Lectures Notes on METAL FORMING PROCESSES
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
126 Metal Products
Lake Tuggeranong College LEARN – THRIVE - CONNECT Metal Products A/M Working with metal has fascinated people for centuries. Metal forming processes have advanced significantly in recent times and have enabled the creation of objects which have changed the world forever. These processes are now able to be experienced by students through the development of metal fabrication projects which provide an understanding of metal properties and construction techniques. The considerable time devoted to the practical skills in this course makes it an ideal choice for students who are looking for a unique practical learning environment. Rationale Why would you do this course? Working with metal is an enjoyable activity which more students need to experience! Being able to apply metal fabricating processes to create projects with a student design input is a major emphasis in the course. The range of fundamental skills employed in the metal fabrication industry readily engage students in their course work. There is a current skills shortage in the metal trade areas as evidenced by the inclusion of Metal Fabricator and Welder in the National Skills Needs list. There is a federal government push for apprenticeships using the skills learnt during this course. Beyond the classroom, this subject offers you: • Pathways to metal trades: boiler maker/metal fabricator • Skills that are interlinked between other trades: construction, plumber, electrician • Basic handyman skills Learner dispositions What type of person usually studies this course? Learners who would study this course typically achieve a satisfaction from being able to create practical objects using techniques such as welding, machining, plasma cutting, sheet metal forming and more. -
Boilermaker Health & Safety Manual
Boilermakers Health & Safety Manual ihsa.ca Boilermakers Health & Safety Manual Infrastructure Health & Safety Association 5110 Creekbank Road, Suite 400 Mississauga, Ontario L4W 0A1 Canada 1-800-263-5024 ihsa.ca 1 Boilermakers Health & Safety Manual IHSA has additional information on this and other topics. Visit ihsa.ca or call Customer Service at 1-800-263-5024. The contents of this publication are for general information only. This publication should not be regarded or relied upon as a definitive guide to government regulations or to safety practices and procedures. The contents of this publication were, to the best of our knowledge, current at the time of printing. However, no representations of any kind are made with regard to the accuracy, completeness, or sufficiency of the contents. The appropriate regulations and statutes should be consulted. Readers should not act on the information contained herein without seeking specific independent legal advice on their specific circumstance. The Infrastructure Health & Safety Association is pleased to answer individual requests for counselling and advice. This manual was developed, reviewed, and endorsed by the Boilermakers Labour-Management Health and Safety Committee in association with IHSA. Manual IHSA editor: Lori-Lynn Bonnell, design and illustrations: Philippa Giancontieri; project manager: Mike Russo. The Infrastructure Health & Safety Association would like to thank the members of the working group for contributing their knowledge, experience, and time to produce a health and safety manual that will benefit both labour and management in the boilermaker sector. The working group included representatives from the Boilermaker Contractors’ Association (BCA) as well as: · Marty Albright – Alstom Power Canada Inc. -
Interchange Modification Report
I-26 / Naval Base Terminal Access Road Interchange INTERCHANGE MODIFICATION REPORT CHARLESTON COUNTY, SOUTH CAROLINA Prepared for: South Carolina Department of Transportation Prepared by: Parsons Brinckerhoff, Inc. May 2012 I-26ȀPortAccessRoadInterchangeModificationReport TABLEOFCONTENTS EXECUTIVE SUMMARY ............................................................................................................................................ 1 1. INTRODUCTION .............................................................................................................................................. 3 Project Location.................................................................................................................................................. 3 Project History.................................................................................................................................................... 3 Project Description ............................................................................................................................................. 7 Project Purpose and Need .................................................................................................................................. 9 Project Conceptual Design ................................................................................................................................ 11 Interchange Modification Report (IMR) Scope.................................................................................................. -
Updated Course Guide Jan 2017.Pdf
1 Wilmot Union High School Mission Statement As a professional learning community, Wilmot Union High School's core purpose is to ensure our students are college, career, and civic ready by fostering a culture of life-long learning. District Vision As a learning community and through community involvement, Wilmot Union High School has developed a clear sense of who we want to become through a process where district stakeholders: students, staff, parents, community members, business partners and Board of Education members came together and identified the key characteristics and values we want to exemplify. These characteristics and values were aligned under five pillars to further define the key areas of focus for our learning community. I. Safe and Supportive Learning Environment II. Equity and Access for All Students III. Community Partnerships IV. Collaborative Culture for Learning V. Curriculum, Instruction and Assessment It is through these five pillars and their guiding statements that WUHS and our stakeholders will empower one another to create and fulfill the goals and commitments that will bring our vision to fruition. We invite every stakeholder of the WUHS learning community to enter in to this process of adopting the defined values to fulfill our vision of an exemplary school. 2 Wilmot Union High School P.O. Box 8 11112 – 308th Avenue Wilmot, WI 53192 High School Administration (262) 862-2351 John LaFleur, Ph.D., Principal [email protected] Tom Blair, Associate Principal [email protected] Luke Braden, Associate -
Bifilm Inclusions in High Alloyed Cast Iron
materials Article Bifilm Inclusions in High Alloyed Cast Iron Marcin Stawarz * and Malwina Dojka Department of Foundry Engineering, Silesian University of Technology, 7 Towarowa Street, 44-100 Gliwice, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-32-338-5532 Abstract: Continuous improvement in the quality of castings is especially important since a cast without defects is a more competitive product due to its longer lifecycle and cheaper operation. Producing quality castings requires comprehensive knowledge of their production, crystallization process, and chemical composition. The crystallization of alloyed ductile iron (without the addition of magnesium) with oxide bifilm inclusions is discussed. These inclusions reduce the quality of the castings, but they are a catalyst for the growth of spheroidal graphite that crystallizes in their vicinity. The research was carried out for cast iron with a highly hyper-eutectic composition. Scanning electron microscopy and EDS analysis were used in the research. A detailed analysis of the chemical composition was also carried out based on the spectrometric method, weight method, etc. Based on the obtained results, a model of spheroidal graphite crystallization near bifilm inclusions was proposed. The surface of the analyzed graphite particles was smooth, which suggests a primary crystallization process. The phenomenon of simple graphite and bifilm segregation towards the heat center of the castings was also documented. Keywords: bifilms; spheroidal graphite; alloyed cast iron; crystallization Citation: Stawarz, M.; Dojka, M. Bifilm Inclusions in High Alloyed Cast Iron. Materials 2021, 14, 3067. 1. Introduction https://doi.org/10.3390/ Foundry engineering processes are prone to many issues during casting manufactur- ma14113067 ing that may influence the final casting quality. -
Boilermaking Manual. INSTITUTION British Columbia Dept
DOCUMENT RESUME ED 246 301 CE 039 364 TITLE Boilermaking Manual. INSTITUTION British Columbia Dept. of Education, Victoria. REPORT NO ISBN-0-7718-8254-8. PUB DATE [82] NOTE 381p.; Developed in cooperation with the 1pprenticeship Training Programs Branch, Ministry of Labour. Photographs may not reproduce well. AVAILABLE FROMPublication Services Branch, Ministry of Education, 878 Viewfield Road, Victoria, BC V9A 4V1 ($10.00). PUB TYPE Guides Classroom Use - Materials (For Learner) (OW EARS PRICE MFOI Plus Postage. PC Not Available from EARS. DESCRIPTORS Apprenticeships; Blue Collar Occupations; Blueprints; *Construction (Process); Construction Materials; Drafting; Foreign Countries; Hand Tools; Industrial Personnel; *Industrial Training; Inplant Programs; Machine Tools; Mathematical Applications; *Mechanical Skills; Metal Industry; Metals; Metal Working; *On the Job Training; Postsecondary Education; Power Technology; Quality Control; Safety; *Sheet Metal Work; Skilled Occupations; Skilled Workers; Trade and Industrial Education; Trainees; Welding IDENTIFIERS *Boilermakers; *Boilers; British Columbia ABSTRACT This manual is intended (I) to provide an information resource to supplement the formal training program for boilermaker apprentices; (2) to assist the journeyworker to build on present knowledge to increase expertise and qualify for formal accreditation in the boilermaking trade; and (3) to serve as an on-the-job reference with sound, up-to-date guidelines for all aspects of the trade. The manual is organized into 13 chapters that cover the following topics: safety; boilermaker tools; mathematics; material, blueprint reading and sketching; layout; boilershop fabrication; rigging and erection; welding; quality control and inspection; boilers; dust collection systems; tanks and stacks; and hydro-electric power development. Each chapter contains an introduction and information about the topic, illustrated with charts, line drawings, and photographs. -
Magnesium Casting Technology for Structural Applications
Available online at www.sciencedirect.com Journal of Magnesium and Alloys 1 (2013) 2e22 www.elsevier.com/journals/journal-of-magnesium-and-alloys/2213-9567 Full length article Magnesium casting technology for structural applications Alan A. Luo a,b,* a Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA b Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA Abstract This paper summarizes the melting and casting processes for magnesium alloys. It also reviews the historical development of magnesium castings and their structural uses in the western world since 1921 when Dow began producing magnesium pistons. Magnesium casting technology was well developed during and after World War II, both in gravity sand and permanent mold casting as well as high-pressure die casting, for aerospace, defense and automotive applications. In the last 20 years, most of the development has been focused on thin-wall die casting ap- plications in the automotive industry, taking advantages of the excellent castability of modern magnesium alloys. Recently, the continued expansion of magnesium casting applications into automotive, defense, aerospace, electronics and power tools has led to the diversification of casting processes into vacuum die casting, low-pressure die casting, squeeze casting, lost foam casting, ablation casting as well as semi-solid casting. This paper will also review the historical, current and potential structural use of magnesium with a focus on automotive applications. The technical challenges of magnesium structural applications are also discussed. Increasing worldwide energy demand, environment protection and government regulations will stimulate more applications of lightweight magnesium castings in the next few decades. -
Practical Metalworking Bench Skills
Practical Metalworking: Bench Skills (National 4) SCQF: level 4 (6 SCQF credit points) Unit code: H25P 74 Unit outline The general aim of this Unit is to help learners develop a range of metalworking hand tool skills including simple bench-fitting work, basic sheet-metal work and simple measuring and marking out work. The ability to read and interpret simple drawings and diagrams is also developed in this Unit. Learners will also develop their knowledge and understanding of metalworking materials, recycling and sustainability issues, as well as an appreciation of safe working practices in a workshop environment. Learners who complete this Unit will be able to: 1 Prepare for metalwork bench tasks 2 Use a range of marking out tools and hand tools 3 Manufacture metalwork products from working drawings using bench-fitting skills This Unit is a mandatory Unit of the National 4 Practical Metalworking Course and is also available as a free-standing Unit. The Unit Specification should be read in conjunction with the Unit Support Notes, which provide advice and guidance on delivery, assessment approaches and development of skills for learning, skills for life and skills for work. Exemplification of the standards in this Unit is given in Unit Assessment Support. The Added Value Unit Specification for the National 4 Practical Metalworking Course gives further mandatory information on Course coverage for learners taking this Unit as part of the National 4 Practical Metalworking Course. H25P 74 Practical Metalworking: Bench Skills (National 4) Unit Specification 1 September 2018, version 1.2 Recommended entry Entry to this Unit is at the discretion of the centre. -
Design of Forming Processes: Bulk Forming
1 Design of Forming Processes: Bulk Forming Chester J. Van Tyne Colorado School of Mines, Golden, Colorado, U.S.A. I. BULK DEFORMATION atures relative to the melting point of the metal. Hot working occurs at temperatures above tJllerecrystalliza- Bulk defonnation is a metal-fonning process where the tion temperature of the metal. There is a third temper- defonnation is three-dimensional in nature. The pri- ature range, warm working, which is being critically mary use of the tenn bulk deformation is to distinguish it examined due to energy savings and is, in some cases, from sheet-fonning processes. In sheet-forming opera- used by industries. tions, the defonnation stressesare usually in the plane of the sheet metal, whereas in bulk defonnation, the 1. Cold Working Temperatures defonnation stresses possess components in all three Cold working usually refers to metal deformation that is coordinate directions. Bulk defonnation includes metal carried out at room temperature. Th,~ phenomenon working processes such as forging, extrusion, rolling, associated with cold work occurs wht:n the metal is and drawing. deformed at temperatures that are about 30% or less of its melting temperature on an absolute temperature scale. During cold work, the metal ,~xperiences an II. CLASSIFICATION OF DEFORMATION increased number of dislocations and elltanglement of PROCESSES these dislocations, causing strain hardening. With strain hardening, the strength of the metal increases with The classification of deformation processescan be done deformation. To recrystallize the metal, ;i thermal treat- in one of several ways. The more common classification ment, called an anneal, is often needed. During anneal- schemes are based on temperature, flow behavior, and ing, the strength of the metal can be drastically reduced stressstate. -
Introduction to Metal Forming Operations
Introduction to Metal Forming Operations IME 340/240 Classification of Forming Processes • There are a number of ways to divide up forming processes – Hot working, warm working, cold working – Bulk forming, sheet metal forming – Primary and component producing processes – Steady and non-steady processes – Continuous and incremental forming processes Classification of Forming Processes • Cold working – Temperature < 0.3 * melting point in deg. K – In practice for most engineering metal this means room temperature – Work hardening is dominant • Hot working – Above the recrystalization temperature – Temperature > 0.5 (or 0.6) * melting point in deg. K – Strain rate sensitivity more important • Warm working – Temperature between 0.3 and 0.5 of melting point – Flow stresses somewhat less than cold working Classification of Forming Processes • Sheet metal forming – Input material in sheet form – Thickness changes very small – Stress systems largely tensile • Bulk forming – Input material in the form of bars, billets, etc. – Thickness of material usually substantially reduced – Stress systems largely compressive Classification of Forming Processes • Primary forming processes – Processes predominantly for producing materials for further processing – Examples are rolling, drawing, extrusion, etc. • Component producing processes – Processes for producing component parts – Input materials produced by primary processes – Examples are forging, deep drawing, stretch forming, etc. Classification of Forming Processes • Steady state forming processes – -
Metal Casting Terms and Definitions
Metal Casting Terms and Definitions Table of Contents A .................................................................................................................................................................... 2 B .................................................................................................................................................................... 2 C .................................................................................................................................................................... 2 D .................................................................................................................................................................... 4 E .................................................................................................................................................................... 5 F ..................................................................................................................................................................... 5 G .................................................................................................................................................................... 5 H .................................................................................................................................................................... 6 I .................................................................................................................................................................... -
Boilermaker Lodge 359 Standard Agreement May 1, 2010 to April 30, 2016
BOILERMAKER LODGE 359 STANDARD AGREEMENT By And Between: CONSTRUCTION LABOUR RELATIONS ASSOCIATION OF BRITISH COLUMBIA on its own behalf and on behalf of its members set forth in the schedule attached and those members added from time to time by notice given to the Union (hereinafter referred to as “CLR”) And: THE INTERNATIONAL BROTHERHOOD of BOILERMAKERS, IRON SHIP BUILDERS, BLACKSMITHS, FORGERS AND HELPERS LODGE 359 (A.F.L. - C.I.O) On behalf of its members (hereinafter referred to as « the Union ») May 1, 2010 to April 30, 2016 Index Article Article 1 Purpose .......................................................................................................................................... 1 Article 2 Recognition and Craft Jurisdiction ................................................................................................. 1 Article 3 Management Rights ....................................................................................................................... 1 Article 4 Union Security, Dues Deductions, Employer Contributions .......................................................... 2 Article 5 No Strike or Lockout ...................................................................................................................... 4 Article 6 Jurisdictional Disputes ................................................................................................................... 4 Article 7 Working Conditions, Safety Measures, Health and Sanitation .....................................................