Strength Simulations of Tension Bars for Heavy Lifting
Total Page:16
File Type:pdf, Size:1020Kb
Strength simulations of tension bars for heavy lifting Hållfasthetssimuleringar av dragstag för tunga lyft Arvid Hoikka Faculty of health, science and technology Degree project for master of science in engineering, mechanical engineering 30 credit points Supervisor: Jens Bergström Examiner: Pavel Krakhmalev Date: 2018-08-13 Abstract Proplate, a world leading company, is expert on volume-based cutting and machining of both ordinary steel as well as stainless steel. One of Proplate’s mayor products is tension bars, which is a component made to balance high forces and give stability to structures such as cranes, buildings, bridges and much more. Proplate builds their tension bars in different high strength steel materials, purchased from SSAB, and sells them worldwide. Proplate would like to market themselves better and wishes to produce a catalogue for the maximum load that can be applied to their tension bars, as competitors Pretec and Macalloy, already have for their tension bars. The purpose of the project has been to investigate the tension bars and the maximum load they can withstand before failure. The tension bars have been modeled in the CAD-program Creo Parametric, and then sent to the finite element method program ABAQUS to analyze their structural strength. Three different types of tension bars, and a fourth tension bar (called the walnut-strap) used as a connecting element between some of the tension bars, were investigated. They were modeled with sprints, to hold several tension bars together, and with a construction called loader, to simplify the model load application step. The three different types of tension bars have been analyzed as individual and also when connected to other tension bars. Some tension bars could be directly connected to each other with sprints, and some used the walnut-strap to connect other tension bars to each other. The project was limited to fatigue analyses, which is an important factor to control. This could instead be a great continuation of the project. The results from the strength analyses show that the stress is higher at the surfaces around the hole at the end of each tension bar, and the maximum load the tension bars can withstand depends on this area. The length, thickness and orientation of the tension bar has been varied, and the maximum load that each model can withstand has been listed. The length and direction of the tension bars did not influence the result for singular tension bars, but the thickness did. Both the length and the thickness of the tension bars did influence the result when multiple tension bars where connected to each other. Tables have been derived which shows the absolute maximum load that the tension bars can withstand. Proplate can use the tables in their catalogue, and they can also put a safety factor on the models to make them safer. Another part of the study was to investigate advantages and disadvantages with if the sprints, the connecting element between the tension bars, were replaced with screws instead. The result describes the yield strength needed for the screws and how the structures would behave compared to the current structure. A larger investigation into the effect of using screws may be one way to continue the work after this project, together with other investigations of, for instance, the use of compression bars. Sammanfattning Proplate är ett världsledande företag, som är experter på volymbaserad skärning och tillverkning i både vanligt stål såväl som rostfritt stål. En av Proplates huvudprodukter är deras dragstag, som är en komponent gjord för att balansera stora krafter och tillbringa stabilitet till strukturer, exempelvis lyftkranar, byggnader, broar med mera. Proplate bygger sina dragstag med hjälp av olika typer av höghållfasta stålsorter, köpta från SSAB, och säljer sedan produkterna över hela världen. Proplate skulle vilja marknadsföra sig bättre och önskar att ta fram en katalog över den maximala kraften som kan appliceras på dragstagen, vilket konkurrenter som Macalloy och Pretec redan har för sina dragstag. Syftet med projektet är att undersöka dragstagen och den maximala kraften som dragstagen klarar av innan de går sönder. Dragstagen har modellerats upp i CAD-programmet Creo Parametric, och sedan skickats till finita-elementmetodsprogrammet ABAQUS för hållfasthetsanalyser. Tre olika typer av dragstag, och en fjärde variant (kallad valnöts-staget) som använts som ett sammankopplande element mellan olika typer av dragstagen, har undersökts. De har modellerats tillsammans med sprintar, för att hålla samman flera dragstag, och en konstruktion vid namn loader, som ska förenkla kraftapplikationssteget i analyserna. De tre olika typerna av dragstag har analyserats individuellt och sammankopplade till andra dragstag samtidigt. Några av dragstagen kunde direkt sammankopplas till andra dragstag med hjälp av sprintar, men andra behövde valnöts-staget för att sammankoppla dragstagen till varandra. Projektet var avgränsat så att utmattningslaster, vilket är en mycket viktig faktor, inte analyserades. Resultatet från hållfasthetsanalyserna visar att spänningarna i ytan kring ett hål i kanterna av dragstagen blir som störst, och den maximala kraften som dragstagen kan klara av är beroende på denna yta. Dragstagens längd, tjocklek och orientering i rummet har varierat, och den maximala kraften som varje modell kan klara av har tabellerats. Dragstagens längd och riktning i rummet påverkade inte resultatet när individuella dragstag analyserades, men dess tjocklek gjorde det. Både längden och tjockleken av dragstagen påverkade resultatet när flera dragstag blivit sammankopplade till varandra. Tabellerna visar den absolut maximala kraften som dragstagen kan klara av. Proplate kan använda dessa tabeller till deras katalog, och de kan också lägga till en säkerhetsfaktor på modellerna för att göra dem säkrare. En annan del av analyserna var att undersöka fördelarna och nackdelarna om sprintarna, som är det sammankopplande elementet mellan de olika dragstagen, blivit utbytta mot skruvar istället. Resultatet beskriver vilken sträckgräns som skulle behövas för skruvarnas material och hur strukturen skulle bete sig i jämförelse till den nuvarande strukturen. En större undersökning angående effekten med skruvar kan vara en bra fortsättning på arbetet efter detta projekt, tillsammans med andra undersökningar som exempelvis angående användning av tryckstag. Acknowledgements This report is the result from the work that has been done in the final moments of a Master of Science Degree in Mechanical Engineering, at Karlstad University. This project consists of 30 credit points which has been made on full time during spring 2018, and it has been done at Karlstad University, Karlstad, on behalf of the company Proplate, at Oxelösund. I would like to begin the report by personally thanking both Karlstad University and Proplate for this interesting project that I have been working with these past weeks. I think my project has been an exciting and educational project, and it has given me a lot of new perspectives about how to work when managing this type of projects. The project has been both hard and complicated at times, but also fun and interesting at other times. I would like to begin by thanking Karlstad University, with Jens Bergström and Pavel Krakhmalev. Jens has been my supervisor at Karlstad University, and he has helped me in the project from the start by giving me good ideas about how to do the project, and he has been some “new eyes” that has looked at my results from each week. Pavel Krakhmalev has been my examiner in the project, and I would like to thank him for examining my project. I would also like to thank Proplate for giving me this opportunity to perform this interesting project for a real company. I would like to thank my supervisor at Proplate, Johan Törnqvist, for all his support and during this project. He has helped and supported me by answering all the questions I have been asking during the project, and I think that the communication between us has been good from the start. I hope the results from this report will come to great use for Proplate, and that they will be able to develop their catalogue over the maximum load that can be applied to their tension rods and tension rod systems. Once again, thanks for this interesting project, and for all help. Arvid Hoikka Karlstad University Table of Contents 1. Introduction ......................................................................................................................................... 1 1.1 Frameworks and stability .............................................................................................................. 1 1.2 Tension Bars .................................................................................................................................. 1 1.2.1 General information about tension bars ................................................................................ 1 1.2.2 Areas of application ................................................................................................................ 2 1.2.3 The company Proplate AB .................................................................................................... 11 1.2.4 Other companies that makes straps .................................................................................... 14 1.2.5 Rules, requirements and problems with tension rods ......................................................... 17 1.3 Project description with goal and purpose