Bifilm Inclusions in High Alloyed Cast Iron

Total Page:16

File Type:pdf, Size:1020Kb

Bifilm Inclusions in High Alloyed Cast Iron materials Article Bifilm Inclusions in High Alloyed Cast Iron Marcin Stawarz * and Malwina Dojka Department of Foundry Engineering, Silesian University of Technology, 7 Towarowa Street, 44-100 Gliwice, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-32-338-5532 Abstract: Continuous improvement in the quality of castings is especially important since a cast without defects is a more competitive product due to its longer lifecycle and cheaper operation. Producing quality castings requires comprehensive knowledge of their production, crystallization process, and chemical composition. The crystallization of alloyed ductile iron (without the addition of magnesium) with oxide bifilm inclusions is discussed. These inclusions reduce the quality of the castings, but they are a catalyst for the growth of spheroidal graphite that crystallizes in their vicinity. The research was carried out for cast iron with a highly hyper-eutectic composition. Scanning electron microscopy and EDS analysis were used in the research. A detailed analysis of the chemical composition was also carried out based on the spectrometric method, weight method, etc. Based on the obtained results, a model of spheroidal graphite crystallization near bifilm inclusions was proposed. The surface of the analyzed graphite particles was smooth, which suggests a primary crystallization process. The phenomenon of simple graphite and bifilm segregation towards the heat center of the castings was also documented. Keywords: bifilms; spheroidal graphite; alloyed cast iron; crystallization Citation: Stawarz, M.; Dojka, M. Bifilm Inclusions in High Alloyed Cast Iron. Materials 2021, 14, 3067. 1. Introduction https://doi.org/10.3390/ Foundry engineering processes are prone to many issues during casting manufactur- ma14113067 ing that may influence the final casting quality. Many are often ignored by manufacturers or even unknown. It is extremely important to realize the cause of poor casting quality Academic Editor: before buying expensive additives for metal improvement and waste money on defective Francesco Iacoviello castings. In many works, researchers explain that the design of a proper gating system, the way that liquid metal is poured into a mold, and melt treatments are important factors that Received: 24 May 2021 affect a casting’s quality [1–6]. Most of this research is based on Professor John Campbell’s Accepted: 2 June 2021 bifilm theory [6–8]. In short, as one of the researchers explains [5], according to this theory, Published: 4 June 2021 turbulence during the pouring generates defects inside the alloy as air bubbles and oxide films form on the surface of the liquid metal. The oxide film on the surface may fold over on Publisher’s Note: MDPI stays neutral itself. The double oxide ‘bifilm’ acts as a crack in the liquid metal, leading to the initiation with regard to jurisdictional claims in of additional cracks and hot tears in the casting. Figure1 presents a schematic illustration published maps and institutional affil- iations. of surface turbulence causing the entrainment of bifilms and associated bubbles. Dispinar D. et al. [1] and G. Gyarmati et al. [2] explained that the bifilm content in the melt is much more important than the dissolved gas content such as hydrogen, which has always been considered to be the major source of defects. They proved that with proper degassing, bifilm inclusions can be eliminated from the melt, and regardless of the Copyright: © 2021 by the authors. hydrogen content, aluminium castings without defects can be manufactured. Similarly, Licensee MDPI, Basel, Switzerland. Tiryakio˘gluM. [4] concluded that if air entrainment defects are eliminated, there is no This article is an open access article reason to measure or control the hydrogen levels in the melt. He clarified that due to the distributed under the terms and conditions of the Creative Commons presence of bifilms with two unbonded interfaces, nucleation is bypassed during pore Attribution (CC BY) license (https:// formation. Hydrogen diffuses to oxide bifilms and inflates them, therefore, hydrogen creativecommons.org/licenses/by/ serves as an agent to make entrainment defects visible. What is even more interesting, 4.0/). Uluda˘gM. et al. [3] studied Al-7%Si-Mg alloy and discovered that the best melt quality Materials 2021, 14, 3067. https://doi.org/10.3390/ma14113067 https://www.mdpi.com/journal/materials Materials 2021, 14, 3067 2 of 11 was obtained when the melt was degassed without additives. Moreover, their research showed that all examined melt additions decreased the melt quality. They explained that Ti-containing intermetallic compounds were nucleated on bifilms. On the other hand, the addition of Sr to A356 increased the number of bifilms in the melt and also formed Materials 2021, 14, x FOR PEER REVIEWlarger pores. Sr reacts with Al2O3, and the formation of complex compounds results in2 of the 11 fracturing of oxides into smaller pieces through breakaway oxidation. FigureFigure 1.1. SchemeScheme ofof bifilmsbifilms andand bubblesbubbles formationformation [[8].8]. MostDispinar research D. et in al. this [1] area and has G. beenGyarmati conducted et al. [2] on nonferrousexplained that alloys, the but bifilm bifilm content defects in arethe alsomelt a is cause much of more problems important with castthan iron.the dissolved Our previous gas content work showed such as thathydrogen, bifilm inclu-which sionshas always may cause been difficulties considered with to be the the inoculation major so ofurce high-chromium of defects. They cast proved iron [9 ].that During with inoculationproper degassing, with Ti addition,bifilm inclusions the TiC compoundscan be eliminated that serve from as the underlays melt, and for regardless M7C3 carbides of the arehydrogen transported content, on the aluminium bifilms with castings the crystallization without defects front can to thebe manu shrinkagefactured. cavities. Similarly, Thus, theyTiryakio are noğlu longer M. [4] anconcluded active nucleus that if inair this entrainm location,ent which defects is are very eliminated, unfortunate there from is anno economicreason to viewpoint.measure orAccording control the to hydrogen previous leve investigations,ls in the melt. bifilm He defectsclarified are that also due present to the inpresence the microstructure of bifilms with of greytwo castunbonded iron. Professorinterfaces, J. nucleation Campbell wroteis bypassed [10] that during graphite pore mayformation. growon Hydrogen bifilm inclusions. diffuses to He oxide explains bifilms that and the silicainflates film, them, when therefore, entrained hydrogen into the alloyserves as as a bifilm,an agent first to attractsmake entrainment the oxy-sulfide defects nuclei visible. to nucleate What is on even it. Then, more these interesting, nuclei serveUluda asğ M. the et underlay al. [3] studied for the Al-7%Si-Mg nucleation ofalloy flake and and discovered nodular graphite.that the best This melt theory quality of graphitewas obtained nucleation when is the also melt mentioned was degassed in the works without of I. additives. Riposan et Moreover, al. [11]. F. Hsutheir et research al. [12] andshowedR. Dojka that all et al.examined [13] noted melt the additions importance decreas of aed gating the melt system quality. for manufacturing They explained good- that qualityTi-containing castings intermetallic according tocompounds John Campbell’s were nucleated bifilm theory. on bifilms The conducted. On the other research hand, onthe ductileaddition irons of Sr revealed to A356 that increased turbulent the fillingnumber from of bifilms the top in results the melt in oxide and also bifilms formed entrained larger inpores. ductile Sr ironreacts castings. with Al F.2O Hsu3, and et the al. [formation12] concluded of complex that floating compounds bifilms results are the in sources the frac- of intrinsicturing of cracks oxides in into castings. smaller Ductile pieces ironthrough castings breakaway may be oxidation. weakened by bifilm inclusions, resultingMost in research their premature in this area fracture. has been These conducted results show on nonferrous that turbulent alloys, filling but bifilm significantly defects influencesare also a cause the elongation of problems of ductile with cast iron. iron The. Our authors’ previous recent work work showed presented that inbifilm the paper inclu- confirmssions may the cause results difficulties of cast iron with investigations the inoculation in theof high-chromium area of bifilm defects. cast iron In [9]. the During paper, theinoculation crystallization with Ti of addition, alloyed ductile the TiC iron compounds (without the that addition serve as of underlays magnesium) for with M7C3 oxide car- bifilmbides are inclusions transported is discussed. on the bifilms The phenomenon with the crystallization of simple graphite front to and the bifilmshrinkage segregation cavities. towardsThus, they the are heat no center longer of an the active castings nucleus was in also this documented. location, which is very unfortunate from 2.an Materials economic and viewpoint. Methods According to previous investigations, bifilm defects are also pre- sent in the microstructure of grey cast iron. Professor J. Campbell wrote [10] that graphite Tests were carried out based on a two-stage metallurgical process of a liquid metal. may grow on bifilm inclusions. He explains that the silica film, when entrained into the Experimental melting was carried out in a medium-frequency induction furnace (PI25, alloy as a bifilm, first
Recommended publications
  • Boilermaker Health & Safety Manual
    Boilermakers Health & Safety Manual ihsa.ca Boilermakers Health & Safety Manual Infrastructure Health & Safety Association 5110 Creekbank Road, Suite 400 Mississauga, Ontario L4W 0A1 Canada 1-800-263-5024 ihsa.ca 1 Boilermakers Health & Safety Manual IHSA has additional information on this and other topics. Visit ihsa.ca or call Customer Service at 1-800-263-5024. The contents of this publication are for general information only. This publication should not be regarded or relied upon as a definitive guide to government regulations or to safety practices and procedures. The contents of this publication were, to the best of our knowledge, current at the time of printing. However, no representations of any kind are made with regard to the accuracy, completeness, or sufficiency of the contents. The appropriate regulations and statutes should be consulted. Readers should not act on the information contained herein without seeking specific independent legal advice on their specific circumstance. The Infrastructure Health & Safety Association is pleased to answer individual requests for counselling and advice. This manual was developed, reviewed, and endorsed by the Boilermakers Labour-Management Health and Safety Committee in association with IHSA. Manual IHSA editor: Lori-Lynn Bonnell, design and illustrations: Philippa Giancontieri; project manager: Mike Russo. The Infrastructure Health & Safety Association would like to thank the members of the working group for contributing their knowledge, experience, and time to produce a health and safety manual that will benefit both labour and management in the boilermaker sector. The working group included representatives from the Boilermaker Contractors’ Association (BCA) as well as: · Marty Albright – Alstom Power Canada Inc.
    [Show full text]
  • Fire Protection of Steel Structures: Examples of Applications
    Fire protection of steel structures: examples of applications Autor(en): Brozzetti, Jacques / Pettersson, Ove / Law, Margaret Objekttyp: Article Zeitschrift: IABSE proceedings = Mémoires AIPC = IVBH Abhandlungen Band (Jahr): 7 (1983) Heft P-61: Fire protection of steel structures: examples of applications PDF erstellt am: 06.10.2021 Persistenter Link: http://doi.org/10.5169/seals-37489 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch J% IABSE periodica 2/1983 IABSE PROCEEDINGS P-61/83 69 Fire Protection of Steel Structures — Examples of Applications Protection contre le feu des structures acier — Quelques exemples d'applications Brandschutz der Stahlkonstruktionen — Einige Anwendungsbeispiele Jacques BROZZETTI Margaret LAW Dir., Dep.
    [Show full text]
  • Interchange Modification Report
    I-26 / Naval Base Terminal Access Road Interchange INTERCHANGE MODIFICATION REPORT CHARLESTON COUNTY, SOUTH CAROLINA Prepared for: South Carolina Department of Transportation Prepared by: Parsons Brinckerhoff, Inc. May 2012 I-26ȀPortAccessRoadInterchangeModificationReport TABLEOFCONTENTS EXECUTIVE SUMMARY ............................................................................................................................................ 1 1. INTRODUCTION .............................................................................................................................................. 3 Project Location.................................................................................................................................................. 3 Project History.................................................................................................................................................... 3 Project Description ............................................................................................................................................. 7 Project Purpose and Need .................................................................................................................................. 9 Project Conceptual Design ................................................................................................................................ 11 Interchange Modification Report (IMR) Scope..................................................................................................
    [Show full text]
  • WELD 1030 Pattern Development
    PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS PATTERN DEVELOPMENT WELD 1030 Class Hours: 2.0 Credit Hours: 2 Laboratory Hours: 2.0 Revised: Spring 2017 Catalog Course Description With an emphasis on the practical applications of pattern development, students construct basic forms using parallel line pattern development techniques. The course also introduces students to tools of the trade, geometric construction and bend allowance computations. Prerequisites NONE Corequisites MATH 1010 or MATH 1530 or MATH 1630 or MATH 1710 or MATH 1720 or MATH 1730 or MATH 1830 or MATH 1910 Textbook(s) and Other Course Materials Sheet Metal, Latest Edition, Leo A. Meyer, American Technical Publishers, Week/Unit/Topic Basis Week Topic 1. Introduction, Sheet Metal Working Tools and Machinery 2. Fasteners for Sheet Metal, Using Patterns and Cutting Metal 3. Punching, Drilling, and Riveting Folding Edges and Making Seams 4. Turning, Barring and Raising, Forming, Crimping, Beading and Grooving 5. Soldering 6. Drawing for Pattern Drafting 7. Making and Notching Simple Patterns 8. Parallel Line Development 9. Lab Projects 10. Review / Final Exam Welding Technology General Outcomes (Educational objectives) 1. Reach their full potential in the welding field. 2. Use the correct procedure in setting up equipment, and the skills used in welding. 3. Use Shielded Metal Arc Welding, Gas Metal Arc Welding, and Gas Tungsten Arc Welding machines in both pipe and plate welding. 4. Explain the physical characteristics of different metals 5. Develop the cognitive and physical skills necessary to pass certification tests. 6. Apply welding knowledge to effectively utilize problem solving skills as it relates to the operation of equipment in the industry.
    [Show full text]
  • Punching Tools ​
    TruServices Punching Tools Order easily – with the correct specifica- tions for the right tool. Have you thought of everything? Machine type Machine number Tool type Dimensions or drawings in a conventional CAD format (e.g. DXF) Sheet thickness Material Quantity Desired delivery date Important ordering specifications ! Please observe the "Important ordering specifications" on each product page as well. Order your punching tools securely and conveniently 24 hours a day, 7 days a week in our E-Shop at: www.trumpf.com/mytrumpf Alternatively, practical inquiry and order forms are available to you in the chapter "Order forms". TRUMPF Werkzeugmaschinen GmbH + Co. KG International Sales Punching Tools Hermann-Dreher-Strasse 20 70839 Gerlingen Germany E-mail: [email protected] Homepage: www.trumpf.com Content Order easily – with the correct specifica- General information tions for the right tool. TRUMPF System All-round Service Industry 4.0 MyTRUMPF 4 Have you thought of everything? Machine type Punching Machine number Classic System MultiTool Tool type Cluster tools MultiUse Dimensions or drawings in a conventional CAD format (e.g. DXF) 12 Sheet thickness Material Cutting Quantity Slitting tool Film slitting tool Desired delivery date MultiShear 44 Important ordering specifications ! Please observe the "Important ordering specifications" on each product page as well. Forming Countersink tool Thread forming tool Extrusion tool Cup tool 58 Marking Order your punching tools securely and conveniently 24 hours a day, 7 days a week in our E-Shop at: Center punch tool Marking tool Engraving tool Embossing tool www.trumpf.com/mytrumpf 100 Alternatively, practical inquiry and order forms are available to you in the chapter "Order forms".
    [Show full text]
  • Producing Pattern, Corebox Or Model Components Using Metalworking Machines
    SEMPAT13 Producing pattern, corebox or model components using metalworking machines Overview This unit identifies the competencies you need to produce pattern, corebox or model components using machine tools, in accordance with approved procedures. You will be required to select the appropriate equipment to use, based on the type of operations to be performed, the size of the components and the materials to be used. The production of the components will involve the use of both fixed and portable conventional machines, which are designed specifically for metallic materials. The size and complexity of the components produced will vary, and this will require you to set up the necessary machines and their associated tooling, and to make any necessary adjustments during machining in order that the parts produced meet the required specification. The components produced will be used to produce loose or plated patterns (with and without cores), coreboxes, and various types of full and scale models. Your responsibilities will require you to comply with organisational policy and procedures for the machining activities undertaken, and to report any problems with the activities, materials or equipment that you cannot personally resolve, or are outside your permitted authority, to the relevant people. You will be expected to work with minimum supervision, taking personal responsibility for your own actions and for the quality and accuracy of the work that you carry out. Your underpinning knowledge will provide a good understanding of your work, and will provide an informed approach to applying metalwork machining procedures. You will understand the equipment being used, and its application, and will know about the tooling, machine setting arrangements and safety devices, in adequate depth to provide a sound basis for carrying out the activities, correcting faults and ensuring the work output is to the required specification.
    [Show full text]
  • Boundary Ironwork
    Boundary Ironwork A guide to re-instatement Where to start ? Many buildings in Scotland The condition of the masonry wall, its coping stones and gate piers should be evaluated for have lost their original fractures, pointing, alignment and stability boundary ironwork (gates to provide a sound footing for the ironwork installation. The removal of vegetation is and railings) through particularly important in preventing future damage or deterioration. maintenance problems. Identifying the original design There are a number of ways to identify which particular design was originally used for your boundary ironwork. Those removing the ironwork during the war sometimes left an original example for future reference in a street, or where removal may have caused a safety hazard. Much ironwork was given up for the war effort, and often little survives other than railing stubs in boundary walls. Increasingly, building owners wish to re-instate the boundary ironwork to Archive Image courtesy of The Scottish Ironwork Foundation enhance the appearance and value of their property, but In a group of buildings, other examples in the street may provide an indication. Archive are unsure where to start. photographs can be particularly useful. Some This guide provides basic historical ironwork pattern books are available and can be a useful reference point (see useful contacts). advice about re-instating Some surviving panels may have a founders mark, boundary ironwork using pattern number or date stamp which is useful in identifying the original manufacturer. Set in lead, traditional techniques and the stubs in the boundary wall may provide a clue materials. in terms of the cross section dimensions of the uprights, spacing (regular centres may indicate Image: Run of original railings left in street as a reference in 1942.
    [Show full text]
  • Boilermaking Manual. INSTITUTION British Columbia Dept
    DOCUMENT RESUME ED 246 301 CE 039 364 TITLE Boilermaking Manual. INSTITUTION British Columbia Dept. of Education, Victoria. REPORT NO ISBN-0-7718-8254-8. PUB DATE [82] NOTE 381p.; Developed in cooperation with the 1pprenticeship Training Programs Branch, Ministry of Labour. Photographs may not reproduce well. AVAILABLE FROMPublication Services Branch, Ministry of Education, 878 Viewfield Road, Victoria, BC V9A 4V1 ($10.00). PUB TYPE Guides Classroom Use - Materials (For Learner) (OW EARS PRICE MFOI Plus Postage. PC Not Available from EARS. DESCRIPTORS Apprenticeships; Blue Collar Occupations; Blueprints; *Construction (Process); Construction Materials; Drafting; Foreign Countries; Hand Tools; Industrial Personnel; *Industrial Training; Inplant Programs; Machine Tools; Mathematical Applications; *Mechanical Skills; Metal Industry; Metals; Metal Working; *On the Job Training; Postsecondary Education; Power Technology; Quality Control; Safety; *Sheet Metal Work; Skilled Occupations; Skilled Workers; Trade and Industrial Education; Trainees; Welding IDENTIFIERS *Boilermakers; *Boilers; British Columbia ABSTRACT This manual is intended (I) to provide an information resource to supplement the formal training program for boilermaker apprentices; (2) to assist the journeyworker to build on present knowledge to increase expertise and qualify for formal accreditation in the boilermaking trade; and (3) to serve as an on-the-job reference with sound, up-to-date guidelines for all aspects of the trade. The manual is organized into 13 chapters that cover the following topics: safety; boilermaker tools; mathematics; material, blueprint reading and sketching; layout; boilershop fabrication; rigging and erection; welding; quality control and inspection; boilers; dust collection systems; tanks and stacks; and hydro-electric power development. Each chapter contains an introduction and information about the topic, illustrated with charts, line drawings, and photographs.
    [Show full text]
  • Magnesium Casting Technology for Structural Applications
    Available online at www.sciencedirect.com Journal of Magnesium and Alloys 1 (2013) 2e22 www.elsevier.com/journals/journal-of-magnesium-and-alloys/2213-9567 Full length article Magnesium casting technology for structural applications Alan A. Luo a,b,* a Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA b Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA Abstract This paper summarizes the melting and casting processes for magnesium alloys. It also reviews the historical development of magnesium castings and their structural uses in the western world since 1921 when Dow began producing magnesium pistons. Magnesium casting technology was well developed during and after World War II, both in gravity sand and permanent mold casting as well as high-pressure die casting, for aerospace, defense and automotive applications. In the last 20 years, most of the development has been focused on thin-wall die casting ap- plications in the automotive industry, taking advantages of the excellent castability of modern magnesium alloys. Recently, the continued expansion of magnesium casting applications into automotive, defense, aerospace, electronics and power tools has led to the diversification of casting processes into vacuum die casting, low-pressure die casting, squeeze casting, lost foam casting, ablation casting as well as semi-solid casting. This paper will also review the historical, current and potential structural use of magnesium with a focus on automotive applications. The technical challenges of magnesium structural applications are also discussed. Increasing worldwide energy demand, environment protection and government regulations will stimulate more applications of lightweight magnesium castings in the next few decades.
    [Show full text]
  • Practical Metalworking Bench Skills
    Practical Metalworking: Bench Skills (National 4) SCQF: level 4 (6 SCQF credit points) Unit code: H25P 74 Unit outline The general aim of this Unit is to help learners develop a range of metalworking hand tool skills including simple bench-fitting work, basic sheet-metal work and simple measuring and marking out work. The ability to read and interpret simple drawings and diagrams is also developed in this Unit. Learners will also develop their knowledge and understanding of metalworking materials, recycling and sustainability issues, as well as an appreciation of safe working practices in a workshop environment. Learners who complete this Unit will be able to: 1 Prepare for metalwork bench tasks 2 Use a range of marking out tools and hand tools 3 Manufacture metalwork products from working drawings using bench-fitting skills This Unit is a mandatory Unit of the National 4 Practical Metalworking Course and is also available as a free-standing Unit. The Unit Specification should be read in conjunction with the Unit Support Notes, which provide advice and guidance on delivery, assessment approaches and development of skills for learning, skills for life and skills for work. Exemplification of the standards in this Unit is given in Unit Assessment Support. The Added Value Unit Specification for the National 4 Practical Metalworking Course gives further mandatory information on Course coverage for learners taking this Unit as part of the National 4 Practical Metalworking Course. H25P 74 Practical Metalworking: Bench Skills (National 4) Unit Specification 1 September 2018, version 1.2 Recommended entry Entry to this Unit is at the discretion of the centre.
    [Show full text]
  • Strength Simulations of Tension Bars for Heavy Lifting
    Strength simulations of tension bars for heavy lifting Hållfasthetssimuleringar av dragstag för tunga lyft Arvid Hoikka Faculty of health, science and technology Degree project for master of science in engineering, mechanical engineering 30 credit points Supervisor: Jens Bergström Examiner: Pavel Krakhmalev Date: 2018-08-13 Abstract Proplate, a world leading company, is expert on volume-based cutting and machining of both ordinary steel as well as stainless steel. One of Proplate’s mayor products is tension bars, which is a component made to balance high forces and give stability to structures such as cranes, buildings, bridges and much more. Proplate builds their tension bars in different high strength steel materials, purchased from SSAB, and sells them worldwide. Proplate would like to market themselves better and wishes to produce a catalogue for the maximum load that can be applied to their tension bars, as competitors Pretec and Macalloy, already have for their tension bars. The purpose of the project has been to investigate the tension bars and the maximum load they can withstand before failure. The tension bars have been modeled in the CAD-program Creo Parametric, and then sent to the finite element method program ABAQUS to analyze their structural strength. Three different types of tension bars, and a fourth tension bar (called the walnut-strap) used as a connecting element between some of the tension bars, were investigated. They were modeled with sprints, to hold several tension bars together, and with a construction called loader, to simplify the model load application step. The three different types of tension bars have been analyzed as individual and also when connected to other tension bars.
    [Show full text]
  • Metal Casting Terms and Definitions
    Metal Casting Terms and Definitions Table of Contents A .................................................................................................................................................................... 2 B .................................................................................................................................................................... 2 C .................................................................................................................................................................... 2 D .................................................................................................................................................................... 4 E .................................................................................................................................................................... 5 F ..................................................................................................................................................................... 5 G .................................................................................................................................................................... 5 H .................................................................................................................................................................... 6 I ....................................................................................................................................................................
    [Show full text]