<<

International Academy for Production Engineering 67th General Assembly, Aug. 20-26, 2017

Advanced Manufacturing for Enhancing the Performance and Functionality of Tooling for Metal

2019 Cross-STC Keynote Host STC: STC-F

Committed Contributors: J. Cao (F), F. Vollertsen (E), M. Schmidt (E), R. Gao (O), Q. J. Wang, B. Liang Contact: [email protected]

CIRP office: 9 rue Mayran, 75009 PARIS – France, E mail: [email protected], http://www.cirp.net People expressed interests in contributing… • M. Merklein (F) • Peter Groche (F) • X. J. Jiang (S) • M. W. Putz (A)… • E. Brinksmeier (G) • A. Malshe (E) • T. van den Boogaard • Rachid M'Saoubi (C)

2 Work Timeline

• August 2016 – Refine objectives and core group • Feb. 2017 – outline and seek contributors • August 2017 – Finalize outline/paper_structure • Feb. 2018 – Complete the 1st paper draft and seek inputs • August 2018 – Complete the 2nd draft and seek inputs • February 2019 – Submit the final version • August 2019 - Presentation

3 Trend in Metal forming § Utilize higher specific strength materials § Reduce tooling wear and extend its service life § Implement intelligent process control § Minimize material waste and increase energy efficiency

The use of high-strength steel (HSS) and AHSS grades Smart forming tool in rotary draw bending [2] are growing rapidly [1]

4 Shape, Microstructure, … Friction, Temperature, …

Hardness, Strength, Durability, …

Tolerance, Flexibility, … Surface

Function

5 Paper Objective

Driven by the functional requirements of metal forming processes in the era of cyber-physical systems, summarize the current capabilities and stimulate innovations in designing and fabricating smart forming tools

6 Paper Structure

Requirements Tooling design Metal forming and fabrication processes

Processing Smart tooling for Embedding conditions smart forming with

Integrated Input analysis and Sensors control

7 Paper Structure – Metal Forming Processes

Cold Forming §Operated at room temperature §With lubricants to reduce friction

Hot Forming §Temperature above the recrystallization temp §Potential to impact material Requirements properties dramatically Metal forming Tooling design processes and fabrication

Micro-Forming §Size effect Processing Smart tooling Embedding §Tolerance control conditions for smart with 700 um forming

Incremental Forming §Small contact area Integrated Input §Sliding speed analysis Sensors and control

8 Paper Structure – Tooling design and fabrication

Tooling Material §Thermal mechanical properties §Strength and wear resistance §Physical properties matching with workpiece material

Tooling Fabrication §Machining (Laser, EDM) §Grinding and polishing

Requirements §Additive processes Metal forming Tooling design processes and fabrication Surface Finishing §Surface coating (PVD or CVD) §Surface texturing Processing Smart tooling Embedding conditions for smart with §Durability and roughness forming

Sensor Integration §Design §Manufacturing Integrated Input analysis Sensors §Integration and control

9 Paper Structure - Sensors

Requirements Metal forming Tooling design processes and fabrication Strain §DIC §Strain gauge

Processing Smart tooling Embedding conditions for smart with forming Temperature §Thermal couples ºC §Infrared camera

Integrated Input analysis Sensors and control Force/Pressure §Strain gauge based §Piezo based

Geometry/Shape §Laser scanner §LVDT

10 Paper Structure – Integrated analysis and control

Requirements Metal forming Tooling design Viability Analysis processes and fabrication § Stress § Geometry § Defects identification Processing Smart tooling Embedding conditions for smart with forming Deformation Control §Real time (online) control §Stable and effective control algorithm Integrated Input §Actuators analysis Sensors and control

Tribology Control §Local tribology behavior µ §Lubricants and surface texture 700 um §Processing speed

Data Analytics § Data collection/transmission § On-line /off-line § Machine learning

11 Cold Forming Tooling Material § Operated at room temperature Paper Structure § Thermal mechanical properties § With lubricants to reduce § Strength and wear resistance friction § Physical properties matching Hot Forming with workpiece material § Temperature above the Tooling Fabrication recrystallization temp Tooling § Machining (Laser, EDM) § Potential to impact material Requirements properties dramatically Metal forming design and § Grinding and polishing processes fabrication § Additive processes Micro-Forming § Size effect Surface Finishing § Surface coating (PVD or CVD) § Tolerance control 700 um § Surface texturing § Durability and roughness Incremental Forming § Small contact area Sensor Integration § Sliding speed § Design Smart tooling for Processing Embedding § Manufacturing conditions smart forming with § Integration Viability Analysis § Stress Strain § Geometry § DIC § Defects identification § Strain gauge

Deformation Control Temperature § Real time (online) control § Thermal couples § Stable and effective control Input ºC § Infrared camera algorithm Integrated Sensors § Actuators analysis and control Force/Pressure Tribology Control § Strain gauge based § Local tribology behavior µ § Piezo based § Lubricants and surface texture

§ Processing speed Data Analytics Geometry/Shape § Data collection/transmission § Laser scanner § On-line /off-line § LVDT § Machine learning

12 Paper Structure

1. Introduction 2. Metal forming process (2.1: Cold forming; 2.2: Hot forming; 2.3: Micro-forming; 2.4: Incremental forming) 3. Tooling design and fabrication (3.1: Tooling materials; 3.2: Tooling fabrication; 3.3: Surface finishing of Tooling; 3.4: Sensor integration) 4. Smart tooling with embedded sensors (4.1: Strain; 4.2: Temperature; 4.3: Force/Pressure; 4.4: Geometry) 5. Integrated analysis and control (5.1: Viability analysis of forming process; 5.2: Deformation control; 5.3: Tribology control; 5.4: Data analytics) 6. Summary and future directions

13 Website for paper preparation - https://jiancao.wixsite.com/cirp2019 Website for paper preparation - https://jiancao.wixsite.com/cirp2019

Click to upload reference papers to the corresponding topic area

15 Website for paper preparation - https://jiancao.wixsite.com/cirp2019 Website for paper preparation - https://jiancao.wixsite.com/cirp2019 Website for paper preparation - https://jiancao.wixsite.com/cirp2019 Work Timeline

• August 2016 – Refine objectives and core group • Feb. 2017 – Draft outline and seek contributors • August 2017 – Finalize outline/paper_structure Action item: go to https://jiancao.wixsite.com/cirp2019 to submit comments, highlights of papers, preferred by Sept. 30, 2017 • Feb. 2018 – Complete the 1st paper draft and seek inputs • August 2018 – Complete the 2nd draft and seek inputs • February 2019 – Submit the final version • August 2019 - Presentation

19 Writing Assignment (24 pages)

1. Introduction (1 page) (JC) 2. Metal forming process (4 pages) (2.1: Cold forming - JC; 2.2: Hot forming - FV; 2.3: Micro-forming - FV; 2.4: Incremental forming- JC) 3. Tooling design and fabrication (4 pages) (3.1: Tooling materials; 3.2: Tooling fabrication - MS; 3.3: Surface finishing of Tooling; 3.4: Sensor integration - RG) 4. Smart tooling with embedded sensors (5 pages) RG & MS (4.1: Strain; 4.2: Temperature; 4.3: Force/Pressure; 4.4: Geometry) 5. Integrated analysis and control (5 pages) (5.1: Viability analysis of forming process; 5.2: Deformation control - JC; 5.3: Tribology control - JW; 5.4: Data analytics - RG) 6. Summary and future directions (2 pages) (JC) JC – Jian Cao FV - Frank Vollertsen MS - Michael Schmidt RG - Robert Gao JW - Q. Jane Wang

20 References [1] Keeler S, Kimchi M. Advanced high-strength steels application guidelines V5[M]. WorldAutoSteel, 2015. [2] A. Ghiotti, S. Bruschi , E. Simonetto, P. F. Bariani. Dynamic detection of instability defects in tube rotary draw bending. PPT in CIRP STC F informal Session, Paris, Feb 16, 2017. 2. Metal forming process 2.1 Cold forming [3] Huot J, Balema V. Mechanochemical Effect of Severe Plastic Deformations: Metal Alloys, Hydrides and Molecular Solids[J]. ChemInform, 2012, 43(35). [4] Vollertsen F, Schmidt F. Dry metal forming: definition, chances and challenges[J]. International journal of precision engineering and manufacturing-green technology 1.1 (2014): 59-62. [5]Tamaoki K, Manabe KI, Kataoka S, Aizawa T. Electroconductive ceramic tooling for dry deep [J]. Journal of Materials Processing Technology 210.1 (2010): 48-53. [6] Böhmermann F, Hasselbruch H, Herrmann M, et al. Dry rotary –approaches for lubricant free process design[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015, 2(4): 325-331. 2.2 Warm/hot forming [7] Altan T, Ngaile G, Shen G, editors. Cold and hot : fundamentals and applications[M]. ASM international; 2005. [8] Sheljaskow S. Tool lubricating systems in warm forging[J]. Journal of Materials Processing Technology, 2001, 113(1): 16-21. [9] Raj R. Development of a processing map for use in warm-forming and hot-forming processes[J]. Metallurgical and Materials Transactions A. 1981 Jun 1;12(6):1089-97. [10] Maeno T, Mori KI, Yachi R. Hot of high-strength aluminium alloy aircraft parts using quick heating[J]. CIRP Annals-Manufacturing Technology. 2017 Apr 29.

21 References 2.3 Micro-forming [11] Vollertsen F, Hu Z, Niehoff HS, Theiler C. State of the art in micro forming and investigations into micro deep drawing[J]. Journal of Materials Processing Technology. 2004 Sep 1;151(1):70-79. [12] Geiger M, Kleiner M, Eckstein R, Tiesler N, Engel U. Micro-forming[J]. CIRP Annals-Manufacturing Technology. 2001 Dec 31;50(2):445-62. [13] Lee HJ, Lee NK, Lee SM, Lee GA, Kim SS. Development of micro metal forming manufacturing system. In Materials Science Forum 2006 (Vol. 505, pp. 19-24). Trans Tech Publications. [14] Razali AR, Qin Y. A review on micro-manufacturing, micro-forming and their key issues[C]. Procedia Engineering. 2013 Jan 1;53:665-72. [15] Vollertsen F. Micro Metal Forming 2013[M]. Springer Berlin Heidelberg. [16] Hu Z, Wielage H, Vollertsen F. Economic micro forming using DLC-and TiN-coated tools [J]. Journal for Technology of Plasticity, 2011, 36(2). [17] Lee HJ, Lee NK, Lee SM, Lee GA, Kim SS. Development of micro metal forming manufacturing system. InMaterials Science Forum 2006 (Vol. 505, pp. 19-24). Trans Tech Publications. 2.4 Incremental forming [18] Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J. Asymmetric single point incremental forming of [J].. CIRP Annals-Manufacturing Technology. 2005 Jan 1;54(2):88-114. [19] Filice L, Fratini L, Micari F. Analysis of material formability in incremental forming [J]. CIRP annals- Manufacturing technology. 2002 Jan 1;51(1):199-202. [20] Araghi BT, Manco GL, Bambach M, Hirt G. Investigation into a new hybrid forming process: Incremental sheet forming combined with stretch forming [J]. CIRP Annals-Manufacturing Technology. 2009 Dec 31;58(1):225-8. [21] Emmens WC, van den Boogaard AH. An overview of stabilizing deformation mechanisms in incremental sheet forming [J]. Journal of Materials Processing Technology. 2009 Apr 21;209(8):3688-95.

22 References [22] Valoppi B, Egea AJ, Zhang Z, Rojas HA, Ghiotti A, Bruschi S, Cao J. A hybrid mixed double-sided incremental forming method for forming Ti6Al4V alloy [J]. CIRP Annals-Manufacturing Technology. 2016 Dec 31;65(1):309-12. [23] Smith J, Malhotra R, Liu WK, Cao J. Deformation mechanics in single-point and accumulative double-sided incremental forming[J]. The International Journal of Advanced Manufacturing Technology. 2013 Nov 1;69(5- 8):1185-201. [24] Moser N, Ndip-Agbor E, Ren HQ, Zhang ZX, Ehmann K, Cao J. Challenges and Process Strategies Concerning Multi-Pass Double Sided Incremental Forming[J]. Key Engineering Materials. 2015 Jul 1;651:1122. [25] Reddy NV, Lingam R, Cao J. Incremental metal forming processes in manufacturing. InHandbook of Manufacturing Engineering and Technology 2015 (pp. 411-452). Springer London. [26] Xu D, Wu W, Malhotra R, Chen J, Lu B, Cao J. Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming[J]. International Journal of Machine Tools and Manufacture. 2013 Oct 31;73:37-46. [27] Li Y, Daniel WJ, Liu Z, Lu H, Meehan PA. Deformation mechanics and efficient force prediction in single point incremental forming[J]. Journal of Materials Processing Technology. 2015 Jul 31;221:100-11. [28] Echrif SB, Hrairi M. Significant parameters for the surface roughness in incremental forming process[J]. Materials and Manufacturing Processes. 2014 Jun 3;29(6):697-703. 3.Tooling design and fabrication 3.1 Tooling materials [29] Bischof C, Scheitler C, Kneisel L, Schmidt M. Influence of preheating temperature and carbon content on crack formation during Laser Beam Melting of AISI H11 tool steel. ICAT, Nürnberg, 29./30.11.2016. [30] Bischof C, Nitsch G, Scheitler C, Dressler A, Schmidt M. Laser Beam Melting of water atomized iron base alloy Fe-4800 with in-situ alloying of carbon nanoparticles. Rapdasa, Johannesburg (SA), 02.-04.11.2016.

23 References [31] F. Huber, C. Bischof, G. Nitsch, M. Schmidt. Laserstrahlschmelzen der wasserverdüsten. Eisenbasislegierung FE-4800 mit in-situ-Legierung von Kohlenstoff-Nanopartikeln. Werkstoffwoche, Dresden, 27.-29.09.2017- akzeptiert. 3.2 Tooling fabrication [32] Junker D, Hentschel O, Schmidt M, Merklein M. Tailor-Made Forging Tools by Laser Metal Deposition[J]. Key Engineering Materials, 2015. [33] Junker D, Hentschel O, Schmidt M, Merklein M . Qualification of laser based additive production for manufacturing of forging Tools[C]. MATEC of Conferences. EDP Sciences, 2015, 21. [34] Junker D, Fedorov A, Hentschel O, Merklein M. Connection Strength of Additive Manufactured Tool Elements to the Substrate[J]. Key Engineering Materials, 2016, 716. [35] Hentschel O, Scheitler C, Fedorov A, Schmidt M, Merklein M . Experimental investigations of processing the high carbon cold-work tool steel 1.2358 by laser metal deposition for the additive manufacturing of cold forging tools[J]. Journal of Laser Applications, 2017, 29(2): 022307. [36] Junker D, Hentschel O, Schramme R, Schmidt M, Merklein M. Performance of Hot Forging Tools Built by Laser Metal Deposition of Hot Work Tool Steel X37CrMoV5-1, In: Laser in Manufacturing Conference 2017. [37] Zhang Y, Wang Y, Zhang J, Liu Y, Yang X, Zhang Q. Micromachining features of TiC ceramic by femtosecond pulsed laser[J]. Ceramics International. 2015 Jun 30;41(5):6525-33. [38] Vora H, Dahotre N. Laser machining of structural alumina: influence of moving laser beam on the evolution of surface topography[J]. International Journal of Applied Ceramic Technology. 2015 May 1;12(3):665-78. 3.3 Surface finishing of tooling [39] Ling TD, Liu P, Xiong S, Grzina D, Cao J, Wang QJ, Xia ZC, Talwar R. Surface texturing of drill bits for adhesion reduction and tool life enhancement [J]. Tribology Letters. 2013 Oct 1;52(1):113-22. [40] Etsion I. State of the art in laser surface texturing[J]. Transactions of the ASME-F-Journal of Tribology. 2005 Jan 1;127(1):248.

24 References [41] Ren N, Nanbu T, Yasuda Y, Zhu D, Wang Q. Micro textures in concentrated-conformal-contact lubrication: effect of distribution patterns[J]. Tribology Letters. 2007 Dec 1;28(3):275-85. [42] Brinksmeier E, Riemer O, Gessenharter A. Finishing of structured surfaces by abrasive polishing[J]. Precision Engineering. 2006 Jul 31;30(3):325-36. [43] Sugihara T, Enomoto T. Development of a cutting tool with a nano/micro-textured surface—Improvement of anti-adhesive effect by considering the texture patterns[J]. Precision Engineering. 2009 Oct 31;33(4):425-9. [44] Shiou FJ, Hsu CC. Surface finishing of hardened and tempered stainless tool steel using sequential ball grinding, ball burnishing and ball polishing processes on a machining centre[J]. Journal of materials processing technology. 2008 Aug 26;205(1):249-58. [45] Etsion I. State of the art in laser surface texturing[J]. Transactions of the ASME-F-Journal of Tribology. 2005 Jan 1;127(1):248. [46] Kovalchenko A, Ajayi O, Erdemir A, Fenske G, Etsion I. The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact[J]. Tribology International. 2005 Mar 31;38(3):219-25. [47] Ryk G, Etsion I. Testing piston rings with partial laser surface texturing for friction reduction[J]. Wear. 2006 Oct 20;261(7):792-6. 4. Smart tooling with embedded sensors [48] Cheng X, Choi H, Schwieso P, Datta A, Li XC. Micro thin film sensor embedded in metal structures for in- situ process monitoring during ultrasonic welding[J]. Society of Manufacturing Engineers; 2000. [49] Li L, Li B, Li X, Ehmann KF. Experimental investigation of hard turning mechanisms by PCBN tooling embedded micro thin film thermocouples[J]. Journal of Manufacturing Science and Engineering. 2013 Aug 1;135(4):041012. [50] Werschmoeller D, Li X, Ehmann K. Measurement of transient tool-internal temperature fields during hard turning by insert-embedded thin film sensors[J]. Journal of Manufacturing Science and Engineering. 2012 Dec 1;134(6):061004.

25 References [51] Mahayotsanun N, Sah S, Cao J, Peshkin M, Gao RX, Wang CT. Tooling-integrated sensing systems for stamping process monitoring[J]. International Journal of Machine Tools and Manufacture. 2009 Jun 30;49(7):634-44. [52] Mou C., Saffari P, Li D, Zhou K, Zhang L, Soar R, Bennion I. Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation[J]. Measurement Science and Technology, 2009: 20(3), 034013. 5. Integrated analysis and control 5.1 Viability analysis of forming process [53] Schneider T, Vierzigmann U, Merklein M. Analysis of varying properties of semi-finished products in sheet- bulk metal forming of functional components[C]. AIP Conference Proceedings. AIP, 2013, 1567(1): 930-933. [54] Makinouchi A. Sheet metal forming simulation in industry[J]. Journal of materials processing technology, 1996, 60(1-4): 19-26. [55] Makinouchi A. Sheet metal forming simulation in industry[J]. Journal of materials processing technology, 1996, 60(1-4): 19-26. [56] Zhou D, Wagoner R H. Development and application of sheet-forming simulation[J]. Journal of Materials Processing Technology, 1995, 50(1): 1-16. [57] Tisza M. Numerical modelling and simulation in sheet metal forming[J]. Journal of Materials Processing Technology, 2004, 151(1): 58-62. [58] Wenner M L. Overview—Simulation of Sheet Metal Forming[C]. AIP Conference Proceedings. AIP, 2005, 778(1): 3-7. [59] Henrard C, Bouffioux C, Duchene L, et al. Validation of a new finite element for incremental forming simulation using a dynamic explicit approach[C]Key Engineering Materials. Trans Tech Publications, 2007, 344: 495-502.

26 References [60] Mahayotsanun N, Sah S, Cao J, Peshkin M, Gao RX, Wang CT. Tooling-integrated sensing systems for stamping process monitoring[J]. International Journal of Machine Tools and Manufacture. 2009 Jun 30;49(7):634-44. [61] Mou C, Saffari P, Li D, Zhou K, Zhang L, Soar RB. Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation[J]. Measurement Science and Technology, 2009, 20(3), 03401. 5.2 Deformation control [62] Liu Z, Li Y, Meehan P A. Vertical wall formation and material flow control for incremental sheet forming by revisiting multistage deformation path strategies[J]. Materials and manufacturing processes, 2013, 28(5): 562- 571. [63] Maeno T, Mori K, Nagai T. Improvement in formability by control of temperature in hot stamping of ultra- high strength steel parts[J]. CIRP Annals-Manufacturing Technology, 2014, 63(1): 301-304. [64] Xu K, Chen Y. Deformation control based on in-situ sensors for mask projection based stereolithography[J]. ASME Paper No. MSEC2014-4055, 2014. 5.3 Tribology control [65] Hetzner H, Koch J, Tremmel S, et al. Improved sheet bulk metal forming processes by local adjustment of tribological properties[J]. Journal of Manufacturing Science and Engineering, 2011, 133(6): 061011. [66] Klocke F, Maßmann T, Gerschwiler K. Combination of PVD tool coatings and biodegradable lubricants in metal forming and machining[J]. Wear, 2005, 259(7): 1197-1206. [67] Brinksmeier E, Riemer O, Twardy S. Tribological behavior of micro structured surfaces for micro forming tools[J]. International Journal of Machine Tools and Manufacture, 2010, 50(4): 425-430. [68] Hol J, Meinders VT, de Rooij MB, van den Boogaard AH. Multi-scale friction modeling for sheet metal forming: The boundary lubrication regime[J]. Tribology international, 2015, 81: 112-128.

27 References [69] Hu Z, Schubnov A, Vollertsen F. Tribological behaviour of DLC-films and their application in micro deep drawing[J]. Journal of Materials Processing Technology, 2012, 212(3): 647-652. [70] Hol J, Meinders VT, de Rooij MB, van den Boogaard AH. Multi-scale friction modeling for sheet metal forming: The boundary lubrication regime[J]. Tribology international, 2015, 81: 112-128. [71] Kataoka S, Murakawa M , Aizawa T, Ike H. Tribology of dry deep-drawing of various metal sheets with use of ceramics tools[J]. Surface and Coatings Technology, 2004, 177: 582-590. [72] Flosky H, Vollertsen F. Wear behaviour in a combined micro blanking and deep drawing process[J]. CIRP Annals-Manufacturing Technology, 2014, 63(1): 281-284. [73] Mahayotsanun N, Sah S, Cao J, Peshkin M, Gao RX, Wang CT. Tooling-integrated sensing systems for stamping process monitoring[J]. International Journal of Machine Tools and Manufacture. 2009 Jun 30;49(7):634-44. [74] Yasumaru N, Miyazaki K, Kiuchi J. Control of tribological properties of diamond-like carbon films with femtosecond-laser-induced nanostructuring[J]. Applied Surface Science, 2008, 254(8): 2364-2368. [75] Donnet C, Erdemir A. Historical developments and new trends in tribological and solid lubricant coatings[J]. Surface and coatings technology, 2004, 180: 76-84. 5.4 Data analytics [76] Machine learning: An artificial intelligence approach[M]. Springer Science & Business Media, 2013. [77] Bottou L. From machine learning to machine reasoning[J]. Machine learning, 2014, 94(2): 133-149. [78] Dunn P F. Measurement and data analysis for engineering and science[M]. CRC press, 2014.

28 Look forward to your comments and contributions https://jiancao.wixsite.com/cirp2019 [email protected]

29 Smart tooling with control loop — Press hardening process Disturbance variables § Oxide scale § Friction § Tool geometry § …

Output variables of press Control system hardening process Sensor § Hardness § Work piece geometry § Blank temperature § Thinning § Blank holder distance § … § Tool temperature § … Press hardening process Process control Variables influencing press hardening process Knowledge base Targeting variables of press § Interactions hardening process Feedback control § Control algorithms § Set points of hardness § Maximum accepting thinning § ...

Landgrebe D, Drossel W G, Müller B, Werner W, Pierschel N. (IWU) 30 Tribology control [68-70]

Sheet Lubrication

§ Material properties § Type of lubricant § Coating and surface finish § Liquid, hotmelt, etc. § Surface roughness µ § Amount and distribution Tooling Process

Trend: Increasing variety of § Material type ü Tooling and coating materials § Pressure § Surface finish § Velocity / stroke rate § Surface roughness ü Workpiece materials § Temperature ü Lubricants ü Process conditions

31