Liquid / Solids Separation in Wastewater Treatment & Biosolids Dewatering
Total Page:16
File Type:pdf, Size:1020Kb
LIQUID / SOLIDS SEPARATION IN WASTEWATER TREATMENT & BIOSOLIDS DEWATERING Chemical Products Lab Testing Plant Trials LIQUID / SOLIDS SEPARATION APPLICATIONS Influent Water Clarification Process Water Recycling Primary Wastewater Clarification Secondary Clarification Sludge Thickening Sludge Dewatering LIQUID / SOLIDS SEPARATION UNIT OPERATIONS Clarifiers (Many Types) WATER Filters (Many Types) OR WASTE Dissolved Air Flotation Units WATER Induced Air/Gas Flotation Units Belt Presses Centrifuges SLUDGE Screw Presses DEWATERING Plate and Frame Presses Vacuum Filters (Rotary & Horizontal) LIQUID / SOLIDS SEPARATION PRODUCT TYPES Coagulants (+) Low Mol Wt Organic Inorganic Blended Flocculants (+ , ---, 0 ) High Mol Wt Dry Emulsion Solution OilOil----FreeFree Flocculants COAGULANTS AND FLOCCULANTS Act on Insoluble Particles in Water Oils, Grease, Blood, Insoluble Organics, Clay, Silicates, Metal Oxides/Hydroxides Dirt, Dust, Rust & Metal Filings Can Act on Charged Organic Compounds Anionic Surfactants, Soaps & Dispersants Do Not Act on Most Dissolved Solids Salts, Acids, Nonionic Surfactants, Ammonia or Soluble Organic Compounds such as Sugar, Alcohols, etc. SUSPENSION CHEMISTRY THE KEY TO EFFECTIVE LIQUID / SOLIDS SEPARATION SUSPENDED SOLIDS VARIABLES Surface Charge MOST Charge Density Particle Size IMPORTANCE Composition Particle Density Particle Shape LEAST MICROSCOPIC FORCES ELECTROSTATIC BROWNIAN VAN DER WAALS GRAVITY Colloidal Particle in Water +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ Almost all Particles +++ +++ +++ +++ of Industrial Interest +++ Have a Negative +++ +++ Surface Charge. +++ +++ +++ +++ The Particle is +++ +++ +++ +++ Surrounded by an +++ +++ Equal Number of +++ +++ Positive Counterions. +++ +++ +++ +++ +++ +++ +++ +++ +++ PARTICLES IN WATER REPEL EACH OTHER +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ + +++ +++ +++ +++ ++ +++ +++ +++ Colloidal Particle in Water +++ +++ +++ +++ RATIO +++ +++ +++ OF EXCESS +++ +++ +++ CATIONS +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ EQUAL +++ +++ NUMBER +++ +++ OF POSITIVE AND NEGATIVE +++ CHARGES +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ DISTANCE FROM PARTICLE ADSORPTION OF CATIONIC POLYMER NEUTRALIZES CHARGES AND COLLAPSES FIELDS Van der Waals Force of Attraction Now Stronger Than The Electrical Force of Repulsion NEUTRALIZED PARTICLES COAGULATE 2 STOKE’S LAW: ν = 2Gr (ρ − ρ οοο) / 9η ν = SETTLING RATE G = GRAVITATIONAL CONSTANT r = RADIUS OF PARTICLE ρρρ = DENSITY OF PARTICLE ρρρo = DENSITY OF LIQUID ηηη = VISCOSITY OF LIQUID BIGGER SETTLES FASTER Effect of Decreasing Particle Size MATERIAL DIAMETER SETTLING TIME (in mm) PER METER Gravel 10 1 second Course sand 1 10 seconds Fine sand 0.1 2 minutes Silt 0.01 90 minutes Bacteria 0.001 1 week Colloidal particles 0.0001 2 years Colloidal particles 0.00001 20 years Colloidal particles 0.000001 200 years EFFECT OF COAGULATION AND FLOCCULATION MANY FEWER SMALL LARGE OPTIMUM MIXING FOR CLARIFICATION APPLICATIONS COAGULANT FLOCCULANT NO MIXING EFFLUENT STATIC MIXER LIQUID INFLUENT FAST SLOW SLUDGE CHARGE BRIDGING SETTLING NEUTRALIZATION + OF FLOCS + FLOC INTER-PARTICLE GROWTH COLLISIONS COAGULATION PROCESS Adsorption of Cationic Coagulant Neutralizes Negative Surface Charges Reduces Electrical Barrier Allows Van der Waals Forces to Predominate Interparticle Collisions Brownian Motion Mixing Energy Primary Particles Stick Together FLOCCULATION +++ === SOLIDS FLOCCULANT FLOC COAGULATION AND FLOCCULATION Coagulation Charge Neutralization Rapid Mixing (High Shear) Promotes Interparticle Collisions Flocculation Bridging of Microflocs Slow Mixing (Low Shear) Builds Floc Size TYPICAL CLARIFICATION PROGRAM Add Cationic Coagulant to Neutralize Anionic Charges on Particles Add Anionic Flocculant to Bridge Neutralized Particles NOTES: (1) Coagulants should be be pre-diluted in water for best results (2) Flocculants MUST be pre-diluted in water for any results (3) Add cationic coagulant as far back in the line as possible (4) Do not add anionic flocculant too close to cationic coagulant Primary / Secondary Wastewater Treatment System FINAL OR 2’ EFFLUENT 1’ EFF AERATION WASTE SECONDARY PRIMARY BASIN CLARIFIER CLARIFIER MIXED LIQUOR WATER RETURN ACTIVATED SLUDGE (RAS) WASTE ACTIVATED SLUDGE (WAS) PRIMARY SLUDGE SLUDGE DIGESTER or HOLDING TANK LIQUID PHASE SLUDGE SLUDGE CAKE FILTRATE, CENTRATE, PRESSATE DEWATERING POLYMER CHEMISTRY VERSATILITY IS A MUST COAGULANTS EPI / DMA POLYMER AKA EPICHLOROHYDRIN ---DIMETHYLAMINE OHOHOH CHCHCH 333 -------- CHCHCH ---CH ---CHCHCH ---N- NNN+++ ---------------- []222 222 n --- CHCHCH 333 ClClCl CAS NUMBER: 42751-79-1 POLY [DADMAC] POLYMER AKA POLY DIALLYLDIMETHYL AMMONIUM CHLORIDE AKA POLY [DMDAAC] -------- CHCHCH ---CH ---- CH ---CHCHCH --------- [ 222 222 ] n HHH222CCC CHCHCH 222 NNN+++ . ClClCl --- HHH333CCCCHCHCH 333 CAS NUMBER: 26062-79-3 INORGANIC COAGULANTS Aluminum Sulfate: Al 222(SO 444)))333 Aluminum Chloride: AlCl 333 Polyaluminum Chloride (PAC) Aluminum Chlorohydrate (ACH) Ferric Chloride: FeCl 333 Ferric Sulfate: Fe 222(SO 444)))333 Ferrous Sulfate: FeSO 444 Sodium Aluminate: Na 222AlAlAl 222OOO444 HYDROLYSIS OF ALUMINUM (III) 1,1 1,0 1,4 1,2 Log Soluble [Al] SolubleLog 1,3 2 3 4 5 6 7 8 9 1011 System pH HYDROLYSIS OF IRON (III) 1,0 1,1 1,2 1,4 Log Soluble [Al] SolubleLog 1,3 2 3 4 5 6 7 8 9 1011 System pH DEPRESSION OF SYSTEM pH WITH ALUMINUM or FERRIC SALTS DOSAGE OF CALCULATED 28% ACTIVE FINAL pH 1 ppm 5.2 10 ppm 4.2 100 ppm 3.2 1000 ppm 2.2 ASSUMES UNBUFFERED WATER STARTING AT pH = 7.0 ORGANIC COAGULANTS ADVANTAGES OVER INORGANICS Sludge Volume Reduction Larger, More Stable Floc Less Pinfloc and Carryover Lower Flocculant Requirements Work Over Wide pH Range (2(2----12)12) Do Not Change System pH Lower Caustic Requirements INORGANIC COAGULANTS ADVANTAGES OVER ORGANICS Inorganics Can Produce Very Low Turbidity Waters Because the Metal Hydroxides Can Sweep Fine Particles from Suspension Low Price per Pound Looks Very Attractive to Purchasing Agents FLOCCULANTS NONIONIC MONOMER ACRYLAMIDE O CH 2 = CH - C - NH 2 AM ANIONIC MONOMER ACRYLIC ACID O _ …… + CH 2 = CH - C – O H AA CATIONIC MONOMERS AETAC ADAME.MeCl QQQ-Q---9999 + POLYACRYLAMIDE CCHHCH 222 ---CCHHCH --- CCHHCH 222 ---CH ---CCHHCH 222 ---CCHHCH C=O C=O C=O NNHHNH 222 NNHHNH 222 NNHHNH 222 POLYMER SHORTHAND POLYACRYLAMIDE HHH CCHHCH 222 –––C– CCC C=O NNHHNH 222 n n is about 282,000 @ 20 million Molecular Weight HOMOPOLYMERIZATION YELLOW = ACRYLAMIDE FLOCCULANTS ARE TYPICALLY 200,000+ MONOMERS ANIONIC POLYACRYLAMIDE COPOLYMER aka AM/SA ANIONIC POLYACRYLAMIDE HHH HHH CHCHCH 222 –––C CHCHCH 222 ---C- CCC C=O C=O NHNHNH OOO 222 m NaNaNa + n RANDOM COPOLYMER m + n = 1 COPOLYMERIZATION YELLOW = ACRYLAMIDE; RED = ACRYLATE 25% ANIONIC CHARGE COPOLYMERIZATION YELLOW = ACRYLAMIDE; RED = ACRYLATE 50% ANIONIC CHARGE CATIONIC POLYACRYLAMIDE COPOLYMER aka AM/Q9 CATIONIC POLYACRYLAMIDE HHH R’R’R’ CHCHCH 222 –––C CHCHCH 222 ---C- CCC C=O C=O NHNHNH 222 OOO m (CH 222)))222 + RANDOM COPOLYMER HHH3C NNN CHCHCH 333 m + n = 1 n CHCHCH 333 Cl COPOLYMERIZATION YELLOW = ACRYLAMIDE; BLUE = CAT 10% CATIONIC CHARGE COPOLYMERIZATION YELLOW = ACRYLAMIDE; BLUE = CAT 25% CATIONIC CHARGE COPOLYMERIZATION YELLOW = ACRYLAMIDE; BLUE = CAT 50% CATIONIC CHARGE TYPICAL MOL-WT DISTRIBUTION RESIDUAL THIS PRODUCT WOULD HAVE AN AVG MOL-WT MONOMER OF ~7 MILLION NUMBER OF MOLECULES OF NUMBER 0 1 2 3 4 5 6 7 8 9 101112131415 MOLECULAR WEIGHT IN MILLIONS TYPICAL MOL-WT DISTRIBUTIONS CATIONICS ANIONICS NUMBER OF MOLECULES OF NUMBER 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 MOLECULAR WEIGHT IN MILLIONS LINEAR POLYMER STRUCTURE LIGHTLY BRANCHED POLYMER STRUCTURE HIGHLY BRANCHED POLYMER STRUCTURE CROSSCROSS----LINKEDLINKED POLYMER STRUCTURE ASHLAND WATER TECHNOLOGIES EMULSION POLYMER PRODUCT LINE 20 18 16 14 12 10 8 RELATIVE MOLECULAR WEIGHT MOLECULAR RELATIVE 6 4 -40 -30 -20 -10 0 +10 +20 +30 +40 +50 +60 +70 +80 RELATIVE POLYMER CHARGE GENERAL INDUSTRIAL COAGULANT AIDS 20 18 16 14 12 10 8 RELATIVE MOLECULAR WEIGHT MOLECULAR RELATIVE 6 4 -40 -30 -20 -10 0 +10 +20 +30 +40 +50 +60 +70 +80 RELATIVE POLYMER CHARGE MINING FLOCCULANTS 20 18 16 14 12 10 8 RELATIVE MOLECULAR WEIGHT MOLECULAR RELATIVE 6 4 -40 -30 -20 -10 0 +10 +20 +30 +40 +50 +60 +70 +80 RELATIVE POLYMER CHARGE LOW pH SYSTEM FLOCCULANTS 20 18 16 14 12 10 8 RELATIVE MOLECULAR WEIGHT MOLECULAR RELATIVE 6 4 -40 -30 -20 -10 0 +10 +20 +30 +40 +50 +60 +70 +80 RELATIVE POLYMER CHARGE BIOSOLIDS DEWATERING FLOCCULANTS 20 18 16 14 12 10 8 RELATIVE MOLECULAR WEIGHT MOLECULAR RELATIVE 6 4 -40 -30 -20 -10 0 +10 +20 +30 +40 +50 +60 +70 +80 RELATIVE POLYMER CHARGE DEWATERING VERY YOUNG HIGH F/M PURE BIOSLUDGES 20 18 16 14 12 10 8 RELATIVE MOLECULAR WEIGHT MOLECULAR RELATIVE 6 4 -40 -30 -20 -10 0 +10 +20 +30 +40 +50 +60 +70 +80 RELATIVE POLYMER CHARGE MIXED PRIMARY/SECONDARY DEWATERING FLOCCULANTS 20 18 16 14 12 10 8 RELATIVE MOLECULAR WEIGHT MOLECULAR RELATIVE 6 4 -40 -30 -20 -10 0 +10 +20 +30 +40 +50 +60 +70 +80 RELATIVE POLYMER CHARGE PAPER MILL SLUDGE DEWATERING FLOCCULANTS 20 18 16 14 12 10 8 RELATIVE MOLECULAR WEIGHT MOLECULAR RELATIVE 6 4 -40 -30 -20 -10 0 +10 +20 +30 +40 +50 +60 +70 +80 RELATIVE POLYMER CHARGE PAPER MILL PRIMARY TREATMENT 20 18 16 14 12 10 8 RELATIVE MOLECULAR WEIGHT MOLECULAR RELATIVE 6 4 -40 -30 -20 -10 0 +10 +20 +30 +40 +50 +60