . ..W period} a H y{ b.. comma} Oncompact the spectral{ properties...... of translation operators in one hyphen} dimensionalsubset { ...... tubes period}ˆ{ periodo f } period. period . period 1 9 period 1 $ period−− period205 period period period period period period period period period period periodS . K period o $ period\ l period{ o }$ period d z period i e period j , Jung period ’ period s type period theorem period for period polynomial period period transformations period period period of period $ C period ˆ{ 2 } period. . period . period .period 2 7 period $ −− period2 1 period 2 period period period period period period period period period period period period periodT . K period r a period s i period $ \acute period{n period} $ periods k i period , On period branches period at period infinity period period of a period pencil period of .. polynomials 1 5 7 endash 1 in 61 two com − A period J a n i k comma On approximation of analytic functions and generalized orders period period period period .. 1 63 endash 1 67plexvariables...... \quad 2 1 3 −− 220 AM . period K r o .. k J a and r n Ti c k. iMa .. and z P u period r , The .. P fl kaehlerian u g comma .. structures Invariant pseudodistances and reproducing and pseudometrics kernels . \quad 2 2 1 −− 224 emdash completeness and product property period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period .. 1 69 endash 1 89 M period J e-cedilla drzejowski comma C N period period period period period period period period period to the power of The period period period period period to the power of homogeneous period period period period period period period period period period period period period period transfinite period period period period period period period period period period period period to the power of diameter period period period period period period period period period of period period period a period period compact period period period period period period period period period subset period period period period period period period period to the power of of period period 1 9 1 endash 205 S period K o l-suppress sub o d z i e j comma Jung quoteright s type theorem for polynomial transformations of C to the power of 2 period period period period 2 7 endash 2 1 2 T period K r a s i n-acute s k i comma On branches at infinity of a pencil of polynomials in two com hyphen plex variables period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period .. 2 1 3 endash 220 A period K r o k and T period M a z u r comma The kaehlerian structures and reproducing kernels period .. 2 2 1 endash 224 Contents .. i ii \ hspaceW period∗{\ Kf i r l o-acutel } Contents l i k o w\quad s k i commai i i Anisotropic complex structure on the pseudo hyphen Euclidean Hurwitz pairs period period period period period period period period period period period period period period period period period period\noindent periodW period . K period r $ \ periodacute period{o} $ period l i period k o w period s k period i , Anisotropic period period period complex period structure period period on periodthe pseudo period period− Euclidean period period period period period period period period period period period period period periodContents period period i ii period period period period\noindent periodW . KHurwitzpairs...... period r o´ l i period k o w s period k i , Anisotropic period period complex .. 22 structure 5 endash on 240 the pseudo - Euclidean \quad 22 5 −− 240 KK . period KHurwitz u r K d u pairs r y d k y . ka . .a , . comma . A . . counterexample . . A . .counterexample ...... to . to . . subanalyticity ...... of . an. . ofarc . . . anhyphen . . . arc . . analytic .− . .analytic . . . function . . . . . function . .. . 241 . . . endash . \quad 243 241 −− 243 JJ period $ .. L-suppress 22\L 5 –{ 240awry sub K . awry K u n r n d o y ow k ai c ,w Az comma counterexample i K c period z to K subanalyticity cedilla-e , }$ K.K d z of i a an and arc $ O - cedilla analytic period S− functione u z $ u k d i commaz 241 i – a 243 Supercomplex andO . S ustructures z u k i , Supercomplex structures , sur − comma surJ . hyphenL awrynowicz, K.K cedilla − e d z i a and O . S u z u k i , Supercomplex structures , sur - \noindentface solitonface solitonface equations equations soliton comma , and equations and quasiconformal quasiconformal , and mappings quasiconformal mappings . . . . period . . . . .period mappings. . . . period . . . . . period ...... period . .245 . – period . 268 . J . period . M. . period . . . period . . . period . . . . \quad 245 −− 268 periodJ . M periodMysz . Mysz periode w s e k period iw , On s kroots period i of , theOnperiod automorphism roots period of period the group period automorphism of a circular period domain period group .. 245 of endash a circular 268 domain J period M period Mysz ein w sC kn...... i comma On roots of the automorphism group269 of a– circular 276 domain \ centerlinein C toD the. P a power{ rin t yk of $ a n C , periodA ˆ distortion{ n period} theorem...... period for period quasiconformal period period automorphisms period period of the period period period period period period period period unitperiod...... disk period . . . . .period . . . . period. . . . . period . . . . . period . . . . . period . . . . .period . . . . period . . . . . period . . . . . period . . . . .period . . . . period. . . . . period . . . . . period . . . . . period 277 period – 281 period period period...... periodM . P period a s s a r period e , A new period division period formula period for completeperiod period intersections period . period . . . . . period . . . . . period . . . . period 283 –period 286 Z period . P a period period period period269 $ periods−− t e r276 period n ak} - Winperiod i a period r s k i , period On the period dependence period of period the Bergman period function period onperiod period period period period period 269 endash 276 D perioddeformations P a r t y of k the a comma Hartogs A domain distortion . . . theorem ...... for . . quasiconformal...... automorphisms ...... of . . the . . . . . 287 – 300 \noindentunit diskK . S periodD p a . l Pl period e ak , rContinuous period t y k period a transformation , period A distortion period groups period on theorem spaces period . .period . for . . . periodquasiconformal . . . . . period . . . . period. . . . . automorphisms period . 301 period – 320 period S . of period the period period period periodS p o d period z i e j perioda , Some period criteria period for the period inj ectivity period of holomorphic period period mappings period . period . . . . period 32 1 period – 323 H period . M . S period r i v period period period period\ centerline perioda s t av period{ aunitdisk...... , Applications period period of certain period linear period operators period in period the theory period of period period period period period period period period period \quad 277 −− 281 } period periodanalytic period functions period . . period . . . . . period . . . . period . . . . . period . . . . .period . . . . period . . . . . period ...... 277 . . .endash . . . . 281...... \noindentM period32 5M. – P 330 a s Pa A s a. S r s t e r scomma z e a b r o eAn´ s new ,Anew k i , division The growth division formula of regular for formula complete functions forintersections on algebraic complete sets period . intersections . .period . . . . . period . . 33 period . 1 . – . period . . .period . . period ...... \quad 283 −− 286 periodZ.Pasternak period341 T period . S period z e mbe period r− gWin , period Automorphisms i a period r s k period i , of .. On 283 Riemann the endash dependence 286 surfaces of with the Bergmantwo fixed function on Z periodpoints...... P a s t e r n ak hyphen Win i a r s k i comma On the dependence of the Bergman function on \noindentdeformations. . . .deformations of 343 the – Hartogs 347 K . ofdomain T o theHartogsdomain. c h o period w i c z period , The classesperiod of period univalent . . period . functions . period . . .connected period . . period . with . . homograperiod . . period. - . . period . . . period . . period . . . period ...... \quad 287 −− 300 phiesperiodK. . . . Spa period . . . . . period l . . l . . e .period .k . ., . Continuousperiod . . . . . period . . . . . period transformation . . . . .period . . . . period. . . . .groups period . . . . . period . on . . .spaces . period . . . . .period ...... period ...... period ...... period . . . 349 . period . – 355. .period . . period . . . . . \quad 301 −− 320 S . S p o d z i e j a , Some criteria for the inj ectivity∗ of holomorphic mappings . . . . . \quad 32 1 −− 323 period periodA . Wrz period e s i periode n´, On period some majorizationperiod .. 287 of endash derivatives 300 in the class S (γ)...... 357 – 35 9 HK . period MJ . . Z S S aj rpa a i− l vcedilla l e a k s commac t , Distortion av Continuous a , functionApplications transformation and quasisymmetric of groups certain mappings on spaces linear . . period . . operators . . .period . . . . period . . in . . the. period . . theoryperiod 361 – periodof period period period period369 period period period period period period period period period period period .. 301 endash 320 \noindentS period Sanalyticfunctions...... p o d z i e j a comma Some criteria for the inj ectivity of holomorphic mappings period period period period period .. 32 1 \quad 32 5 −− 330 endashA . S 323 t r z e b o $ \acute{n} $ s k i , The growth of regular functions on algebraic sets ...... \quad 33 1 −− 341 T.H period\quad MS period z e S mbe r i v r a g s t , av\ aquad commaAutomorphisms Applications of certain\quad linearo f \ operatorsquad Riemann in the theory\quad of s u r f a c e s \quad with \quad two \quad f i x e d analytic functions period period period period period period period period period period period period period period period period period\noindent periodpoints...... period period period period period period period period period period period period period period period period period \quad 343 −− 347 periodK . T period o c period h o w period i c zperiod , The period classes period ofperiod univalent period period functions period period connected period period with period homogra period− period period period period period period period .. 32 5 endash 330 \ centerlineA period S t{ rphies...... z e b o n-acute s k i comma The growth of regular functions on algebraic sets period period period period period period \quad 349 −− 355 } period period period period .. 33 1 endash 341 \noindentT period ..A S . z eWrz mbe e r gs comma i e $.. Automorphisms\acute{n} { .., of} ..$ Riemann On some .. surfaces majorization .. with .. two of .. derivatives fixed in the class $ S ˆ{ ∗ } ( points\gamma period period) . period . period . period . . period . period . period . period357$ period−− 35 period 9 period period period period period period period period period period period period period period period period period period period period period period period period period period period\noindent periodJ period . Z period a j $ period a−cedilla period period $ c period, Distortion period period function period period and quasisymmetric period period period mappings period period . . period . . . period ...... \quad 361 −− 369 period period period period period period period period period period period period period period .. 343 endash 347 K period T o c h o w i c z comma The classes of univalent functions connected with homogra hyphen phies period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period period .. 349 endash 355 A period Wrz e s i e n-acute sub comma On some majorization of derivatives in the class S to the power of * open parenthesis gamma closing parenthesis period period period period period period period period 357 endash 35 9 J period Z aj a-cedilla c comma Distortion function and quasisymmetric mappings period period period period period period period period period period period period period period period period period period .. 361 endash 369 LIST OF PARTICIPANTS \noindentBULGARIALIST .. Romani OF PARTICIPANTS comma Giuliano BULGARIADimiev comma\quad StanchoRomani .. Succi , Giuliano comma Francesco Equation: Z period from Ralitza to Kovacheva sub comma to the power of Hristov comma Valentin from Kiryakova comma Virginia to\noindent DimkovLIST commaDimiev OF Georgi PARTICIPANTS , Stancho to the power\quad of M periodSucciBULGARIA S , period Francesco .. KoshiRomani comma, Giuliano Shozo from Morimoto comma Mitsuo to JAPAN RusevDimiev comma, Peter Stancho .. MEXICOSucci , Francesco \ beginCANADA{ a l i g .. n ∗} Ramirez de Arellano comma Enrique \ tagEquation:∗{$ Z Gilligan . ˆ{ commaR a l i t z Bruce a } from{ Kovacheva Srivastava comma ˆ{ Hristov Hari to Boivin , comma Valentin Andr acute-eˆ{ Kiryakova M period .. Korevaar , Virginia comma Jacob} { fromDimkov Morimoto,Mitsuo Ralitza , Georgi }} { , }ˆKoshi,{ M.Shozo}} S . $} Koshi , ShozoZ. ˆ{ MorimotoKiryakova, ,Virginia MitsuoS. } { JAPAN } Wiegerinck comma Jan to NETHERLANDSJAPAN Hristov,Valentin Kovacheva Dimkov,Georgi M. \endCHILE{ a l i g n ∗} , C o-acuteRusev rdova, Peter commaMEXICO Antonio .. POLANDCANADA Ramirez de Arellano , Enrique \noindentXing sub commaRusev to , thePeter power\quad of CHINESEMEXICO Yang PEOPLE quoteright S REPUBLIC .. B l-suppress ocki comma Zbigniew from ChmielowskiCANADA \quad commaRamirez Jan to Baran de Arellano comma Miros , l-suppressEnrique sub aw W iegerinck,Jan Srivastava,Hari CZECHOSLOVAKIA .. CyganKorevaar, commaJacob EwaNETHERLANDS Gilligan, BruceBoivin,Andr´e M. \ beginFuka{ commaa l i g n ∗} Jaroslav .. Cynk comma S l-suppress sub awomir \ tagEquation:∗{$CHILE Gilligan DDR sub Tutschke , Bruce sub comma ˆ{ Srivastava to the power of , Peters Hari comma} { KlausBoivin from Schmalz , Andr comma Gerd\acute to Achilles{e}} commaM . R $ sub} Korevaar Wolfgang, JacobC too´ the ˆrdova{ powerWiegerinck, Antonioof u-dieresisPOLAND ,diger Jan Wegert} { commaNETHERLANDS Elias .. Frontczak} sub comma to the power of D sub Dwilewicz to the power of \end{ a lXing i g n ∗}CHINESE Yang PEOPLE ’ S REPUBLIC Blocki, ZbigniewChmielowski,Jan CZECHOSLOVAKIA Dronka from Dru, to Downarowicz to the power of Czy sub dotaccent-z kowskiBaran, commaMiros fromlaw comma Roman to comma Janusz to the power of cedilla-aCygan z-dotaccent, Ewa subFuka comma, Jaroslav Janusz browskaCynk ,S commalawomir sub Maria to the power of Ludwik to the power of Anna comma Ma l-suppress sub\noindent gorzata CHILE

FINLAND .. Godula comma JanuszCzy cedilla−az˙,Januszbrowska, D Dru ,Roman \noindent C $ \acute{o} $ rdova ,Dronka Antonio \quadzkowski,˙ POLAND Anna,Mal Naekki comma Raimo .. Hyb commaDwilewicz Wojciech Downarowicz ,Janusz gorzata F rontczak, MariaLudwik FRANCE .. Jak o-acute bczak comma Piotr Schmalz,Gerd DDR P eters,Klaus W egert, Elias \noindent $ Xing ˆ{ CHINESE } { , }$ Yang PEOPLE ’ S REPUBLICAchilles,\quadR u¨diger$ B \ l ocki , Zbigniew ˆ{ Chmielowski Bonneau comma Pierre .. Jakubowski comma Zbigniew J periodT utschke, Wolfgang ,Dloussky Jan } comma{ Baran Georges , .. Janik Miros comma\ l Adam{ aw }}$ FINLAND , Janusz CZECHOSLOVAKIADolbeault comma Pierre\quadGodula ..Cygan Jarnicki , comma Ewa Marek , Raimo , Wojciech FRANCE o´ , Piotr , Pierre FukaChisholm ,Naekki Jaroslav sub comma\quad toHyb theCynk power , of S GREAT $ \ l BRITAIN{ awomirJak John}bczak$ S period R periodBonneau J e-cedilla drzejowskiJakubowski comma Mieczys to the power , Zbigniew J . of suppress-l aw from Jondro comma Halina to Jelonek comma Zbigniew , Georges , Adam \ beginITALY{Dlousskya .. l i gKaczmarek n ∗} commaJanik Ludwika , Pierre , Marek \ tagGentili∗{$Dolbeault DDR comma{ GrazianoTutschke .. KoJarnicki ˆ{ l-suppressPeters odziej , comma Klaus S suppress-l ˆ{ Schmalz sub awomir , Gerd } { A c h i l l e s , R }} { , }ˆ{\ddot{u} ChisholmGREATBRITAIN John S . R . Je−cedilladrzejowski, MieczyslawJondro,Halina ITALY d i gMarchiafava e r } { Wolfgang comma, Stefano}}{ Wegert .. Kopiecki} comma, E Ryszard l i a s $} Frontczak ˆ{ D ˆJelonek,{ CzyZbigniew} { DwilewiczKacz- ˆ{ Dronka ˆ{ Dru } { Downarowicz }}}ˆ{ c e d i l l a −a \dot{z}marek{ , ,} LudwikaJanuszGentili{ browska, Graziano} , Ko} {\lodziej dot{,} lawomirkowskiMarchiafava , ˆ{ , Stefano Roman Kopiecki} { ,, Janusz }}} { , }ˆ{ Anna { , Ma \ lRyszard{ gorzata }}} { Maria ˆ{ Ludwik }} \end{ a l i g n ∗}

\noindent FINLAND \quad Godula , Janusz

\noindent Naekki , Raimo \quad Hyb , Wojciech FRANCE \quad Jak $ \acute{o} $ bczak , Piotr Bonneau , Pierre \quad Jakubowski , Zbigniew J .

\noindent Dloussky , Georges \quad Janik , Adam

\noindent Dolbeault , Pierre \quad Jarnicki , Marek

\noindent $ Chisholm ˆ{ GREAT BRITAIN } { , }$ JohnS.R $. J e−cedilla drzejowski , Mieczys ˆ{\ l } aw ˆ{ Jondro , Halina } { Jelonek , Zbigniew }$ ITALY \quad Kaczmarek , Ludwika Gentili , Graziano \quad Ko \ l o d z i e j , S $ \ l { awomir }$ Marchiafava , Stefano \quad Kopiecki , Ryszard List of participants .. v ListKrasi of n-acute participants ski comma\ Tadeuszquad v .. Zwonek comma W suppress-l odzimierz KrasiKrok comma $ \acute Anna{ ..n} Zyskowska$ ski comma , Tadeusz Krystyna\quad Zwonek , W \ l odzimierz Equation: Lisiec sub L-suppress sub suppress-L to the power of awry to the power of Kr sub Kur to the power of Krz Kwi Ligoc sub ojasi\noindent ka to theListKrok power of participants , of Anna o-acute\quad sub v Krasi dykaZyskowska fromn´ ski eci, Tadeuszto , Krystynay to theZwonek power of, likowski W lodzimierz sub dotaccent-z comma Ewa from comma Wojciech to comma JanKrok from, Anna comma KrzysztofZyskowska to comma, Krystyna Wies suppress-l sub aw ki ewicz sub comma to the power of nowicz sub Stanis to the power of\ begin comma{ a sub l i g suppress-ln ∗} sub aw to the power of Julian to the power of n-acute s ki comma Micha suppress-l .. Vijiitu sub comma to the \ tag ∗{$ L i s i e c ˆ{ Kr { Kur ˆ{ Krz }} Kwi { Ligoc }} {\L {\L ˆ{ awry }}}ˆ{\acute{o} { dyka ˆ{ e c i } { y }}ˆ{ l i k o w s k i {\dot{z}}}} { o j a s i power of ROMANIA sub Pascu subROMANIA comma to theAndreian power of Andreian Gussi comma Gheorge from Mihalache to Caraman Eugen sub V Gussi,GheorgeMihalache ka } , Ewa ˆ{ , Wojciech } { , Jan ˆ{ ,Caraman Krzysztof,Cazacu} { ,, Wies \ l { aw }}{ k i } { ewicz ˆ{ nowicz } { , }ˆ{ , } { S t a n i s }ˆ{ J u l i a n } {\ l { aw }}}ˆ{\acute{n} period comma N period toV the ijiitu power of commaP ascu Cazacu, sub Petru commaEugen Cabiria Petru Cabiria s k i , Micha \ l }}, $} V i j i i t u ˆ{ ROMANIA { Pascu ˆV{.,NAndreian. { Gussi , Gheorge ˆ{ Mihalache } { Caraman }}} { , } Macura comma Janina .. SWEDEN o´likowskiz˙ dykaeci Eugen }} { , }ˆ{ , Cazacu { Petru } Kr,Kur} Krz{ KwiV.,N.Ligoc y ,Wojciech} Cabiria Majchrzak comma Wies suppress-l sub aw ..Lisiec Backlund comma Ulf ojasika , Ewa ,Krzysztof nski,´ Michal L awry ,Jan ki , \end{ a l i g n ∗} ,Wieslaw ewicznowicz Julian Maszczyk comma Tomasz .. F a-dieresis sub lstr dieresis-oL m comma Anders , Stanislaw Mazur comma Tomasz .. Passare comma Mikael , Janina SWEDEN \noindentEquation:MacuraMacura Myszewski , Janinacomma Jan\quad fromSWEDEN Partyka comma Dariusz to Miodek comma Andrzej .. Kaup sub comma to the power of , Wies l , Ulf , Tomasz a¨ Anders , Tomasz SWITZERLANDMajchrzak Burchard aw Backlund Maszczyk F lstrom,¨ Mazur , Mikael \noindentPasternakPassareMajchrzak hyphen Winiarski , Wies comma $ Zbigniew\ l { aw .. USA}$ \quad Backlund , Ulf MaszczykPethe comma , Tomasz Karol ..\ Durenquad commaF $ Peter\ddot{a} { l s t r \ddot{o} m , }$ Anders Mazur , Tomasz \quad Passare , Mikael Pierzchalski comma AntoniKaup .. HillSWITZERLAND comma C periodBurchard Denson Myszewski, JanP artyka,Dariusz P l-suppress oski comma Arkadiusz, .. McNeal comma Jaffery Miodek,Andrzej \ beginTworzewski{ a l i g n sub∗} Toch comma Halszka from comma Piotr to cz comma Kajetan to the power of S-acute to the power of Szemb to the \ tag ∗{$Pasternak Myszewski- Winiarski , Jan, Zbigniew ˆ{ PartykaUSA Pethe , Dariusz, Karol }Duren{ Miodek, Peter , Andrzej }$} Kaup ˆ{ SWITZERLAND } { , } power ofPierzchalski Rembieli sub Szapi, Antoni to theHill power, C of . Rusek Denson subP Strzeloski to, Arkadiusz the power ofMcNeal Rz sub Strze, Jaffery to the power of Siciak sub Stank to the power Burchard Rembieli Rusek of Sitarski sub Spodz to the power of Skalska subRz SkwaSiciak from Sowa to Skibi sub Case 1 comma Case 2 el to the power of bo ladkow owi to Sitarski Skalska \end{ a l i g n ∗} SkwaSowa Spodz Skibi rczy ,, ki, o´ zefRy szard the power of n-acute from rczy to cedilla-aStrze dkowsStrze lecki subStank comma acute-n sub Wojciechn´ to the power of comma Adamiejaiewi from commaKamil PawekiJ ski ystynaGrzegorz Przemys aw ´Szemb Szapi cedilla−adkows sArtur nski´ ,, , Kr n´, ,Jakub ski,MaciejStanislawl S lecki ,Adam ,Pawel l-suppress to c z comma Jan erg s ka hyphen Zahorska comma Tomasz comma to the power of ieja iewi sub s Artur,n´ to the powererg of comma ,Tomasz , \noindent Pasternak − Winiarski , Zbigniew \quad USA , Wojciechcz,Jan ska−Zahorska sub comma Kami l from ki comma to acute-n s ki ki J comma sub comma sub comma to theT utaj power of o-acute sub Kr to the power of zef Ry Pethe , Karol \quad Duren , Peter elboladkowowi ski sub n-acuteT worzewski comma Grzegorz from szard to comma Jakub ystyna Przemys ski comma Maciej Stanis sub l-suppress aw sub suppress-l T och,Halszka,Piotr aw Janina .. USSR sub Tsikh subcz,Kajetan comma to the power of A Tamrazov to the power of n comma Vladimir from lin comma Izaak to Iv sub Janina ˘ızenberg \noindent PierzchalskiUSSR A , Antoni \quadlin,IzaakHill , C . Denson Mi Y uzhakovZa˘ıdenberg,MikhailG., Starkov to the power of K sub Sergeevn, toVladimir the power of K sub Ronkin to the power of Napalkov from Pokhilevich to Li rasichkov ruzhilin GrinshpanChirka P \ l oski , Arkadiusz \quad McNealIv , Jaffery ashkovich K rasichkov ,,LevEvgeni to the power of Grinshpan to the power of Chirka ashkovichK Mi to the powerP okhilevich of -dotlessiruzhilin zenberg sub comma comma sub comma− to Napalkov , ˘ıM.˘ı Serge ZT ernovski . Sergeev Ronkin Li ,,Nikola Arkadi I. ˘ı Ya.˘ıG M.. ˘ı, T sikh T amrazov Starkov M . the power of Lev Armen sub Viktor, from comma Promarz to comma Valentin Avgust to the power of comma commaLevArmen Lev Evgeni,Promarz comma ,I..V. V . ,,, ,ValentinAvgust G. M \noindent $ Tworzewski ˆ{\acute{S} ˆ{ Szemb ˆ{ Rembieli { Szapi ˆ{ Rusek { Strz e ˆ{ RzViktor{ Strz e ˆ{ S i c iV a. k { Stank ˆ{ S i t a r s k i { Spodz ˆ{ Skalska { Skwa ˆ{ Sowa } { S k i b i }}}}}}}}}}}}}}ˆ{\acute{n} ˆ{ rczy } { c e d i l l a −a to the power of comma Nikola to the power of comma from hyphen to Arkadi M sub comma I period sub K period to the power of V sub K. dkows }}Aleksandr{\ l e f P t . Tutaj Igor\ Fbegin . Waniurski{ a l i g n e,J d }o´&,zef WEST\\ GERMANY Winiarski , Tadeusz Bingener period to the power of G period to the power of period V period to the power of breve-dotlessil M period from breve-dotlessi to I period ,J u¨ rgen W lodarczyk , Kazimierz Kaup , Ludger Wojtaszczyk , Przemys aw Kaup , Wilhelm Serge& sub e l dotlessi-breve ˆ{ bo }{ Zladkow Ternovski} Yaowi period\end dotlessi-breve{ a l i g n e d }\ Gright sub V. sub} Ml esub c k i period ˆ{ i eto j a the power i e w i of ˆ period{ , { to the, }} power{ s { ofArtur M period}} W o´ jcik , Adam Pflug , Peter Wrzesie n´ Andrzej Ruscheweyh , Stephan Zaj a − cedilla c fromKami period l toˆ{ periodk i breve-dotlessi , } {\acute sub{ comman} s Yuzhakov k i }{ Za, dotlessi-brevek i } J { denberg, { , comma}}ˆ{\ Mikhailacute G{o period}} { comma, }ˆ{ Aleksandrz e f { Ry P}} period{ Kr } ,J o´ zef Spallek , Karlheinz ..s k Igor i {\ F periodacute{n} { , }} ystyna { Grzegorz ˆ{ szard } { , Jakub }{ Przemys { s k i , Maciej { S t a n i s } {\ l } aw Waniurski}}} {\ l comma} aw J o-acute} { , zef ..\acute WEST{n GERMANY} { Wojciech }ˆ{ , Adam }ˆ{ , Pawe \ l } { c z , Jan }{ erg } { s ka Winiarski− Zahorska comma Tadeusz} , .. Bingener Tomasz comma , }} J u-dieresis{ Toch rgen , Halszka ˆ{ , Piotr } { cz , Kajetan }}$ Janina \quad $ USSRW l-suppress{ Tsikh odarczyk ˆ{ A comma{ Tamrazov Kazimierz ˆ..{ Kaupn comma , Vladimir Ludger ˆ{ l i n , Izaak } { Iv ˆ{ Grinshpan ˆ{ Chirka }} { Starkov ˆ{ K { Sergeev ˆ{ K { Ronkin ˆ{ Napalkov ˆ{ Pokhilevich } { Li }}}}} rasichkovWojtaszczyk{ commar u z h i Przemys l i n }}} to theashkovich power of suppress-l}}} Mi aw ˆ{\ .. Kaupbreve comma{\imath Wilhelm} zenberg }} { , }ˆ{ , , Lev { Evgeni { , ˆ{ , } NikolaW o-acute ˆ{ , jcik ˆ{ comma − } { AdamArkadi .. Pflug}}}}} comma{ Peter, , ˆ{Lev{ Armen }} { , } { Viktor }ˆ{ , Promarz } { , Valentin }{ Avgust }} M ˆWrzesie{\breve n-acute{\imath sub comma} M Andrzej . ˆ{\ .. Ruscheweyhbreve{\imath comma}} Stephan{ I. }{ Serge } {\breve{\imath}} Z { Ternovski { Ya . Zaj\breve a-cedilla{\imath c comma} J acute-oG }}} zef{ , ..{ SpallekI } . comma ˆ{.{ KarlheinzV } . } { K . ˆ{ V ˆ{ G. } { . }}}}ˆ{ M . ˆ{ . } { . } \breve{\imath} { , }} { V { M }ˆ{ . } { . }}}{ Yuzhakov } { Za \breve{\imath} denberg , Mikhail G. } , $ Aleksandr P . \quad Ig or F . Waniurski , J $ \acute{o} $ z e f \quad WEST GERMANY Winiarski , Tadeusz \quad Bingener , J $ \ddot{u} $ rgen W \ l odarczyk , Kazimierz \quad Kaup , Ludger Wojtaszczyk $ , Przemys ˆ{\ l }$ aw \quad Kaup , Wilhelm W $ \acute{o} $ j c i k , Adam \quad Pflug , Peter Wrzesie $ \acute{n} { , }$ Andrzej \quad Ruscheweyh , Stephan Zaj $ a−cedilla $ c ,J $ \acute{o} $ z e f \quad Spallek , Karlheinz PROGRAM \ centerlineI period LECTURES{PROGRAM open} parenthesis 45 min period closing parenthesis 1 period R period A c h i l l e s comma Excess intersections in complex analytic geometry period \ centerline2 period L period{ I . ILECTURES period A breve-dotlessi ( 45 min .z e ) n} b e r g comma On holomorphic continuation from a part of the boundary period 3 period J period B i n g e n e r comma InfinitePROGRAM hyphen dimensional superanalysis period \ centerline4 period P period{1 . RC a . r A am c an h comma i l l New e sI cases . , LECTURES Excess of equality intersections ( 45 between min . ) p hyphen in module complex and panalytic hyphen capacity geometry in R to . the} power of n period 1 . R . A c h i l l e s , Excess intersections in complex analytic geometry . \ centerline5 period E period{22 . . ML L period. I .I A .˘ Cı Az h e i n $ r b k\ ebreve a r comma g , On{\ holomorphicimath CR hyphen} $ continuation foli z ations e n b period from e r a g part , of On the holomorphic boundary . continuation from a part of the boundary . } 6 period G period D l o u s s3 k . y J comma . B i n g On e n filling e r , Infinite holes in - dimensional dimension two superanalysis period . \ centerline7 period P period{34 . . DJ P o . .Bi C l b a e r aam ngene u an l t , comma New cases On r of , CR equality Infinite hyphen between analytic− dimensionalp− chainsmodule with and given superanalysisp− capacity boundaries in R periodn. . } 8 period P period D u r e n comma Univalent5 . E . M functions . C h i r k with a , CR range - foli of ations prescribed . capacity period \ centerline9 period Z period{4 . JP period . C a J aku r6 am. bG o . an D w l s ,o k u New i s comma s k cases y , On Extremal filling of equality holes problems in dimension in between some two classes . $ ofp analytic− $ functions module period and $ p − $ capacity in $ R1 0 ˆ{ periodn } B period. $ } K a7 u. P p . comma D o l b Hyperbolic e a u l t , On C CR to the - analytic power chains of * hyphen with given actions boundaries on affine . algebraic surfaces period 1 1 period J period K o8 r . e P v . a D a u r r comma e n , Univalent Fields of functions electrons with on range the sphere of prescribed and quadrature capacity . problems period \ centerline1 2 period J{5.E.M.Chirka,CR period9 . Z K . rJ z. J y aku to theb o w power s k i , of Extremal z-dotaccent− problemsfoli comma ationsin some Generalized classes . } of Neumannanalytic functions endash . Poincar e-acute operator and chord hyphen arc1 0 curves . B . K period a u p , Hyperbolic C∗− actions on affine algebraic surfaces . 1 1 . J . K o r e v a a r , Fields \ centerline1 3 periodof electrons J{ period6 . on G L-suppress the . sphereD l o and sub u quadrature awrs s y k n yo w problems , i On c z open filling . parenthesis 1 2 . holesJ . K with r z iny Kz˙ dimension, periodGeneralized K cedilla-e Neumanntwo .d z} i– a Poincar and O periode´ S u z u k i closing parenthesisoperator comma and .. chord Supercomplex - arc curves structures . 1 3 . J comma.L awrynowicz ( with K . K cedilla − e d z i a and O . S u z u k i ) , \ centerlinesurfaceSupercomplex soliton{7.P.Dolbeaul equations structures comma , and quasiconformal t ,OnCR mappings− analytic period chains with given boundaries . } 14 periodsurface M soliton period equations Mo r i mo , and t o commaquasiconformal Analytic mappings functionals . 14 on . theM .complex Mo r i mo light t o ,cone Analytic andtheir functionals Fourier on endash the \ centerlineBorelcomplex transformations{8 light . Pcone . period and D u their r eFourier n , – Univalent Borel transformations functions . with range of prescribed capacity . } 1 5 period1 5 . I I . period M . Mi M l i period n , Leningrad Mi l i n school comma of geometric Leningrad theory school of offunctions geometric of one theory complex of functions vari - able of . one complex vari hyphen \ centerlineable period1 6 . P{ .9 P f. l Zu g . ( with J . M J . aku J a r nb i o c k w i ) s , Properties k i , Extremal of invariant problems distances — ain survey some . classes of analytic functions . } 1 6 period1 7 . A P . period P los k P i f , l On u g the open irreducibility parenthesis of with polynomials M period in several J a r n variables i c k i closing . 1 8 parenthesis. L . I . Ro n comma k i n , Jenssen Properties ’ s of invariant distances emdash\noindent atheorems survey1 0 period for . holomorphic B .Kaup almost , - Hyperbolicperiodic functions $Cˆ in sev{ - eral ∗ } variables − $ . actions on affine algebraic surfaces . 11 1 7 .period1 J 9 . A period . o Ru r s e Pc h vsuppress-l e a we a y r h sub , , Multipliers Fields o s k i comma offor convex electrons On the harmonic irreducibility on mappings the sphereof .polynomials 20 and. A . quadrature in G several. S e r gvariables e e problems v , On period . 12.J.Krz1 8 periodpseudoconvexity L period I of$yˆ period matrix{\ Ro domains ndot k i{ nz .}} comma 2 1 . K, Jenssen .$ S p Generalized a lquoteright l e k , Transformation s theorems Neumann groups for−− holomorphic onPoincar spaces . almost 22 $ .\ Jacute hyphen . S t an{e periodic k} $ operator functions in and sev chord − arc curves . hyphen1 3 .i J e w$ i c. z ( with\L Z .{ S tawr an k i e y w i c n z ) , On o classes w of i functions c regular z } in( a $ half withK - . K $ cedilla −e$ dziaandO.Suzuki), \quad Supercomplex structures , eral variablesplane . 23 period . P . M . T am r a z o v , Removable singularities of plurisubharmonic functions in topo - logical vector \noindent1 9 periodspacessurface S . period 24 . A Ru . soliton K s . c T h s e i we k equations h y , hThe comma method Multipliers, ofand principal quasiconformal for residue convex in harmonic Leray mappings ’ s theory mappings . . 25 period . W . T u t s c h k e , 1420 . period MThe . role MoA period of r analyticity i Gmo period t ofor S , solving e Analytic r g e Cauchy e v comma functionals– Kovalevskaya On pseudoconvexity problems on the . complex of 26 matrix . T . Win domains light i a r s coneperiod k i , Global and their and local Fourier −− Borel2 1 periodcriteria transformations K for period algebraicity S p a l . l . e 27 k . comma A . P . TransformationYu z h ak o v , Calculation groups on of spaces the full period sum of local residua with respect to a 22 periodpolynomial J period mapping S t an . k i e w i c z open parenthesis with Z period S t an k i e w i c z closing parenthesis comma On classes of functions\noindent28 regular . M1 . 5 G in . a Z halfI a .˘ı hyphend M e n. b Mi e r gl , iRamanujan n , Leningrad surfaces and school exotic algebraic of geometric structures on theoryCn. of functions of one complex vari − ableplane . period 23 period P period M period T am r a z o v comma Removable singularities of plurisubharmonic functions in topo hyphen \noindentlogical vector1 6 spaces . P period . P f l u g ( withM. J a r n i c k i ) , Properties of invariant distances −−− a survey . 24 period A period K period T s i k h comma The method of principal residue in Leray quoteright s theory period \noindent25 period W1 7period . A T . u P t s c$ h\ kl e comma{ o The s } role$ ofk analyticity i , On the for solving irreducibility Cauchy endash of Kovalevskaya polynomials problems in several period variables . 126 8 period . L . T I period . Ro Win n k i a i r k , i comma Jenssen Global ’ s and theorems local criteria for for holomorphic algebraicity period almost − periodic functions in sev − eral27 period variables A period . P period Yu z h ak o v comma Calculation of the full sum of local residua with respect to a polynomial mapping period \noindent28 period M1 9period . S G . period Ru s Z c a h breve-dotlessi e we y h d , e Multipliers n b e r g comma for Ramanujan convex surfaces harmonic and exoticmappings algebraic . structures on C to the power20 . of A n period. G . S e r g e e v , On pseudoconvexity of matrix domains . 2 1 . K . S p a l l e k , Transformation groups on spaces . 22 . J . S t an k i ew i c z ( with Z . S t an k i ew i c z ) ,On classes of functions regular in a half −

\noindent plane . 23 . P . M . T am r a z o v , Removable singularities of plurisubharmonic functions in topo − logical vector spaces . 24 . A . K . T s i k h , The method of principal residue in Leray ’ s theory . 25 .W. T u t s c h k e , The role of analyticity for solving Cauchy −− Kovalevskaya problems . 26 . T . Win i a r s k i , Global and local criteria for algebraicity . 27 . A . P . Yu z h ak o v , Calculation of the full sum of local residua with respect to a polynomial mapping .

\noindent 28 . M . G . Z a $ \breve{\imath} $ d e n b e r g , Ramanujan surfaces and exotic algebraic structures on $ C ˆ{ n } . $ Program .. vii \ hspaceII period∗{\ COMMUNICATIONSf i l l }Program \quad line-parenleftv i i 2 0 min period closing parenthesis 1 period C period A n d r e i a n .. C a z a c u comma On the disc theorem period \noindent2 period emdashI I . COMMUNICATIONS comma Some generalizations $ l i n e of−parenleft the Zorich Theorem 2 by 0$ M period min Cristea. ) period 3 period M period B a r a n comma Bernstein type theorems for compact sets in C to the powerProgram of n period vii \ centerline4 periodII . COMMUNICATIONSA period{1.C.Andreian B o i v i n commaline − Holomorphicparenleft\quad20 min approximationCa . ) z a c in u the , complex On the plane disc emdash theorem generalization . } of the Vitushkin Theorem period 1 . C . A n d r e i a n C a z a c u , On the disc theorem . \ centerline5 period P period{ $ 2 B o n . 2 n. −−−{− e au − − comma,,Some}$ On generalizations Some partialdiff generalizations hyphen of the Zorich equations Theorem of on the weakly by M Zorich . pseudoconvex Cristea Theorem . domains by M period . Cristea . } 6 period J period S period3 R . Mperiod . B a C r a h n i ,s Bernstein h o l m comma type theorems Clifford for endash compact Pad sets acute-e in Cn approximation. period \ centerline7 period4 J .period{ A3 . . B CM o hmi i . v B ie n la o , r Holomorphicw as k n i comma , Bernstein approximation Quelques type remarques in the theorems complex sur les plane ensembles for — compact generalization d acute-e sets terminants of in the Vitushkin$ C period ˆ{ n } . $ } 8 periodTheorem S period . C y n k comma Diagonal series of rational functions period 4 .9 Aperiod . B J o period i v C i z n y5 .to , P Holomorphicthe . B power o n n e of au z-dotaccent , On approximation∂− equations comma Summationon in weakly the pseudoconvex complex formula for plane domains the coefficients−−− . generalization in the Hausdorff series of the period Vitushkin1 0 period S Theorem period D i . m i6 e . v J comma . S . R . Local C h i nons h o hyphen l m , Clifford holonomic – Pad complexe´ approximation analytic .geometry period 1 1 period G period7 .D J i . mkov C hmi comma e l o w Ons k i products , Quelques of remarques starlike functions sur les ensembles period d e´ terminants . \ centerline1 2 period M{5.P.Bonneau,On period D o wn a r8 o . w S i . c C z y comma n k , Diagonal On $ \ exceptionalpartial series of rational cones− $ for functions equationspartial . type period on weakly pseudoconvex domains . } 1 3 period9 . J . J C period z yz˙ , DSummation r o n k a formula comma for On the the coefficients location of in criticalthe Hausdorff points series of a polynomial. 1 0 . S . D period i m i e v , Local non - \ centerline14 periodholonomic L{ period6 complex . J D .S.R.Chi r u analytic z-dotaccent geometry k ow . ssho 1 k 1 i . comma G lm,. D i The mkov Clifford Jacobian , On products Conjecture−− Pad of starlike emdash $ \ functionsacute a few{e . steps} 1$ 2 towards. approximationM . D o solution period . } 1 5 periodwn a r M o periodw i c z ,F On r o exceptional n t c z a k cones comma for Apartial new type simple . proof1 3 . J of .D the r o Weil n k Integrala , On the Formula location period of critical points \ centerline1 6 periodof a polynomial J{7 period . J .F . u14 C k . hmi aL open. D e r u parenthesislz o˙ k w ow s s k with i i , The , Z Quelques periodJacobian J Conjecture a k remarques u b o — w sa kfew sur i closingsteps les towards parenthesis ensembles solution comma . d 1 5$ .On\acute a class{e of} univalent$ terminants . } functionsM period . F r o n t c z a k , A new simple proof of the Weil Integral Formula . 1 6 . J . F u k a ( with Z . J a k u b o w \ centerline1 7 periods k i ) G ,{ On8 period . a class S G . ofe C n univalent yt i n l i k comma functions , Diagonal Regular . quaternionic series of maps rational and partialdiff functions hyphen . type} operators period 1 8 period1 7 . GB .period G e n Gt i i l l i l , i Regular g a n comma quaternionic Complex maps analysis and ∂− ontype homogeneous operators . manifolds 1 8 . B . period G i l l i g a n , Complex \noindent1 9 periodanalysis9 A .periodon J homogeneous . Z C period z $ Gmanifolds y r ˆ i{\ n s hdot . p a{ 1z n 9}} comma . A ., Z Univalent $. G Summationr i n sfunctions h p a n formula ,with Univalent logarithmic for functions the restrictions coefficientswith logarithmic period in the Hausdorff series . 1020 period .restrictions S .Dimi C period . 20D period . ev C . D , H . Local iH l i l l comma l , non Counterexamples Counterexamples− holonomic to the complex to Newlander the Newlander analytic – Nirenberg endash geometry Theorem Nirenberg up . to Theorem the bound up - to the bound hyphen 1ary 1 .andary G positive and. D positive i results mkov results for , On complex for products complex supermanifolds supermanifolds of starlike period . 2 1 functions . V . Z . H r . i s t o v , Remarks on Carath e´ odory 12 2 1 .periodand M .Kobayashi V Do period wn distances Z a period r o . w H 22 r i i. S t . z oM v , . commaI On v a sexceptional h Remarks k o v i c h on , Rational Carath cones curvesacute-e for , partial shellsodory and and extension type Kobayashi . of holomorphic distances period 122 3 period .maps J . S . D period 23 r . o P M .n J period ka k ao´ ,b I cOnv z a a s the k h , kDivision o location v i c by h comma a holomorphic of Rationalcritical matrix curves points in strictly comma of pseudoconvex shells a polynomial and extension domains . . of 24 holomorphic . A . maps period 1423 . period a . n DP i k period r , On u approximation J $ a\ kdot acute-o{z} of b$ analyticc z k a ow k comma functions s k i Division and , The generalized by Jacobian a holomorphic orders Conjecture. matrix in strictly−−− a pseudoconvex few steps domains towards period solution . 124 5 period .25 M . . Z A F. period J re l o o n Jn e a kt n , ci Sets k z comma determining a k ,On Anew approximation polynomial simple automorphisms of proof analytic of functions of theCn. Weil26 and . M generalized Integral. J e − cedilla orders Formulad r zperiod e j o . w s k 125 6 period .i J , The . Z Fuk periodhomogeneous J a e ( l o transfinite with n e k Zcomma .diameter J Sets a kub for determining compact ows subsets polynomial k i of ) ,Ona automorphisms class of of C univalent to the power functionsof n period . 26 period M period J e-cedilla d r z e j o w s k i comma The homogeneous transfinite diameter for compact subsets of n \noindentC to the power1 7 of . Gn period . Ge n t i l i , RegularC quaternionic. maps and $ \ partial − $ type operators . 1 8 . B . G i l l i g a n , Complex analysis on homogeneous manifolds . 27 period27 . L L . period K a c z K m a a c r ze mk , a Bounds r e k comma of univalent Bounds functions of univalent in terms functions of iterated in extrema terms of . iterated 28 . V . S extrema . K i r y period a ko v 128 9 period . A . V Z period . G S r period i n s K h i r p y a ko n v , a Univalent comma Generalized functions fractional with differintegrals logarithmic and their restrictions use in univalent . 20 . Ca , . Generalized D . H i fractional l l , differintegrals Counterexamples and their to use inthe univalent Newlander function−− theoryNirenberg . Theorem up to the bound − function theory period 1 ary and29 . positive S . K o s h i , results Extremal problems for complex in H − supermanifoldsspace . 30 . R . K o v . a c h e v a , Regions of uniform convergence 29 periodof rational S period Chebyshev K o s h approxi i comma - mants Extremal with problems an unbounded in H numberto the power of poles of . 1 hyphen 31 . I . F space . K r period a s i c h k o v - T 230 1 period .V. R Z period .Hr K o i v s a c t h ov e v a , comma Remarkson Regions of Carath uniform convergence$ \acute{e of} rational$ odory Chebyshev and Kobayashi approxi hyphen distances . 22 . Se r . n M o v . s k I i v˘ı, aGeneral s h descriptionk o v i of c closed h , idealsRational and submod curves - ules , of shells the analytic and functions extension of one of variable holomorphic . maps . mants32 with . T .an K unbounded r a s i n´ s k number i , Bifurcation of poles points period of polynomials and the Jacobian Conjecture in 2331 . period P . period a k F $ period\acute K r{o a} s i$ c h b k co v z hyphen a k , T Division e r n o v s k by i breve-dotlessi a holomorphic sub comma matrix General in strictly description pseudoconvex of closed ideals domains . 24 . A . J a n i k , On approximation of analytic functions and generalized orders . and submod hyphen 2 C . ules of the analytic functions of one variable period \noindent32 period33. − T25 − period − ., Properness Z K . r J a e s i and l n-acute o the n Jacobian e s k k i comma , Conjecture Sets Bifurcation determining in C2. points polynomial of polynomials automorphisms and the Jacobian Conjecture of $ C ˆ in{ n } . $ 26C to. M the34 . power N J . G $ . of K e− 2 r ucedillaperiod z h i l i n , $ On dhulls r of z two e j- dimensional o w s k spheres i , The in C homogeneous2. 35 . K . K u r d transfinite y k a , A counterexample diameter for compact subsets of 33 periodto subanalyticity emdash comma of an Properness arc - analytic and function the Jacobian . 36 . M Conjecture . Kw i e c i inn´ Cs kto ithe , Polynomial power of mappings 2 period and Gr o¨ bner \ [34 C period ˆ{basesn N} — period a. criterion\ ] G period for isomor K r u - z phism h i l i of n varietiescomma On . 37 hulls . E of . Ltwo i go hyphen c k a , dimensional A characterization spheres of in ellipsoids C to the and power of 2 period 35 periodballs Kin periodCn. 38 K . V u .r Ya d y . kL a i n comma , On the A Liouville counterexample property to connected subanalyticity with amenable of an arc group hyphen actions analytic . 39. − function − − , period 36 periodOn superposition M period Kw problem i e c i for n-acute algebraic s k functions i comma of Polynomial several complex mappings variables and . Gr dieresis-o bner bases emdash a criterion for isomor hyphen\noindent 27 . L . K a c z m a r e k , Bounds of univalent functions in terms of iterated extrema . 28phism . V of . varieties S . K period i r y a ko v a , Generalized fractional differintegrals and their use in univalent function37 period E theory period L . i go c k a comma A characterization of ellipsoids and balls in C to the power of n period 38 period V period Ya period L i n comma On the Liouville property connected with amenable group actions period \noindent39 period emdash29 . S comma . Ko On s superposition h i , Extremal problem problems for algebraic in functions $Hˆ of{ several1 } − complex$ space variables . period 30 . R . K o v a c h e v a , Regions of uniform convergence of rational Chebyshev approxi − mants with an unbounded number of poles . 31.I.F.Krasichkov − T e r n o v s k i $ \breve{\imath} { , }$ General description of closed ideals and submod − ules of the analytic functions of one variable . 32.T.Krasi $ \acute{n} $ s k i , Bifurcation points of polynomials and the Jacobian Conjecture in

\ [ C ˆ{ 2 } . \ ]

\noindent $ 33 . −−−{ , }$ Properness and the Jacobian Conjecture in $ C ˆ{ 2 } . $

\noindent 34 .N.G.Kruzh i l i n ,Onhulls of two − dimensional spheres in $ C ˆ{ 2 } . $ 35 . K . K u r d y k a , A counterexample to subanalyticity of an arc − analytic function . 36.M.Kwieci $ \acute{n} $ s k i , Polynomial mappings and Gr $ \ddot{o} $ bner bases −−− a criterion for isomor − phism of varieties . 37 . E . L i go c k a , A characterization of ellipsoids and balls in $ C ˆ{ n } . $ 38 . V . Ya . L i n , On the Liouville property connected with amenable group actions . $ 39 . −−−{ , }$ On superposition problem for algebraic functions of several complex variables . viii .. Program \noindent40 period Jv period i i i \quad L-suppressProgram sub aw r y n o w i c z open parenthesis with J period Rembie l i acute-n s k i closing parenthesis comma On Fueter hyphen like equations for J to the power of 3 hyphen triples \ hspaceand regularity∗{\ f i l l period}40 . J $ . \L { aw r y n o w i c z } ( $ with J . Rembie l i $ \acute{n} $ s k41 i period )viii , JOn Programperiod Fueter Macu− rlike a comma equations On the second for variation $ J ˆ{ for3 univalent} − $ meromorphic t r i p l e s functions period 3 42 period T period Mas40 z . c J z.yL awrynowicz k comma( Noncommutativewith J . Rembie l i analyticityn´ s k i ) , Onand Fueter instantons - like equationsperiod for J − triples \ centerline43 period T{ periodand regularity Maz u r comma . On} complex manifoldsand regularity of Bergman . type period 44 period J period McNe41 . J . a Macu l comma r a , OnNecessary the second conditions variation for for H univalent o-dieresis meromorphic lder estimates functions on solutions . to partialdiff hyphen equations period\ centerline {41 . J .42 Macu . T . r Mas a z , c On z y k the , Noncommutative second variation analyticity for and instantons univalent . meromorphic functions . } 45 period N period Mi h a l a43 c h . T e comma. Maz u Specialr , On complex neighbourhoods manifolds of Bergmananalytic setstype in . Stein spaces period \ centerline46 period A{ period4442 . J. . TM McNe i . o Mas d a e l ,k Necessaryz open c z parenthesis y conditions k , Noncommutative with for HJ periodo¨ lder estimatesC h a-cedilla analyticity on solutions d z y to toand the∂− power instantonsequations of acute-n . . s} k i and T period K r a s i n-acute s k i closing parenthesis45 . N . Mi comma h a l a Onc h e radical , Special complete neighbourhoods inter hyphen of analytic sets in Stein spaces . \ centerlinesections period46 .{43 A . M . iT o d . e Maz k ( with u r J . , C On h a complex− cedilla d manifolds z yn´ s k i and of T Bergman. K r a s i n´ types k i ) . , On} radical complete 47 periodinter J - period sections My . s z e w s k i comma On the structure of the Lie algebra of the automorphism group of a \ centerlinecircular domain{44 in . C J to .47 the McNe . Jpower . My a sof l z n e, periodw Necessary s k i , On the conditions structure of the for Lie algebra H $ of\ddot the automorphism{o} $ lder group estimates of a on solutions to $ \48partial period R period− $ N equations a e k k i comma . } One hyphencircular sided domain quasidiscs in Cn. period 49 period V period V period N a p a48 l k . Ro v . N comma a e k k Some i , One problems - sided quasidiscs on convolution . equations period \ centerline50 period D{ period45 . NP a . r49 Mi t . y V k h . a Va comma . l N a a p c A ah ldistortion k e o v , , Some Special theorem problems neighbourhoodsfor onq to convolution the power equations of of u-line analytic . asiconformal sets automorphisms in Stein spaces of the unit . } disk period50 . D . P a r t y k a , A distortion theorem for qu−line asiconformal automorphisms of the unit disk . 46.A.Miodek(withJ.Ch5 1 period E period P a s c u comma5 1 On . E superanalytic . P a $a s c u− ,cedilla On algebras superanalytic $ period dz algebras $yˆ . {\acute{n}}$ skiandT.Krasi $ \52acute period{n M} period$ s kP a i52 s ) s . a M , r .On e P comma a radical s s a r Polynomial e , Polynomial complete interpolation interpolation inter − and and complex complex convexity convexity period . s e53 c t period i o n s53 Z . . period Z . P Pa s a t s e t r e n r ak n ak - Win hyphen i a r Win s k i i , a On r s dependence k i comma of On the dependence Bergman function of the Bergman on deformation function of on the deformation of theHartogs Hartogs domain domain . period \ hspace54 period∗{\54 Kf . i period K l l .}47 ..P .e P t Je e t r . e s rMy,C s comma sk− zestimates e C w to s the k power i for , the On of k the hyphen∂− equation structure estimates of .. non of for - the transversalthe .. Lie partialdiff algebra intersections hyphen of equation the of automorphism .. of non hyphen group of a transversalstrictly intersections pseudoconvex .. of domains . \ centerlinestrictly pseudoconvex{ circular55 domains . K domain . P e period t h ein , On $ a C functional ˆ{ n } defined. $ in the} class of p− valued functions . 55 period K period56 .P A e. P t hi e e r comma z c h a lOn s k a i functional, Quasiconformal defined deformations in the class of of manifolds p hyphen with valued boundary functions . period \ centerline56 period57 A .{ period48 V . P .R.Naekki o P kh i ei l r e z v c i h c ah l, sOn k subclassesi comma ,One Quasiconformal of− regularsided univalent quasidiscs deformations functions . with of} manifolds a fixed coeffi with - cient boundary . period 57 period58 V . period E . Rami P o r khe z i l e d v e i c h A comma r e l l a On n o subclasses ( with W of . regular K r o´ l univalent i k ow s k functions i ) , An integral with a representation fixed coeffi hyphen \ centerlinecientfor period Fueter{49 – Hurwitz . V . regularV . N functions a p a . l k o v , Some problems on convolution equations . } 58 period59 E . period P . Ru Rami s e v , r M e zu¨ ..ntz d etype .. A theorems r e l l a for n o systems .. open of parenthesis degenerate hypergeometric with W period functions K r o-acute . 60 l . i Gk ow. S cs k i closing parenthesis comma50 . D Anhm . integral Pa a l z , r Identification representation t y k a of ,A pseudoconvex distortion domains theorem by the Bergman for $ operator ˆ{ u . −l i n e }$ asiconformal automorphisms of the unit diskfor Fueter . 61 endash . J . S iHurwitz c i ak (with regular N g functions u y e n T period h a n h V a n ) , Doubly orthogonal systems of holomorphic functions 59 periodand extremal P period plurisubharmonic Ru s e v comma functions M u-dieresis . ntz type theorems for systems of degenerate hypergeometric functions period \ centerline60 period G{ period5 1 . S E c hm .62 P a. Rl a z . scomma S i c t au r Identification s, k On i , On superanalytic some ofL pseudoconvex− analytic algebras maps domains of two . variablesby} the Bergman . operator period 61 period J period S63 i . c K i ak . S open k a l sparenthesis k a , On typically with N - g real u y functions e n T h meromorphic a n h V a n closingin the unit parenthesis disc . comma Doubly orthogonal systems of\ centerline holomorphic64 .{52 P . S . k M i b . i Pn´ s a k is , Description s a r e of, the Polynomial set of critical interpolation points of a polynomial and mapping complex in two convexity variables . . } functions and extremal65 . M .S plurisubharmonic kw a r c z yn´ s k functions i , Bergman period function , alternating projections ,L2− angles . 53.Z.Pasternak62 period R period S i t a r s66 k− i. comma AWin . S o iw On a ,some Schwarzr s L k hyphen ’i s derivative , On analytic dependence in high maps dimensions of two of variables the . Bergman period function on deformation of63 the period Hartogs K period domain S67 k a. Sl s .. Sk pa ocomma d z i e Onj a , typically A criterion hyphen of inj ectivity real functions of holomorphic meromorphic mappings in the . unit disc period 64 period68 P . period H . M .S S k r i i b v ia n-acute s t av a s, Applications k i comma Description of certain linear of the operators set of critical in the theory points of of analytic a polynomial functions mapping . in 54two . K variables . \quad period69P . J e . tS t e an r k is e w $ i c , z ( with C ˆ Z{ .k J a} k u − b o$ w s e k s t i i ) m , aOn t e classes s \quad of functionsf o r the with\ nonquad - classical$ \ partial − $ equation \quad o f non − transversal intersections \quad o f strictly65 period M pseudoconvex period S kw a r domains c z y to the . power ofnormalization n-acute s k i . comma Bergman function comma alternating projections comma L to the power of70 2 .hyphen V . V . anglesS t a r k period o v , Linear - invariant families with Stieltjes representation involving com - plex measures \ centerline66 period. A{ period55 . KS o . w P a comma e t h Schwarz e , Ona quoteright functional s derivative defined in high in dimensions the class period of $ p − $ valued functions . } 67 period S period S p71 o . d A z . i S e t j r a z comma e b o n´ As kcriterion i , Growth of injof regular ectivity functions of holomorphic on algebraic mappings sets . period \ centerline68 period H{ period5672 . . AM W period . S P z a i Sp e ir e i r l v ( z a with s c t hav W a a. H comma l e sn g k a Applications ri t n, e Quasiconformal r ) , On of univalent certain linear functions deformations operators omitting in a the given of theory manifolds value of . analytic with boundary . } functions period 73 . T . S z e mbe r g , Automorphisms of Riemann surfaces with two fixed points . 5769 . periodV . P J o period74 kh . Ki S . l t T an e o c vk h i io e w cw i hi c c z , z, The openOn classes subclasses parenthesis of univalent with of functions Z regular period connected J aunivalent k u b with o w homographies s functions k i closing . parenthesis with a fixed comma coeffi On classes− of functionsc i e n t with. non75 hyphen . P . Twor classical z e w s k i , Improper isolated intersections in complex analytic geometry . normalization period 76 . V . V i j i i t u , A remark on Runge domains . 5870 . period E . Rami V period r e V z period\quad S td a re k\ oquad v commaA r Linear e l lhyphen a n oinvariant\quad families( with with W Stieltjes . K r representation $ \acute{o} involving$ l i com k owhyphen s k i ) , An integral representation f oplex r Fueter measures−− periodHurwitz regular functions . 71 period A period S t r z e b o n-acute s k i comma Growth of regular functions on algebraic sets period 59.P.Rusev,M72 period W period S z a p i$ e\ lddot open{ parenthesisu} $ ntz with type W period theorems H e n g for a r t systems n e r closing of parenthesis degenerate comma hypergeometric On univalent functions functions . omitting60 . G a given. S c value hm period a l z , Identification of pseudoconvex domains by the Bergman operator . 73 period T period S z e mbe r g comma Automorphisms of Riemann surfaces with two fixed points period 6174 . period J . S K i period c i Tak o c( h with o w i Ng c z comma u y e The nTh classes a of n univalent hVa n functions ) , Doubly connected orthogonal with homographies systems period of holomorphic functions75 period P and period extremal Twor z e w plurisubharmonic s k i comma Improper functions isolated intersections . in complex analytic geometry period 76 period V period V i j i i t u comma A remark on Runge domains period \ centerline {62 .R.Si tarski ,Onsome $L − $ analytic maps of two variables . }

\ centerline {63 .K. Sk a l s k a ,On typically − real functions meromorphic in the unit disc . }

64.P.Skibi $ \acute{n} $ s k i , Description of the set of critical points of a polynomial mapping in two variables .

\ centerline {65.M.Skwarcz $yˆ{\acute{n}}$ s k i , Bergman function , alternating projections $ , L ˆ{ 2 } − $ a n g l e s . }

\ centerline {66 . A . S o w a , Schwarz ’ s derivative in high dimensions . }

\ centerline {67 . S . S p o d z i e j a , A criterion of inj ectivity of holomorphic mappings . }

68 . H . M . S r i v a s t av a , Applications of certain linear operators in the theory of analytic f u n c t i o n s .

\ hspace ∗{\ f i l l }69 . J . S t an k i ew i c z ( with Z . J a kubows k i ) ,On classes of functions with non − c l a s s i c a l

\ centerline { normalization . }

70 .V.V. Starkov , Linear − invariant families with Stieltjes representation involving com − plex measures .

\ centerline {71.A.Strzebo $ \acute{n} $ s k i , Growth of regular functions on algebraic sets . }

\ hspace ∗{\ f i l l }72 .W. S z a p i e l ( withW. He n g a r t n e r ) , On univalent functions omitting a given value .

\ centerline {73 . T . S z e mbe r g , Automorphisms of Riemann surfaces with two fixed points . }

\ centerline {74 . K . T o c h o w i c z , The classes of univalent functions connected with homographies . }

\ centerline {75 . P . Twor z e w s k i , Improper isolated intersections in complex analytic geometry . }

\ centerline {76 . V . V i j i i t u , Aremark on Runge domains . } Program .. ix \ hspace77 period∗{\ Jf periodi l l }Program Waniur s\ kquad i commai x The Bloch constant for the M o-dieresis bius transforms of convex mappings period 78 period E period Weger t comma On interpolation and approximation with families of holomorphic func hyphen \noindenttions period77 . J . Waniur s k i , The Bloch constant for theM $ \ddot{o} $ bius transforms of convex mappings . 7879 . period E . JWeger period t Wi , e On g e rinterpolation i n c k comma Representing and approximation measures for thewith disc families algebra and of for holomorphic theProgram ball algebra ix func period− t i80 o n period s77 . . J K . period Waniur .. s Wk i suppress-l, The Bloch sub constant o d a for r c the z y M k commao¨ bius transforms .. Angular of derivative convex mappings for holomorphic . 78 . E maps . Weger in t complex , Banach spacesOn period interpolation and approximation with families of holomorphic func - tions . \noindent 79 . J . Wi e g e r i n c k , Representing measures for the disc algebra and for the ball algebra . 81 period79 . J P . period Wi e g eWoj r i n t c a k s , z Representing c z y k comma measures Bases for in the the disc disc algebra algebra and period for the ball algebra . 80 . K . W lo 8082 . period Kd a . r A\ cquad z period y k ,W W Angular $o-acute\ l derivative{ j co i k} comma$ for d holomorphic a Some r c remarks z maps y k on in , complex Bernstein\quad BanachAngular quoteright derivative s Theorems period for holomorphic maps in complex Banach 83 periodspaces A . period 81 . P Wrz . Woj e s t i a e s n-acute z c z y k sub , Bases comma in the On disc some algebra majorization . 82 . A . of W derivativeso´ j c i k , Some in the remarks class S on to Bernstein the power of * open parenthesis gamma\noindent closing’ s Theoremsspaces parenthesis . . period 81 . P . Woj t a s z c z y k , Bases in the disc algebra∗ . 84 period83 . A X . i Wrz n g eY s a i en gn´, commaOn some A majorization generalization of derivativesof the M u-dieresis in the class ntzS endash(γ). Szasz Theorem period 8285 . period A84 . . WM X iperiod n $ g\ Yacute G a nperiod g{ ,o A} Z generalization$ a breve-dotlessi j c i ofk the , d Some e M n bu¨ entz remarks r g – comma Szasz Theoremon Normal Bernstein mappings . 85 . M ’ and . s G growthTheorems . Z a ˘ı estimatesd e n . b e rof g Schottky , endash Landau type periodNormal mappings and growth estimates of Schottky – Landau \noindent86 periodtype J.83.A.Wrzes period 86 . J . Zaj Zaj a-cedillaa − cedilla c iecommac , Distortion $ Distortion\acute function{n function} and{ quasisymmetric, and}$ quasisymmetric On some mappings majorization mappings . 87 . Kperiod . Z ofy s ko derivatives w s k a in the class $ S87 ˆ period{, ∗ On } Kan period estimate( \gamma Z of y ssome ko w functional s) k a comma. $in the On class an of estimate odd bounded of some univalent functional functions in the . class of odd bounded univalent functions period \noindent 84 . X i n gYa n g , A generalization of theM $ \ddot{u} $ ntz −− Szasz Theorem . 85 . M . G . Z a $ \breve{\imath} $ d e n b e r g , Normal mappings and growth estimates of Schottky −− Landau

\noindent type . 86 . J . Zaj $ a−cedilla $ c , Distortion function and quasisymmetric mappings . 87 . K . Z y s ko w s k a , On an estimate of some functional in the class of odd bounded univalent functions .