<<

Business Air Travel GHG Inventory & Minimization Modelling – Ltd.

cBalance Solutions Pvt. Ltd.

May 2016

1. EXECUTIVE SUMMARY 1

2. INTRODUCTION 1

3. PROJECT OBJECTIVE 2

4. PROJECT SCOPE 2

5. RESULT AND ANALYSIS 3

5.1 DOMESTIC AIR TRAVEL GHG INVENTORY 3 5.1.1 Domestic Short-haul Air Travel GHG Inventory 6 5.1.2 Domestic Long-haul Air Travel GHG Inventory 8 5.2 INTERNATIONAL AIR TRAVEL GHG INVENTORY 11 5.2.1 International Short-haul Air Travel GHG Inventory 14 5.2.2 International Medium-haul Air Travel GHG Inventory 16 5.2.3 International Long-haul Air Travel GHG Inventory 18 5.3 DOMESTIC AND INTERNATIONAL AIR TRAVEL GHG INVENTORY 20 5.4 SCENARIO MODELLING 23 5.4.1 Baseline Vs “Best-In-Class” Air Carrier 23 5.4.2 Baseline (One/Multiple-Stop) vs Non Stop Sector 24

6. CONCLUSION & RECOMMENDATIONS 27

6.1 DOMESTIC AIR CARRIERS -BEST-IN-CLASS 27 6.1.1 Domestic Short Haul 27 6.1.2 Domestic Long haul 35 6.2 INTERNATIONAL AIR CARRIERS -BEST-IN-CLASS 43 6.2.1 International Short haul Emission Factor Ranking 43 6.2.2 International Medium haul Emission Factor Ranking 50 6.2.3 International Long-haul Emission Factor Ranking 56

7. SCOPE DEFINITION 65 7.1 CORPORATE GHG INVENTORY 65 7.1.1 Organizational Boundary Definition 67 7.1.2 Operational Boundary Definition 68

8. RESEARCH AND ANALYSIS METHODOLOGY 71 8.1 ACTIVITY DATA COLLECTION AND VERIFICATION 71 8.2 ACTIVITY DATA QUALITY ASSESSMENT AND PROCESSING 72 8.2.1 Activity Data Scrutinization 72 8.2.2 Raw Data Rectification 73 8.3 FRAMEWORK DEVELOPMENT AND ALLOCATION 73 8.3.1 Assumptions 73 8.4 EMISSION FACTOR DEVELOPMENT 74 8.4.1 Domestic and International Air Carrier – Operation Phase - Emisson Factor 74 8.4.2 Fugitive Emissions – Oil systems 93 8.5 GHG INVENTORY CALCULATION 96 8.5.1 Emissions from Aircraft Operation and Maintenance 96 8.5.2 Fugitive Emissions from Fuel Used 96 8.5.3 Emission from Aircraft & Engine Manufacturing 97

9. REFERENCES 98

List of Tables

Table 1: Abbreviations ...... 4 Table 2 : List of Air Carrier Names and Codes ...... 5 Table 3: Criteria for Defining Domestic and International Aviation ...... 2 Table 4: Summary of Activity Data Provided by Wipro ...... 3 Table 7 : Domestic Air Travel GHG Emission Summary ...... 3 Table 8 : Domestic Short-haul Air Travel GHG Emission Summary ...... 6 Table 9: Domestic Long haul - Air Travel GHG Emission Summary ...... 8 Table 10: International Air Travel GHG Emission Summary ...... 11 Table 11: International Short haul- Air Travel GHG Emission Summary ...... 14 Table 12 : International Medium haul- Air Travel GHG Emission Summary ...... 16 Table 13: International Long haul- Air Travel GHG Emissions ...... 18 Table 14 : Scope-wise Distribution of total GHG Emissions ...... 20 Table 15 : Domestic and International Air Travel Summary ...... 21 Table 16 : Baseline vs Best-In-Class ...... 23 Table 17 : Multi-Stop Sector vs Non Stop Sector ...... 25 Table 18: Domestic Short haul- African Air Carriers’ Emission Factor Ranking ...... 27 Table 19 : Domestic Short haul- American Air Carriers’ Emission Factor Ranking ...... 27 Table 20 : Domestic Short haul- Asia Pacific Air Carriers’ Emission Factor Ranking ...... 28 Table 21 : Domestic Short haul- Oceania Air Carriers’ Emission Factor Ranking ...... 30 Table 22 : Domestic Short haul- Europe Air Carriers’ Emission Factor Ranking ...... 30 Table 23 : Domestic Short haul- Indian Air Carriers’ Emission Factor Ranking ...... 33 Table 24 : Domestic Short haul- Middle Eastern Air Carriers’ Emission Factor Ranking 33 Table 25 : Domestic Short haul- USA Air Carriers’ Emission Factor Ranking...... 34 Table 26 : Domestic Long haul - African Air Carriers’ Emission Factor Ranking ...... 35 Table 27 : Domestic Long haul - American Air Carriers’ Emission Factor Ranking ...... 35 Table 28 : Domestic Long haul- Asia Pacific Air Carriers’ Emission Factor Ranking ...... 36 Table 29 : Domestic Long haul- Oceania Air Carriers’ Emission Factor Ranking ...... 38 Table 30 : Domestic Long haul- European Air Carriers’ Emission Factor Ranking ...... 38 Table 31 : Domestic Long haul- Indian Air Carriers’ Emission Factor Ranking ...... 41 Table 32 : Domestic Long haul- Middle Eastern Air Carriers’ Emission Factor Ranking . 41 Table 33 : Domestic Long haul- USA Air Carriers’ Emission Factor Ranking ...... 42 Table 34 : International Short haul Emission Factor Ranking ...... 43 Table 35 International Medium haul Emission Factor Ranking ...... 50 Table 36 : International Long haul Emission Factor Ranking ...... 56 Table 5: GHG Inventory Organisational Boundary Definition ...... 67 Table 6: GHG Inventory Operational Boundary Definition ...... 69

List of Figures

Figure 2: Domestic Air Travel GHG Emissions & Distance Travelled...... 4 Figure 3 : Domestic - Percentage Contribution to GHG Emission & Distance Travelled ..... 5 Figure 4 : Haul wise distribution of Total Distance travelled and GHG Emissions for Domestic Air Travel ...... 5 Figure 5: Domestic Short-haul GHG Emissions & Distance Travelled ...... 7 Figure 6: Domestic Short-haul Percentage Contribution to GHG Emissions & Distance Travelled by Air Carriers ...... 7

Figure 7 : Domestic Short haul- Top 10 Distance & GHG contributor’s EFs vs Average Domestic Short-haul- GHG Emission Factor ...... 8 Figure 8 : Domestic Long-haul GHG Emissions & Distance Travelled ...... 9 Figure 9 : Domestic Long-haul Percentage Contribution to GHG Emissions & Distance Travelled by Air Carriers ...... 10 Figure 10 : Domestic Long haul- Top 10 Distance & GHG Emission contributor’s Emission Factors vs Average Domestic Long haul- Emission Factor ...... 10 Figure 11 : International GHG Emissions & Distance Travelled ...... 12 Figure 12 : International Percentage Contribution to GHG Emissions & Distance Travelled ...... 13 Figure 13 : Haul wise distribution of Total Distance travelled and GHG Emissions for International Air Travel ...... 13 Figure 14: International Short-haul GHG Emissions & Distance Travelled ...... 15 Figure 15: International Short-haul Percentage Contribution to GHG Emissions & Distance Travelled by Air Carriers ...... 15 Figure 16 : International Short haul- Top 10 Distance & GHG contributor’s EFs vs Average International Short haul- GHG Emission Factor ...... 16 Figure 17: International Medium-haul GHG Emissions & Distance Travelled ...... 17 Figure 18: International Medium-haul Percentage Contribution to GHG Emissions & Distance Travelled by Air Carriers ...... 17 Figure 19 : International Medium haul- Top 10 Distance & GHG contributor’s EFs vs Average International Medium haul- GHG Emission Factor ...... 18 Figure 20: International Long-haul GHG Emissions & Distance Travelled ...... 19 Figure 21: International Long-haul Percentage Contribution to GHG Emissions & Distance Travelled by Air Carriers ...... 19 Figure 22 : International Long haul- Top 10 Distance & GHG contributor’s EFs vs Average International Long haul- GHG Emission Factor ...... 20 Figure 23 : Domestic & International Air Travel GHG Emission Summary ...... 21 Figure 24 : Percentage Contribution to Domestic and International Air Travel GHG Emission ...... 22 Figure 1: Activity Differentiation according to Scope 1, Scope 2 & Scope 3 GHG Emissions ...... 69

Abbreviations

Table 1: Abbreviations

AT & C Losses Aggregate Technical and Commercial Losses CO2e Carbon Dioxide Equivalent CO2e Carbon Dioxide Equivalent CSR Corporate Social Responsibility EF Emission Factor FY Financial Year GHG Greenhouse Gas HVAC Heating Ventilation and Air Conditioning kWh Kilo Watt Hour LCA Life-cycle Assessment Pax-km Passenger-kilometre

List of Air Carriers

Table 2 : List of Air Carrier Names and Codes

Air Carrier Name Air Air Carrier Name Air Air Carrier Name Air Air Carrier Name Air Carrier Carrier Carrier Carrier Code Code Code Code Aerolineas Aerogal 2K Air Nostrum YW British Airways BA El Al Israel LY Airlines Aerolineas Argentinas AR Air Serbia JU Brussels Airlines SN Ellinair EL Aeromexico AM Air Transat TS Bukovyna Airlines BQ Emirates EK Air Arabia G9 Aircalin SB Cathay Pacific CX Equatorial Congo LC Airways Ltd Airlines Air Asia Berhad AK AirTran Airways FL Cebgo DG Estonian Air OV Air Asia I5 Alaska Airlines AS CEBU Pacific Air 5J Ethiopian ET Airlines Air Asia Zest Z2 Alaska Central KO Airlines EU Etihad Airways EY Express Air Astana KC Alitalia AZ China Airlines CI Etihad Regional F7 Air Baltic BT All Nippon NH China Eastern MU Eurolot K2 Airways Airlines Air Berlin PLC AB Allegiant Air G4 China Southern CZ European Cargo EJ Airlines Services BV Air Canada AC American AA City Jet WX EVA Air BR Airlines Air China CA Areoflot SU Compass Airlines CP Finnair Oyj AY Air Choice One 3E Aruba Airlines AG Condor Flugdienst DE Fly Dubai FZ GmbH Air Europa UX Asiana Airlines OZ Copa Airlines CM Flybe BE Air Flamenco F4 Austrian Airlines OS Croatia Airlines OU FLYNAS XY

Air France AF AVIANCA AV Czech Airlines OK Frontier Airlines F9 Air France 4F Avior Airlines 9V Delta Air Lines DL Garuda GA Indonesia AI Azerbaijan Hava J2 Deutsche Lufthansa LH GermanWings 4U Yollary AG IX Azul Linhas AD Druk Air KB Go Air G8 Aereas Brasileiras Air Lesiure AL Bangkok Airways PG Eastern Air Lines EA Gol Transportes G3 Aéreos Air Lingus EI Islands SI Eastern Airways T3 Gulf Air GF Air Malta KM Blue Panorama BV Easyjet Airline U2 Hahn Air Lines HR Airlines Air New Zealand NZ BMI Regional BM Air MS Hahn Air Systems H1

Air Carrier Name Air Air Carrier Name Air Air Carrier Name Air Air Carrier Name Air Carrier Carrier Carrier Carrier Code Code Code Code Hainan Airlines HU Malaysian Airline MH Scandinavian SK TAROM RO Berhad Airlines Hawaiian Airlines HA Malindo Air OD SeaPort Airlines K5 Thai Air Asia FD

Hong Kong Dragon KA Malmo Aviation TF Shandong Airlines SC Thai Airways TG Airlines HOP A5 Mandarin AE Shanghai Airlines FM Tiger Airways TR Airlines IBERIA IB Monarch Airlines ZB Shenzhen Airlines ZH Transaero UN Airlines Icelandair FI Myanmar 8M Sichuan Airlines 3U Transavia HV Airways Airlines Indigo Airlines 6E NextJet AB 2N Silk Air MI Transavia France TO InterSky 3L Nile Air NP Airways 3M Transcarga T7 International Airways Japan Airlines JL Norwegian Air DY SINGAPORE SQ TK Shuttle AIRLINES 9W Oman Air WY Sky Airline H2 United Airlines UA Jet Lite S2 Other Other Skywork Airlines SX US Airways US Jet2.com LS Pegasus Airlines PC South African SA US Bnagla Airline BS Airways JetBlue B6 Philippine PR Southwest Airlines WN UTair Aviation UT Airlines Jetstar Airways JQ Porter Airlines PD Spice Jet SG Vietnam Airlines VN Juneyao Airlines HO QR Spirit Airlines NK Virgin America VX Kenya Airways KQ Quantas Airways QF Spring Airlines 9C Virgin Atlantic VS Airways KLM Royal Dutch KL Ravn Alaska 7H Srilankan Airlines UL Virgin Australia VA Airlines Airlines Korean Air KE Regional Express ZL Stobart Air RE UK

Kuwait Airways KU Royal Air Macroc AT Sun Country Airlines SY Vueling Airlines VY

LAN Airlines LA Royal Jordanian RJ SWISS International LX Wat Phnom WD Air Lines LAN Express LU RwandAir WB Taca International TA West Jet WS Airlines LOT Polish Airline LO Ryanair FR TAM Linhas Aereas JJ Airways WI S.A. Luxair LG Saudi Arabian SV TAP Portugal TP Wizz Air W6 Airlines

1. Executive Summary In Financial Year 2014-2015, Wipro employees flew 498,327 flights, totalling 1,275.58 million passenger kilometres and, based on this cBalance study, emitted approximately 170.22 thousand tonnes of CO2e.

If Wipro were to switch to the Best-In-Class Airline, as derived in this study, the company is poised to save 41% (48.54 thousand tonnes of CO2e), 37% (7.47 thousand tonnes of CO2e), and 20% (3.92 thousand tonnes of CO2e) in International, Domestic– USA, and Domestic–India, respectively; International travel is defined here as any travel that occurs from country-to-country, not within a country.

Further, if Wipro were to switch Multi-Stop flights to Non-Stop flights, the company is poised to save 25% and 50% in International and Domestic–USA travel, respectively; Domestic–India travel is not modeled here as non-stop flights to major Indian cities are very frequent.

To minimize Wipro’s Business Air Travel Emissions, we recommend the Wipro travel team to first search for non-stop flights, and then select airlines based on the prioritized emission-factor list provided in section 7. 2. Introduction This project report has been prepared by cBalance Solutions Private Limited (cBalance Solutions) for Wipro Limited (Wipro). Wipro has a global presence to serve their clients in the field of Information Technology, Consulting and services. Wipro reported annual gross revenue of $7.5 billion1 for the financial year ended March 2015.

Wipro has initiated many efforts to reduce their ecological impacts and their achievements have been recognized globally. Channel NewsAsia, Sustainalytics and CSR Asia, have ranked Wipro 1st among the 100 most sustainable corporations in Asia in the 2015 Channel NewsAsia Sustainability Ranking.2

Wipro has minimized their ecological footprint in 2014-15 by following the best practices:

 Use of renewable energy – used 65 million kWh from renewable sources, accounts 22% of total energy use3  Recycling and reuse of wastewater – 34% water recycled and reused4  Recycling and reuse of waste – 90% of total waste from India recycled or reused5

Wipro’s clients have diversified geographical presence globally. Wipro chose air travel as fast and reliable mode of transport with no comparable alternatives for long distance travel to serve their clients. Wipro has a step-up on the path of sustainability and

1 Factsheet 2014-15 – Wipro Ltd., Page no. 1 2 Factsheet 2014-15 – Wipro Ltd., Page no. 1 3 Factsheet 2014-15 – Wipro Ltd., Page no. 2 4 Factsheet 2014-15 – Wipro Ltd., Page no. 2 5 Factsheet 2014-15 – Wipro Ltd., Page no. 2 1 expressed interest to know their carbon footprint of business travel from air transport for the financial year 2014-15 and looking forward to formalize and implement the strategies to minimize the emissions from air travel. In the FY 2013-14, Wipro had reported 103 thousand tonnes CO2e GHG emissions from Business Travel in the category of Scope 3 emissions, which was 13% of the total GHG emissions reported under Scope 1, Scope 2 and Scope 3 emissions.6 This report seeks to quantify GHG emissions from Wipro’s business air travel based on a comprehensive GHG inventory assessment of and provide a list of recommendations to minimize the business air travel GHG emissions of Wipro. This will help Wipro to understand the increment in business air travel GHG emissions in FY 2014-15 with respect to the growth of Wipro’ business and also a formalization of strategies to integrate key best practices to minimize their business air travel emissions. 3. Project Objective Wipro has provided the business air travel data of FY April 2014- March 2015. Based on the business air travel data received from Wipro, the overarching goals of the project were:

 Estimate Carbon Emission Factors for all domestic & international air carriers which have been used by Wipro for business air travel during FY 2014-15.  Estimate GHG inventory of Wipro’s business air travel in accordance with GHG protocol’s Corporate Accounting and Reporting Standards (referred to as the Corporate standards)7  Provide a list of the rankings of domestic and international air carriers based on their GHG emission factors  Provide the Best-In-Class (GHG emission factor-wise) air carrier of the sectors for Wipro personnel flown in FY 2014-15  Modelling minimization options such as: I. Choosing the most carbon efficient airlines, and II. Reducing the number of stops on a specific segment 4. Project Scope The scope of the project was entire domestic and international business travel of Wipro, covered by air transport mode, during the global operation of FY 2014-15.

Table 3: Criteria for Defining Domestic and International Aviation8

Journey type between two airports Domestic International Departs and arrives in the same country Yes No Departs from one country and arrives in No Yes another

Wipro has provided the business air travel data of FY 2014-15 which have been booked and managed by:

I. Wipro’s travel management team, and

6 Sustainability Report 2013-14 – Wipro Ltd., Page no. 86 7 World Resources Institute’s (WRI), 2004 8 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Chapter 3: Mobile Combustion, Section 3.6.1.3 2

II. A contracted outsourced agency

Table 4: Summary of Activity Data Provided by Wipro

Air Travel Category Class of Travel No. of Flight legs9 Distance travelled in Million Pax-km Domestic Economy 2,96,205 336.88 International Economy 2,02,122 932.87 Total Economy 4,98,327 1,269.75

5. Result and Analysis

5.1 Domestic Air Travel GHG Inventory

Table 5 : Domestic Air Travel GHG Emission Summary

Sr. Air Air Carrier Name No. of Distance Percentage GHG Percentage No. Carrier Flights Travelled Contributio Emissions Contribution Code (Number) (Million n of (Thousand of GHG Pax-km) Distance Tonne Emissions Travelled CO2e) (%) (%) 1. 6E Indigo Airlines 52,334 53.60 16% 5.91 13% 2. 9W Jet Airways 52,421 49.34 15% 7.42 16% 3. UA United Airlines 28,985 45.49 14% 5.51 12% 4. DL Delta Airlines 25,388 33.05 10% 4.34 9% 5. AI Air India 26,988 31.75 9% 4.99 11% 6. AA American Airlines 18,573 26.08 8% 4.37 9% 7. US US Airways 15,426 19.49 6% 3.28 7% 8. SG Spice Jet 15,591 13.90 4% 1.58 3% 9. WN Southwest Airlines 10,402 12.87 4% 1.82 4% 10. G8 Go Air 7,187 6.79 2% 0.73 2% 11. Others10 Others 42,910 44.52 13% 7.13 15% Total 2,96,205 336.88 47.05

9 Flight legs are defined as individual flights taken between source destination and end destination. 10 Domestic air travel GHG Emissions Summary of ‘Others’ air carriers reported in Annexure I 3

According to the result shown in Table 5, the total domestic distance covered 336.88 million Pax-km and GHG emissions accounted 47.04 thousand tonne CO2e. The five largest contributors are Indigo Airlines, Jet Airways, United Airlines, Delta Airline and Air India, which covered 64% of the total domestic distance travelled and 61% of total GHG emissions from domestic air travel. Among five largest contributors, three of them Indigo Airlines, Jet Airways, and Air India are Indian domestic air carriers and two of them United Airlines and Delta Airlines are USA domestic air carriers.

Further, the results for domestic air travel categorised in domestic short-haul and domestic long-haul and explained later in section 5.1.1and 5.1.2

Figure 1: Domestic Air Travel GHG Emissions & Distance Travelled

Domestic Air Travel GHG Emissions = 47.05 Thousand Tonne CO2e Total Distance Travelled = 336.88 Million Pax- km Distance Travelled (Million Pax-km) 0.00 20.00 40.00 60.00

6E Indigo Airlines 53.60 5.91 Jet Airways 49.34 9W 7.42 United Airlines 45.49 UA 5.51 33.05 GHG

DL Delta Air Lines 4.34 Emissions

AI Air India 31.75 4.99 American Airlines Distance

AA 26.08 4.36 US Airways 19.49 Travelled US 3.28

Air Carrier Name Carrier Air Spice Jet 13.90 SG 1.58 Southwest Airlines 12.87 WN 1.82 Go Air

G8 6.79 0.72 Others 44.52 7.13 0.00 2.00 4.00 6.00 8.00 GHG Emission ('000 Tonne CO2e)

4

Figure 2 : Domestic - Percentage Contribution to GHG Emission & Distance Travelled

Domestic Air Travel Outer Ring - % GHG Emission = 47.05 Thousand Tonne CO2e Contribution to Distance Total Distance Travelled = 336.88 Million Pax- km Travelled Inner Ring - % Contribution to GHG 16% 13% Emissions

Others 13% 15% 2% 4% G8 - Go Air 2% WN - Southwest Airlines 4% 4% 16% 15% 3% SG - Spice Jet

7% 6% US - US Airways AA - American Airlines 12% 9% AI - Air India 8% 9% 11% DL - Delta Air Lines 14% UA - United Airlines 9% 10% 9W - Jet Airways 6E - Indigo Airlines

Figure 3 : Haul wise distribution of Total Distance travelled and GHG Emissions for Domestic Air Travel

Domestic Air Travel- Haul-wise percentage contibution of Total Distance Travelled and GHG Emissions GHG Emissions = 47.05 Thousand Tonne CO2e Total Distance Travelled = 336.88 Million Pax- km

5% Outer Ring - % Distribution of distance travelled 7% Inner Ring - % Distribution of GHG Emissions

Short Haul

93% Long Haul

95%

5

5.1.1 Domestic Short-haul Air Travel GHG Inventory

Table 6 : Domestic Short-haul Air Travel GHG Emission Summary

Sr. Air Carrier Air Carrier Name No of Distance Percentage GHG Percentage Emission No. Code Flights Travelled Contribution Emissions Contribution Factor (kg (Number) (Million of Distance (Thousand of GHG CO2e/Pax- Pax-km) Travelled Tonne Emissions km) (%) CO2e) (%) 1. 9W Jet Airways 12,297 3.83 24% 0.82 24% 0.214 2. 6E Indigo Airlines 3,853 1.45 9% 0.23 7% 0.161 3. UA United Airlines 4,190 1.40 9% 0.28 8% 0.197 4. DL Delta Airlines 3,234 1.18 7% 0.22 7% 0.188 5. AA American Airlines 3,041 1.05 7% 0.26 8% 0.244 6. US US Airways 3,434 1.01 6% 0.25 7% 0.244 7. SG Spice Jet 2,525 0.75 5% 0.15 4% 0.200 8. WN Southwest Airlines 1,588 0.63 4% 0.12 3% 0.185 9.. AI Air India 1,699 0.59 4% 0.14 4% 0.234 10. XY FLYNAS 1,241 0.48 3% 0.09 3% 0.183 11. Others11 Others 10,796 3.71 23% 0.85 25% Total 47,898 16.07 3.39

11 Domestic Short haul air travel GHG Emissions Summary of ‘Others’ air carriers reported in Annexure II 6

Figure 4: Domestic Short-haul GHG Emissions & Distance Travelled

Domestic - Short-haul - Top 10 & Other Air Carriers (Based on GHG Emissions Contribution & Distance Travelled) GHG Emissions = 3.39 Thousand Tonne CO2e, Total Distance Travelled = 16.07 Million Pax-km Distance Travelled (Million Pax-km) 0.00 1.00 2.00 3.00 4.00 5.00

Jet Airways 3.83 9W 0.82 1.45 6E Indigo Airlines 0.23 United Airlines 1.40 UA 0.28 1.18 DL Delta Air Lines 0.22 GHG American Airlines 1.05 Emissions AA 0.26 US Airways 1.01 US 0.25 Distance

Spice Jet 0.75 SG Air Carrier Name Carrier Air 0.15 Travelled Southwest Airlines 0.63

WN 0.12 0.59 AI Air India 0.14 0.48 XY FLYNAS 0.09 3.71 Other 0.85 0.00 0.20 0.40 0.60 0.80 1.00 GHG Emissions ('000 Tonne CO2e)

Figure 5: Domestic Short-haul Percentage Contribution to GHG Emissions & Distance Travelled by Air Carriers

Domestic - Short-haul - Top 10 & Other Air Carriers Outer Ring - % (Based on GHG Emissions Contribution & Distance Travelled) Contribution to Distance GHG Emissions = 3.39 Thousand Tonne CO2e, Travelled Total Distance Travelled = 16.07 Million Pax-km Inner Ring - % Contribution to GHG Emissions 24% 23% Others 24% 25% XY - FLYNAS AI - Air India WN - Southwest Airlines 3% 3% SG - Spice Jet 7% 9% 4% 4% US - US Airways 3% 8% 4% AA - American Airlines 4% DL - Delta Air Lines 7% 7% 5% 9% 8% UA - United Airlines 6% 6E - Indigo Airlines 7% 7% 9W - Jet Airways

7

Figure 6 : Domestic Short haul- Top 10 Distance & GHG contributor’s EFs vs Average Domestic Short-haul- GHG Emission Factor

GHG Emisssion Factors of Top 10 Distance and Emission Contributers for Domestic-Short Haul

Overall Average Average Emission 0.300 Domestic Short Factor of Top 10

Haul Emission Contributers, km) - Factor, 0.222 0.244 0.244 0.205 0.250 0.234 0.214 0.200 0.197 0.200 0.183 0.185 0.188 0.161 0.150

0.100

0.050 Emission Factor (kgCO2e/Pax Factor Emission 0.000 FLYNAS Air India Southwest Spice Jet US American Delta Air United Indigo Jet Airlines Airways Airlines Lines Airlines Airlines Airways Air Carrier Name Emission Factors of Top 10 Contributers Average Emission Factor of Top 10 Contributers Overall Average Domestic Short Haul Emission Factor

5.1.2 Domestic Long-haul Air Travel GHG Inventory Table 7: Domestic Long haul - Air Travel GHG Emission Summary

Sr. Air Air Carrier Name No of Distance Percentage GHG Percentage Emission No. Carrier Flights Travelled Contribution Emissions Contribution Factor (kg Code (Number) (Million Pax- of Distance (Thousand of GHG CO2e/Pax- km) Travelled Tonne Emissions km) (%) CO2e) (%) 1. 6E Indigo Airlines 48,481 52.16 16% 5.67 13% 0.110 2. 9W Jet Airways 40,124 45.50 14% 6.60 15% 0.144 3. UA United Airlines 24,795 44.08 14% 5.24 12% 0.119 4. DL Delta Airlines 22,154 31.88 10% 4.12 9% 0.129 5. AI Air India 25,289 31.16 10% 4.85 11% 0.157 6. AA American Airlines 15,532 25.03 8% 4.11 9% 0.166 7. US US Airways 11,992 18.48 6% 3.03 7% 0.166 8. SG Spice Jet 13,066 13.15 4% 1.43 3% 0.109 9. WN Southwest Airlines 8,814 12.24 4% 1.70 4% 0.126 10. G8 Go Air 7,001 6.71 2% 0.71 2% 0.111 11. Others12 Others 31,059 40.41 13% 6.21 14% Total 2,48,307 320.82 43.66

12 Domestic Long haul air travel GHG Emissions Summary of ‘Others’ air carriers reported in Annexure III 8

Figure 7 : Domestic Long-haul GHG Emissions & Distance Travelled

Domestic - Long-haul - Top 10 & Other Air Carriers (Based on GHG Emissions Contribution & Distance Travelled) GHG Emissions = 43.66 Thousand Tonne CO2e, Total Distance Travelled = 320.82 Million Pax-km Distance Travelled (Million Pax-km) 0.00 20.00 40.00 60.00 52.16 6E Indigo Airlines 5.67 Jet Airways 45.50 9W 6.60 United Airlines 44.08 UA 5.23 31.88 DL Delta Air Lines 4.12 31.16 GHG

AI Air India 4.85 Emissions American Airlines 25.03 AA 4.11

US Airways 18.48 US

Air Carrier Name Carrier Air 3.03 Spice Jet 13.15 SG 1.43 Distance Southwest Airlines 12.24 Travelled WN 1.70 Go Air 6.71 G8 0.71 40.41 Others 6.20 0.00 2.00 4.00 6.00 8.00

GHG Emissions (Thousand Tonne CO2e)

9

Figure 8 : Domestic Long-haul Percentage Contribution to GHG Emissions & Distance Travelled by Air Carriers

Domestic - Long Haul - Top 10 & Other Air Carriers Outer Ring - % (Based on GHG Emissions Contribution & Distance Travelled) Contribution to Distance GHG Emissions = 43.66 Thousand Tonne CO2e, Travelled Total Distance Travelled = 320.82 Million Pax-km Inner Ring - % Contribution to GHG Emissions 16% 13%

13% 14% 2% 4% Others 2% G8 - Go Air 4% 4% 15% 3% WN - Southwest Airlines 14% SG - Spice Jet 7% 6% US - US Airways AA - American Airlines 12% 9% 8% AI - Air India 14% 9% 11% DL - Delta Air Lines 10% UA - United Airlines 10% 9W - Jet Airways 6E - Indigo Airlines

Figure 9 : Domestic Long haul- Top 10 Distance & GHG Emission contributor’s Emission Factors vs Average Domestic Long haul- Emission Factor

Emisssion Factors of Top 10 Distance and Emission Contributers for Domestic-Long Haul

Average Emission Overall Average Domestic Factor of Top 10 Long Haul Emission Factor, Contributers, 0.150

km) 0.180 0.166 0.166 - 0.134 0.157 0.160 0.144 0.140 0.126 0.129 0.119 0.120 0.111 0.109 0.110 0.100 0.080 0.060 0.040 0.020

Emission Factor (kgCO2e/Pax Factor Emission 0.000 Go Air Southwest Spice Jet US American Air India Delta Air United Jet Indigo Airlines Airways Airlines Lines Airlines Airways Airlines

Air Carrier Name Emission Factor of Top 10 Contributers Average Emission Factor of Top 10 Contributers Overall Average Domestic Long Haul Emission Factor

10

5.2 International Air Travel GHG Inventory Table 8: International Air Travel GHG Emission Summary

Sr. Air Air Carrier Name No of Distance Percentage GHG Percentage No. Carrier Flights Travelled Contribution Emissions Contribution of Code (Number) (Million of Distance (Thousand GHG Emissions Pax-km) Travelled Tonne CO2e) (%) (%) 1. EK Emirates 28,913 143.40 15% 20.63 17% 2. BA British Airways 22,983 111.67 12% 14.99 12% 3. LH Deutsche Lufthansa AG 19,784 95.97 10% 11.41 9% 4. EY Etihad Airways 16,011 86.35 9% 12.57 10% 5. SQ Singapore Airlines 16,012 74.57 8% 10.04 8% 6. AI Air India 9,144 60.95 7% 8.18 7% 7. 9W Jet Airways 12,874 57.75 6% 6.74 5% 8. QR Qatar Airways 11,158 57.14 6% 7.39 6% 9. UA United Airlines 7,020 34.99 4% 3.39 3% 10. CX Cathay Pacific Airways 5,207 30.68 3% 4.55 4% 11. Other13 Other 53,016 179.40 19% 23.29 19% Total 2,02,122 932.87 123.17 According to the result shown in Table 8, the total international air travel distance covered 982.87 million Pax-km and GHG emissions accounted 123.17 thousand tonne CO2e. The five largest contributors are Emirates, British Airways, Deutsche Lufthansa AG, Etihad Airways, and Singapore Airlines, which covered 54% of total international air travel distance and 53% of total GHG emissions from international air travel. Majority of international air travel covered travel between India to Europe and USA region and vice- e-versa. The five largest contributors air carriers dominate international air travel sectors between India to Europe and USA region.

Further, the results for international air travel, categorized in the international short - haul, international medium-haul, and international long-haul and explained later in sections 5.2.1, 5.2.2, and 5.2.3

13 International air travel GHG Emissions Summary of ‘Others’ air carriers reported in Annexure IV 11

Figure 10 : International GHG Emissions & Distance Travelled

International Air Travel GHG Emissions = 123.17 Thousand Tonne CO2e Total Distance Travelled = 982.87 Million Pax-km Distance Travelled (Million Pax-km) 0 100 200 143.40

EK Emirates 20.63 British Airways 111.67 BA 14.99 95.97 LH Deutsche Lufthansa AG 11.41 86.35

EY Etihad Airways 12.57 GHG SINGAPORE AIRLINES 74.57 SQ 10.04 Emissions 60.95

AI Air India 8.18 Jet Airways 57.75 Distance 9W 6.74 57.14 Travelled Air Carrier Name Carrier Air Qatar Airways QR 7.39 United Airlines 34.99 UA 3.39 30.68

CX Cathay Pacific Airways Ltd 4.55 Others 179.40 23.29 0.00 5.00 10.00 15.00 20.00 25.00

GHG Emissions ('000 Tonne CO2e)

12

Figure 11 : International Percentage Contribution to GHG Emissions & Distance Travelled

International Air Travel Outer Ring - % GHG Emissions = 123.17 Thousand Tonne CO2e Contribution to Total Distance Travelled = 982.87 Million Pax-km Distance Travelled Inner Ring - % Contribution to GHG 15% Emissions 19% Others

17% 19% CX - Cathay Pacific Airways Ltd UA - United Airlines 12% 3% 4% 12% 3% 4% QR - Qatar Airways 6% 9W - Jet Airways 9% 5% 6% AI - Air India 10% 7% 10% 8% 6% SQ - SINGAPORE AIRLINES EY - Etihad Airways 9% 7% 8% LH - Deutsche Lufthansa AG BA - British Airways

Figure 12 : Haul wise distribution of Total Distance travelled and GHG Emissions for International Air Travel

International Air Travel- Haul-wise Percentage Contributionof Total Distance Travelled and GHG Emissions GHG Emissions = 123.17 Thousand Tonne CO2e Total Distance Travelled = 982.87 Million Pax-km 5% Outer Ring - % Distribution of distance travelled 6% 21% Inner Ring - % 22% Distribution of GHG Emissions

Short Haul

72% Medium Haul

Long Haul 74%

13

5.2.1 International Short-haul Air Travel GHG Inventory Table 9: International Short haul- Air Travel GHG Emission Summary

Sr. Air Air Carrier Name No. of Distance Percentage GHG Percentage Emission No. Carrier Flights Travelled Contribution Emissions Contribution Factor (kg Code (Number) (Million of Distance (Thousand of GHG CO2e/Pax- Pax-km) Travelled Tonne Emissions km) (%) CO2e) (%) 1. BA British Airways 7,230 5.67 12% 0.94 12% 0.165 2. LH Deutsche Lufthansa 6,094 5.40 11% 1.01 13% 0.187 AG 3. TP TAP Portugal 3,180 4.42 9% 0.60 8% 0.136 4. EK Emirates 3,745 3.83 8% 0.68 9% 0.178 5. SQ Singapore Airlines 2,169 2.36 5% 0.38 5% 0.159 6. 9W Jet Airways 2,363 2.08 4% 0.30 4% 0.142 7. UA United Airlines 2,300 1.91 4% 0.24 3% 0.127 8. KL KLM Royal Dutch 2,273 1.72 3% 0.26 3% 0.152 Airlines 9. LX SWISS International 1,703 1.35 3% 0.34 4% 0.250 10. EY Etihad Airways 1,387 1.22 2% 0.21 3% 0.173 11. Others14 Others 22,042 19.18 39% 2.99 38% Total 54,486 49.14 7.94

14 International Short haul air travel GHG Emissions Summary of ‘Others’ air carriers reported in Annexure V 14

Figure 13: International Short-haul GHG Emissions & Distance Travelled

International - Short-haul - Top 10 & Other Air Carriers (Based on GHG Emissions Contribution & Distance Travelled) GHG Emissions = 7.94 Thousand Tonne CO2e, Total Distance Travelled = 49.14 Million Pax-km Distance Travelled (Million Pax-km) 0.00 10.00 20.00 30.00

British Airways 5.67 BA 0.94 5.40

LH Deutsche Lufthansa AG 1.01 4.42

TP TAP Portugal 0.60 3.83

EK Emirates 0.68 GHG SINGAPORE AIRLINES 2.36 SQ 0.38 Emissions 2.08

Jet Airways 0.29 9W United Airlines 1.91 UA 0.24

1.72 Distance Air Carrier Name Carrier Air KL KLM Royal Dutch Airlines 0.26 1.35 Travelled

LX SWISS International Air Lines 0.34 1.22

EY Etihad Airways 0.21 19.18 Others 2.99 0.00 1.00 2.00 3.00 4.00

GHG Emissions ('000 Tonne CO2e)

Figure 14: International Short-haul Percentage Contribution to GHG Emissions & Distance Travelled by Air Carriers

International - Short-haul - Top 10 & Other Air Carriers Outer Ring - % Contribution to (Based on GHG Emissions Contribution & Distance Travelled) Distance Travelled GHG Emissions = 7.94 Thousand Tonne CO2e, Inner Ring - % Contribution to Total Distance Travelled = 49.14 Million Pax-km GHG Emissions

Others 12% EY - Etihad Airways 12% LX - SWISS International Air 13% 11% 38% Lines 39% KL - KLM Royal Dutch Airlines

UA - United Airlines 9% 8% 9W - Jet Airways 8% 2% SQ - SINGAPORE AIRLINES 9% 5% 3% 4% 4% 3% 3% EK - Emirates 5% 4% 4% 3% 3% TP - TAP Portugal

15

Figure 15 : International Short haul- Top 10 Distance & GHG contributor’s EFs vs Average International Short haul- GHG Emission Factor

Emisssion Factors of Top 10 Distance and Emission Contributers for International-Short Haul

0.300 Average Emission Factor Overall Average km) - 0.250 of Top 10 Contributers, International Short Haul 0.250 0.167 Emission Factor , 0.161

0.200 0.178 0.187 0.173 0.165 0.152 0.159 0.142 0.150 0.127 0.136

0.100

0.050

EMission Factors (kgCO2e/Pax Factors EMission 0.000

Air Carrier Name Emission Factors of Top 10 Contributers Average Emission Factor of Top 10 Contributers Overall Average International Short Haul Emission Factor 5.2.2 International Medium-haul Air Travel GHG Inventory Table 10 : International Medium haul- Air Travel GHG Emission Summary

Sr. Air Air Carrier Name No of Distance Percentage GHG Percentage Emission No. Carrier Flights Travelled Contribution Emissions Contribution Factor (kg Code (Number) (Million of Distance (Thousand of GHG CO2e/Pax-km) Pax-km) Travelled Tonne Emissions (%) CO2e) (%) 1. EK Emirates 13,001 39.37 20% 5.82 22% 0.148 2. SQ Singapore Airlines 7,965 26.14 13% 3.58 13% 0.137 3. EY Etihad Airways 7,307 21.51 11% 3.21 12% 0.149 4. QR Qatar Airways 5,210 16.59 8% 2.24 8% 0.135 5. 9W Jet Airways 5,279 15.79 8% 1.88 7% 0.119 6. LH Deutsche 3,380 10.72 5% 1.30 5% 0.121 Lufthansa AG 7. BA British Airways 3,336 10.26 5% 1.42 5% 0.138 8. CX Cathay Pacific 2,384 8.23 4% 1.26 5% 0.153 Airways 9. AI Air India 2,573 7.96 4% 1.11 4% 0.140 10. MH Malaysian Airline 2,257 7.08 4% 1.01 4% 0.143 Berhad 11. Others15 Others 10,366 31.57 16% 4.16 15% Total 63,058 195.22 26.98

15 International Medium haul air travel GHG Emissions Summary of ‘Others’ air carriers reported in Annexure VI 16

Figure 16: International Medium-haul GHG Emissions & Distance Travelled

International - Medium Haul - Top 10 & Other Air Carriers (Based on GHG Emissions Contribution & Distance Travelled) GHG Emissions = 26.98 Thousand Tonne CO2e, Total Distance Travelled = 195.22 Million Pax-km Distance Travelled (Million Pax-km) 0.00 10.00 20.00 30.00 40.00 50.00 39.37 EK Emirates 5.82 SINGAPORE AIRLINES 26.14 SQ 3.58 21.51 EY Etihad Airways 3.21 Qatar Airways 16.59 GHG QR 2.24 Jet Airways 15.79 Emissions 9W 1.88 10.72

LH Deutsche Lufthansa AG 1.29 Distance British Airways 10.26 BA 1.42 Travelled Air Carrier Name Carrier Air 8.23 CX Cathay Pacific Airways Ltd 1.26 7.96 AI Air India 1.11 Malaysian Airline Berhad 7.08 MH 1.01 31.57 Others 4.15 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 GHG Emissions ('000 Tonne CO2e)

Figure 17: International Medium-haul Percentage Contribution to GHG Emissions & Distance Travelled by Air Carriers

International - Medium-haul - Top 10 & Other Air Carriers Outer Ring - % Contribution to (Based on GHG Emissions Contribution & Distance Travelled) Distance Travelled GHG Emissions = 26.98 Thousand Tonne CO2e, Total Distance Travelled = 195.22 Million Pax-km Inner Ring - % Contribution to GHG Emissions

16% Others 20% MH - Malaysian Airline Berhad 15% 22% AI - Air India 4% 4% CX - Cathay Pacific Airways Ltd 4% 4% BA - British Airways 5% 4% LH - Deutsche Lufthansa AG 13% 13% 5% 9W - Jet Airways 5% 5% QR - Qatar Airways 12% 7% 5% EY - Etihad Airways 8% 11% SQ - SINGAPORE AIRLINES 8% 8% EK - Emirates

17

Figure 18 : International Medium haul- Top 10 Distance & GHG contributor’s EFs vs Average International Medium haul- GHG Emission Factor

Emisssion Factors of Top 10 Distance and Emission Contributers for International-Medium Haul Overall Average Average Emission Factor International Medium of Top 10 Contributers, 0.180 Haul Emission Factor, 0.138

km) 0.135

- 0.153 0.160 0.143 0.149 0.148 0.140 0.138 0.135 0.137 0.140 0.120 0.121 0.119 0.100 0.080 0.060 0.040 0.020 Emission Factor (kgCO2e/Pax Factor Emission 0.000

Air Carrier Name Emission Factors of Top 10 Contributers Average Emission Factor of Top 10 Contributers Overall Average International Medium Haul Emission Factor

5.2.3 International Long-haul Air Travel GHG Inventory Table 11: International Long haul- Air Travel GHG Emissions

Sr. Air Air Carrier Name No of Distance Percentage GHG Percentage Emission No. Carrier Flights Travelled Contribution Emissions Contributio Factor (kg Code (Number) (Million of Distance (Thousan n of GHG CO2e/Pax- Pax-km) Travelled d Tonne Emissions km) (%) CO2e) (%) 1. EK Emirates 12,167 100.20 15% 14.13 14% 0.141 2. BA British Airways 12,417 95.74 14% 12.63 12% 0.132 3. LH Deutsche Lufthansa 10,310 79.85 12% 9% 0.114 AG 9.11 4. EY Etihad Airways 7,317 63.61 9% 9.15 9% 0.144 5. AI Air India 5,655 52.08 8% 6.91 7% 0.133 6. SQ Singapore Airlines 5,878 46.07 7% 6.09 6% 0.132 7. 9W Jet Airways 5,232 39.88 6% 4.57 4% 0.115 8. QR Qatar Airways 4,322 39.34 6% 4.94 5% 0.125 9. UA United Airlines 3,493 29.33 4% 2.77 3% 0.094 10. CX Cathay Pacific Airways 2,318 21.91 3% 3.19 3% 0.146 11. Others16 Others 15,469 120.49 17% 28.90 28% Total 84,578 688.50 102.38

16 International Long haul air travel GHG Emissions Summary of ‘Others’ air carriers reported in Annexure VII 18

Figure 19: International Long-haul GHG Emissions & Distance Travelled

International - Long-haul - Top 10 & Other Air Carriers (Based on GHG Emissions Contribution & Distance Travelled) GHG Emissions = 88.26 Thousand Tonne CO2e, Total Distance Travelled = 6.88 Million Pax-km Distance Travelled (Million Pax-km) 0.00 50.00 100.00 150.00 100.20 EK Emirates 14.13 British Airways 95.74 BA 12.63 79.85 LH Deutsche Lufthansa AG 9.11 63.61 EY Etihad Airways 9.14 Distance 52.08

AI Travelled Air India 6.91 SINGAPORE AIRLINES 46.07 SQ 6.09

Air Carrier Name Carrier Air Jet Airways 39.88 GHG 9W 4.57 Emissions Qatar Airways 39.34 QR 4.94 United Airlines 29.33 UA 2.77 21.91 CX Cathay Pacific Airways Ltd 3.19 120.49 Others 14.78 0.00 5.00 10.00 15.00 20.00 GHG Emissions (Tonne CO2e)

Figure 20: International Long-haul Percentage Contribution to GHG Emissions & Distance Travelled by Air Carriers

International - Long-haul - Top 10 & Other Air Carriers Outer Ring - % Contribution to (Based on GHG Emissions Contribution & Distance Travelled) Distance Travelled GHG Emissions = 88.26 Thousand Tonne CO2e, Inner Ring - % Contribution to Total Distance Travelled = 6.88 Million Pax-km GHG Emissions

Others 15% 17% CX - Cathay Pacific Airways Ltd 16% 17% UA - United Airlines

3% QR - Qatar Airways 4% 14% 3% 4% 9W - Jet Airways 14% 6% SQ - SINGAPORE AIRLINES 6% 5% AI - Air India 10% EY - Etihad Airways 12% 7% 6% 10% 8% LH - Deutsche Lufthansa AG 7% BA - British Airways 9% 8% EK - Emirates

19

Figure 21 : International Long haul- Top 10 Distance & GHG contributor’s EFs vs Average International Long haul- GHG Emission Factor

Emisssion Factors of Top 10 Distance and Emission Contributers for International-Long Haul

Overall Average International Average Emission Factor of Long Haul Emission Factor, Top 10 Contributers, 0.128 0.129 0.160 0.146 0.144 km) 0.141 - 0.132 0.133 0.132 0.140 0.125 0.115 0.120 0.114 0.094 0.100 0.080 0.060 0.040 0.020

0.000 Emission Factor (kgCO2e/Pax Factor Emission

Air Carrier Name Emission Factors of Top 10 Contributers Average Emission Factor of Top 10 Contributers Overall Average International Long Haul Emission Factor

5.3 Domestic and International Air Travel GHG Inventory Table 12 : Scope-wise Distribution of total GHG Emissions

For Year 2014-2015

International Domestic Total % of Total GHG Emissions Emission Scope Emission Scope Thousand Tonne CO2e for Wipro for Air Carriers Scope 1 & Operational Emission 100.73 38.87 139.60 82% Scope 2 - Fuel combustion + Purchased Electricity Scope 3 Scope 3 Aircraft 22.44 8.18 30.62 18% Manufacturing + Fuel Supply Chain Total 123.17 47.05 170.22

20

Table 13 : Domestic and International Air Travel Summary

Air Travel Distance Travelled (Million Pax-km) GHG Emissions (Thousand Tonne CO2e) International 932.87 123.17 Domestic 336.88 47.05 Total 1,269.75 170.22

Figure 22 : Domestic & International Air Travel GHG Emission Summary

Domestic and International Air Travel Total Distance Travelled (Domestic + International) = 1,269.75 Million Pax-km Total GHG Emissions (Domestic + international) =170.22 Thousand Tonne CO2e

1,000.00 932.87 140.00

123.17 km)

- 900.00 120.00 800.00 700.00 100.00

600.00 80.00 500.00 60.00 400.00 47.05 336.88 300.00 40.00 200.00 20.00

100.00 Distance Travelled (Million Pax (MillionTravelled Distance

0.00 0.00 CO2e) Tonne (Thousand Emissions GHG International Domestic Air Travel Category Distance Travelled GHG Emissions

21

Figure 23 : Percentage Contribution to Domestic and International Air Travel GHG Emission

Domestic and International Air Travel Total Distance Travelled (Domestic + International) =1,269.75 Million Pax-km Total GHG Emissions (Domestic + international) =170.22 Thousand Tonne CO2e

Distance Travelled, Domestic, 27% GHG Emissions, Domestic, 28%

GHG Emissions, International, 72%

Distance Travelled, International, 73%

22

5.4 Scenario Modelling

5.4.1 Baseline Vs “Best-In-Class” Air Carrier

Baseline vs Best-In-Class Scenario –

Baseline – All flights treated as individual flights and their GHG emission is considered for baseline scenario

- The goal of this scenario is to identify the best Airline based on their emissions for a given sector; - This is done through extracting all the unique flights for a given airline and assessing alternative airlines for that particular sector; - The Airline that achieves the lowest emission for a given sector is chosen and termed “Best-In-Class”; - After that, the whole data is assessed and then if the Airline flown is different from “Best-In-Class” airline for that particular sector, then the “Best-In-Class” airline is recommended for that sector.

Table 14 : Baseline vs Best-In-Class

Baseline Recommendation – Savings Best in Class Air Travel Category Scenario Distance Travelled GHG Emissions GHG Emissions Savings in Percent Savings Modelled (Million Pax-km) (Thousand (Thousand Tonne Emissions (%) (Number) Tonne CO2e) CO2e) (Thousand Tonne CO2e) International (Best- 8,775 38.00 4.18 0.00 0.00 0% In-Class) International 1,93,347 894.86 118.98 70.44 48.54 41%

Total 2,02,122 932.86 123.16 70.44 52.72 43%

23

Baseline Recommendation – Savings Best in Class Air Travel Category Scenario Distance Travelled GHG Emissions GHG Emissions Savings in Percent Savings Modelled (Million Pax-km) (Thousand (Thousand Tonne Emissions (%)

(Number) Tonne CO2e) CO2e) (Thousand Tonne CO2e) Domestic (USA- 15,647 22.81 2.78 0.00 0.00 0% Best-In-Class) Domestic (USA) 98,116 137.44 20.21 12.74 7.47 37%

Subtotal 1,13,763 160.25 22.99 12.74 10.25 45%

Domestic (India- 20,106 17.62 2.06 0.00 0.00 0% Best-In-Class) Domestic (India) 1,39,060 143.78 19.62 15.71 3.92 20%

Subtotal 1,59,166 161.4 21.68 15.71 5.97 28%

Total 2,72,929 321.65 44.67 27.45 17.22 39%

5.4.2 Baseline (One/Multiple-Stop) vs Non Stop Sector Baseline – One/ Multi-Stop flights with corresponding Distance travelled and GHG Emissions (Flights whose recommendation is available and gives savings in positive are only counted)

Non Stop Sector – Flights with no intermediate stops. Also known as a ‘Direct flight’ The goal of the Scenario is to avoid One/Multi-Stop flights and commence a non-stop flight wherever applicable via the airline which has lowest emission for that sector.

- This is done by Airline wise extracting all the unique flights and assessing different airlines flying for that particular sector. - Then, Airline which delivers lowest emission for the given sector is chosen and termed “Best-In-Class”

24

After that, Total Flight distance and total emissions is calculated by adding flight distances and their emissions for all flight legs of that sector. Scenario is modelled which depicts flight flying from Source destination to end destination while skipping all intermediate legs. (Assumptions are made wherever necessary) Based on the scenario modelled, the flight sector combination is tabulated with the extracted list to verify whether any such combination already exists in the data extracted.

If it does, the flight distance for that sector is extracted from the list and corresponding emission are calculated with respect to best efficient airlines in that sector. These emissions are subtracted from total emissions to find out total savings

Table 15 : Multi-Stop Sector vs Non Stop Sector

Baseline Recommendation Savings

Air Travel Category No of No of Distance Emissions Distance Emissions Savings Percent Savings Percent Sectors Flights Travelled (Thousand Travelled (Thousand Distance Savings Emissions Savings (Number) (Number) (Million Pax- Tonne (Million Pax- Tonne Travelled Distance (Thousand Emissions km) CO2e) km) CO2e) (Million Travelled Tonne (%) Pax-km) (%) CO2e) International

Multi-Stop Flights 49,252 1,36,597 720.88 95.18 ------

Scenario Not 14,523 86,063 250.26 31.75 0.00 0.00 0.00 0% 0.00 0% Modelled Scenario Modelled 50,534 50,534 470.62 63.42 433.29 47.49 37.32 8% 15.94 25%

25

Baseline Recommendation Savings

Air Travel Category No of No of Distance Emissions Distance Emissions Savings Percent Savings Percent Sectors Flights Travelled (Thousand Travelled (Thousand Distance Savings Emissions Savings (Number) (Number) (Million Pax- Tonne (Million Pax- Tonne Travelled Distance (Thousand Emissions km) CO2e) km) CO2e) (Million Travelled Tonne (%) Pax-km) (%) CO2e) Domestic (USA only) Multi-Stop Flights 17,566 63,057 81.86 12.05 ------

Scenario Not 4,964 45,146 32.30 4.98 0.00 0.00 0.00 0% 0.00 0% Modelled Scenario Modelled 17,911 17,911 49.56 7.07 34.07 3.57 15.48 31% 3.50 50%

26

6. Conclusion & Recommendations

6.1 Domestic Air Carriers -Best-In-Class

6.1.1 Domestic Short Haul

6.1.1.1 African Short haul – Emission Factor Ranking Table 16: Domestic Short haul- African Air Carriers’ Emission Factor Ranking

From Table 17, it is evident that Wat Phnom Airlines is the best airline to fly short-haul in Africa, followed by Royal Air Macroc and so forth.

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km)

WD Wat Phnom Airlines 0.177 1

AT Royal Air Macroc 0.195 2

LC Equatorial Congo Airlines 0.208 3

WB Rwand Air 0.218 4

SA South African Airways 0.239 5

ET Ethiopian Airlines 0.242 6

KQ Kenya Airways 0.287 7

6.1.1.2 American (excluding USA) Short haul – Emission Factor Ranking From Table 18, it is evident that Air Canada is the best airline to fly short-haul in the Americas (excluding the US), followed by Aruba Airlines and so forth

Table 17 : Domestic Short haul- American Air Carriers’ Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) AC Air Canada 0.175 1

AG Aruba Airlines 0.175 2

WS West Jet 0.179 3

H2 Sky Airline 0.189 4

G3 Gol Transportes Aéreos 0.190 5

JJ TAM Linhas Aereas S.A. 0.193 6

5J CEBU Pacific Air 0.195 7

27

LA LAN Airlines 0.195 8

PR Philippine Airlines 0.204 9

AR Aerolineas Argentinas 0.209 10

AD Azul Linhas Aereas Brasileiras 0.211 11

TS Air Transat 0.211 12

2K Aerolineas Aerogal 0.213 13

F4 Air Flamenco 0.222 14

LU LAN Express 0.222 15

TA Taca International Airlines 0.223 16

CM Copa Airlines 0.224 17

AV AVIANCA 0.224 18

CP Compass Airlines 0.245 19

9V Avior Airlines 0.262 20

AM Aeromexico 0.268 21

T7 Transcarga International 0.296 22 Airways PD Porter Airlines 0.477 23

6.1.1.3 Asia Pacific Short haul – Emission Factor Ranking From Table 19, it is evident that Malindo Air is the best airline to fly short-haul in the Asia-Pacific region, followed by Spring Airlines and so forth.

Table 18 : Domestic Short haul- Asia Pacific Air Carriers’ Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) OD Malindo Air 0.169 1

9C Spring Airlines 0.175 2

Z2 Air Asia Zest 0.175 3

HO Juneyao Airlines 0.176 4

SC Shandong Airlines 0.180 5

PG Bangkok Airways 0.181 6

28

EU Chengdu Airlines 0.181 7

3U Sichuan Airlines 0.185 8

8M Myanmar Airways 0.185 9

ZH Shenzhen Airlines 0.186 10

BR EVA Air 0.190 11

FD Thai Air Asia 0.192 12

VN Vietnam Airlines 0.194 13

TR Tiger Airways 0.194 14

HU Hainan Airlines 0.194 15

AK Air Asia Berhad 0.198 16

CZ China Southern Airlines 0.200 17

MU China Eastern Airlines 0.207 18

DG Cebgo 0.208 19

MI Silk Air 0.210 20

FM Shanghai Airlines 0.211 21

UL Srilankan Airlines 0.219 22

CA Air China 0.219 23

KB Druk Air 0.223 24

SQ Singapore Airlines 0.225 25

CI China Airlines 0.234 26

AE Mandarin Airlines 0.237 27

NH All Nippon Airways 0.243 28

JL Japan Airlines 0.244 29

GA Garuda Indonesia 0.246 30

MH Malaysian Airline Berhad 0.250 31

CX Cathay Pacific Airways 0.259 32

KA Hong Kong Dragon Airlines 0.263 33

TG Thai Airways 0.281 34

29

OZ Asiana Airlines 0.288 35

KE Korean Air 0.324 36

BS US Bangla Airline 0.334 37

6.1.1.4 Oceania Short haul – Emission Factor Ranking From Table 20, it is evident that Jetstar Airways is the best airline to fly short-haul in Oceania region, followed by Quantas Airways and so forth.

Table 19 : Domestic Short haul- Oceania Air Carriers’ Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) JQ Jetstar Airways 0.191 1

QF Quantas Airways 0.192 2

VA Virgin Australia Airlines 0.194 3

NZ Air New Zealand 0.197 4

SB Aircalin 0.223 5

ZL Regional Express 0.333 6

6.1.1.5 European Short haul – Emission Factor Ranking From Table 21, it is evident that Ryanair is the best airline to fly short-haul in Europe, followed by Norwegian Air Shuttle and so forth.

Table 20 : Domestic Short haul- Europe Air Carriers’ Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) FR Ryanair 0.144 1

DY Norwegian Air Shuttle 0.157 2

W6 Wizz Air 0.176 3

VY Vueling Airlines 0.176 4

TO Transavia France 0.178 5

SI Blue Islands 0.180 6

3L InterSky 0.180 7

KM Air Malta 0.180 8

EI Air Lingus 0.180 9

30

ZB Monarch Airlines 0.180 10

AY Finnair Oyj 0.183 11

AB Air Berlin PLC 0.186 12

K2 Eurolot 0.186 13

SK Scandinavian Airlines 0.186 14

JU Air Serbia 0.188 15

TP TAP Portugal 0.190 16

F7 Etihad Regional 0.192 17

LS Jet2.com 0.195 18

DE Condor Flugdienst GmbH 0.196 19

U2 Easyjet Airline 0.199 20

IB IBERIA 0.199 21

TK Turkish Airlines 0.200 22

RE Stobart Air 0.204 23

UN Transaero Airlines 0.205 24

UT UTair Aviation 0.206 25

RO TAROM 0.211 26

A5 HOP 0.212 27

4U GermanWings 0.212 28

AF Air France 0.213 29

AF Air France 0.213 30

FI Icelandair 0.213 31

YW Air Nostrum 0.213 32

EL Ellinair 0.214 33

HV Transavia Airlines 0.215 34

BQ Bukovyna Airlines 0.216 35

VS Virgin Atlantic Airways 0.219 36

KL KLM Royal Dutch Airlines 0.220 37

31

BV Blue Panorama Airlines 0.221 38

SU Areoflot 0.222 39

H1 Hahn Air Systems 0.222 40

T3 Eastern Airways 0.224 41

WI White Airways 0.225 42

SX Skywork Airlines 0.225 43

AZ Alitalia 0.228 44

BA British Airways 0.231 45

TF Malmo Aviation 0.234 46

OK Czech Airlines 0.243 47

LG Luxair 0.243 48

BE Flybe 0.246 49

UX Air Europa 0.249 50

LO LOT Polish Airline 0.250 51

OV Estonian Air 0.250 52

SN Brussels Airlines 0.254 53

BM BMI Regional 0.264 54

WX City Jet 0.266 55

LH Deutsche Lufthansa AG 0.277 56

2N NextJet AB 0.311 57

OS Austrian Airlines 0.316 58

BT Air Baltic 0.322 59

EJ European Cargo Services 0.323 60 BV OU Croatia Airlines 0.362 61

LX SWISS International Airlines 0.386 62

HR Hahn Airlines 0.706 63

32

6.1.1.6 Indian Short haul – Emission Factor Ranking From Table 22, it is evident that Indigo Airline is the best airline to fly short-haul in India, followed by Go Air and so forth.

Table 21 : Domestic Short haul- Indian Air Carriers’ Emission Factor Ranking

Carrier Carrier Name Emission Factor Ranking Code (kgCO2e/Pax-km) 6E Indigo Airlines 0.161 1

G8 Go Air 0.163 2

I5 Air Asia India 0.170 3

S2 Jet Lite 0.190 4

UK Vistara 0.197 5

SG Spice Jet 0.200 6

IX Air India Express 0.201 7

9W Jet Airways 0.214 8

AI Air India 0.234 9

6.1.1.7 Middle Eastern Short haul – Emission Factor Ranking From Table 23, it is evident that Nile Air is the best airline to fly short-haul in the Middle East, followed by Flynas and so forth.

Table 22 : Domestic Short haul- Middle Eastern Air Carriers’ Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) NP Nile Air 0.175 1

XY FLYNAS 0.183 2

LY El Al Israel Airlines 0.189 3

G9 Air Arabia 0.194 4

GF Gulf Air 0.198 5

PC Pegasus Airlines 0.199 6

FZ Fly Dubai 0.210 7

SV Saudi Arabian Airlines 0.212 8

WY Oman Air 0.212 9

KU Kuwait Airways 0.214 10

33

J2 Azerbaijan Hava Yollary 0.217 11

EK Emirates 0.237 12

QR Qatar Airways 0.242 13

EY Etihad Airways 0.245 14

AL Air Lesiure 0.250 15

KC Air Astana 0.262 16

RJ Royal Jordanian 0.277 17

MS Egypt Air 0.283 18

6.1.1.8 USA Short haul – Emission Factor Ranking From Table 24, it is evident that Spirit Airlines is the best airline to fly short-haul in the USA, followed by JetBlue (as Eastern Air Lines is a charter airline) and so forth.

Table 23 : Domestic Short haul- USA Air Carriers’ Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) NK Spirit Airlines 0.162 1

EA Eastern Airlines 0.183 2

B6 JetBlue 0.184 3

WN Southwest Airlines 0.185 4

SY Sun Country Airlines 0.185 5

VX Virgin America 0.185 6

DL Delta Airlines 0.188 7

AS Alaska Airlines 0.192 8

UA United Airlines 0.197 9

F9 Frontier Airlines 0.208 10

3M Silver Airways 0.212 11

G4 Allegiant Air 0.220 12

7H Ravn Alaska 0.222 13

K5 SeaPort Airlines 0.222 14

KO Alaska Central Express 0.222 15

34

3E Air Choice One 0.234 16

AA American Airlines 0.244 17

US US Airways 0.244 18

HA Hawaiian Airlines 0.274 19

FL AirTran Airways 0.301 20

6.1.2 Domestic Long haul

6.1.2.1 African Long haul – Emission Factor Ranking From Table 27, it is evident that Rwand Air is the best airline to fly long-haul in Africa, followed by Wat Phnom Airlines and so forth.

Table 24 : Domestic Long haul - African Air Carriers’ Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) WB Rwand Air 0.112 1

WD Wat Phnom Airlines 0.129 2

AT Royal Air Macroc 0.131 3

LC Equatorial Congo Airlines 0.142 4

ET Ethiopian Airlines 0.154 5

SA South African Airways 0.160 6

KQ Kenya Airways 0.192 7

6.1.2.2 American (excluding USA) Long haul – Emission Factor Ranking From Table 26, it is evident that WestJet is the best airline to fly long-haul in the Americas (excluding the USA), followed by Air Canada and so forth.

Table 25 : Domestic Long haul - American Air Carriers’ Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) WS West Jet 0.116 1

AC Air Canada 0.119 2

AG Aruba Airlines 0.120 3

H2 Sky Airline 0.125 4

35

G3 Gol Transportes Aéreos 0.128 5

5J CEBU Pacific Air 0.131 6

JJ TAM Linhas Aereas S.A. 0.132 7

LA LAN Airlines 0.132 8

PR Philippine Airlines 0.137 9

TS Air Transat 0.139 10

AR Aerolineas Argentinas 0.141 11

2K Aerolineas Aerogal 0.144 12

F4 Air Flamenco 0.150 13

LU LAN Express 0.150 14

CM Copa Airlines 0.151 15

AD Azul Linhas Aereas Brasileiras 0.152 16

TA Taca International Airlines 0.153 17

AV AVIANCA 0.153 18

9V Avior Airlines 0.157 19

CP Compass Airlines 0.164 20

AM Aeromexico 0.180 21

T7 Transcarga International 0.208 22 Airways PD Porter Airlines 0.298 23

6.1.2.3 Asia Pacific Long haul – Emission Factor Ranking From Table 27, it is evident that Malindo Air is the best airline to fly long-haul in the Asia-Pacific region, followed by Shandong Airlines and so forth.

Table 26 : Domestic Long haul- Asia Pacific Air Carriers’ Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) OD Malindo Air 0.118 1

SC Shandong Airlines 0.119 2

9C Spring Airlines 0.120 3

Z2 Air Asia Zest 0.120 4

36

EU Chengdu Airlines 0.120 5

HO Juneyao Airlines 0.121 6

8M Myanmar Airways 0.123 7

3U Sichuan Airlines 0.124 8

ZH Shenzhen Airlines 0.125 9

PG Bangkok Airways 0.127 10

BR EVA Air 0.128 11

HU Hainan Airlines 0.128 12

FD Thai Air Asia 0.130 13

VN Vietnam Airlines 0.131 14

TR Tiger Airways 0.132 15

CZ China Southern Airlines 0.135 16

AK Air Asia Berhad 0.135 17

MU China Eastern Airlines 0.141 18

FM Shanghai Airlines 0.141 19

MI Silk Air 0.142 20

UL Srilankan Airlines 0.146 21

CA Air China 0.148 22

KB Druk Air 0.149 23

SQ Singapore Airlines 0.151 24

CI China Airlines 0.154 25

GA Garuda Indonesia 0.158 26

AE Mandarin Airlines 0.162 27

NH All Nippon Airways 0.163 28

JL Japan Airlines 0.164 29

DG Cebgo 0.165 30

MH Malaysian Airline Berhad 0.168 31

CX Cathay Pacific Airways 0.173 32

37

KA Hong Kong Dragon Airlines 0.173 33

TG Thai Airways 0.187 34

OZ Asiana Airlines 0.192 35

BS US Bnagla Airline 0.209 36

KE Korean Air 0.215 37

6.1.2.4 Oceania Long haul – Emission Factor Ranking From Table 28, it is evident that Quantas Airways is the best airline to fly long-haul in the Oceania region, followed by Jetstar and so forth.

Table 27 : Domestic Long haul- Oceania Air Carriers’ Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) QF Quantas Airways 0.129 1

JQ Jetstar Airways 0.129 2

VA Virgin Australia Airlines 0.130 3

NZ Air New Zealand 0.133 4

SB Aircalin 0.146 5

ZL Regional Express 0.298 6

6.1.2.5 European Long haul – Emission Factor Ranking From Table 29, it is evident that Ryanair is the best airline to fly long-haul in Europe, followed by Norwegian Air Shuttle and so forth.

Table 28 : Domestic Long haul- European Air Carriers’ Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) FR Ryanair 0.098 1

DY Norwegian Air Shuttle 0.106 2

TO Transavia France 0.119 3

W6 Wizz Air 0.120 4

VY Vueling Airlines 0.120 5

EI Air Lingus 0.121 6

KM Air Malta 0.121 7

38

AB Air Berlin PLC 0.122 8

SK Scandinavian Airlines 0.123 9

AY Finnair Oyj 0.124 10

ZB Monarch Airlines 0.125 11

TP TAP Portugal 0.128 12

JU Air Serbia 0.131 13

U2 Easyjet Airline 0.132 14

DE Condor Flugdienst GmbH 0.133 15

LS Jet2.com 0.134 16

TK Turkish Airlines 0.134 17

3L InterSky 0.134 18

IB IBERIA 0.134 19

YW Air Nostrum 0.137 20

UN Transaero Airlines 0.139 21

OV Estonian Air 0.139 22

K2 Eurolot 0.140 23

FI Icelandair 0.140 24

4U GermanWings 0.142 25

SN Brussels Airlines 0.144 26

UT UTair Aviation 0.145 27

A5 HOP 0.145 28

AF Air France 0.145 29

AF Air France 0.145 30

HV Transavia Airlines 0.145 31

KL KLM Royal Dutch Airlines 0.145 32

EL Ellinair 0.146 33

VS Virgin Atlantic Airways 0.146 34

RO TAROM 0.147 35

39

SI Blue Islands 0.148 36

SU Areoflot 0.148 37

H1 Hahn Air Systems 0.150 38

BV Blue Panorama Airlines 0.151 39

BQ Bukovyna Airlines 0.151 40

F7 Etihad Regional 0.151 41

LO LOT Polish Airline 0.152 42

WI White Airways 0.152 43

AZ Alitalia 0.152 44

BA British Airways 0.155 45

SX Skywork Airlines 0.155 46

BE Flybe 0.158 47

LG Luxair 0.158 48

UX Air Europa 0.164 49

TF Malmo Aviation 0.164 50

T3 Eastern Airways 0.165 51

OK Czech Airlines 0.169 52

RE Stobart Air 0.171 53

OU Croatia Airlines 0.172 54

LH Deutsche Lufthansa AG 0.179 55

WX City Jet 0.180 56

OS Austrian Airlines 0.186 57

BM BMI Regional 0.186 58

2N NextJet AB 0.208 59

BT Air Baltic 0.213 60

LX SWISS International Airlines 0.242 61

EJ European Cargo Services BV 0.304 62

HR Hahn Airlines 0.458 63

40

6.1.2.6 Indian Long haul – Emission Factor Ranking From Table 30, it is evident that Spice Jet is the best airline to fly long-haul in India, followed by Indigo and so forth.

Table 29 : Domestic Long haul- Indian Air Carriers’ Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) SG Spice Jet 0.109 1

6E Indigo Airlines 0.110 2

G8 Go Air 0.111 3

I5 Air Asia India 0.116 4

S2 Jet Lite 0.132 5

IX Air India Express 0.134 6

UK Vistara 0.134 7

9W Jet Airways 0.144 8

AI Air India 0.157 9

6.1.2.7 Middle Eastern Long haul – Emission Factor Ranking From Table 31, it is evident that Nile Air is the best airline to fly long-haul in India, followed by Flynas and so forth.

Table 30 : Domestic Long haul- Middle Eastern Air Carriers’ Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) NP Nile Air 0.120 1

XY FLYNAS 0.123 2

LY El Al Israel Airlines 0.127 3

G9 Air Arabia 0.132 4

GF Gulf Air 0.133 5

PC Pegasus Airlines 0.133 6

WY Oman Air 0.139 7

FZ Fly Dubai 0.140 8

41

SV Saudi Arabian Airlines 0.141 9

KU Kuwait Airways 0.143 10

J2 Azerbaijan Hava Yollary 0.146 11

EK Emirates 0.160 12

QR Qatar Airways 0.162 13

EY Etihad Airways 0.166 14

AL Air Lesiure 0.177 15

KC Air Astana 0.179 16

RJ Royal Jordanian 0.186 17

MS Egypt Air 0.188 18

6.1.2.8 USA Long haul – Emission Factor Ranking From Table 32, it is evident that Spirit Airlines is the best airline to fly long-haul in the USA, followed by Alaska Airlines and so forth.

Table 31 : Domestic Long haul- USA Air Carriers’ Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) NK Spirit Airlines 0.109 1

AS Alaska Airlines 0.117 2

UA United Airlines 0.119 3

EA Eastern Airlines 0.122 4

SY Sun Country Airlines 0.124 5

VX Virgin America 0.126 6

WN Southwest Airlines 0.126 7

B6 JetBlue 0.127 8

DL Delta Airlines 0.129 9

F9 Frontier Airlines 0.139 10

7H Ravn Alaska 0.150 11

K5 SeaPort Airlines 0.150 12

KO Alaska Central Express 0.150 13

42

G4 Allegiant Air 0.156 14

AA American Airlines 0.166 15

US US Airways 0.166 16

HA Hawaiian Airlines 0.180 17

3M Silver Airways 0.187 18

FL AirTran Airways 0.204 19

3E Air Choice One 0.219 20

6.2 International Air Carriers -Best-In-Class

6.2.1 International Short haul Emission Factor Ranking From Table 33, it is evident that Ryanair is the best airline to fly short-haul Internationally, followed by Norwegian Air Shuttle and so forth.

Table 32 : International Short haul Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) FR Ryanair 0.105 1

DY Norwegian Air Shuttle 0.114 2

NK Spirit Airlines 0.121 3

WB Rwand Air 0.122 4

6E Indigo Airlines 0.124 5

WS West Jet 0.124 6

AS Alaska Airlines 0.124 7

UA United Airlines 0.127 8

AC Air Canada 0.127 9

I5 Air Asia India 0.129 10

OD Malindo Air 0.130 11

AB Air Berlin PLC 0.130 12

LY El Al Israel Airlines 0.130 13

W6 Wizz Air 0.131 14

SK Scandinavian Airlines 0.131 15

43

VY Vueling Airlines 0.132 16

EI Air Lingus 0.132 17

AY Finnair Oyj 0.132 18

EU Chengdu Airlines 0.132 19

9C Spring Airlines 0.132 20

AG Aruba Airlines 0.132 21

Z2 Air Asia Zest 0.132 23

TO Transavia France 0.133 24

SC Shandong Airlines 0.133 25

NP Nile Air 0.132 25

S2 Jet Lite 0.133 26

HO Juneyao Airlines 0.133 27

SG Spice Jet 0.133 28

WN Southwest Airlines 0.134 29

KM Air Malta 0.134 30

B6 JetBlue 0.135 31

BR EVA Air 0.135 32

TP TAP Portugal 0.136 33

G3 Gol Transportes Aéreos 0.136 34

8M Myanmar Airways 0.136 35

XY FLYNAS 0.136 36

SY Sun Country Airlines 0.137 37

QF Quantas Airways 0.137 38

DL Delta Airlines 0.137 39

ZB Monarch Airlines 0.137 40

VA Virgin Australia Airlines 0.137 41

H2 Sky Airline 0.138 42

ZH Shenzhen Airlines 0.138 43

44

VX Virgin America 0.139 44

PG Bangkok Airways 0.139 45

JJ TAM Linhas Aereas S.A. 0.140 46

LA LAN Airlines 0.140 47

VN Vietnam Airlines 0.140 48

JQ Jetstar Airways 0.140 49

5J CEBU Pacific Air 0.141 50

WD Wat Phnom Airlines 0.141 51

NZ Air New Zealand 0.141 52

HU Hainan Airlines 0.141 53

GF Gulf Air 0.142 54

AT Royal Air Macroc 0.142 55

9W Jet Airways 0.142 56

BV Blue Panorama Airlines 0.142 57

DE Condor Flugdienst GmbH 0.143 58

UN Transaero Airlines 0.143 59

JU Air Serbia 0.143 60

CZ China Southern Airlines 0.143 61

TK Turkish Airlines 0.143 62

IX Air India Express 0.143 63

IB IBERIA 0.144 64

FD Thai Air Asia 0.144 65

TR Tiger Airways 0.145 66

PC Pegasus Airlines 0.145 67

G9 Air Arabia 0.145 68

U2 Easyjet Airline 0.145 69

LS Jet2.com 0.146 70

3L InterSky 0.146 71

45

FI Icelandair 0.148 72

AK Air Asia Berhad 0.148 73

MU China Eastern Airlines 0.149 74

FM Shanghai Airlines 0.149 75

PR Philippine Airlines 0.149 76

YW Air Nostrum 0.149 77

4U GermanWings 0.150 78

MI Silk Air 0.150 79

SV Saudi Arabian Airlines 0.150 80

WY Oman Air 0.150 81

F9 Frontier Airlines 0.151 82

OV Estonian Air 0.151 83

TS Air Transat 0.152 84

K2 Eurolot 0.152 85

KL KLM Royal Dutch Airlines 0.152 86

AF Air France 0.152 87

HV Transavia Airlines 0.152 88

A5 HOP 0.152 89

AR Aerolineas Argentinas 0.154 90

VS Virgin Atlantic Airways 0.154 91

SN Brussels Airlines 0.154 92

FZ Fly Dubai 0.154 93

KB Druk Air 0.155 94

KU Kuwait Airways 0.156 95

SU Areoflot 0.156 96

2K Aerolineas Aerogal 0.157 97

UT UTair Aviation 0.157 98

UL Srilankan Airlines 0.158 99

46

AZ Alitalia 0.158 100

EL Ellinair 0.158 101

SQ Singapore Airlines 0.159 102

SB Aircalin 0.159 103

RO TAROM 0.160 104

CA Air China 0.160 105

AV AVIANCA 0.161 106

TA Taca International Airlines 0.161 107

SI Blue Islands 0.161 108

Other Other 0.161 109

4F Air France 0.161 110

KO Alaska Central Express 0.161 111

F4 Air Flamenco 0.161 112

H1 Hahn Air Systems 0.161 113

3M Silver Airways 0.161 114

3U Sichuan Airlines 0.161 115

7H Ravn Alaska 0.161 116

DG Cebgo 0.161 117

EA Eastern Airlines 0.161 118

G8 Go Air 0.161 119

J2 Azerbaijan Hava Yollary 0.161 120

K5 SeaPort Airlines 0.161 121

LC Equatorial Congo Airlines 0.161 122

LU LAN Express 0.161 123

UK Vistara 0.161 124

WI White Airways 0.161 125

CM Copa Airlines 0.164 126

BQ Bukovyna Airlines 0.164 127

47

F7 Etihad Regional 0.164 128

LO LOT Polish Airline 0.164 129

AD Azul Linhas Aereas Brasileiras 0.164 130

BA British Airways 0.165 131

BE Flybe 0.165 132

SX Skywork Airlines 0.168 133

GA Garuda Indonesia 0.168 134

UX Air Europa 0.168 135

ET Ethiopian Airlines 0.168 136

CI China Airlines 0.168 137

G4 Allegiant Air 0.169 138

AI Air India 0.169 139

9V Avior Airlines 0.170 140

NH All Nippon Airways 0.171 141

LG Luxair 0.171 142

JL Japan Airlines 0.172 143

QR Qatar Airways 0.173 144

EY Etihad Airways 0.173 145

SA South African Airways 0.174 146

AA American Airlines 0.174 147

US US Airways 0.174 148

MH Malaysian Airline Berhad 0.176 149

HA Hawaiian Airlines 0.176 150

AE Mandarin Airlines 0.176 151

CP Compass Airlines 0.177 152

TF Malmo Aviation 0.177 153

EK Emirates 0.178 154

T3 Eastern Airways 0.179 155

48

CX Cathay Pacific Airways 0.181 156

KA Hong Kong Dragon Airlines 0.181 157

AL Air Lesiure 0.182 158

OK Czech Airlines 0.182 159

RE Stobart Air 0.184 160

LH Deutsche Lufthansa AG 0.187 161

OU Croatia Airlines 0.187 162

AM Aeromexico 0.187 163

KQ Kenya Airways 0.188 164

RJ Royal Jordanian 0.192 165

KC Air Astana 0.193 166

OS Austrian Airlines 0.194 167

WX City Jet 0.194 168

MS Egypt Air 0.197 169

TG Thai Airways 0.200 170

OZ Asiana Airlines 0.200 171

BM BMI Regional 0.200 172

FL AirTran Airways 0.218 173

T7 Transcarga International Airways 0.223 174

2N NextJet AB 0.223 175

KE Korean Air 0.223 176

BS US Bnagla Airline 0.224 177

BT Air Baltic 0.228 178

3E Air Choice One 0.235 179

LX SWISS International Airlines 0.250 180

PD Porter Airlines 0.316 181

ZL Regional Express 0.316 182

EJ European Cargo Services BV 0.323 183

49

HR Hahn Airlines 0.482 184

6.2.2 International Medium haul Emission Factor Ranking From Table 34, it is evident that Ryanair is the best airline to fly medium-haul Internationally, followed by Rwand Air (fleet size of 8), Alaska Air and so forth.

Table 33 International Medium haul Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) FR Ryanair 0.090 1

WB Rwand Air 0.091 2

AS Alaska Airlines 0.098 3

DY Norwegian Air Shuttle 0.098 4

UA United Airlines 0.101 5

SK Scandinavian Airlines 0.101 6

WS West Jet 0.101 7

NK Spirit Airlines 0.101 8

LY El Al Israel Airlines 0.102 9

AC Air Canada 0.102 10

BR EVA Air 0.105 11

BV Blue Panorama Airlines 0.105 12

SG Spice Jet 0.106 13

6E Indigo Airlines 0.106 14

AB Air Berlin PLC 0.106 15

S2 Jet Lite 0.106 16

WN Southwest Airlines 0.107 17

DL Delta Airlines 0.107 18

VA Virgin Australia Airlines 0.108 19

W6 Wizz Air 0.109 20

AY Finnair Oyj 0.110 21

I5 Air Asia India 0.110 22

50

EI Air Lingus 0.110 23

VY Vueling Airlines 0.111 24

OD Malindo Air 0.111 25

EU Chengdu Airlines 0.112 26

HO Juneyao Airlines 0.113 27

9C Spring Airlines 0.113 28

AG Aruba Airlines 0.113 29

Z2 Air Asia Zest 0.113 31

SC Shandong Airlines 0.114 32

NP Nile Air 0.113 33

TO Transavia France 0.114 33

KM Air Malta 0.114 34

TP TAP Portugal 0.115 35

UN Transaero Airlines 0.115 36

GF Gulf Air 0.115 37

8M Myanmar Airways 0.116 38

B6 JetBlue 0.116 39

XY FLYNAS 0.116 40

VN Vietnam Airlines 0.116 41

H2 Sky Airline 0.117 42

QF Quantas Airways 0.117 43

ZB Monarch Airlines 0.117 44

SY Sun Country Airlines 0.117 45

CZ China Southern Airlines 0.117 46

5J CEBU Pacific Air 0.117 47

JQ Jetstar Airways 0.117 48

TK Turkish Airlines 0.118 49

G3 Gol Transportes Aéreos 0.118 50

51

ZH Shenzhen Airlines 0.118 51

OV Estonian Air 0.118 52

DE Condor Flugdienst GmbH 0.118 53

LA LAN Airlines 0.118 54

IB IBERIA 0.119 55

VX Virgin America 0.119 56

AT Royal Air Macroc 0.119 57

PG Bangkok Airways 0.119 58

9W Jet Airways 0.119 59

JJ TAM Linhas Aereas S.A. 0.120 60

HU Hainan Airlines 0.121 61

LH Deutsche Lufthansa AG 0.121 62

NZ Air New Zealand 0.121 63

SN Brussels Airlines 0.121 64

PC Pegasus Airlines 0.122 65

JU Air Serbia 0.122 66

WD Wat Phnom Airlines 0.123 67

SV Saudi Arabian Airlines 0.123 68

FD Thai Air Asia 0.124 69

IX Air India Express 0.124 70

U2 Easyjet Airline 0.124 71

FI Icelandair 0.124 72

LS Jet2.com 0.124 73

YW Air Nostrum 0.124 74

TR Tiger Airways 0.125 75

G9 Air Arabia 0.125 76

LX SWISS International Airlines 0.125 77

F9 Frontier Airlines 0.126 78

52

OS Austrian Airlines 0.126 79

WY Oman Air 0.126 80

PR Philippine Airlines 0.126 81

KB Druk Air 0.126 82

AZ Alitalia 0.128 83

AK Air Asia Berhad 0.128 84

MU China Eastern Airlines 0.128 85

3L InterSky 0.128 86

AF Air France 0.128 87

KL KLM Royal Dutch Airlines 0.128 88

A5 HOP 0.128 89

TS Air Transat 0.128 90

4U GermanWings 0.129 91

FM Shanghai Airlines 0.129 92

SU Areoflot 0.130 93

MI Silk Air 0.130 94

AV AVIANCA 0.130 95

AR Aerolineas Argentinas 0.132 96

UL Srilankan Airlines 0.132 97

VS Virgin Atlantic Airways 0.132 98

KU Kuwait Airways 0.133 99

HV Transavia Airlines 0.133 100

FZ Fly Dubai 0.134 101

2K Aerolineas Aerogal 0.134 102

UX Air Europa 0.134 103

LO LOT Polish Airline 0.134 104

K2 Eurolot 0.134 105

SB Aircalin 0.135 106

53

EL Ellinair 0.135 107

Other Other 0.135 108

F4 Air Flamenco 0.135 109

4F Air France 0.135 110

3M Silver Airways 0.135 111

3U Sichuan Airlines 0.135 112

7H Ravn Alaska 0.135 113

DG Cebgo 0.135 114

EA Eastern Airlines 0.135 115

G8 Go Air 0.135 116

H1 Hahn Air Systems 0.135 117

J2 Azerbaijan Hava Yollary 0.135 118

K5 SeaPort Airlines 0.135 119

KO Alaska Central Express 0.135 120

LC Equatorial Congo Airlines 0.135 121

LU LAN Express 0.135 122

UK Vistara 0.135 123

WI White Airways 0.135 124

QR Qatar Airways 0.135 125

UT UTair Aviation 0.135 126

CA Air China 0.136 127

SQ Singapore Airlines 0.137 128

HA Hawaiian Airlines 0.137 129

RO TAROM 0.137 130

OU Croatia Airlines 0.138 131

BA British Airways 0.138 132

9V Avior Airlines 0.138 133

AA American Airlines 0.138 134

54

US US Airways 0.138 135

TA Taca International Airlines 0.139 136

GA Garuda Indonesia 0.139 137

NH All Nippon Airways 0.139 138

BE Flybe 0.139 139

AI Air India 0.140 140

CM Copa Airlines 0.140 141

ET Ethiopian Airlines 0.141 142

BQ Bukovyna Airlines 0.142 143

AD Azul Linhas Aereas Brasileiras 0.143 144

MH Malaysian Airline Berhad 0.143 145

CI China Airlines 0.143 146

SX Skywork Airlines 0.144 147

LG Luxair 0.144 148

KQ Kenya Airways 0.145 149

SI Blue Islands 0.146 150

G4 Allegiant Air 0.146 151

F7 Etihad Regional 0.147 152

EK Emirates 0.148 153

SA South African Airways 0.148 154

JL Japan Airlines 0.149 155

EY Etihad Airways 0.149 156

KA Hong Kong Dragon Airlines 0.150 157

AL Air Lesiure 0.150 158

CP Compass Airlines 0.151 159

AE Mandarin Airlines 0.151 160

CX Cathay Pacific Airways 0.153 161

TF Malmo Aviation 0.154 162

55

OK Czech Airlines 0.157 163

T3 Eastern Airways 0.157 164

RJ Royal Jordanian 0.158 165

AM Aeromexico 0.163 166

MS Egypt Air 0.164 167

KC Air Astana 0.166 168

WX City Jet 0.166 169

TG Thai Airways 0.167 170

RE Stobart Air 0.169 171

OZ Asiana Airlines 0.172 172

BM BMI Regional 0.174 173

BS US Bnagla Airline 0.187 174

FL AirTran Airways 0.188 175

2N NextJet AB 0.191 176

KE Korean Air 0.194 177

T7 Transcarga International Airways 0.194 178

BT Air Baltic 0.194 179

3E Air Choice One 0.223 180

PD Porter Airlines 0.265 181

ZL Regional Express 0.299 182

EJ European Cargo Services BV 0.309 183

HR Hahn Airlines 0.414 184

6.2.3 International Long-haul Emission Factor Ranking From Table 35, it is evident that Rwand Air (fleet size of 8) or Ryanair are the best airlines to fly long-haul internationally, followed by Alaska Air and so forth.

Table 34 : International Long haul Emission Factor Ranking

Carrier Code Carrier Name Emission Factor Ranking (kgCO2e/Pax-km) WB Rwand Air 0.083 1

56

FR Ryanair 0.088 2

AS Alaska Airlines 0.092 3

SK Scandinavian Airlines 0.094 4

UA United Airlines 0.094 5

LY El Al Israel Airlines 0.095 6

BV Blue Panorama Airlines 0.095 7

DY Norwegian Air Shuttle 0.096 8

WS West Jet 0.096 9

OS Austrian Airlines 0.096 10

AC Air Canada 0.097 11

BR EVA Air 0.097 12

NK Spirit Airlines 0.098 13

LX SWISS International Airlines 0.099 14

SG Spice Jet 0.099 15

DL Delta Airlines 0.100 16

WN Southwest Airlines 0.100 17

AB Air Berlin PLC 0.100 18

S2 Jet Lite 0.101 19

VA Virgin Australia Airlines 0.101 20

6E Indigo Airlines 0.103 21

AY Finnair Oyj 0.105 22

W6 Wizz Air 0.105 23

EI Air Lingus 0.106 24

I5 Air Asia India 0.107 25

VY Vueling Airlines 0.107 26

OD Malindo Air 0.108 27

EU Chengdu Airlines 0.108 28

UN Transaero Airlines 0.109 29

57

GF Gulf Air 0.109 30

OV Estonian Air 0.110 31

HO Juneyao Airlines 0.110 32

9C Spring Airlines 0.110 35

NP Nile Air 0.110 35

AG Aruba Airlines 0.110 36

Z2 Air Asia Zest 0.110 36

SC Shandong Airlines 0.110 37

TP TAP Portugal 0.110 38

TO Transavia France 0.111 39

KM Air Malta 0.111 40

VN Vietnam Airlines 0.112 41

CZ China Southern Airlines 0.112 42

8M Myanmar Airways 0.112 43

B6 JetBlue 0.112 44

TK Turkish Airlines 0.112 45

XY FLYNAS 0.112 46

SN Brussels Airlines 0.113 47

5J CEBU Pacific Air 0.113 48

JQ Jetstar Airways 0.113 49

DE Condor Flugdienst GmbH 0.113 50

H2 Sky Airline 0.113 51

QF Quantas Airways 0.113 52

IB IBERIA 0.113 53

ZB Monarch Airlines 0.114 54

LA LAN Airlines 0.114 55

SY Sun Country Airlines 0.114 56

LH Deutsche Lufthansa AG 0.114 57

58

ZH Shenzhen Airlines 0.114 58

AT Royal Air Macroc 0.114 59

G3 Gol Transportes Aéreos 0.114 60

9W Jet Airways 0.115 61

VX Virgin America 0.115 62

PG Bangkok Airways 0.115 63

JJ TAM Linhas Aereas S.A. 0.116 64

NZ Air New Zealand 0.117 65

HU Hainan Airlines 0.117 66

PC Pegasus Airlines 0.117 67

SV Saudi Arabian Airlines 0.117 68

JU Air Serbia 0.119 69

FI Icelandair 0.119 70

YW Air Nostrum 0.119 71

WD Wat Phnom Airlines 0.120 72

KB Druk Air 0.120 73

U2 Easyjet Airline 0.120 74

FD Thai Air Asia 0.120 75

LS Jet2.com 0.120 76

IX Air India Express 0.120 77

AZ Alitalia 0.120 78

F9 Frontier Airlines 0.120 79

TR Tiger Airways 0.121 80

G9 Air Arabia 0.121 81

WY Oman Air 0.121 82

PR Philippine Airlines 0.122 83

AV AVIANCA 0.122 84

AF Air France 0.123 85

59

KL KLM Royal Dutch Airlines 0.123 86

A5 HOP 0.123 87

MU China Eastern Airlines 0.123 88

TS Air Transat 0.124 89

SU Areoflot 0.124 90

AK Air Asia Berhad 0.124 91

OU Croatia Airlines 0.124 92

4U GermanWings 0.125 93

FM Shanghai Airlines 0.125 94

3L InterSky 0.125 95

UX Air Europa 0.125 96

QR Qatar Airways 0.125 97

MI Silk Air 0.125 98

UL Srilankan Airlines 0.126 99

LO LOT Polish Airline 0.127 100

HA Hawaiian Airlines 0.127 101

AR Aerolineas Argentinas 0.127 102

VS Virgin Atlantic Airways 0.128 103

KU Kuwait Airways 0.128 104

AA American Airlines 0.129 105

US US Airways 0.129 106

2K Aerolineas Aerogal 0.129 107

SB Aircalin 0.129 108

Other Other 0.129 109

4F Air France 0.129 110

F4 Air Flamenco 0.129 111

3M Silver Airways 0.129 112

3U Sichuan Airlines 0.129 113

60

7H Ravn Alaska 0.129 114

DG Cebgo 0.129 115

EA Eastern Airlines 0.129 116

G8 Go Air 0.129 117

H1 Hahn Air Systems 0.129 118

J2 Azerbaijan Hava Yollary 0.129 119

K5 SeaPort Airlines 0.129 120

KO Alaska Central Express 0.129 121

LC Equatorial Congo Airlines 0.129 122

LU LAN Express 0.129 123

UK Vistara 0.129 124

WI White Airways 0.129 125

HV Transavia Airlines 0.130 126

FZ Fly Dubai 0.130 127

EL Ellinair 0.130 128

9V Avior Airlines 0.130 129

UT UTair Aviation 0.131 130

NH All Nippon Airways 0.131 131

CA Air China 0.131 132

K2 Eurolot 0.131 133

BA British Airways 0.132 134

SQ Singapore Airlines 0.132 135

GA Garuda Indonesia 0.132 136

AI Air India 0.133 137

KQ Kenya Airways 0.133 138

BE Flybe 0.133 139

RO TAROM 0.133 140

TA Taca International Airlines 0.134 141

61

CM Copa Airlines 0.135 142

MH Malaysian Airline Berhad 0.135 143

ET Ethiopian Airlines 0.135 144

BQ Bukovyna Airlines 0.137 145

LG Luxair 0.138 146

CI China Airlines 0.138 147

SX Skywork Airlines 0.139 148

AD Azul Linhas Aereas Brasileiras 0.139 149

EK Emirates 0.141 150

KA Hong Kong Dragon Airlines 0.142 151

G4 Allegiant Air 0.142 152

AL Air Lesiure 0.142 153

SA South African Airways 0.143 154

JL Japan Airlines 0.143 155

EY Etihad Airways 0.144 156

SI Blue Islands 0.144 157

F7 Etihad Regional 0.145 158

CP Compass Airlines 0.145 159

CX Cathay Pacific Airways 0.146 160

AE Mandarin Airlines 0.146 161

TF Malmo Aviation 0.149 162

RJ Royal Jordanian 0.150 163

OK Czech Airlines 0.152 164

T3 Eastern Airways 0.153 165

MS Egypt Air 0.156 166

AM Aeromexico 0.157 167

TG Thai Airways 0.159 168

KC Air Astana 0.160 169

62

WX City Jet 0.160 170

OZ Asiana Airlines 0.165 171

RE Stobart Air 0.167 172

BM BMI Regional 0.169 173

BS US Bnagla Airline 0.178 174

FL AirTran Airways 0.181 175

2N NextJet AB 0.183 176

BT Air Baltic 0.186 177

KE Korean Air 0.186 178

T7 Transcarga International Airways 0.188 179

3E Air Choice One 0.222 180

PD Porter Airlines 0.251 181

ZL Regional Express 0.296 182

EJ European Cargo Services BV 0.309 183

HR Hahn Airlines 0.394 184

63

ANNEXURE

64

7. Scope Definition

7.1 Corporate GHG Inventory This GHG Protocol’s Corporate Standard provides standards and guidance for companies and other types of organizations preparing a GHG emissions inventory. It covers the accounting and reporting of the six greenhouse gases covered by the Kyoto Protocol- carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulphur hexafluoride (SF6). While this standard has been followed almost entirely for this project, the aspect of ‘materiality threshold’ as defined by the concept of ‘key categories’ has been incorporated from the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. This is discussed as part of the ‘Completeness’ attributes of the GHG Inventory and described later in the report. The standard requires adherence to the key principles of Relevance, Completeness, Consistency, Transparency, and Accuracy. These principles and measures taken to adhere to them in the execution of this project are discussed below. RELEVANCE: It must be ensured that the GHG inventory appropriately reflects the GHG emissions of the company and serves the decision-making needs of users – both internal and external to the company. Relevance can be ensured by appropriate and thoughtful selection of Operational and Organizational (described later). The selection of an appropriate inventory boundary that reflects the substance and economic reality of the company’s business activities, processes and relationships, not merely its legal form, is pivotal to this process and has been addressed in compiling the GHG inventory of business air travel for the Wipro Project.

COMPLETENESS: The GHG inventory must account for and report on all GHG emission sources (i.e. Scopes) and activities (i.e. within each Scope) within the chosen inventory boundary and any specific exclusions must by disclosed and justified. Exclusions of activities from the Inventorying process may be the outcome of limiting constraints such as a lack of primary data, high uncertainty level of available secondary data, or the cost of gathering data. Theoretically a materiality threshold (a minimum emissions accounting threshold), stating that a source not exceeding a certain size can be omitted from the inventory, can be implemented to address unquantifiable emission sources. However, the practical implementation of such a threshold is not compatible with the completeness principle of the GHG Protocol Corporate Standard. Instead, companies must transparently document and justify cases where emissions have not been estimated, or estimated at an insufficient level of quality.

For the Wipro Business Air Travel Corporate GHG Inventory project, the concept of ‘key categories’ has been adopted from the 2006 IPCC Guidelines for National Greenhouse Gas Inventories for implementability reasons. ‘Key categories’ are identified using a pre- determined cumulative emissions threshold. ‘Key categories’ are those that, when summed together in descending order of magnitude, add up to 95 percent of the total level. The pre-determined threshold has been determined based on an evaluation of several inventories, and is aimed at establishing a general level where 90% of inventory uncertainty will be covered by key categories.

The Operational Boundary for the Business Air Travel Project’s Corporate Inventory component is defined later with relevant rationale related to the inclusion of activities presented alongside. Moreover, any exclusions stemming from data constraints or other systemic reasons are listed and discussed in the Appendix. 65

CONSISTENCY: The process of inventorying must use consistent methodologies across time boundaries to allow for meaningful comparisons of emissions over time. To enable this, a GHG inventory report must transparently document any changes to the data, inventory boundary, methods, or any other relevant factors in the time series. Thus, the inventorying process might require the base year emissions to be recalculated as companies undergo significant structural changes such as acquisitions, divestments, and mergers. Since the Corporate Footprint produced as an outcome of this exercise will serve as the Baseline Year GHG Inventory for the Wipro’s business air travel, the need to recalculate any previous year emissions is moot. However, future inventories will need to address any recalculation efforts explicitly. TRANSPARENCY: All relevant issues must have addressed by the Inventory process in a factual and coherent manner, based on a clear audit trail. The reporting activity must disclose any relevant assumptions and make appropriate references to the accounting and calculation methodologies and data sources used. The standard requires information to be recorded, compiled, and analyzed in a way that enables internal reviewers and external verifiers to attest to its credibility and enable a third party to derive the same results if provided with the same source data. The project report addresses transparency related requirements by providing a comprehensive listing of all assumptions, simplifications, emission factor sources, and technical references in Appendix. along with relevant equations and mathematical and scientific relationships used data processing and analysis required for calculating GHG emissions.

ACCURACY: The Corporate Standard requires that the quantification of GHG emissions is systematically neither over nor under actual emissions, and that uncertainties are reduced as far as possible. The process must be designed to achieve sufficient accuracy to ensure integrity of the reported information and enable users to determine its reliability with reasonable assurance. This project effort incorporated extensive efforts to ensure accuracy of the activity data obtained, collated and transmitted by the reporting entity through: I. administering rigorously data collection from reporting entity, II. providing guidance to the reporting entity with respect to best-practices to be followed for ensuring high data quality III. establishing the preferred units for data collection and suggesting acceptable surrogate units for activity data collection if data was not available in the ideally preferred form IV. establishing a priority list of emission source activities for which primary data were imperative and activities for which secondary data would be acceptable The GHG Inventory process’s accuracy is also augmented by use of well documented Tier 2 and Tier 3 GHG Emission Factors wherever possible and use of Tier 1 default emission factors as the least preferred option5. The emission factors used and their sources are presented in Appendix.

The Corporate GHG Inventory accounts for three major Greenhouse Gases: Carbon dioxide (CO2), methane (CH4), Nitrous oxide (N2O). Emissions of these gases have been accounted for activities classified as part of Scope 1, Scope 2, and relevant significant Scope 3 emission sources. In this project all the emissions related to business air travel activities and relevant upstream activities have been considered as Scope 3 emission as per GHG protocol. Emission sources leading to generation of the other 3 Kyoto Protocol Gasses, namely HFCs, PFCs, and SF6, were not considered as ‘key categories’ (or below

66

the materiality threshold as defined earlier as part of the ‘Completeness’ attributes of the project) by the project’s technical advisory team. Implementation of the Corporate Standard for GHG Inventorying requires the definition of an Organizational and Operational Boundary.

7.1.1 Organizational Boundary Definition For corporate reporting, two distinct approaches can be used to consolidate GHG emissions: the equity share and the control approaches.

Equity share approach: Under the equity share approach, a company accounts for GHG emissions from operations according to its share of equity in the operation. The equity share reflects economic interest, which is the extent of rights a company has to the risks and rewards flowing from an operation.

Control approach: Under the control approach, a company accounts for 100 percent of the GHG emissions from operations over which it has control. It does not account for GHG emissions from operations in which it owns an interest but has no control. Control can be defined in either financial or operational terms. When using the control approach to consolidate GHG emissions, companies shall choose between either the operational control or financial control criteria. Source: The Greenhouse Gas Protocol, A Corporate Accounting and Reporting Standard

The criteria for setting the Organizational Boundary for this Inventory is the Operational Control. The Standard clarifies that a company has operational control over an operation if the former or one of its subsidiaries has the full authority to introduce and implement its operating policies at the operation. According to this interpretation of operational control and based on discussions with the Reporting Entity’s Management personnel, activities at the aircraft manufacturing site and at the airport handled by aircraft manufacturers, airport authorities and air carriers are not within the operational control of the Reporting Entity and hence 100% of the emissions from all these activities are reported in this Inventory considered as Scope 3 emissions which significant in nature. As an outcome of this approach selection, the operation and emissions- generating activities of the following Stakeholders / Operational Entities were considered as part of the GHG Inventory Boundary.

Table 35: GHG Inventory Organisational Boundary Definition

Emissions Accounted & Reported Stakeholder Activity Air Carrier - Wipro Ltd.– Operational Operational Control Control

Upstream Processes – Manufacturing, Production Raw Material Extraction, Transportation of Raw Capital Goods Material, Capital Goods 0 % for 0 % for Producer, Aircraft Production, Transportation of Operational Operational & Engine Finished and Semi-finished Control Control Manufacturer Capital Goods, Aircraft & Engine Manufacturing, Testing 67

of Aircraft

Production, Refining, 0 % for 0 % for Fuel Supplier Distribution & Transportation Operational Operational of Fuel to the Airport Control Control Raw Material Extraction, Construction Transportation of Raw Material Material, Construction Material 0 % for 0 % for Manufacturer, Production, Transportation of Operational Operational Airport & Runway Construction Material, Control Control Construction Deforestation, Construction of Company Airport & Runway

Downstream Process – Operation, Maintenance, and Insurance Operation and Maintenance of Aircraft, Ground Duty 100 % for 0 % for Operation, Captive Power Air carrier Operational Operational Generation, Heat or Steam Control Control Generation, Administration of Operations Operation and Maintenance of Airport, Runway and Parking, 0 % for 0 % for Airport Authority Captive Power Generation, Operational Operational Heat or Steam Generation, Control Control Administration of Operations 0 % for 0 % for Insurance Incidents and Health Insurance Operational Operational Company Operations & Administration Control Control

7.1.2 Operational Boundary Definition Subsequent to organizational boundary definition in terms of the operations that it owns or controls, The Corporate Standard requires specifying of operational boundaries which entails identifying emissions associated with its operations, categorizing them as direct and indirect emissions, and choosing the scope of accounting and reporting for indirect emissions.

Direct GHG emissions are emissions from sources that are owned or controlled by the company. Indirect GHG emissions are emissions that are a consequence of the activities of the company but occur at sources owned or controlled by another company.

Furthermore, to improve transparency, and provide utility for different types of organizations three “scopes” (scope 1, scope 2, & scope 3) are defined for GHG accounting & reporting

Scope 1: These are direct GHG emissions from sources that are owned or controlled by the company. For example, emissions from combustion in owned or controlled facilities and vehicles. Scope 2: These are indirect GHG emissions occurring as a consequence of GHG emissions from the generation of purchased electricity by the company. Scope 3: These comprise other indirect emissions except those accounted for as Scope 2 emissions. They are a consequence of the activities of the company, but occur from sources not owned or controlled by the company and are an optional reporting category. Examples include embodied carbon emissions from manufacturing of materials used by a company, third party deliveries, business travel activities and use of sold products and services. 68 Source: The Greenhouse Gas Protocol, A Corporate Accounting and Reporting Standard

The general framework for Operational Boundary setting is depicted below in Table 36.

Figure 24: Activity Differentiation according to Scope 1, Scope 2 & Scope 3 GHG Emissions

Source: “Greenhouse Gas Protocol – Product Life Cycle Accounting and Reporting Standard” – World Resource Institute The Operational Boundary for the Corporate GHG Inventory compiled as part of this Project is defined in the Table below.

Table 36: GHG Inventory Operational Boundary Definition

Scope Scope Sr. Emissions Emissions Sub- Particulars Included for Air for no. Category Category Carrier Wipro Direct GHG Aircraft Operation Emissions - & Maintenance, Emissions Ground Duty Fossil Fuels, from Fuel Operation Biomass 1  Scope 1 Scope 3 Combustion Generation of Fuels, & Energy Electricity, Heat or Incineration Related Steam Activities Transportation of

69

Materials, Products, Waste and Employees Direct GHG HVAC Systems Emissions – Other Systems / Refrigerant 2 X Fugitive Equipments Use Emissions Purchased Fossil Fuels, Indirect GHG Electricity Biomass 3  Emissions Fuels, Incineration Scope 2 Purchased Water Fossil Fuels, Indirect GHG Purchased Heat or Biomass 4 X Emissions Steam Fuels, Incineration GHG Aircraft & Engine Emissions Manufacturing Capital 5 from  Goods (LCA) Purchased Goods GHG Upstream Fuel Supply Emissions Emissions of Chain Scope 3 from Purchased Fuels Emissions – Purchased Energy & 6  Fuels & Emission from Fugitive Energy Electricity emissions, related Transmission & AT & C activities Distribution Losses

7.1.2.1 Product (Goods or Services) GHG Inventory Framework The GHG Protocol provides requirements and guidance for companies and other organizations to quantify and publicly report an inventory of GHG emissions and removals associated with a specific product. The primary goal of this standard is to provide a general framework for companies to make informed choices to reduce greenhouse gas emissions from the products (goods or services) they design, manufacture, sell, purchase, or use. The primary goal of compiling GHG Inventory of business air travel as part of this project, to compliment the Corporate GHG Inventory, is to target future efforts at GHG mitigation along the entire Corporate Value Chain. In this project, the Product is equivalent to the ‘Air Travel Services of Air Carriers’ which have been used by Wipro. The Product Standard requires that companies shall account for carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), sulfur hexafluoride (SF6), perfluorocarbons (PFCs), and hydrofluorocarbons (HFCs) emissions to, and removals from, the atmosphere. However, as explained in the prior sections related to the Corporate Inventory Boundary, only carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) are accounted for in this GHG Inventory study of business air travel.

70

Defining the product, the unit of analysis, and reference flow are imperative aspects of this GHG inventory process. The unit of analysis is defined as the performance characteristics and services delivered by the product being studied. The reference flow is the amount of product (air travel services) on which the results of the study are based. The Standard requires that for all final products, companies shall define the unit of analysis as a functional unit. For this project, since the product is a purchased service (i.e. air travel services provided by air carriers), the measured unit of reference flow is Pax-km of air travel and the unit of analysis is Metric Tonne of CO2e.

In this project the product is a purchased service, all the emissions are accounted as Scope 3 emissions for Wipro. The standard requires inclusion of all attributable processes (i.e. Scope 1 & Scope 2 emission sources accounted for air carrier) within the boundary of the product GHG inventory. As presented in the Table 36 of Operational Boundary Definition, all relevant Scope 3 emission activities of the Reporting Entity are included in the activity boundary. The Standard requires companies to disclose and justify any exclusions of attributable processes in the inventory report. Since land-use change impacts are not a vital part of the air travel service industry’s activities, this has not been addressed in the project. As required by the Standard, Companies are required to report the time period of the inventory which for this project is FY 2014-15. 8. Research and Analysis Methodology • Activity Data Collection and Verification • Activity Data Quality Assessment and Processing • Framework Development and Allocation • Secondary Research for Emission Factor Development • Air Carrier Specific Air Travel Emission Factor Development • GHG Inventory Calculation • Interpertation • Scenario Modelling - Baseline vs Best in Class Air Carrier • Scenari Modeling - 1 stop & Mulit-stop Sector vs Non-Stop Sector • Reporting

The project activities commenced during the 2nd week of January 2016. The goal, scope and project boundary setting, data collection, and verification spanned 4 week duration. The post data collection secondary research, emission factor development, GHG inventory calculations, analysis and reporting period lasted 12 weeks and concluded in the 4th week of April 2016. 8.1 Activity Data Collection and Verification Wipro provided the raw data set of business air travel for the FY 2014-15. The activity data collection process commenced with devising and administering a list of data needs 71 identified by the GHG Corporate Inventory and GHG Emission Accounting and Reporting Standard.

For Domestic Air Travel:  Short-haul flights between city pairs  Long-haul flights between city pairs  Airport codes  Domestic air carrier codes

For International Air Travel:  Short-haul flights between city pairs  Long-haul flights between city pairs  Airport codes  International Air carrier codes

The short-haul, medium-haul and long-haul distance flights in the category of domestic and international air travel have been defined as:

Domestic Air Travel: Domestic Short-haul Flight – Flight distance upto 500 kilometres17 Domestic Long-haul Flight – Flight distance above 500 kilometres18

International Air Travel: International Short-haul Flight – Flight distance up to 2,000 kilometres19 International Medium-haul Flight – Flight distance above 2,000 kilometres and upto 5,000 kms20 International Long-haul Flight – Flight distance above 5,000 kilometres21 8.2 Activity Data Quality Assessment and Processing

8.2.1 Activity Data Scrutinization Primary activity data related to emission sources were digitized by Wipro. cBalance team scrutinized the activity data and found the following types of errors/invalid entries while processing:

 Airline codes were not defined (entry cells were blank)  Airline codes were defined by wrong codes  Trip type was not defined – Return/One-way (entry cells were blank)  Airport/city codes were of two letters  Origin and Destination airport/city codes were same  Destination airport/city codes were not defined  The sector was defined as country/region name – India, US, Europe

17 Director General of CIVI Aviation (DGCA), Government of India, Aeronautical Information Circular 4/2012, Dated 8th May 2012, Page no. 4 18 Director General of CIVI Aviation (DGCA), Government of India, Aeronautical Information Circular 4/2012, Dated 8th May 2012, Page no. 4 19 Director General of CIVI Aviation (DGCA), Government of India, Aeronautical Information Circular 4/2012, Dated 8th May 2012, Page no. 4 20 Director General of CIVI Aviation (DGCA), Government of India, Aeronautical Information Circular 4/2012, Dated 8th May 2012, Page no. 4 21 Director General of CIVI Aviation (DGCA), Government of India, Aeronautical Information Circular 4/2012, Dated 8th May 2012, Page no. 4 72

 The sector for flights were not defined (entry cells were blank)  Entries for – visa processing fee, fee air extended service, fee for emergency service, Call fee out of hours, visa handling fee, hotel reservation etc.  Distance between city pairs were not calculated  Flights between the cities with distance of less than 100 pass-kms

8.2.2 Raw Data Rectification  Defined the Trip type cells based on the defined sector of the entries  Replaced invalid airport/city codes with valid codes  Calculated distance between city pairs which were not found  Deleted, invalid entries/errors. 8.3 Framework Development and Allocation cBalance team developed the framework to allocate the activity data according to data needed as per GHG Corporate Inventory and GHG Emission Accounting and Reporting Standard. Further, the final activity data have been pursued for the calculation of GHG emissions.

8.3.1 Assumptions

 Only one passenger has travelled for every booking entries  The same airline code is valid for 1-stop and multiple stop flights defined sector  All the flight bookings have been made under .  For the return trip entries, the last middle code in the defined sector would be the destination of first trip and origin of the second (return) trip

73

8.4 Emission Factor Development

8.4.1 Domestic and International Air Carrier – Operation Phase - Emisson Factor

Convert to best-case per- passenger emission factors for Repeat for additional finite LTO and Cruise Mode finite distances for every distances per model, and Emissions (Total) for all aircraft model replicate for each aircraft aircraft models (using max PAX Capacity and model Load-Factor of 1)

Calculate per-passenger emissions for finite distance for each airline as sum of weighted LTO & Cruise- Calculate weighting factor Repeat for adiditonal finited mode emissions based on % of aircraft model distances for each domestic count vs. total fleet count of airline (account for weighted-avg. airline passenger capacity, airline-wide airline passenger load factor, and PAX to Freight Ratio) Step 1: Determine LTO and Cruise-mode fuel emissions of relevant aircraft models comprising 184 international and domestic air carriers serving across the world Note: The primary assumption governing this emission factor methodology was that the average emissions for a given airline is represented by a simple average of the emission factor of aircraft models comprising the airlines fleet. The relative of operation or share of annual passenger-kms performed by a given aircraft model in an airline’s fleet was not taken into consideration. Incorporating this to arrive at a weighted-avgerage would be a more rigorous approach and could be assessed from a detailed statistical analysis airline’s operational data. Unavailability of aircraft-model wise operation statistics related to domestic airline operations prevent this rigorous analysis at this stage.

74

Guidelines: Tier 2 Method22

EQUATION 3.6.1, GREENHOUSE GAS EMISSIONS FROM MOBILE COMBUSTION, Volume 2 - Energy, Chapter 3: Mobile Combustion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories

Emissions GHG, fuel = Fuel Consumption fuel • Emission Factor GHG, fuel EQUATION 3.6.2, GREENHOUSE GAS EMISSIONS FROM MOBILE COMBUSTION, Volume 2 - Energy, Chapter 3: Mobile Combustion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories

Total Emissions = LTO23 Emissions + Cruise Emissions24

Step 2: Determine per-passenger emission factors (distance-based) for finite distances per aircraft model

Case: A-319 aircraft per-passenger emission factor (economy class) for flight distance of 231.5 km (kg CO2e/pass-km)

= = [L - CO2A 319 · GWPCO2 + L - CH4A 319 · GWPCH4 + L - N2OA 319 · GWPN2O] + FC1A 319 · [JK - EFCO2 · GWPCO2 + JK - EFCH4 · GWPCH4 + JK - EFN2O · GWPN2O]

PAXA 319 · LFA 319

Where,

LTOCO2 = CO2 Emissions from LTO Cycle, LTOCH4 = CH4 Emissions from LTO Cycle, LTON2O = N2O Emissions from LTO Cycle25

FC1 = Aircraft - Cruise Mode Fuel Consumption Factors for distance of 231.5 km26

22 Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 2 - Energy, Chapter 3: Mobile Combustion, 23 LTO: Landing/Take Off Cycles 24 Cruise Emissions are a function of distance travelled by aircraft. EMEP/CORINAIR Emission inventory guidebook provides tables with emissions per flight distance

25 Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 2 - Energy, Chapter 3: Mobile Combustion, Table 3.6.9 75

JK-EFCO2 = Jet Kerosene CO2 EF, JK-EFCH4 = Jet Kerosene CH4 EF, JK-EFN2O = Jet Kerosene N2O EF27

PAX = Passenger Capacity - Max (nos.)28

LF = Passenger Load Factor (%) - taken to be 100% calculating aircraft-model-based passenger emission factor29

Similarly, per-passenger emission factors are developed for the following matrix of aircraft models and flight distances:

Distance (km) Aircraft Model 231.5 463 926 1389 1852 2778 3704 4630 A 310 PEF1A 310 PEF2A 310 PEF3A 310 PEF4A 310 PEF5A 310 PEF6A 310 PEF7A 310 PEF8A 310 A 318 PEF1A 318 PEF2A 318 PEF3A 318 PEF4A 318 PEF5A 318 PEF6A 318 PEF7A 318 PEF8A 318 A 319 PEF1A 319 PEF2A 319 PEF3A 319 PEF4A 319 PEF5A 319 PEF6A 319 PEF7A 319 PEF8A 319 A 320 PEF1A 320 PEF2A 320 PEF3A 320 PEF4A 320 PEF5A 320 PEF6A 320 PEF7A 320 PEF8A 320 A 321 PEF1A 321 PEF2A 321 PEF3A 321 PEF4A 321 PEF5A 321 PEF6A 321 PEF7A 321 PEF8A 321 A 330-200 PEF1A 330-200 PEF2A 330-200 PEF3A 330-200 PEF4A 330-200 PEF5A 330-200 PEF6A 330-200 PEF7A 330-200 PEF8A 330-200 A 330-300 PEF1A 330-300 PEF2A 330-300 PEF3A 330-300 PEF4A 330-300 PEF5A 330-300 PEF6A 330-300 PEF7A 330-300 PEF8A 330-300 A 340-200 PEF1A 340-200 PEF2A 340-200 PEF3A 340-200 PEF4A 340-200 PEF5A 340-200 PEF6A 340-200 PEF7A 340-200 PEF8A 340-200 A 340-300 PEF1A 340-300 PEF2A 340-300 PEF3A 340-300 PEF4A 340-300 PEF5A 340-300 PEF6A 340-300 PEF7A 340-300 PEF8A 340-300 A 340-500 PEF1A 340-500 PEF2A 340-500 PEF3A 340-500 PEF4A 340-500 PEF5A 340-500 PEF6A 340-500 PEF7A 340-500 PEF8A 340-500 A 340-600 PEF1A 340-600 PEF2A 340-600 PEF3A 340-600 PEF4A 340-600 PEF5A 340-600 PEF6A 340-600 PEF7A 340-600 PEF8A 340-600 A 350-900 PEF1A 350-900 PEF2A 350-900 PEF3A 350-900 PEF4A 350-900 PEF5A 350-900 PEF6A 350-900 PEF7A 350-900 PEF8A 350-900 A 380 PEF1A 380 PEF2A 380 PEF3A 380 PEF4A 380 PEF5A 380 PEF6A 380 PEF7A 380 PEF8A 380 ATR 42-320 PEF1ATR 42-320 PEF2ATR 42-320 PEF3ATR 42-320 PEF4ATR 42-320 PEF5ATR 42-320 PEF6ATR 42-320 ATR 42-500 PEF1ATR 42-500 PEF2ATR 42-500 PEF3ATR 42-500 PEF4ATR 42-500 PEF5ATR 42-500 PEF6ATR 42-500 PEF7ATR 42-500 PEF8ATR 42-500 ATR 72-500 PEF1ATR 72-500 PEF2ATR 72-500 PEF3ATR 72-500 PEF4ATR 72-500 PEF5ATR 72-500 PEF6ATR 72-500 ATR 72-600 PEF1ATR 72-600 PEF2ATR 72-600 PEF3ATR 72-600 PEF4ATR 72-600 PEF5ATR 72-600 PEF6ATR 72-600 PEF7ATR 72-600 PEF8ATR 72-600

26 Source: EMEP/EEA Emission Inventory Guidebook 2013 Update July 2014 27Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 2 - Energy, Chapter 1: Introduction & Chapter 2: Stationary Combustion, Tables 1.2, 2.2 28 Maximum passenger capacity of various all-economy class configurations within aircraft model type obtained from aircraft manufacturers website and http://www.thetravelinsider.info/airplanetypes.htm & http://www.airliners.net/aircraft-data/ 29 For Avg. Airline - International Aviation Load Factor avg. for Local Asia / Between Europe/Middle East/Africa and Asia used assuming that most international air flights make stopovers in these regions during even longer international trips. Source: International Civil Aviation Organization (ICAO) Carbon Emissions Calculator, Version 7, June 2014 76

B 717-200 PEF1B 717-200 PEF2B 717-200 PEF3B 717-200 PEF4B 717-200 PEF5B 717-200 PEF6B 717-200 B 737-200 PEF1B 737-200 PEF2B 737-200 PEF3B 737-200 PEF4B 737-200 PEF5B 737-200 PEF6B 737-200 B 737-300 PEF1B 737-300 PEF2B 737-300 PEF3B 737-300 PEF4B 737-300 PEF5B 737-300 PEF6B 737-300 PEF7B 737-300 PEF8B 737-300 B 737-400 PEF1B 737-400 PEF2B 737-400 PEF3B 737-400 PEF4B 737-400 PEF5B 737-400 PEF6B 737-400 B 737-500 PEF1B 737-500 PEF2B 737-500 PEF3B 737-500 PEF4B 737-500 PEF5B 737-500 PEF6B 737-500 PEF7B 737-500 PEF8B 737-500 B 737-600 PEF1B 737-600 PEF2B 737-600 PEF3B 737-600 PEF4B 737-600 PEF5B 737-600 PEF6B 737-600 PEF7B 737-600 PEF8B 737-600 B 737-700 PEF1B 737-700 PEF2B 737-700 PEF3B 737-700 PEF4B 737-700 PEF5B 737-700 PEF6B 737-700 B 737-800 PEF1B 737-800 PEF2B 737-800 PEF3B 737-800 PEF4B 737-800 PEF5B 737-800 PEF6B 737-800 B 737-900 PEF1B 737-900 PEF2B 737-900 PEF3B 737-900 PEF4B 737-900 PEF5B 737-900 PEF6B 737-900 PEF2B 737-900 PEF3B 737-900 PEF4B 737-900 PEF5B 737-900 PEF6B 737-900 B 737-900 ER PEF1B 737-900 ER ER ER ER ER ER B747-400 PEF1B 747-400 PEF2B 747-400 PEF3B 747-400 PEF4B 747-400 PEF5B 747-400 PEF6B 747-400 PEF7B 747-400 PEF8B 747-400 B747-8 PEF1B 747-8 PEF2B 747-8 PEF3B 747-8 PEF4B 747-8 PEF5B 747-8 PEF6B 747-8 PEF7B 747-8 PEF8B 747-8 B757-200 PEF1B 757-200 PEF2B 757-200 PEF3B 757-200 PEF4B 757-200 PEF5B 757-200 PEF6B 757-200 PEF7B 757-200 PEF8B 757-200 B757-300 PEF1B 757-300 PEF2B 757-300 PEF3B 757-300 PEF4B 757-300 PEF5B 757-300 PEF6B 757-300 PEF7B 757-300 PEF8B 757-300 PEF2B 767-200 PEF3B 767-200 PEF4B 767-200 PEF5B 767-200 PEF6B 767-200 B767-200 ER PEF1B 767-200 ER ER ER ER ER ER PEF7B 767-200 ER PEF8B 767-200 ER B767-300 PEF1B 767-300 PEF2B 767-300 PEF3B 767-300 PEF4B 767-300 PEF5B 767-300 PEF6B 767-300 PEF7B 767-300 PEF8B 767-300 PEF2B 767-300 PEF3B 767-300 PEF4B 767-300 PEF5B 767-300 PEF6B 767-300 B767-300 PEF1B 767-300 ER ER ER ER ER ER PEF7B 767-300 ER PEF8B 767-300 ER PEF2B 767-400 PEF3B 767-400 PEF4B 767-400 PEF5B 767-400 PEF6B 767-400 B767-400 ER PEF1B 767-400 ER ER ER ER ER ER PEF7B 767-400 ER PEF8B 767-400 ER PEF2B 777-200 PEF3B 777-200 PEF4B 777-200 PEF5B 777-200 PEF6B 777-200 B777-200 ER PEF1B 777-200 ER ER ER ER ER ER PEF7B 777-200 ER PEF8B 777-200 ER PEF2B 777-200 B777-200 LR PEF1B 777-200 LR LR PEF3B 777-200 LR PEF4B 777-200 LR PEF5B 777-200 LR PEF6B 777-200 LR PEF7B 777-200 LR PEF8B 777-200 LR B777-300 PEF1B 777-300 PEF2B 777-300 PEF3B 777-300 PEF4B 777-300 PEF5B 777-300 PEF6B 777-300 PEF7B 777-300 PEF8B 777-300 PEF2B 777-300 PEF3B 777-300 PEF4B 777-300 PEF5B 777-300 PEF6B 777-300 B777-300 ER PEF1B 777-300 ER ER ER ER ER ER PEF7B 777-300 ER PEF8B 777-300 ER B787-8 PEF1B 787-8 PEF2B 787-8 PEF3B 787-8 PEF4B 787-8 PEF5B 787-8 PEF6B 787-8 PEF7B 787-8 PEF8B 787-8 B787-9 PEF1B 787-9 PEF2B 787-9 PEF3B 787-9 PEF4B 787-9 PEF5B 787-9 PEF6B 787-9 PEF7B 787-9 PEF8B 787-9 BAE ATP PEF1BAE ATP PEF2BAE ATP PEF3BAE ATP PEF4BAE ATP PEF1BAE 146- PEF2BAE 146- PEF3BAE 146- PEF4BAE 146- PEF5BAE 146- BAE 146-RJ85 RJ85 RJ85 RJ85 RJ85 RJ85 77

PEF1BAE 146- PEF2BAE 146- PEF3BAE 146- PEF4BAE 146- PEF5BAE 146- BAE 146-RJ100 RJ100 RJ100 RJ100 RJ100 RJ100 BAE JS 41 PEF1BAE JS 41 PEF2BAE JS 41 PEF3BAE JS 41 PEF1BEECH 1900 PEF2BEECH 1900 PEF3BEECH 1900 Beech 1900 D D D D PEF2BOM CRJ BOM CRJ 100 PEF1BOM CRJ 100 100 PEF3BOM CRJ 100 PEF4BOM CRJ 100 PEF2BOM CRJ BOM CRJ 700 PEF1BOM CRJ 700 700 PEF3BOM CRJ 700 PEF4BOM CRJ 700 PEF5BOM CRJ 700 PEF2BOM CRJ BOM CRJ 900 PEF1BOM CRJ 900 900 PEF3BOM CRJ 900 PEF4BOM CRJ 900 PEF5BOM CRJ 900 PEF1BOM CRJ PEF2BOM CRJ PEF3BOM CRJ PEF4BOM CRJ PEF5BOM CRJ BOM CRJ 1000 1000 1000 1000 1000 1000 BOM Q 300 PEF1BOM Q300 PEF2BOM Q300 PEF3BOM Q300 PEF4BOM Q300

BOM Q 400 PEF1BOM Q400 PEF2BOM Q400 PEF3BOM Q400 PEF4BOM Q400 PEF1BN-2 PEF2BN-2 PEF3BN-2 BN-2 Islander ISLANDER ISLANDER ISLANDER Cessna Citation PEF1CESSNA PEF2CESSNA PEF3CESSNA PEF4CESSNA PEF5CESSNA PEF6CESSNA PEF7CESSNA PEF8CESSNA CITATION CJ4 CITATION CJ4 CITATION CJ4 CITATION CJ4 CITATION CJ4 CITATION CJ4 CITATION CJ4 CITATION CJ4 CJ4 Cessna 208 PEF1CESSNA 208 PEF2CESSNA 208 PEF3CESSNA 208 Caravan CARAVAN CARAVAN CARAVAN Cessna 208 PEF1CESSNA 208 PEF2CESSNA 208 PEF3CESSNA 208 Grand GRAND GRAND GRAND Cessna 680 PEF1CESSNA 680 PEF2CESSNA 680 PEF3CESSNA 680 PEF4CESSNA 680 PEF5CESSNA 680 PEF6CESSNA 680 Citation CITATION CITATION CITATION CITATION CITATION CITATION PEF7CESSNA 680 PEF8CESSNA 680 Sovereign SOVEREIGN SOVEREIGN SOVEREIGN SOVEREIGN SOVEREIGN SOVEREIGN CITATION SOVEREIGN CITATION SOVEREIGN COMAC ARJ21- PEF1COMAC PEF2COMAC PEF3COMAC PEF4COMAC PEF5COMAC 700 ARJ21-700 ARJ21-700 ARJ21-700 ARJ21-700 ARJ21-700 DHC 6 Twin PEF1DHC 6 TWIN PEF2DHC 6 TWIN Otter OTTER OTTER DHC-8 200 PEF1DHC-8 200 PEF2DHC-8 200 Dash-8 DASH-8 DASH-8 DHC-8 300 PEF1DHC-8 300 PEF2DHC-8 300

78

Dash-8 DASH-8 DASH-8 DHC-8 400 PEF1DHC-8 400 PEF2DHC-8 400 PEF3DHC-8 400 PEF4DHC-8 400 Dash-8 DASH-8 DASH-8 DASH-8 DASH-8 PEF1DORNIER PEF2DORNIER PEF3DORNIER PEF4DORNIER Dornier 328 328 328 328 328 PEF2EMB ERJ EMB ERJ 145 PEF1EMB ERJ 145 145 PEF3EMB ERJ 145 PEF4EMB ERJ 145 PEF5EMB ERJ 145 EMB E 170 PEF1EMB E 170 PEF2EMB E 170 PEF3EMB E 170 PEF4EMB E 170 PEF5EMB E 170 PEF6EMB E 170 PEF7EMB E 170 PEF8EMB E 170 EMB E 175 PEF1EMB E 175 PEF2EMB E 175 PEF3EMB E 175 PEF4EMB E 175 PEF5EMB E 175 PEF6EMB E 175 PEF7EMB E 175 PEF8EMB E 175 EMB E 190 PEF1EMB E 190 PEF2EMB E 190 PEF3EMB E 190 PEF4EMB E 190 PEF5EMB E 190 PEF6EMB E 190 PEF7EMB E 190 PEF8EMB E 190 EMB E 195 PEF1EMB E 195 PEF2EMB E 195 PEF3EMB E 195 PEF4EMB E 195 PEF5EMB E 195 PEF6EMB E 195 PEF7EMB E 195 PEF8EMB E 195 Fokker 50 PEF1FOKKER 50 PEF2FOKKER 50 PEF3FOKKER 50 PEF4FOKKER 50 PEF5FOKKER 50 Fokker 70 PEF1FOKKER 70 PEF2FOKKER 70 PEF3FOKKER 70 PEF4FOKKER 70 PEF5FOKKER 70 PEF2FOKKER Fokker 100 PEF1FOKKER 100 100 PEF3FOKKER 100 PEF4FOKKER 100 PEF5FOKKER 100 PEF6FOKKER 100 PEF7FOKKER 100 PEF8FOKKER 100 MD 82 PEF1MD 82 PEF2MD 82 PEF3MD 82 PEF4MD 82 PEF5MD 82 PEF6MD 82 PEF7MD 82 PEF8MD 82 MD 83 PEF1MD 83 PEF2MD 83 PEF3MD 83 PEF4MD 83 PEF5MD 83 PEF6MD 83 PEF7MD 83 PEF8MD 83 MD 88 PEF1MD 88 PEF2MD 88 PEF3MD 88 PEF4MD 88 PEF5MD 88 PEF6MD 88 PEF7MD 88 PEF8MD 88 MD 90 PEF1MD 90 PEF2MD 90 PEF3MD 90 PEF4MD 90 PEF5MD 90 PEF6MD 90 PEF7MD 90 PEF8MD 90 PA 28-180 PEF1PA 28-180 PEF2PA 28-180 PEF3PA 28-180 PA 32-300 PEF1PA 32-300 PEF2PA 32-300 PEF3PA 32-300 SAAB 340 B PEF1SAAB 340 B PEF2SAAB 340 B PEF3SAAB 340 B PEF4SAAB 340 B SAAB 2000 PEF1SAAB 2000 PEF2SAAB 2000 PEF3SAAB 2000 PEF4SAAB 2000 PEF5SAAB 2000 SUK Superjet PEF1SUK PEF2SUK PEF3SUK PEF4SUK PEF5SUK PEF6SUK PEF7SUK SUPERJET 100 SUPERJET 100 SUPERJET 100 SUPERJET 100 SUPERJET 100 SUPERJET 100 SUPERJET 100 100 PEF8SUK SUPERJET 100 TU 214 PEF1TU 214 PEF2TU 214 PEF3TU 214 PEF4TU 214 PEF5TU 214 PEF6TU 214 PEF7TU 214 PEF8TU 214

Distance (km) Aircraft Model 5556 6482 7408 8334 9260 10186 12038 15149.5 A 310 PEF9A 310 PEF10A 310 A 330-200 PEF9A 330-200 PEF10A 330-200 PEF11A 330-200 PEF12A 330-200 PEF13A 330-200 PEF14A 330-200 PEF15A 330-200 A 330-300 PEF9A 330-300 PEF10A 330-300 PEF11A 330-300 A 340-200 PEF9A 340-200 PEF10A 340-200 PEF11A 340-200 PEF12A 340-200 PEF13A 340-200 PEF14A 340-200 PEF15A 340-200 PEF16A 340-200 79

A 340-300 PEF9A 340-300 PEF10A 340-300 PEF11A 340-300 PEF12A 340-300 PEF13A 340-300 PEF14A 340-300 PEF15A 340-300 PEF16A 340-300 A 340-500 PEF9A 340-500 PEF10A 340-500 PEF11A 340-500 PEF12A 340-500 PEF13A 340-500 PEF14A 340-500 PEF15A 340-500 PEF16A 340-500 A 340-600 PEF9A 340-600 PEF10A 340-600 PEF11A 340-600 PEF12A 340-600 PEF13A 340-600 PEF14A 340-600 PEF15A 340-600 PEF16A 340-600 A 350-900 PEF9A 350-900 PEF10A 350-900 PEF11A 350-900 PEF12A 350-900 PEF13A 350-900 PEF14A 350-900 PEF15A 350-900 PEF16A 350-900 A 380 PEF9A 380 PEF10A 380 PEF11A 380 PEF12A 380 PEF13A 380 PEF14A 380 PEF15A 380 PEF16A 380 B 737-700 PEF9B 737-700 PEF10B 737-700 PEF11B 737-700 B 737-800 PEF9B 737-800 PEF10B 737-800 PEF11B 737-800 B 737-900 PEF9B 737-900 PEF10B 737-900 PEF11B 737-900 PEF10B 737-900 PEF11B 737-900 B 737-900 ER PEF9B 737-900 ER ER ER B747-400 PEF9B 747-400 PEF10B 747-400 PEF11B 747-400 PEF12B 747-400 PEF13B 747-400 PEF14B 747-400 PEF15B 747-400 PEF16B 747-400 B747-8 PEF9B 747-8 PEF10B 747-8 PEF11B 747-8 PEF12B 747-8 PEF13B 747-8 PEF14B 747-8 PEF15B 747-8 PEF16B 747-8 B757-200 PEF9B 757-200 PEF10B 757-200 PEF11B 757-200 B757-300 PEF9B 757-300 PEF10B 767-200 PEF11B 767-200 PEF12B 767-200 PEF13B 767-200 PEF14B 767-200 PEF15B 767-200 B767-200 ER PEF9B 767-200 ER ER ER ER ER ER ER B767-300 PEF9B 767-300 PEF10B 767-300 PEF11B 767-300 PEF12B 767-300 PEF13B 767-300 PEF10B 767-300 PEF11B 767-300 PEF12B 767-300 PEF13B 767-300 B767-300 ER PEF9B 767-300 ER ER ER ER ER PEF10B 767-400 PEF11B 767-400 PEF12B 767-400 PEF13B 767-400 B767-400 ER PEF9B 767-400 ER ER ER ER ER PEF10B 777-200 PEF11B 777-200 PEF12B 777-200 PEF13B 777-200 PEF14B 777-200 PEF15B 777-200 B777-200 ER PEF9B 777-200 ER ER ER ER ER ER ER PEF16B 777-200 ER PEF10B 777-200 PEF11B 777-200 PEF12B 777-200 PEF13B 777-200 PEF14B 777-200 PEF15B 777-200 B777-200 LR PEF9B 777-200 LR LR LR LR LR LR LR PEF16B 777-200 LR B777-300 PEF9B 777-300 PEF10B 777-300 PEF11B 777-300 PEF12B 777-300 PEF13B 777-300 PEF14B 777-300 PEF15B 777-300 PEF10B 777-300 PEF11B 777-300 PEF12B 777-300 PEF13B 777-300 PEF14B 777-300 PEF15B 777-300 B777-300 ER PEF9B 777-300 ER ER ER ER ER ER ER PEF16B 777-300 ER B787-8 PEF9B 787-8 PEF10B 787-8 PEF11B 787-8 PEF12B 787-8 PEF13B 787-8 B787-9 PEF9B 787-9 PEF10B 787-9 PEF11B 787-9 PEF12B 787-9 PEF13B 787-9 TU 214 PEF9TU 214 PEF10TU 214 PEF11TU 214

Step 3: Determine weighted-average per-passenger emission factors (distance-based) for finite distances for specific domestic and international air carrier

80

Weighting for LTO Emissions (CO2, CH4 and N2O), Cruise-mode Fuel Consumption, and Passenger Capacity for every airline done by straight- average on a aircraft-model fleet count (i.e. aircraft model count vs. total fleet count) basis30

= L - CO2JA LTO-CO2 Emissions (Jet Airways) = L - CO2JA

= = [F - JAATR 72 · L - CO2ATR 72 , F - JAB 737 - 7 · L - CO2B 737 - 7 , F - JAB 737 - 8 · L - CO2B 737 - 8 , F - JAB 737 - 9 · L - CO2B 737 - 9]

[F - JAATR 72 , F - JAB 737 - 7 , F - JAB 737 - 8 , F - JAB 737 - 9]

= L - CH4JA LTO-CH4 Emissions (Jet Airways) = L - CH4JA

= = [F - JAATR 72 · L - CH4ATR 72 , F - JAB 737 - 7 · L - CH4B 737 - 7 , F - JAB 737 - 8 · L - CH4B 737 - 8 , F - JAB 737 - 9 · L - CH4B 737 - 9]

[F - JAATR 72 , F - JAB 737 - 7 , F - JAB 737 - 8 , F - JAB 737 - 9]

LTO-N2O Emissions (Jet Airways)

= L - N2OJA= L - N2O = JA = [F - JAATR 72 · L - N2OATR 72 , F - JAB 737 - 7 · L - N2OB 737 - 7 , F - JAB 737 - 8 · L - N2OB 737 - 8 , F - JAB 737 - 9 · L - N2OB 737 - 9]

[F - JAATR 72 , F - JAB 737 - 7 , F - JAB 737 - 8 , F - JAB 737 - 9]

30 The relative frequency of operation or share of annual passenger-kms performed by a given aircraft model in a airline’s fleet was not taken into consideration. Incorporating this to arrive at a weighted-avg. would be a more rigorous approach and could be assessed from a detailed statistical analysis airline’s operational data. Unavailability of aircraft-model wise operation statistics related to domestic airline operations prevent this rigorous analysis at this stage 81

= FC 1JA Fuel-Consumption (Jet Airways) for flight distance of 231.5 km (kg Jet Kerosene) = F C 1JA

= = [F - JAATR 72 · FC1ATR 72 , F - JAB 737 - 7 · FC1B 737 - 7 , F - JAB 737 - 8 · FC1B 737 - 8 , F - JAB 737 - 9 · FC1B 737 - 9]

[F - JAATR 72 , F - JAB 737 - 7 , F - JAB 737 - 8 , F - JAB 737 - 9]

Passenger-Capacity (Jet Airways) = PAXJA = PAXJA

= = [F - JAATR 72 · PAXATR 72 , F - JAB 737 - 7 · PAXB 737 - 7 , F - JAB 737 - 8 · PAXB 737 - 8 , F - JAB 737 - 9 · PAXB 737 - 9]

[F - JAATR 72 , F - JAB 737 - 7 , F - JAB 737 - 8 , F - JAB 737 - 9]

Pax-to-Freight Ratio (Jet-Airways) = JAPF

= = [PAXAnnualJA · 100 + SEATSAnnualJA · 50] / 1000

[{PAXAnnualJA · 100 + SEATSAnnualJA · 50} / 1000] + FREIGHTAnnualJA + MAILAnnualJA

Per-passenger emission factor (economy class – Jet Airways) for flight distance 231.5 km (kg CO2e/pass)

= JAPF ·· [L - CO2JA · GWPCO2 + L - CH4JA · GWPCH4 + L - N2OJA · GWPN2O] + [FC1JA · {JK - EFCO2 · GWPCO2 + JK - EFCH4 · GWPCH4 + JK - EFN2O · GWPN2O}]

PAXJA · LFJA

Where,

82

F = Fleet Count for specific aircraft type31 LTOCO2 = CO2 Emissions from LTO Cycle, LTOCH4 = CH4 Emissions from LTO Cycle, LTON2O = N2O Emissions from LTO Cycle32 FC1 = Aircraft - Cruise Mode Fuel Consumption Factors for distance of 2778 km33 JK-EFCO2 = Jet Kerosene CO2 EF, JK-EFCH4 = Jet Kerosene CH4 EF, JK-EFN2O = Jet Kerosene N2O EF34 PAX = Passenger Capacity - Max (nos.)35 LF = Passenger Load Factor (%)36 PAXAnnual = Annual Total Passengers carried by airline (Nos.)37 SEATSAnnual = Annual Total Seats38 FREIGHTAnnual = Annual Freight (tonnes)39 MAILAnnual = Annual Mail (tonnes)40 50 kg = add-on weight to account of the onboard equipment and infrastructure associated with passenger use (for example, the weight of seats, toilets, galleys and crew)41 100 kg: average passenger mass with baggage is assumed as 100 Kg42

Step 4: Repeat calculation of weighted-average per-passenger emission factors (distance-based) for finite distances for all domestic and international air carrier

Per-passenger emission factors are developed for the following matrix of airlines and flight distances:

31 Air carrier’s company website and http://www.planespotters.net used to collect fleet information 32 Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 2 - Energy, Chapter 3: Mobile Combustion, Table 3.6.9 33 Source: EMEP/EEA Emission Inventory Guidebook 2013 Update July 2014 34Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 2 - Energy, Chapter 1: Introduction & Chapter 2: Stationary Combustion, Tables 1.2, 2.2 35 Maximum passenger capacity of various all-economy class configurations within aircraft model type obtained from aircraft manufacturer’s website & http://www.airliners.net/aircraft-data/ 36 Air carriers’ annual reports 2014-15 37 Air carriers’ annual reports 2014-15 38 Determined by dividing total passengers by airline load factor (%) 39 Air carriers’ annual reports 2014-15 40 Air carriers’ annual reports 2014-15 41 Source: International Civil Aviation Organization (ICAO) Carbon Emissions Calculator, Version 3, August 2010 42 Source: International Civil Aviation Organization (ICAO) Carbon Emissions Calculator, Version 3, August 2010 83

Distance (km) Air carrier 231.5 463 926 1389 1852 2778 3704 4630 Jet Airways PEF19W PEF2 9W PEF3 9W PEF4 9W PEF5 9W PEF6 9W PEF7 9W PEF8 9W Indigo Airlines PEF16E PEF26E PEF3 6E PEF4 6E PEF5 6E PEF6 6E PEF76E PEF8 6E US Airways PEF1US PEF2 US PEF3 US PEF4 US PEF5 US PEF6 US PEF7 US PEF8 US Emirates PEF1EK PEF2EK PEF3EK PEF4EK PEF5EK PEF6EK PEF7EK PEF8 EK

Distance (km) Air carrier 5556 6482 7408 8334 9260 10186 12038 15149.5 Jet Airways PEF99W PEF10 9W PEF11 9W PEF12 9W PEF13 9W PEF14 9W PEF15 9W PEF16 9W Indigo Airlines PEF96E PEF10 9E PEF11 6E PEF12 6E PEF13 6E PEF14 6E PEF15 6E PEF16 6E US Airways PEF9US PEF10 US PEF11 US PEF12 US PEF13 US PEF14 US PEF15 US PEF16 US Emirates PEF9EK PEF10 EK PEF11EK PEF12 EK PEF13EK PEF14 EK PEF15 EK PEF16 EK

The same matrix developed for other 179 domestic and international air carriers.

Step 5: Determine per-passenger emission factors (distance-based) for finite distances for average domestic airline

5.1: Utilization-fraction of every aircraft in total domestic and international aviation fleet: Case – A 319 Aircrafts part of Jet Airways Fleet

= UT% - JAA 319 = = UT% - JAA 319 = F - JAA 319 · JAMS F - JA - Fleet Tot. Where, F = Fleet count for specific aircraft type in specific airline’s fleet43 MS = Market Share % (Revenue Passenger-kms basis)44 Fleet-Tot. = Total fleet count across all aircraft types for specific airline

43 Air carrier’s company website and http://www.planespotters.net used to collect fleet information 44 Calculated from data sourced from Director Air carriers’ annual reports 2014-15 84

5.2: Similarly, utilization factors are calculated for every aircraft type belonging to all domestic airlines

5.3: Aircraft-type wise total utilization factors calculated: Case – A 319 Aircrafts across all domestic and international airlines45

5.4: Average airline passenger capacity calculated as a weighted-average of capacity of cumulative aircraft fleet weighted according to individual utilization factors: PAXAvg. Dom.

=(PAXA 319 · UT%A 319 , PAXA 320 · UT%A 320 , PAXA 321 · UT%A 321 , PAXATR 42 · UT%ATR 42 , PAXATR 72 · UT%ATR 72) =(PAXA 319 · UT%A 319 , PAXA 320 · UT%A 320 , PAXA 321 · UT%A 321 , PAXATR 42 · UT%ATR 42 , PAXATR 72 · UT%ATR 72)

+

= + (PAXB 737 - 7 · UT%B 737 - 7 , PAXB 737 - 8 · UT%B 737 - 8 , PAXB 737 - 9 · UT%B 737 - 9 , PAXCRJ 200 · UT%CRJ 200 , PAXDHC - 8 - 400 · UT%DHC - 8 - 400) = + (PAXB 737 - 7 · UT%B 737 - 7 , PAXB 737 - 8 · UT%B 737 - 8 , PAXB 737 - 9 · UT%B 737 - 9 , PAXCRJ 200 · UT%CRJ 200 , PAXDHC - 8 - 400 · UT%DHC - 8 - 400)

5.5: Average airline cruise-mode fuel-consumption for finite distance calculated as a weighted-average of fuel consumption of cumulative aircraft fleet weighted according to individual utilization factors: FC1Avg. Dom =

=(FC1A 319 · UT%A 319 , FC1A 320 · UT%A 320 , FC1A 321 · UT%A 321 , FC1ATR 42 · UT%ATR 42 , FC1ATR 72 · UT%ATR 72) =(FC1A 319 · UT%A 319 , FC1A 320 · UT%A 320 , FC1A 321 · UT%A 321 , FC1ATR 42 · UT%ATR 42 , FC1ATR 72 · UT%ATR 72)

+

=(FC1B 737 - 7 · UT%B 737 - 7 , FC1B 737 - 8 · UT%B 737 - 8 , FC1B 737 - 9 · UT%B 737 - 9 , FC1CRJ 200 · UT%CRJ 200 , FC1DHC - 8 - 400 · UT%DHC - 8 - 400) =(FC1B 737 - 7 · UT%B 737 - 7 , FC1B 737 - 8 · UT%B 737 - 8 , FC1B 737 - 9 · UT%B 737 - 9 , FC1CRJ 200 · UT%CRJ 200 , FC1DHC - 8 - 400 · UT%DHC - 8 - 400)

5.6: Average airline LTO-cycle CO2 emissions calculated as a weighted-average of LTO-emissions of cumulative aircraft fleet weighted according to individual utilization factors: L-CO2Avg. Dom =

45 The formula shown a samples of air carriers 85

=(L - CO2A 319 · UT%A 319 , L - CO2A 320 · UT%A 320 , L - CO2A 321 · UT%A 321 , L - CO2ATR 42 · UT%ATR 42 , L - CO2ATR 72 · UT%ATR 72) =(L - CO2A 319 · UT%A 319 , L - CO2A 320 · UT%A 320 , L - CO2A 321 · UT%A 321 , L - CO2ATR 42 · UT%ATR 42 , L - CO2ATR 72 · UT%ATR 72)

+

=(L - CO2B 737 - 7 · UT%B 737 - 7 , L - CO2B 737 - 8 · UT%B 737 - 8 , L - CO2B 737 - 9 · UT%B 737 - 9 , L - CO2CRJ 200 · UT%CRJ 200 , L - CO2DHC - 8 - 400 · UT%DHC - 8 - 400) =(L - CO2B 737 - 7 · UT%B 737 - 7 , L - CO2B 737 - 8 · UT%B 737 - 8 , L - CO2B 737 - 9 · UT%B 737 - 9 , L - CO2CRJ 200 · UT%CRJ 200 , L - CO2DHC - 8 - 400 · UT%DHC - 8 - 400)

5.7: Average airline LTO-cycle CH4 emissions calculated as a weighted-average of LTO-emissions of cumulative aircraft fleet weighted according to individual utilization factors: L-CH4Avg. Dom

=(L - CH4A 319 · UT%A 319 , L - CH4A 320 · UT%A 320 , L - CH4A 321 · UT%A 321 , L - CH4ATR 42 · UT%ATR 42 , L - CH4ATR 72 · UT%ATR 72) =(L - CH4A 319 · UT%A 319 , L - CH4A 320 · UT%A 320 , L - CH4A 321 · UT%A 321 , L - CH4ATR 42 · UT%ATR 42 , L - CH4ATR 72 · UT%ATR 72)

+

=(L - CH4B 737 - 7 · UT%B 737 - 7 , L - CH4B 737 - 8 · UT%B 737 - 8 , L - CH4B 737 - 9 · UT%B 737 - 9 , L - CH4CRJ 200 · UT%CRJ 200 , L - CH4DHC - 8 - 400 · UT%DHC - 8 - 400) =(L - CH4B 737 - 7 · UT%B 737 - 7 , L - CH4B 737 - 8 · UT%B 737 - 8 , L - CH4B 737 - 9 · UT%B 737 - 9 , L - CH4CRJ 200 · UT%CRJ 200 , L - CH4DHC - 8 - 400 · UT%DHC - 8 - 400)

5.8: Average airline LTO-cycle N2O emissions calculated as a weighted-average of LTO-emissions of cumulative aircraft fleet weighted

according to individual utilization factors: L-N2OAvg. Dom =(L - N2OA 319 · UT%A 319 , L - N2OA 320 · UT%A 320 , L - N2OA 321 · UT%A 321 , L - N2OATR 42 · UT%ATR 42 , L - N2OATR 72 · UT%ATR 72) =(L - N2OA 319 · UT%A 319 , L - N2OA 320 · UT%A 320 , L - N2OA 321 · UT%A 321 , L - N2OATR 42 · UT%ATR 42 , L - N2OATR 72 · UT%ATR 72)

+ =(L - N2OB 737 - 7 · UT%B 737 - 7 , L - N2OB 737 - 8 · UT%B 737 - 8 , L - N2OB 737 - 9 · UT%B 737 - 9 , L - N2OCRJ 200 · UT%CRJ 200 , L - N2ODHC - 8 - 400 · UT%DHC - 8 - 400) =(L - N2OB 737 - 7 · UT%B 737 - 7 , L - N2OB 737 - 8 · UT%B 737 - 8 , L - N2OB 737 - 9 · UT%B 737 - 9 , L - N2OCRJ 200 · UT%CRJ 200 , L - N2ODHC - 8 - 400 · UT%DHC - 8 - 400)

5.9: Average airline PAX-to-Freight ratio calculated as a weighted-average of PAX-to-Freight ratios of airlines weighted according to airline market share: AVGPF =(JAMS · JAPF , KAMS · KAPF , IAMS · IAPF , SJMS · SJPF , GAMS · GAPF , INMS · INPF , AIMS · AIPF , JLMS · JLPF) =(JAMS · JAPF , KAMS · KAPF , IAMS · IAPF , SJMS · SJPF , GAMS · GAPF , INMS · INPF , AIMS · AIPF , JLMS · JLPF)

86

5.10: Per-passenger emission factors (distance-based) for flight distance (231.5 km) for average domestic and international airline calculated:

= AVG.DOM.PF ·· [L - CO2Av g.Dom. · GWPCO2 + L - CH4Av g.Dom. · GWPCH4 + L - N2OAv g.Dom. · GWPN2O] + [FC1Av g.Dom. · {JK - EFCO2 · GWPCO2 + JK - EFCH4 · GWPCH4 + JK - EFN2O · GWPN2O}]

PAXAv g.Dom. · LFAv g.Dom.

Where, LFAvg.Dom = Annual Load-Factor for Domestic or International Airline Industry46 AVG.DOMPF = PAX-to-Freight ratio for Avg. Domestic Airline (calculated) L-CH4Avg. Dom , L-N2OAvg. Dom , L-CO2Avg. Dom = average airline LTO-cycle CH4, N2O, CO2 emissions (calculated) FC1Avg. Dom = Average airline cruise-mode fuel-consumption for finite distance (calculated) JK-EFCO2 = Jet Kerosene CO2 EF, JK-EFCH4 = Jet Kerosene CH4 EF, JK-EFN2O = Jet Kerosene N2O EF47 PAXAvg. Dom. = Weighted-average aircraft passenger capacity (calculated)

Step 6: Repeat calculation of weighted-average per-passenger emission factors (distance-based) for other finite distances for Avg. Domestic Air Carrier

Per-passenger emission factors (distance-based) for flight distance (231.5 km) for average domestic airline calculation repeated for 463 km, 926 km, 1389 km, 1852 km, and 2778 km.

Step 7: Repeat calculation of weighted-average per-passenger emission factors (distance-based) for other finite distances for Avg. International Air Carrier

Per-passenger emission factors (distance-based) for flight distance (231.5 km) for average domestic airline calculation repeated for 463 km, 926 km, 1389 km, 1852 km, and 2778 km, 3704 km, 4630 km, 5556 km, 6482 km, 7408 km, 8334 km, 9260 km, 10186 km, 12038 km, 15149 km.

Step 8: Determine flight durations for matrix of aircraft models and flight distances

46 Source: Air carriers’ annual report 2014-15 47Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 2 - Energy, Chapter 1: Introduction & Chapter 2: Stationary Combustion, Tables 1.2, 2.2 87

Case: A-319 aircraft flight duration for flight distance of 231.5 km

= H R1A 319 = H R = D 1A 319 1 Where, VA 319 D1 = Flight Distance 48 VA 319 = Aircraft Speed (economical)

Step 9: Determine avg. flight durations of airlines for finite flight distances

Case: Jet Airways flight duration for flight distance of 231.5 km

9.1: Determine weighted-average airline aircraft speed

Avg. Aircraft Flight Speed for Jet Airways = VJA = = [F - JAATR 72 · VATR 72 + F - JAB 737 - 7 · VB 737 - 7 + F - JAB 737 - 8 · VB 737 - 8 + F - JAB 737 - 9 · VB 737 - 9]

[F - JAATR 72 + F - JAB 737 - 7 + F - JAB 737 - 8 + F - JAB 737 - 9]

Where, F = Fleet count for specific aircraft type in specific airline’s fleet49 V = Aircraft Speed (economical)50

8.2: Determine airline flight duration for finite flight distance

Avg. Aircraft Flight Duration for Jet Airways for 231.5 km =

= HR1JA = = HR1JA D1 VJA

48 Economical speed (km/h) of various configurations within aircraft model type obtained from aircraft manufacturer’s website & http://www.airliners.net/aircraft-data/ 49 Air carrier’s company website and http://www.planespotters.net used to collect fleet information 50 Economical speed (km/h) of various configurations within aircraft model type obtained from http://www.thetravelinsider.info/airplanetypes.htm & http://www.airliners.net/aircraft-data/ 88

Where, D1 = Flight Distance VJA = Avg. Airline Aircraft Speed (calculated)

Step 9: Repeat calculation of average airline flight durations for other finite distances and all domestic airlines

Average flight durations for flight distance (231.5 km) for Jet Airways calculation repeated for 463 km, 926 km, 1389 km, 1852 km, and 2778 km and for other domestic airlines.

Step 10: Determine flight durations for avg. domestic airline for finite flight distances

10.1: Determine weighted-average aircraft speed considering all aircrafts in domestic airline fleet and respective utilization factors

Avg. Aircraft Flight Speed for Jet Airways = VAvg.Dom

=(VA 319 · UT%A 319 + VA 320 · UT%A 320 + VA 321 · UT%A 321 + VATR 42 · UT%ATR 42 + VATR 72 · UT%ATR 72 + VBAE 146 · UT%BAE 146) =(VA 319 · UT%A 319 + VA 320 · UT%A 320 + VA 321 · UT%A 321 + VATR 42 · UT%ATR 42 + VATR 72 · UT%ATR 72 + VBAE 146 · UT%BAE 146)

+

=(VB 737 - 1 · UT%B 737 - 1 + VB 737 - 2 · UT%B 737 - 2 + VB 737 - 4 · UT%B 737 - 4 + VB 737 - 7 · UT%B 737 - 7 + VB 737 - 8 · UT%B 737 - 8 + VB 737 - 9 · UT%B 737 - 9) =(VB 737 - 1 · UT%B 737 - 1 + VB 737 - 2 · UT%B 737 - 2 + VB 737 - 4 · UT%B 737 - 4 + VB 737 - 7 · UT%B 737 - 7 + VB 737 - 8 · UT%B 737 - 8 + VB 737 - 9 · UT%B 737 - 9)

+

=(VCRJ 200 · UT%CRJ 200 + VEMB 170 · UT%EMB 170 + VEMB 175 · UT%EMB 175 + VDHC - 8 - 400 · UT%DHC - 8 - 400) =(VCRJ 200 · UT%CRJ 200 + VEMB 170 · UT%EMB 170 + VEMB 175 · UT%EMB 175 + VDHC - 8 - 400 · UT%DHC - 8 - 400)

Where, UT% = Utilization-fraction of every aircraft in total domestic aviation fleet V = Aircraft Speed (economical)51

51 Economical speed (km/h) of various configurations within aircraft model type obtained from aircraft manufacturer’s website & http://www.airliners.net/aircraft-data/ 89

10.2: Determine avg. flight duration for finite flight distance

Avg. Aircraft Flight Duration for Avg. Domestic Airline for 231.5 km =

= HR1Av g.Dom. = = HR1Av g.Dom. D1 VAv g.Dom. Where, D1 = Flight Distance VAvg.Dom = Avg. Domestic Airline Aircraft Speed (calculated)

Step 11: Perform Linear-Regression based equations based on passenger-emission factors as f(n) of flight distances

Linear-regression analysis of per-passenger emissions vs. finite flight distances i.e. y = per-passenger flight emissions (kgCO2e), x = flight distances (km)

Equation form: y = m1x + c1 y = m2x + c2 y = m3x + c3

Where, y = PEF (passenger-emissions - kg CO2e) x = distance (km) m1, m2, m3 = slopes of linear regression equation (kgCO2e/km) for Short, Medium, and Long Haul Distances52 c1, c2, c3 = intercepts of linear regression equation (kgCO2e) for Short, Medium, and Long Haul Distances

Step 12: Perform Linear-Regression based equations based on passenger-emission factors as f(n) of flight durations

52 Short-haul distances defined for domestic as 231.5 to 463 km, and Long-haul distances defined as 926 to 2,778 and for international Short-haul distances defined as 231.5 to 1,852 km, Medium-haul distances defined as 2,778 to 5,556 km, and Long-Haul diatnces defined as 6,482 to 15,149 km 90

Linear-regression analysis of per-passenger distance-based emissions performed for finite flight distances vs. flight durations for finite flight distances i.e. y = per-passenger flight emissions (kgCO2e - for finite flight distance) , x = flight duration (hrs.)

Equation form: y = m1x + c1 y = m2x + c2 y = m3x + c3

Where, y = PEF (passenger emissions – kgCO2e) x = duration (hrs.)53 m1, m2, m3 = slopes of linear regression equation (kgCO2e/hr) for Short, Medium, and Long Haul Durations54 c1, c2, c3 = intercepts of linear regression equation (kgCO2e) for Short, Medium, and Long Haul Durations

Step 13: Calculate Economy to First/Business Class Seat Area Ratio per aircraft model

= A319AR = Area-Ratio - A 319 Aircraft = A319AR A319ECON. - SINGLE CLASS - A319ECON - TWIN CLASS. A319FC

= A320AR = A320 = A320 - - A320 - Area-Ratio - A 320 Aircraft AR ECON. SINGLE CLASS ECON TWIN CLASS. A320 FC

Similarly, Area-Ratios for A 321, B 737-700, B 737-800 and B 737-900 aircraft models are calculated.

53 Note: flight duration to cover given flight distance is calculated based on specific aircraft-model speed and not based on a avg. speed. 54 For domestic Short Haul duration defined as upto 2.5 hours, and Long Haul duration defined as 0.71 to 2.5 hours and for international Short Haul duration defined as upto 2.5 hours, Medium-haul duration defined as 2.51 to 6 hours, and Long-haul duration defined as 6.1 to 12 hours 91

Where, FC = First-Class seat count in twin-configuration aircraft model variants ECON-TWIN CLASS. = Economy-Class seat count in twin-configuration aircraft model variants TWIN-CLASS-TOT. = Total seat count in twin-configuration aircraft model variants ECON.-SINGLE CLASS = Economy-Class seat count in single-configuration aircraft model variants55

Step 14: Calculate Economy to First/Business Class Seat Area Ratio for avg. aircraft model

= ARAvg. Dom. Airline = [A319AR + A320AR + A321AR + B 737 - 800AR + B 737 - 900AR + B 737 - 700AR] 6

Step 15: Adjust Economy-class Linear-Regression based equations to calculate corresponding First/Business Class equations

Equation form: y = AR*m1x + AR*c1 y = AR*m2x + AR*c2 y = AR*m3x + AR*c3

Where, y = PEF (passenger-emission factor - kg CO2e/pass) x = distance (km) or duration (hrs.) AR = First/Business Class to Economy Area-Ratio (calculated)

Step 16: Further, scope 1 and scope 2 GHG emissions extracted from air carrier’s annual report and sustainability report of 2014-15. Out of 183 air carriers 47 air carriers reported their annual scope 1 and scope 2 GHG emissions.56

55 Source: http://www.airliners.net/aircraft-data/stats.main?id=25, http://www.boeing.com/commercial/airports/acaps/7474sec2.pdf, http://www.airliners.net/aircraft-data/stats.main?id=106, http://www.airliners.net/aircraft-data/stats.main?id=107 56 Calculated emissions considered as domestic long-haul and international short-haul distance based GHG emissions factor. Domestic short-haul, international medium- haul, and international long-haul GHG emission factor have been normalized with ratio of calculated EF of LTO and cruise-mode emission 92

= Scope 1 GHG Emissions + Scope 2 GHG Emissions Revenue Pax - km EFkgCO2e/Pax-km

Where, Scope 1 GHG Emissions = Annual emissions reported in annual report/sustainability report, TonneCO2e57 Scope 2 GHG Emissions = Annual emissions reported in annual report/sustainability report, TonneCO2e58 Revenue Pax-km = Annual revenue passenger-km

Step 17: Those air carriers who have not reported their annual GHG emissions : Emission factor derived from Tier 2 guidlinelines have been normalized with the ratio of average EF of 47 air carriers ( reported their annual emissions) and average EF of 183 air carriers (not reported their annual emissions).

8.4.2 Fugitive Emissions – Oil systems Conventional-Onshore Oil, Conventional-Offshore Oil, Heavy Oil/Cold Bitumen, Thermal Oil, Synthetic Crude (from Oilsands), Synthetic Crude (from Oilshale)

Guidelines: Tier 1 Approach

Volume 2 - Energy, Chapter 4: Fugitive Emissions, 2006 IPCC Guidelines for National Greenhouse Gas Inventories - EQUATION 4.2.1 TIER 1: ESTIMATING FUGITIVE EMISSIONS FROM AN INDUSTRY SEGMENT and EQUATION 4.2.2 TIER 1: TOTAL FUGITIVE EMISSIONS FROM INDUSTRY SEGMENTS

CH4 EF Conventional On-Shore Oil

= ([ECH4OD , ECH4OT , ECH4OS , ECH4OP - C - On. , ECH4OTr - P. , ECH4OTr - V. , ECH4OTr - Ld. , ECH4Oref . , ECH4O - Dist.] · GWPCH4) = ([ECH4OD , ECH4OT , ECH4OS , ECH4OP - C - On. , ECH4OTr - P. , ECH4OTr - V. , ECH4OTr - Ld. , ECH4Oref . , ECH4O - Dist.] · GWPCH4)

57 Source: Scope Annual GHG emissions extracted from annual report/sustainability report 2014-15 of 47 air carriers 58 Source: Scope Annual GHG emissions extracted from annual report/sustainability report 2014-15 of 47 air carriers 93

CH4 EF Conventional-Offshore Oil

= ([ECH4OD , ECH4OT , ECH4OS , ECH4OP - C - Of f . , ECH4OTr - P. , ECH4OTr - V. , ECH4OTr - Ld. , ECH4Oref . , ECH4O - Dist.] · GWPCH4) = ([ECH4OD , ECH4OT , ECH4OS , ECH4OP - C - Of f . , ECH4OTr - P. , ECH4OTr - V. , ECH4OTr - Ld. , ECH4Oref . , ECH4O - Dist.] · GWPCH4)

CH4 EF Heavy Oil/Cold Bitumen

= ([ECH4OD , ECH4OT , ECH4OS , ECH4OP - H. , ECH4OTr - P. , ECH4OTr - V. , ECH4OTr - Ld. , ECH4Oref . , ECH4O - Dist.] · GWPCH4) = ([ECH4OD , ECH4OT , ECH4OS , ECH4OP - H. , ECH4OTr - P. , ECH4OTr - V. , ECH4OTr - Ld. , ECH4Oref . , ECH4O - Dist.] · GWPCH4)

CH4 EF Thermal Oil

= ([ECH4OD , ECH4OT , ECH4OS , ECH4OP - T. , ECH4OTr - P. , ECH4OTr - V. , ECH4OTr - Ld. , ECH4Oref . , ECH4O - Dist.] · GWPCH4) = ([ECH4OD , ECH4OT , ECH4OS , ECH4OP - T. , ECH4OTr - P. , ECH4OTr - V. , ECH4OTr - Ld. , ECH4Oref . , ECH4O - Dist.] · GWPCH4)

CH4 EF Synthetic Crude (from Oilsands)

= ([ECH4OD , ECH4OT , ECH4OS , ECH4OP - S{sand}l , ECH4OTr - P. , ECH4OTr - V. , ECH4OTr - Ld. , ECH4Oref . , ECH4O - Dist.] · GWPCH4) = ([ECH4OD , ECH4OT , ECH4OS , ECH4OP - S{sand}l , ECH4OTr - P. , ECH4OTr - V. , ECH4OTr - Ld. , ECH4Oref . , ECH4O - Dist.] · GWPCH4)

CH4 EF Synthetic Crude (from Oilshale)

= ([ECH4OD , ECH4OT , ECH4OS , ECH4OP - S{shale} , ECH4OTr - P. , ECH4OTr - V. , ECH4OTr - Ld. , ECH4Oref . , ECH4O - Dist.] · GWPCH4) = ([ECH4OD , ECH4OT , ECH4OS , ECH4OP - S{shale} , ECH4OTr - P. , ECH4OTr - V. , ECH4OTr - Ld. , ECH4Oref . , ECH4O - Dist.] · GWPCH4)

CO2EF Conventional On-Shore Oil

=(ECO2OD , ECO2OT , ECO2OS , ECO2OP - C - On. , ECO2OTr - P. , ECO2OTr - V. , ECO2OTr - Ld. , ECO2Oref . , ECO2O - Dist.) =(ECO2OD , ECO2OT , ECO2OS , ECO2OP - C - On. , ECO2OTr - P. , ECO2OTr - V. , ECO2OTr - Ld. , ECO2Oref . , ECO2O - Dist.)

continuing series as in the case of CH4EF by replacing Conventional Onshore Oil with the appropriate Oil Production Technology

94

N2 O EF Conventional On-Shore Oil

= ([EN2OOD , EN2OOT , EN2OOS , EN2OOP - C - On. , EN2OOTr - P. , EN2OOTr - V. , EN2OOTr - Ld. , EN2OOref . , EN2OO - Dist.] · GWPN2O) = ([EN2OOD , EN2OOT , EN2OOS , EN2OOP - C - On. , EN2OOTr - P. , EN2OOTr - V. , EN2OOTr - Ld. , EN2OOref . , EN2OO - Dist.] · GWPN2O)

continuing series as in the case of CH4EF by replacing Conventional Onshore Oil with the appropriate Oil Production Technology

Where, ECH4 =Methane Emissions ECO2= Carbon Dioxide Emissions EN2O= Nitrous Oxide Emissions OD = emissions from Oil - Well Drilling (Flaring & Venting) OT = Oil - Well Testing (Flaring & Venting) OS = Oil - Well Servicing (Flaring & Venting) OP-C-On. = Oil Production - Conventional Oil – Onshore (Fugitives, Venting & Flaring) OP-C-Off. = Oil Production - Conventional Oil - Offshore (Fugitives, Venting & Flaring) OP-H. = Oil Production - Heavy Oil/Cold Bitumen (Fugitives, Venting & Flaring) OP-T. = Oil Production - Thermal Oil Production (Fugitives, Venting & Flaring) OP-S(sand) = Oil Production - Synthetic Crude (from Oilsands) OP-S(shale) = Oil Production - Synthetic Crude (from Oilshale) OP-Def. = Oil Production - Default Weighted Total (Fugitives, Venting & Flaring) OTr-P. = Oil Transport - Pipelines OTr-V. = Oil Transport - Tanker Trucks and Rail Cars (Venting) OTr-Ld.= Oil Transport - Loading of Off-shore Production on Tanker Ships (Venting) Oref.= Oil Refining O-Dist.= Oil - Refined Product Distribution

GHG EF = CH4 EF + CO2 EF + N2O EF

95

8.5 GHG Inventory Calculation

8.5.1 Emissions from Aircraft Operation and Maintenance Total Emissions from Fuel consumption and Purchased Electricity Use =

= Activity Data x Emission Factor [Operation Phase] 1000 Annual Emission GHG, Aircraft operation Where,

Annual Emission GHG, Aircraft operation = GHG Emissions, Tonne CO2e Activity Data = Air travel distance covered, Pax-km

Emission Factor = kg CO2e/Pax-km

8.5.2 Fugitive Emissions from Fuel Used = [Annual GHG Emisions from Aircraft Operation x Emission Factor of Avg. Oil Fugitive Emission] Emission Factor of Jet Kerosene Annual Emission GHG, Avg.Oil, fugitive emission

Where,

Annual Emission GHG, Avg.Oil, fugitive emission = GHG Emissions, Tonne CO2e Annual GHG Emisions from Aircraft Operation = GHG Emissions from fossil fuel used, Tonne CO2e

Emission Factor of Jet Kerosene = 0.00259 tonne CO2e/liter of Jet Kerosene59

Emission Factor of oil (fugitive) = 0.07079 tonne CO2e/liter of Avg. Oil60

59 Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 2 - Energy, Chapter 1: Introduction & Chapter 2: Stationary Combustion, Tables 2.4 96

= Activity Data x Emission Factor of fuel production 1000 Annual Emission GHG, Oil Prod. Dist. Where,

Annual Emission GHG, Oil Prod. Dist. = GHG Emissions, Tonne CO2e

Activity Data = Air travel distance covered, Pax-km

Emission Factor of fuel production = kg CO2e/Pax-km61

8.5.3 Emission from Aircraft & Engine Manufacturing

= Activity Data x Emission Factor of Aircraft & Engine manufacturing 1000 Annual Emission GHG, Aircraft & Engine Manuf, Where,

Annual Emission GHG, Aircraft & Engine manuf. = GHG Emissions, Tonne CO2e

Activity Data = Air travel distance covered, Pax-km

Emission Factor of aircraft and enegine manufacturing62 = Short –haul - 0.0093 kg CO2e/Pax-km, Medium-haul – 0.0062 kg CO2e/Pax- km, Long-haul – 0.0083 kg CO2e/Pax-km

60 Source: Carbon Emission Factor Database (CEFD) of cBalance Solutions 61 Source: Life-cycle Environmental Inventory of Passenger Transportation in the United States, Table 79, Table 80, and Tabel 81 62 Source: Life-cycle Environmental Inventory of Passenger Transportation in the United States, Equation set 33 – Aircraft Manufacturing, Table 72, Table 73, and Tabel 74 97

9. References Air Carriers’ Annual / Sustainablity Report / CSR Report . (n.d.). Retrieved from their respective websites. Aircraft Technical Data & Specifications. (n.d.). Retrieved from Airliner's: http://www.airliners.net/aircraft-data/ Airline Fleet by Index. (n.d.). Retrieved from PlanePotters: https://www.planespotters.net/

Bhatia, P., Cummis, C., & , A. (2011). Product Life Cycle Accounting and Reporting Standard. World Resource Institute.

Chester, M. V. (2008). Life-cycle Environmental Inventory of Passenger Transportation in the United States. University of California, Berkeley.

Common Airplane Types Configuration Data. (n.d.). Retrieved from The Travel Insider: http://www.thetravelinsider.info/airplanetypes.htm ICAO. (2014). ICAO Carbon Emissions Calculator Methodology Version 7. ICAO.

IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Chapter 3: Mobile Combustion. IPCC.

Levy and Collection of Aeronautical Charges using User Development Fee at IGI Airport, . (2012). Retrieved from AERONAUTICAL INFORMATION CIRCULARS: http://dgca.nic.in/aic/AIC04_2012.pdf

The Greenhouse Gas Protocol : A Corporate Accounting & Reporting Standard. (n.d.). Winther, M., & Rypdal, K. (2014). EMEP/EEA emission inventory guidebook 2013.

98