PFAS in Influent, Effluent, and Residuals of Wastewater Treatment Plants (Wwtps) in Michigan

Total Page:16

File Type:pdf, Size:1020Kb

PFAS in Influent, Effluent, and Residuals of Wastewater Treatment Plants (Wwtps) in Michigan Evaluation of PFAS in Influent, Effluent, and Residuals of Wastewater Treatment Plants (WWTPs) in Michigan Prepared in association with Project Number: 60588767 Michigan Department of Environment, Great Lakes, and Energy April 2021 Evaluation of PFAS in Influent, Effluent, and Residuals of Project number: 60588767 Wastewater Treatment Plants (WWTPs) in Michigan Prepared for: Michigan Department of Environment, Great Lakes, and Energy Water Resources Division Stephanie Kammer Constitution Hall, 1st Floor, South Tower 525 West Allegan Street P.O. Box 30242 Lansing, MI 48909 Prepared by: Dorin Bogdan, Ph.D. Environmental Engineer, Michigan E-mail: [email protected] AECOM 3950 Sparks Drive Southeast Grand Rapids, MI 49546 aecom.com Prepared in association with: Stephanie Kammer, Jon Russell, Michael Person, Sydney Ruhala, Sarah Campbell, Carla Davidson, Anne Tavalire, Charlie Hill, Cindy Sneller, and Thomas Berdinski. Michigan Department of Environment, Great Lakes, and Energy Water Resources Division Constitution Hall 525 West Allegan P.O. Box 30473 Lansing, MI 48909 Prepared for: Michigan Department of Environment, Great Lakes, and Energy AECOM Evaluation of PFAS in Influent, Effluent, and Residuals of Project number: 60588767 Wastewater Treatment Plants (WWTPs) in Michigan Table of Contents 1. Introduction ......................................................................................................................................... 1 2. Background ......................................................................................................................................... 2 3. Industrial Pretreatment Program (IPP) in Michigan ............................................................................ 3 3.1 Michigan IPP PFAS Initiative .................................................................................................... 4 3.2 Michigan IPP PFAS Initiative Results ....................................................................................... 6 3.3 PFOA and PFOS Influent IPP PFAS Initiative Results ............................................................. 6 3.4 PFOA and PFOS Effluent IPP PFAS Initiative Results ............................................................. 8 3.5 IPP Source Reduction ............................................................................................................ 11 3.6 Non-IPP WWTP PFAS Investigation Results ......................................................................... 18 3.7 Industrial Sources Results ...................................................................................................... 21 3.7.1 CIU PFAS Evaluation ............................................................................................................. 21 3.7.2 IU and SIU PFAS Evaluation .................................................................................................. 26 3.7.3 PFAS Industrial Sources Summary ........................................................................................ 32 4. Statewide PFAS Assessment of 42 WWTPs .................................................................................... 33 4.1 Solid and Aqueous Partition Evaluation ................................................................................. 44 4.2 Treatment Process Evaluation ............................................................................................... 46 4.3 Evaluation of PFAS Fate Within WWTPs ............................................................................... 49 5. Discussion and Conclusions ............................................................................................................. 61 5.1 Conclusions from the Michigan IPP PFAS Initiative ............................................................... 61 5.2 Conclusions from the Statewide PFAS Assessment of 42 WWTPs ....................................... 62 5.3 Conclusions from the Combination of Data from the IPP Initiative and Statewide WWTP Assessment ................................................................................................................ 64 5.4 EGLE Ongoing Efforts and Planned Next Steps .................................................................... 64 6. References ........................................................................................................................................ 65 Prepared for: Michigan Department of Environment, Great Lakes, and Energy AECOM i Evaluation of PFAS in Influent, Effluent, and Residuals of Project number: 60588767 Wastewater Treatment Plants (WWTPs) in Michigan Figures Figure 1. PFAS Water Cycle (EGLE, 2020a) ............................................................................................... 2 Figure 2. Locations of Wastewater Treatment Plants Evaluated .................................................. (attached)6 Figure 3. Influent PFOA Concentrations in WWTPs .................................................................................... 8 Figure 4. Influent PFOS Concentrations in WWTPs .................................................................................... 8 Figure 5. Effluent PFOA Concentrations in WWTPs .................................................................................. 10 Figure 6. Effluent PFOS Concentrations in WWTPs .................................................................................. 11 Figure 7. Temporal PFOA and PFOS Effluent and Biosolids Concentrations in Bronson WWTP ............. 14 Figure 8. Temporal PFOA and PFOS Effluent and Biosolids Concentrations in Howell WWTP ............... 15 Figure 9. Temporal PFOA and PFOS Effluent and Biosolids Concentrations in Ionia WWTP .................. 15 Figure 10. Temporal PFOA and PFOS Effluent and Biosolids Concentrations in Kalamazoo WWTP ...... 16 Figure 11. Temporal PFOA and PFOS Effluent and Biosolids Concentrations in KI Sawyer WWTP ........ 16 Figure 12. Temporal PFOA and PFOS Effluent and Biosolids Concentrations in Lapeer WWTP ............ 17 Figure 13. Temporal PFOA and PFOS Effluent and Biosolids Concentrations in Wixom WWTP ............. 17 Figure 14. Influent PFOA Concentrations in IPP and Non-IPP WWTPs .................................................... 19 Figure 15. Effluent PFOA Concentrations in IPP and Non-IPP WWTPs ................................................... 19 Figure 16. Influent PFOS Concentrations in IPP and Non-IPP WWTPs ................................................... 20 Figure 17. Effluent PFOS Concentrations in IPP and Non-IPP WWTPs ................................................... 20 Figure 18. PFOA Concentrations for Sampled 40 CFR Categories........................................................... 24 Figure 19. PFOS Concentrations for Sampled 40 CFR Categories .......................................................... 25 Figure 20. PFOA Concentrations for IU and SIU Sample Types .............................................................. 30 Figure 21. PFOS Concentrations for IU and SIU Sample Types .............................................................. 31 Figure 22. Locations of 42 Wastewater Treatment Plants Evaluated ........................................... (attached)33 Figure 23. Percent Detection of PFAS for 42 WWTPs Assessment .......................................................... 34 Figure 24. PFOA Influent and Effluent Concentrations for the 42 WWTPs Assessment ........................... 37 Figure 25. PFOS Influent and Effluent Concentrations for the 42 WWTPs Assessment ........................... 37 Figure 26. Legend for Box Plot Figures with PFAS Analyte List Grouped by Families ............................. 38 Figure 27. Influent PFAS Detection Frequency and Concentrations for 42 WWTPs – Box Plot ............... 39 Figure 28. Influent PFAS Detection Frequency and Concentrations for 42 WWTPs – Dot Plot ................ 40 Figure 29. Effluent PFAS Detection Frequency and Concentrations for 42 WWTPs – Box Plot .............. 40 Figure 30. Effluent PFAS Detection Frequency and Concentrations for 42 WWTPs – Box Plot .............. 41 Figure 31. Final Treated Solids (Sludge and Biosolids) PFAS Detection Frequency and Concentrations for 42 WWTPs – Box Plot ............................................................................... 41 Figure 32. Final Treated Solids (Sludge and Biosolids) PFAS Concentrations for 42 WWTPs – Dot Plot ..................................................................................................................................... 42 Figure 33. Final Treated Solids (Sludge and Biosolids) PFOS Concentrations for 42 WWTPs ................ 42 Figure 34. Final Treated Solids (Sludge and Biosolids) Excluding Industrially Impacted PFOS Concentrations for 42 WWTPs ................................................................................................. 43 Figure 35. Final Treated Solids (Biosolids/Sludge) PFOS Concentrations from Michigan and Biosolids Published Literature Values ...................................................................................................... 43 Figure 36. Aqueous and Solid PFAS Concentrations for Alkaline Stabilized Solids at WWTPs #4(a), #77(b), and #74(c) ............................................................................................ 44 Figure 37. Aqueous and Solid PFAS Concentrations for Anaerobic Digested Solids at WWTPs #81(a), #50(b), and #52(c) .......................................................................................... 45 Figure 38.
Recommended publications
  • Cost Analysis of the Impacts on Municipal Utilities and Biosolids Management to Address PFAS Contamination
    Cost Analysis of the Impacts on Municipal Utilities and Biosolids Management to Address PFAS Contamination October 2020 Table of Contents Executive Summary Section 1 Background 1.1 Biosolids ................................................................................................................................................................ 1-1 Section 2 Data on Actual Costs to Wastewater and Biosolids Management Programs from PFAS 2.1 Introduction ......................................................................................................................................................... 2-1 2.2 NEBRA Survey ..................................................................................................................................................... 2-1 2.2.1 Background ............................................................................................................................................. 2-1 2.2.2 Results ...................................................................................................................................................... 2-2 2.3 Expanded Utility Survey ................................................................................................................................. 2-2 2.3.1 Background ............................................................................................................................................. 2-2 2.3.2 Results .....................................................................................................................................................
    [Show full text]
  • Landfill Leachate Pretreatment Process Evaluation and Pilot Study
    Landfill Leachate Pretreatment Process Evaluation and Pilot Study Richard Claus – Hazen and Sawyer, P.C. John Butler – Rumpke Consolidated Companies, Inc. Dan Miklos – Hazen and Sawyer, P.C. Presentation Overview Part 1 – Overview of Study, Piloting, and Design Introduction Timeline of Study, Evaluation, & Disposal Wastewater Characterization & Pretreatment Study Timeline of Piloting and Design Pretreatment Design Presentation Overview Part 2 – Pilot Treatment Sessil Media Trickling Filter Pilot Chemical Treatment Jar Testing and Pilot Considered ElectroCell Piloting Next Steps Introduction Rumpke Sanitary Landfill Cincinnati, OH, Colerain Township, Northwest Hamilton County Rumpke Consolidated Companies, Inc. Family Owned, Operated since 1945 One of the largest landfills in the nation, largest in Ohio Rumpke Colerain Township Landfill Introduction Northwest Area Landfill Portion of landfill undergoing a reaction since August, 2009 Source of extremely strong leachate Averaging 120-degrees Fahrenheit Average Volumes of 120,000 GPD (2010-2011) to 200,000 GPD (2012) Northwest Lift Station Lift Station No. 2 Pilot and Tanker Loadout Locations Northwest Area Landfill Introduction – NW Area Leachate Current Characteristics COD 30,000 to 50,000 mg/L BOD5 20,000 to 30,000 mg/L TSS 1,000 – 2,000 mg/L TKN 1,500 – 2,500 mg/L Fe 250 – 700 mg/L Ca 1,500 – 3,700 mg/L Temperature 120 degrees F Introduction – NW Area Leachate On –Going Issues Pipe scaling/clogging during conveyance Odors during handling/disposal Costs for disposal Study, Evaluation, and Disposal Timeline August, 2009 – Increasing leachate strength from Northwest Area August, 2010 to May, 2011 – Wastewater Characterization & Pretreatment Study August, 2011 to June, 2012 – Treatment Piloting and Pretreatment Design Study, Evaluation, and Disposal Timeline - Continued Historically until October 7, 2011 – “Blended” Flow Sewer Discharge into MSDGC Collection System NW Area Leachate (Approx.
    [Show full text]
  • An Analysis of CO2-Driven Cold-Water Geysers in Green River, Utah and Chimayo, New Mexico Zachary T
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations December 2014 An Analysis of CO2-driven Cold-water Geysers in Green River, Utah and Chimayo, New Mexico Zachary T. Watson University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Geology Commons, and the Hydrology Commons Recommended Citation Watson, Zachary T., "An Analysis of CO2-driven Cold-water Geysers in Green River, Utah and Chimayo, New Mexico" (2014). Theses and Dissertations. 603. https://dc.uwm.edu/etd/603 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. AN ANALYSIS OF CO 2-DRIVEN COLD-WATER GEYSERS IN GREEN RIVER, UTAH AND CHIMAYO, NEW MEXICO by Zach Watson A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Geosciences at The University of Wisconsin-Milwaukee December 2014 ABSTRACT AN ANALYSIS OF CO 2-DRIVEN COLD-WATER GEYSERS IN UTAH AND NEW MEXICO by Zach Watson The University of Wisconsin-Milwaukee, 2014 Under the Supervision of Professor Dr. Weon Shik Han The eruption periodicity, CO 2 bubble volume fraction, eruption velocity, flash depth and mass emission of CO 2 were determined from multiple wellbore CO 2-driven cold-water geysers (Crystal and Tenmile geysers, in Utah and Chimayó geyser in New Mexico). Utilizing a suite of temporal water sample datasets from multiple field trips to Crystal geyser, systematic and repeated trends in effluent water chemistry have been revealed.
    [Show full text]
  • Want to Participate?
    The City of Grass Valley Public Works Department operates the City’s wastewater To read the City’s new Discharge Permit: treatment plant that provides sewer service www.cityofgrassvalley.com to 12,100 residents and 1,700 businesses To read the City’s current Industrial (including industries). Pretreatment Program Ordinance: www.cityofgrassvalley.com then to On average, the City discharges 2,100,000 Municipal Code Chapter 13.20 gallons per day of treated wastewater effluent to Wolf Creek. To read about Federal pretreatment program requirements: The City’s wastewater treatment system www.epa.gov/epahome/cfr40 then to consists of many processes. 40 CFR Part 403 All wastewater first To read about new water quality standards: goes through the www.swrcb.ca.gov/rwqcb5 (Water Quality Wastewater from homes and businesses travels in primary treatment Goals) the City’s sewer system to the wastewater treat- process, which involves www.swrcb.ca.gov/ (State Implementation ment plant (WWTP). After treatment, the effluent screening and settling out large Policy) is discharged to Wolf Creek via a cascade aerator particles. www.swrcb.ca.gov/ (California Toxics Rule) (shown below). The effluent must meet water quality standards that protect public health and Wastewater then To read about National Pollution Discharge the environment. moves on to the Elimination System (NPDES) permits secondary treatment http://www.epa.gov/npdes/pubs/ process, in which organic 101pape.pdf matter is removed by allowing bacteria to To learn more about wastewater treatment break down the plants: www.wef.org/wefstudents/ pollutants. gowithflow/index.htm The City also puts the wastewater through Want to Participate? advanced treatment (filtration) to further The City has formed a Pretreatment Sewer remove particulate Advisory Committee to assist and enhance matter.
    [Show full text]
  • Short-Cut Method to Assess a Gross Available Energy in a Medium-Load Screw Friction Press
    Article Short-Cut Method to Assess a Gross Available Energy in a Medium-Load Screw Friction Press A.J. Sánchez Egea 1,* ID , N. Deferrari 2, G. Abate 2, D. Martínez Krahmer 2 and L.N. López de Lacalle 1 ID 1 Department of Mechanical Engineering, Aeronautics Advanced Manufacturing Center (CFAA), Faculty of Engineering of Bilbao, Alameda de Urquijo s/n, 48013 Bilbao, Spain; [email protected] 2 Centro de Investigación y Desarrollo en Mecánica, Instituto Nacional de Tecnología Industrial INTI, Avenida General Paz 5445, 1650 Miguelete, Provincia de Buenos Aires, Argentina; [email protected] (N.D.); [email protected] (G.A.); [email protected] (D.M.K.) * Correspondence: [email protected] Received: 3 January 2018; Accepted: 9 March 2018; Published: 10 March 2018 Abstract: The present study proposed a rapid method, based on a previous universal compression tests, to estimate the required load capacity to cold forge different specimen quantity in a screw press. Accordingly, experimental and theoretical approach are performed to check new adjustable drive motor of the modified forging machine to achieve a gross available energy to deform the specimens preventing damage of the forging machine. During the forging experiments, two screw friction presses (as-received and modified) are used to validate the theoretical approach. The modified press exhibits an increase of 51% of gross energy and 11% of maximum load capacity compare to the as-received press. This method is used to improve the effective of the forging process avoiding excessive loads that could promote machine failure. Therefore, a low-cost and easy to implement methodology is proposed to determine the energy and load capacity of a screw friction press to forge different specimen quantities with symmetry pattern configurations.
    [Show full text]
  • Methods Used for the Compaction and Molding of Ceramic Matrix Composites Reinforced with Carbon Nanotubes
    processes Review Methods Used for the Compaction and Molding of Ceramic Matrix Composites Reinforced with Carbon Nanotubes Valerii P. Meshalkin and Alexey V. Belyakov * Mendeleev University of Chemical Technology of Russia (MUCTR), 9 Miusskaya Square, 125047 Moscow, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-495-4953866 Received: 2 August 2020; Accepted: 11 August 2020; Published: 18 August 2020 Abstract: Ceramic matrix composites reinforced with carbon nanotubes are becoming increasingly popular in industry due to their astonishing mechanical properties and taking into account the fact that advanced production technologies make carbon nanotubes increasingly affordable. In the present paper, the most convenient contemporary methods used for the compaction of molding masses composed of either technical ceramics or ceramic matrix composites reinforced with carbon nanotubes are surveyed. This stage that precedes debinding and sintering plays the key role in getting pore-free equal-density ceramics at the scale of mass production. The methods include: compaction in sealed and collector molds, cold isostatic and quasi-isostatic compaction; dynamic compaction methods, such as magnetic pulse, vibration, and ultrasonic compaction; extrusion, stamping, and injection; casting from aqueous and non-aqueous slips; tape and gel casting. Capabilities of mold-free approaches to produce precisely shaped ceramic bodies are also critically analyzed, including green ceramic machining and additive manufacturing technologies. Keywords: carbon nanotubes; ceramic matrix composites; compaction; molding; casting; powder mixtures; green bodies; plastic molding powders; slips; polymerizable monomers; solid freeform fabrication; machinery 1. Introduction Compaction molding is an important technological stage in the mass production of technical ceramics and ceramic matrix composites (hereinafter, CMCs).
    [Show full text]
  • Fecal Coliform and E. Coli Concentrations in Effluent-Dominated Streams of the Upper Santa Cruz Watershed
    Water 2013, 5, 243-261; doi:10.3390/w5010243 OPEN ACCESS water ISSN 2073-4441 www.mdpi.com/journal/water Article Fecal Coliform and E. coli Concentrations in Effluent-Dominated Streams of the Upper Santa Cruz Watershed Emily C. Sanders, Yongping Yuan * and Ann Pitchford Landscape Ecology Branch, Environmental Sciences Division, National Exposure Research Laboratory, United States Environmental Protection Agency Office of Research and Development, 944 East Harmon Avenue, Las Vegas, NV 89119, USA; E-Mails: [email protected] (E.C.S.); [email protected] (A.P.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-702-798-2112; Fax: +1-702-798-2208. Received: 4 January 2013; in revised form: 26 February 2013 / Accepted: 26 February 2013 / Published: 11 March 2013 Abstract: This study assesses the water quality of the Upper Santa Cruz Watershed in southern Arizona in terms of fecal coliform and Escherichia coli (E. coli) bacteria concentrations discharged as treated effluent and from nonpoint sources into the Santa Cruz River and surrounding tributaries. The objectives were to (1) assess the water quality in the Upper Santa Cruz Watershed in terms of fecal coliform and E. coli by comparing the available data to the water quality criteria established by Arizona, (2) to provide insights into fecal indicator bacteria (FIB) response to the hydrology of the watershed and (3) to identify if point sources or nonpoint sources are the major contributors of FIB in the stream. Assessment of the available wastewater treatment plant treated effluent data and in-stream sampling data indicate that water quality criteria for E.
    [Show full text]
  • First Flush Reactor for Stormwater Treatment for 6
    TECHNICAL REPORT STANDARD PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA/LA.08/466 4. Title and Subtitle 5. Report Date June 2009 First Flush Reactor for Stormwater Treatment for 6. Performing Organization Code Elevated Linear Transportation Projects LTRC Project Number: 08-3TIRE State Project Number: 736-99-1516 7. Author(s) 8. Performing Organization Report No. Zhi-Qiang Deng, Ph.D. 9. Performing Organization Name and Address 10. Work Unit No. Department of Civil and Environmental Engineering 11. Contract or Grant No. Louisiana State University LA 736-99-1516; LTRC 08-3TIRE Baton Rouge, LA 70803 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Louisiana Transportation Research Center Final Report 4101 Gourrier Avenue December 2007-May 2009 Baton Rouge, LA 70808 14. Sponsoring Agency Code 15. Supplementary Notes Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration 16. Abstract The United States EPA (Environmental Protection Agency) MS4 (Municipal Separate Storm Water Sewer System) Program regulations require municipalities and government agencies including the Louisiana Department of Transportation and Development (LADOTD) to develop and implement stormwater best management practices (BMPs) for linear transportation systems to reduce the discharge of various pollutants, thereby protecting water quality. An efficient and cost-effective stormwater BMP is urgently needed for elevated linear transportation projects to comply with MS4 regulations. This report documents the development of a first flush-based stormwater treatment device, the first flush reactor, for use on elevated linear transportation projects/roadways for complying with MS4 regulations. A series of stormwater samples were collected from the I-10 elevated roadway section over City Park Lake in urban Baton Rouge.
    [Show full text]
  • B. F. Clyde's Cider Mill
    B. F. Clyde’s Cider Mill Established 1898 Old Mystic, Connecticut National Mechanical Engineering Site Dedication October 29, 1994 The American Society of Mechanical Engineers required equipment that was operated only once a History of Cider in the U.S. year, farmers found it more convenient to travel consid- Apple cider dates back to the earliest days of erable distances to bring their fruit to a large mill for English settlement in the thirteen colonies. Colonists processing into juice (sweet cider). Surplus apples brought seed from England to plant apple trees. could be sold or bartered to the mill owner who would Later, seedlings and whole trees were transported to produce cider to sell. Farmers returned home and used the colonies by wealthier colonists who established their own method of fermentation to produce cider. large apple orchards. Although apples were a staple In 1881, Mr. Ben- in the meager diet of jamin F. Clyde decided early settlers, the moti- to produce and sell cider vation for raising apple in Mystic, now referred trees was equally for to as Old Mystic. For the the purpose of making first few years, he cider. Cider was easy pressed his apples at lo- to make, stored well, cal mills. Eventually, he and provided a mildly bought a press and in- alcoholic drink for all to stalled it in rented space enjoy. Until approxi- in the corner of a local mately seventy years saw mill. He received ago, cider was what is power for his press from now referred to as “hard the saw mill’s line shaft.
    [Show full text]
  • Achieving Reduced-Cost Wet Weather Flow Treatment Through Plant Operational Changes
    WEFTEC®.06 ACHIEVING REDUCED-COST WET WEATHER FLOW TREATMENT THROUGH PLANT OPERATIONAL CHANGES Raymond R. Longoria, P.E., BCEE1, Patricia Cleveland2, Kim Brashear, P.E.3 1Freese and Nichols, Inc. 1701 North Market Street, Suite 500 Dallas, Texas 75202 2Trinity River Authority of Texas 3Mehta, West, Brashear Consultants ABSTRACT Despite documented I/I reductions in the collection system1, the dynamic hydraulic model for the Trinity River Authority of Texas’ (TRA) Central Regional Wastewater System (CRWS) 2 predicted an increase in the Q2-HR PEAK/QADF ratio at the WWTP from 2.5 to 3.30. The 2.5 ratio historical value was known to be artificially low, the result of unintended in-line storage created by hydraulic bottlenecks in the collection system. The 3.30 ratio is the year 2020 predicted value derived from the hydraulic model. This assumes the completion of the scheduled collection system improvements intended to remove the bottlenecks. TRA intends to implement the collection system improvements and to treat all wastewater flows at the CRWS Wastewater Treatment Plant. The improvements recommended to handle the projected 3.30 ratio peak flows included 1) wet weather treatment facilities and 2) additional final clarifiers. Capital cost of the improvements to treat the peak flow was estimated at $21.1 million.3 The wet weather treatment facilities – High Rate Clarification - have been deferred pending final regulations/policy by the U.S. Environmental Protection Agency (USEPA) with regard to blended flows and the preparation of additional technical and economic data by the Authority. The final additional final clarifiers were budgeted for construction in 2010.
    [Show full text]
  • Eutectic Freeze Crystallization for Table Salt
    Eutectic Freeze Crystallization on Sodium Chloride Analysis of a full experimental cycle Master of Science Thesis Document number: 2461 Bruno (J.J.) Verbeek Wb1179829 29-07-2011 Eutectic Freeze Crystallization on Sodium Chloride 2 Eutectic Freeze Crystallization on Sodium Chloride Faculty: Process Equipment For obtaining the degree of Master of Science in Sustainable Process- & Energy Technology Exam committee: Prof. dr. G.J. Witkamp Dr. L Hartmann K. Yasadi Copyright © BJJ Verbeek All rights reserved 3 Eutectic Freeze Crystallization on Sodium Chloride Contents Acknowledgement ........................................................................................................................................ 6 Abstract ......................................................................................................................................................... 7 Table of figures ............................................................................................................................................. 9 Nomenclature ............................................................................................................................................. 11 1. Introduction ........................................................................................................................................ 13 1.1. Eutectic freeze crystallization ..................................................................................................... 14 1.2. Sodium chloride solutions ..........................................................................................................
    [Show full text]
  • Wastewater Technology Fact Sheet: Trickling Filters
    United States Office of Water EPA 832-F-00-014 Environmental Protection Washington, D.C. September 2000 Agency Wastewater Technology Fact Sheet Trickling Filters DESCRIPTION ADVANTAGES AND DISADVANTAGES Trickling filters (TFs) are used to remove organic Some advantages and disadvantages of TFs are matter from wastewater. The TF is an aerobic listed below. treatment system that utilizes microorganisms attached to a medium to remove organic matter Advantages from wastewater. This type of system is common to a number of technologies such as rotating C Simple, reliable, biological process. biological contactors and packed bed reactors (bio- towers). These systems are known as C Suitable in areas where large tracts of land attached-growth processes. In contrast, systems in are not available for land intensive treatment which microorganisms are sustained in a liquid are systems. known as suspended-growth processes. C May qualify for equivalent secondary APPLICABILITY discharge standards. TFs enable organic material in the wastewater to be C Effective in treating high concentrations of adsorbed by a population of microorganisms organics depending on the type of medium (aerobic, anaerobic, and facultative bacteria; fungi; used. algae; and protozoa) attached to the medium as a biological film or slime layer (approximately 0.1 to C Appropriate for small- to medium-sized 0.2 mm thick). As the wastewater flows over the communities. medium, microorganisms already in the water gradually attach themselves to the rock, slag, or C Rapidly reduce soluble BOD5 in applied plastic surface and form a film. The organic wastewater. material is then degraded by the aerobic microorganisms in the outer part of the slime layer.
    [Show full text]