Bulk Deformation Processes in Metalworking
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rolling Process Bulk Deformation Forming
Rolling Process Bulk deformation forming (rolling) Rolling is the process of reducing the thickness (or changing the cross-section) of a long workpiece by compressive forces applied through a set of rolls. This is the most widely used metal working process because it lends itself high production and close control of the final product. Bulk deformation forming (rolling) Bulk deformation forming (rolling) Rolling typically starts with a rectangular ingots and results in rectangular Plates (t > 6 mm), sheet (t < 3 mm), rods, bars, I- beams, rails etc Figure: Rotating rolls reduce the thickness of the incoming ingot Flat rolling practice Hot rolled round rods (wire rod) are used as the starting material for rod and wire drawing operations The product of the first hot-rolling operation is called a bloom A bloom usually has a square cross-section, at least 150 mm on the side, a rolling into structural shapes such as I-beams and railroad rails . Slabs are rolled into plates and sheets. Billets usually are square and are rolled into various shapes Hot rolling is the most common method of refining the cast structure of ingots and billets to make primary shape. Hot rolled round rods (wire rod) are used as the starting material for rod and wire drawing operations Bars of circular or hexagonal cross-section like Ibeams, channels, and rails are produced in great quantity by hoe rolling with grooved rolls. Cold rolling is most often a secondary forming process that is used to make bar, sheet, strip and foil with superior surface finish and dimensional tolerances. -
Extrusion.Pdf
Extrusion: Second Edition Copyright © 2006 ASM International® M. Bauser, G. Sauer, K. Siegert, editors, p 195-321 All rights reserved. DOI:10.1361/exse2006p195 www.asminternational.org CHAPTER 5 The Production of Extruded Semifinished Products from Metallic Materials* THE HOT-WORKING PROCESS extrusion ered to be the most important of the hot-working is, in contrast to other compressive deformation processes. processes used to produce semifinished prod- ucts, a deformation process with pure compres- sive forces in all three force directions. These favorable deformation conditions do not exist in other production processes for semifinished products. Even in rolling, which is the most im- Extrusion of Materials with portant compressive working process for pro- ducing semifinished products, tensile forces oc- Working Temperatures cur in the acceleration zone of the roll gap as between 0 and 300 ЊC well as in the cross rolling process used to pierce blanks in the rolling of steel tubes. These Gu¨nther Sauer* tensile forces cause problems in the rolled prod- uct if the deformation conditions are not opti- mized. The benefits of this three-dimensional compression in terms of deformation technol- 5.1 Extrusion of Semifinished ogy, which have already been discussed in this Products in Tin Alloys book, can be clearly seen in Fig. 5.1 based on experimental results for face-centred cubic (fcc) Tin is a silver-white, very soft metal with a aluminum and zinc with its hexagonal lattice stable tetragonal lattice in the temperature range structure. 20 to 161 ЊC. The pure metal has a density of The extensive variations in the extrusion pro- 7.28 g/cm3 and a melting point of 232 ЊC. -
The Ductility Number Nd Provides a Rigorous Measure for the Ductility of Materials Failure
XXV. THE DUCTILITY NUMBER ND PROVIDES A RIGOROUS MEASURE FOR THE DUCTILITY OF MATERIALS FAILURE 1. Introduction There was just one decisive, really pivotal occurrence throughout the entire history of trying to develop general failure criteria for homogenous and isotropic materials. The setting was this: Coulomb [1] had laid the original groundwork for failure and then a great many years later Mohr [2] came along and put it into an easily usable form. Thus was born the Mohr- Coulomb theory of failure. There was broad and general enthusiasm when Mohr completed his formulation. Many people thought that the ultimate, general theory of failure had finally arrived. There was however a complication. Theodore von Karman was a young man at the time of Mohr’s developments. He did the critical experimental testing of the esteemed new theory and he found it to be inadequate and inconsistent [3]. Von Karman’s work was of such high quality that his conclusion was taken as final and never successfully contested. He changed an entire course of technical and scientific development. The Mohr-Coulomb failure theory subsided and sank while von Karman’s professional career rose and flourished. Following that, all the attempts at a general materials failure theory remained completely unsatisfactory and unsuccessful (with the singular exception of fracture mechanics). Finally, in recent years a new theory of materials failure has been developed, one that may repair and replace the shortcomings that von Karman uncovered. The present work pursues one special and very important aspect of this new theory, the ductile/brittle failure behavior. -
Ductility at the Nanoscale: Deformation and Fracture of Adhesive Contacts Using Atomic Force Microscopy ͒ N
APPLIED PHYSICS LETTERS 91, 203114 ͑2007͒ Ductility at the nanoscale: Deformation and fracture of adhesive contacts using atomic force microscopy ͒ N. Pradeepa and D.-I. Kim National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA J. Grobelny National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA and University of Lodz, 90-236 Lodz, Poland T. Hawa National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA and University of Maryland, College Park, Maryland 20742, USA B. Henz U.S. Army Research Laboratory, APG, Maryland 21005, USA M. R. Zachariah National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA and University of Maryland, College Park, Maryland 20742, USA ͑Received 13 September 2007; accepted 30 October 2007; published online 15 November 2007͒ Fracture of nanosize contacts formed between spherical probes and flat surfaces is studied using an atomic force microscope in an ultrahigh vacuum environment. Analysis of the observed deformation during the fracture process indicates significant material extensions for both gold and silica contacts. The separation process begins with an elastic deformation followed by plastic flow of material with atomic rearrangements close to the separation. Classical molecular dynamics studies show similarity between gold and silicon, materials that exhibit entirely different fracture behavior at macroscopic scale. This direct experimental evidence suggests that fracture at nanoscale occurs through a ductile process. © 2007 American Institute of Physics. ͓DOI: 10.1063/1.2815648͔ The nanomechanical properties of materials become in- gold and silica ͑radius ϳ12.5 m͒ were used to form con- creasingly important as they are used for the fabrication of tacts with flat gold and silica samples in separate experi- micro- and nanometer-sized structures with the advent of ments. -
Boilermaker Health & Safety Manual
Boilermakers Health & Safety Manual ihsa.ca Boilermakers Health & Safety Manual Infrastructure Health & Safety Association 5110 Creekbank Road, Suite 400 Mississauga, Ontario L4W 0A1 Canada 1-800-263-5024 ihsa.ca 1 Boilermakers Health & Safety Manual IHSA has additional information on this and other topics. Visit ihsa.ca or call Customer Service at 1-800-263-5024. The contents of this publication are for general information only. This publication should not be regarded or relied upon as a definitive guide to government regulations or to safety practices and procedures. The contents of this publication were, to the best of our knowledge, current at the time of printing. However, no representations of any kind are made with regard to the accuracy, completeness, or sufficiency of the contents. The appropriate regulations and statutes should be consulted. Readers should not act on the information contained herein without seeking specific independent legal advice on their specific circumstance. The Infrastructure Health & Safety Association is pleased to answer individual requests for counselling and advice. This manual was developed, reviewed, and endorsed by the Boilermakers Labour-Management Health and Safety Committee in association with IHSA. Manual IHSA editor: Lori-Lynn Bonnell, design and illustrations: Philippa Giancontieri; project manager: Mike Russo. The Infrastructure Health & Safety Association would like to thank the members of the working group for contributing their knowledge, experience, and time to produce a health and safety manual that will benefit both labour and management in the boilermaker sector. The working group included representatives from the Boilermaker Contractors’ Association (BCA) as well as: · Marty Albright – Alstom Power Canada Inc. -
PFAS in Influent, Effluent, and Residuals of Wastewater Treatment Plants (Wwtps) in Michigan
Evaluation of PFAS in Influent, Effluent, and Residuals of Wastewater Treatment Plants (WWTPs) in Michigan Prepared in association with Project Number: 60588767 Michigan Department of Environment, Great Lakes, and Energy April 2021 Evaluation of PFAS in Influent, Effluent, and Residuals of Project number: 60588767 Wastewater Treatment Plants (WWTPs) in Michigan Prepared for: Michigan Department of Environment, Great Lakes, and Energy Water Resources Division Stephanie Kammer Constitution Hall, 1st Floor, South Tower 525 West Allegan Street P.O. Box 30242 Lansing, MI 48909 Prepared by: Dorin Bogdan, Ph.D. Environmental Engineer, Michigan E-mail: [email protected] AECOM 3950 Sparks Drive Southeast Grand Rapids, MI 49546 aecom.com Prepared in association with: Stephanie Kammer, Jon Russell, Michael Person, Sydney Ruhala, Sarah Campbell, Carla Davidson, Anne Tavalire, Charlie Hill, Cindy Sneller, and Thomas Berdinski. Michigan Department of Environment, Great Lakes, and Energy Water Resources Division Constitution Hall 525 West Allegan P.O. Box 30473 Lansing, MI 48909 Prepared for: Michigan Department of Environment, Great Lakes, and Energy AECOM Evaluation of PFAS in Influent, Effluent, and Residuals of Project number: 60588767 Wastewater Treatment Plants (WWTPs) in Michigan Table of Contents 1. Introduction ......................................................................................................................................... 1 2. Background ........................................................................................................................................ -
Interchange Modification Report
I-26 / Naval Base Terminal Access Road Interchange INTERCHANGE MODIFICATION REPORT CHARLESTON COUNTY, SOUTH CAROLINA Prepared for: South Carolina Department of Transportation Prepared by: Parsons Brinckerhoff, Inc. May 2012 I-26ȀPortAccessRoadInterchangeModificationReport TABLEOFCONTENTS EXECUTIVE SUMMARY ............................................................................................................................................ 1 1. INTRODUCTION .............................................................................................................................................. 3 Project Location.................................................................................................................................................. 3 Project History.................................................................................................................................................... 3 Project Description ............................................................................................................................................. 7 Project Purpose and Need .................................................................................................................................. 9 Project Conceptual Design ................................................................................................................................ 11 Interchange Modification Report (IMR) Scope.................................................................................................. -
Short-Cut Method to Assess a Gross Available Energy in a Medium-Load Screw Friction Press
Article Short-Cut Method to Assess a Gross Available Energy in a Medium-Load Screw Friction Press A.J. Sánchez Egea 1,* ID , N. Deferrari 2, G. Abate 2, D. Martínez Krahmer 2 and L.N. López de Lacalle 1 ID 1 Department of Mechanical Engineering, Aeronautics Advanced Manufacturing Center (CFAA), Faculty of Engineering of Bilbao, Alameda de Urquijo s/n, 48013 Bilbao, Spain; [email protected] 2 Centro de Investigación y Desarrollo en Mecánica, Instituto Nacional de Tecnología Industrial INTI, Avenida General Paz 5445, 1650 Miguelete, Provincia de Buenos Aires, Argentina; [email protected] (N.D.); [email protected] (G.A.); [email protected] (D.M.K.) * Correspondence: [email protected] Received: 3 January 2018; Accepted: 9 March 2018; Published: 10 March 2018 Abstract: The present study proposed a rapid method, based on a previous universal compression tests, to estimate the required load capacity to cold forge different specimen quantity in a screw press. Accordingly, experimental and theoretical approach are performed to check new adjustable drive motor of the modified forging machine to achieve a gross available energy to deform the specimens preventing damage of the forging machine. During the forging experiments, two screw friction presses (as-received and modified) are used to validate the theoretical approach. The modified press exhibits an increase of 51% of gross energy and 11% of maximum load capacity compare to the as-received press. This method is used to improve the effective of the forging process avoiding excessive loads that could promote machine failure. Therefore, a low-cost and easy to implement methodology is proposed to determine the energy and load capacity of a screw friction press to forge different specimen quantities with symmetry pattern configurations. -
Methods Used for the Compaction and Molding of Ceramic Matrix Composites Reinforced with Carbon Nanotubes
processes Review Methods Used for the Compaction and Molding of Ceramic Matrix Composites Reinforced with Carbon Nanotubes Valerii P. Meshalkin and Alexey V. Belyakov * Mendeleev University of Chemical Technology of Russia (MUCTR), 9 Miusskaya Square, 125047 Moscow, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-495-4953866 Received: 2 August 2020; Accepted: 11 August 2020; Published: 18 August 2020 Abstract: Ceramic matrix composites reinforced with carbon nanotubes are becoming increasingly popular in industry due to their astonishing mechanical properties and taking into account the fact that advanced production technologies make carbon nanotubes increasingly affordable. In the present paper, the most convenient contemporary methods used for the compaction of molding masses composed of either technical ceramics or ceramic matrix composites reinforced with carbon nanotubes are surveyed. This stage that precedes debinding and sintering plays the key role in getting pore-free equal-density ceramics at the scale of mass production. The methods include: compaction in sealed and collector molds, cold isostatic and quasi-isostatic compaction; dynamic compaction methods, such as magnetic pulse, vibration, and ultrasonic compaction; extrusion, stamping, and injection; casting from aqueous and non-aqueous slips; tape and gel casting. Capabilities of mold-free approaches to produce precisely shaped ceramic bodies are also critically analyzed, including green ceramic machining and additive manufacturing technologies. Keywords: carbon nanotubes; ceramic matrix composites; compaction; molding; casting; powder mixtures; green bodies; plastic molding powders; slips; polymerizable monomers; solid freeform fabrication; machinery 1. Introduction Compaction molding is an important technological stage in the mass production of technical ceramics and ceramic matrix composites (hereinafter, CMCs). -
Define Malleability and Ductility with Example
Define Malleability And Ductility With Example Ministrant and undergrown Kim never unbarred upright when Isador purveys his Rameses. Distaff See busy no basset singe allegro after imbrownsJoe bunch so eightfold, afoul. quite unnoted. Calcinable Parsifal mutiny animatingly while Antony always knock his Perspex vaporizes greyly, he Malleability is its substance's ability to deform under pressure compressive stress. New steel alloy is both turnover and ductile Materials Today. How all you identify a ductile fracture? Malleable Definition of Malleable by Merriam-Webster. RUBBER IS DUCTILE DUE date ITS all PROPERTY OF ELASTICITY. ELI5 difference between Ductility & malleability and Reddit. Malleability and ductility Craig Cherney Expert Witness. An increase the high temperatures the ice a dry up energy by malleability refers to save my answer and malleability ductility example, and is used for example sentence contains offensive content variations in. How can use malleable in a sentence WordHippo. Ductility is the percent elongation reported in a tensile test is defined as the maximum elongation of the gage length divided by paper original gage length. Malleable Meaning in tamil what is meaning of malleable in tamil dictionary. 1 the malleability of something enough can be drawn into threads or wires or. Clay not Play-Doh is however best novel of sale with high malleability it does be sculpted into account anything so might's very malleable A cinder block cart no. Examples of malleable metals are still iron aluminum copper silver may lead Ductility and malleability don't invariably correlate to one. Ductile Failure an overview ScienceDirect Topics. MALLEABLE definition in the Cambridge English Dictionary. -
Bifilm Inclusions in High Alloyed Cast Iron
materials Article Bifilm Inclusions in High Alloyed Cast Iron Marcin Stawarz * and Malwina Dojka Department of Foundry Engineering, Silesian University of Technology, 7 Towarowa Street, 44-100 Gliwice, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-32-338-5532 Abstract: Continuous improvement in the quality of castings is especially important since a cast without defects is a more competitive product due to its longer lifecycle and cheaper operation. Producing quality castings requires comprehensive knowledge of their production, crystallization process, and chemical composition. The crystallization of alloyed ductile iron (without the addition of magnesium) with oxide bifilm inclusions is discussed. These inclusions reduce the quality of the castings, but they are a catalyst for the growth of spheroidal graphite that crystallizes in their vicinity. The research was carried out for cast iron with a highly hyper-eutectic composition. Scanning electron microscopy and EDS analysis were used in the research. A detailed analysis of the chemical composition was also carried out based on the spectrometric method, weight method, etc. Based on the obtained results, a model of spheroidal graphite crystallization near bifilm inclusions was proposed. The surface of the analyzed graphite particles was smooth, which suggests a primary crystallization process. The phenomenon of simple graphite and bifilm segregation towards the heat center of the castings was also documented. Keywords: bifilms; spheroidal graphite; alloyed cast iron; crystallization Citation: Stawarz, M.; Dojka, M. Bifilm Inclusions in High Alloyed Cast Iron. Materials 2021, 14, 3067. 1. Introduction https://doi.org/10.3390/ Foundry engineering processes are prone to many issues during casting manufactur- ma14113067 ing that may influence the final casting quality. -
B. F. Clyde's Cider Mill
B. F. Clyde’s Cider Mill Established 1898 Old Mystic, Connecticut National Mechanical Engineering Site Dedication October 29, 1994 The American Society of Mechanical Engineers required equipment that was operated only once a History of Cider in the U.S. year, farmers found it more convenient to travel consid- Apple cider dates back to the earliest days of erable distances to bring their fruit to a large mill for English settlement in the thirteen colonies. Colonists processing into juice (sweet cider). Surplus apples brought seed from England to plant apple trees. could be sold or bartered to the mill owner who would Later, seedlings and whole trees were transported to produce cider to sell. Farmers returned home and used the colonies by wealthier colonists who established their own method of fermentation to produce cider. large apple orchards. Although apples were a staple In 1881, Mr. Ben- in the meager diet of jamin F. Clyde decided early settlers, the moti- to produce and sell cider vation for raising apple in Mystic, now referred trees was equally for to as Old Mystic. For the the purpose of making first few years, he cider. Cider was easy pressed his apples at lo- to make, stored well, cal mills. Eventually, he and provided a mildly bought a press and in- alcoholic drink for all to stalled it in rented space enjoy. Until approxi- in the corner of a local mately seventy years saw mill. He received ago, cider was what is power for his press from now referred to as “hard the saw mill’s line shaft.