Sheet Metalworking Terminology Sheet-Metal Characteristics • Elongation – the Capability of the Sheet Metal to Stretch Without Necking and Failure

Total Page:16

File Type:pdf, Size:1020Kb

Sheet Metalworking Terminology Sheet-Metal Characteristics • Elongation – the Capability of the Sheet Metal to Stretch Without Necking and Failure ME477 Fall 2004 Introduction SHEET • Cutting and forming thin sheets of metal usually performed as cold working METALWORKING • Sheet metal = 0.4 (1/64) to 6 mm (1/4in) thick 1. Cutting Operation • Plate stock > 6 mm thick 2. Bending Operation • Advantage - High strength, good dimensional 3. Drawing accuracy, good surface finish, economical mass 4. Other Sheet-metal Forming production (low cost). 5. Dies and Presses • Cutting, bending, drawing γ 6. Sheet-metal Operation ε1 Localized necking 7. Bending of Tube Stock θ=55° Because ν=0.5 in plasticity, ε =-2ε =-2ε ε3,ε2 ε1 ε ε2 1 2 3 2θ 1 2 Sheet Metalworking Terminology Sheet-metal Characteristics • Elongation – the capability of the sheet metal to stretch without necking and failure. • “Punch-and-die” • Yield-point elongation – Lüeder’s bands on Low-carbon steels and Al-Mg alloys. – Tooling to perform cutting, bending, and Lüder’s bands can be eliminated by cold-rolling the drawing thickness by 0.5-1.5%. Yupper • “Stamping press” Ylower – Machine tool that performs most sheet metal • Anisotropy operations – Crystallographic and mechanical fibering anisotropy • Grain Size effect on mechanical properties • “Stampings” • Residual Stress, Springback and Wrinkling – Sheet metal products • Testing method – Cupping test – Forming Limit Diagram 3 4 1. Cutting Operation Cutting Operation • Cutting operation – Plastic deformation Punch – Penetration (1/3 thickness) t –Fracture • Shearing using a machine called power Die shear or square shear. c • Blanking – shearing a closed outline Rollover part (desired part called blank) Burnish • Punching – sheared part is slag (or scrap) and remaining stock is a desired part Fracture zone Burr 5 6 part Kwon 1 ME477 Fall 2004 Analysis Die, blank and punch size • Clearance - 4-8% but sometime 1% of thickness For a round blank, – Too small – fracture does not occur requiring more force. Blank punch diameter=Db-2c Blank die diameter = D – Too large – Get pinched and cause an excessive burr b For a round hole, • Clearance: c=a*t D Hole punch diameter=D – Metal group a h h c c Hole die diameter = D +2c – 1100S and 5052S aluminum alloys, all tempers 0.045 h Db Angular clearance of 0.25o to 1.5o – 2024ST and 6061ST aluminum alloys; brass, soft cold rolled steel, soft stainless steel 0.060 Cutting forces: F=S*t*L=0.7*TS*t*L – Cold rolled steel, half hard; stainless steel, where S= Shear strength half hard and full hard 0.075 t=thickness L=length of cutting edge Angular clearance TS =Ultimate tensile strength 7 8 Other Cutting Operations 2. Bending Operations part • Cutoff and Parting part • V-bending part scrap • Slotting, Perforating and Notching • Trimming, Shaving and Fine Blanking • Edge Bending Trimming Shaving Fine Blanking 9 10 Analysis of Bending I Analysis of Bending II • Bend Allowance - length of a neutral axis • Compensate for spring back A BA = 2π ()R + K t 360 ba – Overbending A = Bend Angle – Bottoming – squeezing the part at the end of R = Bend Radius the stroke 2 A’ Kbf ()TS wt A t = Stock Thickness F = • Bending force: D K ba = A Factor to Estimate Stretch w –Kbf=1.33 for V-bending Kba=0.33 if R<2t and Kba=0.5 if R≥2t A' − A' –Kbf=0.33 for Edge-bending • Springback SB = b ' D Ab – w= width of part A' = includedangleof thesheet metalpart – t=stock thickness ' D Ab = included angleof the bending tool – D=die opening dimension 11 12 Kwon 2 ME477 Fall 2004 Other Bending Operation 3. Drawing • Flanging • Basic drawing operation – a cup-shape • Hemming part • Seaming F Fh F • Curling h Dp • Channel, • U-bending Air bending, c c D Offset bending, p Corrugating and Db Tube forming 13 14 Detail Steps of Drawing Analysis of Drawing v F v F Fv Fv v v • Measure of Drawing D – Drawing ratio:DR = b feasible if DR<2 Dp F F Db − Dp v v v – Reduction:r = feasible if r<0.5 Db 1. Initial Contact 2. Bending – Crude measures of the severity of a deep F drawing operation Fv v v Fv Fv ⎛ D ⎞ v ⎜ b ⎟ • Drawing Forces: F = πDpt()TS − 0.7 3. Straightening ⎜ D ⎟ Max at 1/3 length ⎝ p ⎠ 2 2 • Holding Force: Fh = 0.015Yπ [Db − ()Dp + 2.2t + 2Rd ] 4. Friction & 5. Final Shape Compression 15 16 Other Drawing Operation Forming-Limit Diagram • A grid pattern of circles, typically 2.5 to 5mm in diameter, • Redrawing produced by electrochemical or photoprinting. • Drawing without a Blankholder • After drawing, the circles are observed for failure. • The major strain is on the major direction and magnitude • Not cylindrical cups of strain • Defects (Fig. 20.24) – Wrinkling in the flange 120 Failure – Wrinkling in the wall Major Axis Major Axis Low Carbon Steel80 – Tearing High Strength Steel Simple – Earing – anistropy in sheet metal Minor Axis Minor Axis 60 Tension Major strain Al alloy – Surface scratch Pure Equal shear Safe biaxial 0 0 80 17 -60 Minor strain 18 Kwon 3 ME477 Fall 2004 4. Other Sheet-Metal Operations 5. Dies and Presses • Stamping Die • With Metal Tooling – Punch – Ironing –Die Punch Holder – Coining and Embossing –Stripper Punch Stripper – Lancing •Types –Simple Strip stock – Compound Guide pin die • Using hydrostatic pressure – Progressive – Guerin Process – Rubber pad •Press Die holder – Hydroforming - Hydraulic fluid – Hydraulic Press base Blank – Mechanical 19 20 6. Other Types Sheet Metal Stretch forming and Roll bending & Operations Forming • Stretch Forming • Roll Bending and Forming • Spinning– make cone, hemisphere, tubes – Conventional – Shear – Tube • High-Energy-Rate Forming – Explosive Forming + – Electrohydraulic forming + + – Electromagnetic forming 21 22 Spinning & Explosive forming 7. Bending of Tube Stock • Bending without collapse and fold • To avoid flattening Mandrel Clamp Mandrel Clamp – R(bend radius) > 1.5D(tube diameter) with a mandrel – R>3D without mandrel. Roller tool Shear Spinning Conventional Spinning F •Types – Stretch bending Explosive – Draw bending (rotating form) – Compression bending (form block) – Roll bending (similar to sheet metal) Explosive forming Tube Spinning 23 24 Kwon 4.
Recommended publications
  • Magazine Lip Forming Tools
    MAGAZINE LIP FORMING TOOLS Brownells Lip Forming Anvil and Yoke help the gunsmith alter original equipment-style, .45 caliber, 1911 Auto magazines to properly feed ammuni- tion with semi-wadcutter bullets. Issue-style feed lips are designed for round nose, 230 grain, jacketed bul- lets which have a long ogive and ride up the barrel’s feed ramp easily. Rounds loaded with shorter, lighter, blunt nosed or semi-wadcutter bullets can ei- ther run into the feed ramp as the slide carries them forward or “stand up” too soon and cause a smokestack jam. Changing the lip contour with these tools causes the magazine to release the rear of the cartridge sooner so the extractor can pick it up and help direct it up the ramp and into the chamber. Most aftermarket magazines like those made by Metalform, Wilson, Mc- Cormick, Pachmayr and others, already have a similar feed lip shape. The Lip Forming Anvil and Yoke can often be used to restore the lips on these magazines if they get damaged. READ & FOLLOW THESE m WARNING m Never attempt to disassemble or reassemble a firearm unless you are INSTRUCTIONS absolutely certain that it is empty and unloaded. Visually inspect the chamber, the magazine and firing mechanism to be absolutely certain that no ammunition remains in the firearm. Disassembly and reas- BROWNELLS GUNSMITHS DATA RING BINDER GUNSMITHS BROWNELLS DATA sembly should follow the manufacturer’s instructions. If such instruc- tions are not immediately available, contact the manufacturer to see if they are available. If they are not available at all, then you should 200 S.
    [Show full text]
  • Sheet Metal Operations - Bending and Related Processes
    Sheet metal operations - Bending and related processes R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Table of Contents 1.Quiz-Key ........................................ Error! Bookmark not defined. 1.Bending and related processes: 1.1 Sheet metal bending Bending of sheets and plates is widely used in forming parts such as corrugations, flanges, etc. Bending is a forming operation in which a sheet metal is subjected to bending stress thereby a flat straight sheet is made into a curved sheet. The sheet gets plastically deformed without change in thickness. Die and punch are used for bending. If a v shaped die and punch are used, the bending is called v-bending. If the sheet is bent on the edge using a wiping die it is called edge bending. In this process, one end of the sheet is held like a cantilever using a pressure pad and the other end is deformed by a punch which moves vertically down, bending the sheet. Usually, edge bending is done in order to obtain an angle of 90o. During bending of a strip, the material outward of the neutral axis is subjected to tensile stress. Material inside is subjected to compressive stress. Bend radius R is the radius of curvature of the bent sheet inside the bending. The neutral axis remains at the center of the thickness of the sheet for elastic bending. For plastic bending, however, the neutral axis shifts towards the inside of the bend. The rate of elongation of outer fibers is greater than the rate of contraction of inner fibers. Therefore, there is a thickness reduction at the bend section.
    [Show full text]
  • Design of an Electrically Powered Bending Machine
    Proceedings of the International Conference on Industrial Engineering and Operations Management Rabat, Morocco, April 11-13, 2017 Design of an electrically powered bending machine: Case of Zimbabwe Tawanda Mushiri Department of Mechanical Engineering University of Johannesburg P.O Box APK 524 Johannesburg South Africa [email protected], [email protected] Definite Shumba Department of Mechanical Engineering University of Zimbabwe P.O Box MP167 Mt Pleasant Harare Zimbabwe [email protected] Charles Mbohwa Faculty of Engineering and the Built Environment University of Johannesburg P.O Box APK 524 Johannesburg South Africa [email protected] Abstract This paper seeks to carry out design of a small scale electrically powered bending machine for a developing nation, case for Zimbabwe. The bending of metal is of great importance in the manufacture of products such as nut shelling machines and maize shelling machines. Currently being used at Company X engineering is a manual bending machine with a single operation hence this design will help to increase the number of metals being bent, an increase in the efficiency and production. The paper deals with manufacturing or bending of sheet metal by using power operated sheet bending machine. Especially discussion made the productivity analysis of manually or power operated sheet bending machine. Considering manual operation is replaced by power operated devices. It also gives information about limitation of manually operated sheet bending machine and power operated sheet bending machine. The existing machines are limited to a single operation. The aim of the research is to increase the number of bent parts and to place an adjustable table to suit the height of the user thereby reducing back pain internal injuries in the long run.
    [Show full text]
  • Ats 34 and 154 Cm Stainless Heat Treat Procedure
    ATS 34 AND 154 CM STAINLESS HEAT TREAT PROCEDURE This is an oil hardening grade of steel which will require oil quenching. The oil should be a warm, thin quenching oil that contains a safe flash point. Olive oil has been used as a sub­ stitute. As a rule of thumb, there should be a gallon of oil for each pound of steel. For , warming the oil before quenching, you may heat a piece of steel and drop it in the oil. 1.) Wrap blades in stainless tool wrap and leave an extra two inches on each end of the package. (This will be for handling purposes going into the quench as described below.) We suggest a double wrap for this grade. The edges of the foil should be double crimped, being careful to avoid hav­ ing even a pin hole in the wrap. 2 . ) Place in the furnace and heat to 1900"F. After reaching this temperature, immediately start timing the soak time of 25-30 minutes. 3.) After the soak time has elapsed, very quickly and carefully pull the package out with tongs~ place over the quench tank and snip the end of the package allowing the blades to drop into the oil. You should have a wire basket in the quench tank for raising and lowering the blades rather than have them lie s till. Gases are released in the quench and would form a "trap" around the steel unless you keep them movi~g for a minute or so. *IMPORTANT--It is very important that the blades enter the oil quench as quickly as possible after leaving the furnace ! Full hardness would not be reached if this step is not followed.
    [Show full text]
  • Improved Coining Force Calculations Through Incorporation of Key Process Parameters Dominique Cotton, André Maillard, Joël Kaufmann
    Improved coining force calculations through incorporation of key process parameters Dominique Cotton, André Maillard, Joël Kaufmann To cite this version: Dominique Cotton, André Maillard, Joël Kaufmann. Improved coining force calculations through incorporation of key process parameters. IDDRG, Oct 2020, BUSAN, South Korea. pp.012003, 10.1088/1757-899X/967/1/012003/meta. hal-03117270 HAL Id: hal-03117270 https://hal.archives-ouvertes.fr/hal-03117270 Submitted on 21 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IOP Conference Series: Materials Science and Engineering PAPER • OPEN ACCESS Improved coining force calculations through incorporation of key process parameters To cite this article: D Cotton et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 967 012003 View the article online for updates and enhancements. This content was downloaded from IP address 195.221.202.65 on 15/01/2021 at 13:35 International Deep-Drawing Research Group (IDDRG 2020) IOP Publishing IOP Conf. Series: Materials Science and Engineering 967 (2020) 012003 doi:10.1088/1757-899X/967/1/012003 Improved coining force calculations through incorporation of key process parameters D Cotton1,3, A Maillard2, and J Kaufmann2 1 Arts et Métiers Institute of Technology, LABOMAP, HESAM University, 71250 Cluny, France 2 CETIM – Technical Centre for Mechanical Industries – France 3 Author to whom any correspondence should be addressed E-mail address: [email protected] Abstract.
    [Show full text]
  • Noga Head Office
    Noga Head Office NOGA ENGINEERING & TECHNOLOGY (2008) LTD Noga Engineering and Technology was established in 1980. Over the years the company has grown to become the world leader in the manufacturing of three main lines: simply sophisticated Deburring Systems Holding Systems Cutting Fluid Applicators Noga’s strongest points are product design and development, quality and service. Our products are sold in more than 60 countries either through our own companies or a network of exclusive agents. All NOGA products meet the strict requirements of ISO 9001 and ISO 14001. We invite you to visit our web site: www.noga.com for further information. NOGA reserves the right to make changes in any of its products without prior notice. © Copyright NOGA Engineering & Technology (2008) Ltd. WARNINGS Blades are sharp and can cut. Blades can break causing flying shards. Sharp edges and flying shards can cause injury. Wear safety googles (both user and bystanders). Do not pry or bend blades. Keep away from children. Do not regrind blades. All rights reserved. No part of this publication may be reproduced, transcribed, stored in an electronic retrieval system, translated into any language or computer language, or be transmitted in any form whatsoever without the prior written consent of the publisher. simply sophisticated Deburring Systems HEAVY DUTY 3-8 CERAMIC 39-44 LIGHT DUTY 9-14 SETS & KITS 45-50 COUNTERSINKS 15-26 SPECIALTY TOOLS 51-54 SCRAPERS 27-30 SPECIALTY BLADES 55-56 DIAMOND FILES 31-32 CHIP HOOKS 57-59 DOUBLE-EDGE 33-36 PLUMBING 60-65 SINGLE EDGE 37-38 INDEX 66 simply sophisticated Deburring Tools simply sophisticated 1 Contents H.D.
    [Show full text]
  • Metalworking & Forging Safety and Tool Use Certification (STUC
    Metalworking & Forging Safety and Tool Use Certification (STUC) STUC-at-Home; Fall 2020 Thank you for registering for 1 or more Department STUCs! Fall 2020 OSA dates are September 14- December 23. We look forward to having you in the Shops soon! In this STUC packet, you will find: 1. CIADC Health Safety Guidelines (Before Entering and In-Shop) • Our guide on health safety measures that Staff, Students, Members, and Visitors must follow to ensure the health safety of everyone while at CIADC. We appreciate your cooperation with this! For more details about our Healthy Safety Plan, click here. 2. Metal Shop-Specific PPE – Shared vs. Purchase • What PPE is required in the Metal Shop, and what we require/recommend YOU purchase 3. Metalworking & Forging Department STUC • **NEW** Items in Department • General and Department-specific information for you to know 4. Metalworking & Forging Department Material & Supply Purchase Form • What is currently offered 4-Sale in the Metal Shop 5. Metalworking & Forging Department Resource List • Where else to purchase material, supplies, PPE, etc. specific to Department 6. **NEW** Members: CNC Machining Services 7. OSA Reservation Procedure • To ensure we do not exceed the maximum safe amount of people in Shops during OSA, we are implementing an OSA reservation system 8. Programming Schedule • Class and OSA schedule for the upcoming term To Complete STUC: 1. Submit shop-specific online STUC quiz (click here for link) 2. Pre-Pay for 5-OSAs (Access Members only; will be invoiced) 3. Renew Liability Waiver (as
    [Show full text]
  • Mechanical Metalworking: from Manual to Computer-Based Processes
    August 04, 2021 Mechanical metalworking: from manual to computer-based processes Just like in an ordinary kitchen, there is more to the steelmaker’s kitchen than just the processes where high temperature plays a crucial role, such as boiling, roasting or baking. Before a dish can be served, it needs additional work to make it more appealing. The same is true of metals. Prior to their use, plates, tubes, rods and complex steel castings are subject to cold forming by special metalworking machines and lathes, which become more and more sophisticated each year. History of mechanical metalworking Let’s look first into the history of mechanical metalworking and its origins. Unlike many other processes that are unique to steelmaking, some ideas related to the mechanical working of metal surfaces came from related areas. The ancient Egyptians had devices for drilling holes in stones. Wood machining equipment that later evolved into turning lathes existed in the sixth and seventh centuries BC. Yet these types of processes were not applied to metals for hundreds of years. For a long time, metal surface treatment had several restricting factors. First, it required harder tools. Second, small-batch production did not need high-precision metalworking. Third, the industrial revolution and mass production of uniform products only became a reality in the 18th-19th centuries. The third reason was a key prerequisite for the appearance of mechanical metalworking. Smiths that made goods for individual orders gave way to large industrial manufacturers and factories that had the capacity to produce large quantities of uniform metal goods. Gunsmiths were among the first to appreciate the importance of standardised metalworking.
    [Show full text]
  • Fire Protection of Steel Structures: Examples of Applications
    Fire protection of steel structures: examples of applications Autor(en): Brozzetti, Jacques / Pettersson, Ove / Law, Margaret Objekttyp: Article Zeitschrift: IABSE proceedings = Mémoires AIPC = IVBH Abhandlungen Band (Jahr): 7 (1983) Heft P-61: Fire protection of steel structures: examples of applications PDF erstellt am: 06.10.2021 Persistenter Link: http://doi.org/10.5169/seals-37489 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch J% IABSE periodica 2/1983 IABSE PROCEEDINGS P-61/83 69 Fire Protection of Steel Structures — Examples of Applications Protection contre le feu des structures acier — Quelques exemples d'applications Brandschutz der Stahlkonstruktionen — Einige Anwendungsbeispiele Jacques BROZZETTI Margaret LAW Dir., Dep.
    [Show full text]
  • WELD 1030 Pattern Development
    PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS PATTERN DEVELOPMENT WELD 1030 Class Hours: 2.0 Credit Hours: 2 Laboratory Hours: 2.0 Revised: Spring 2017 Catalog Course Description With an emphasis on the practical applications of pattern development, students construct basic forms using parallel line pattern development techniques. The course also introduces students to tools of the trade, geometric construction and bend allowance computations. Prerequisites NONE Corequisites MATH 1010 or MATH 1530 or MATH 1630 or MATH 1710 or MATH 1720 or MATH 1730 or MATH 1830 or MATH 1910 Textbook(s) and Other Course Materials Sheet Metal, Latest Edition, Leo A. Meyer, American Technical Publishers, Week/Unit/Topic Basis Week Topic 1. Introduction, Sheet Metal Working Tools and Machinery 2. Fasteners for Sheet Metal, Using Patterns and Cutting Metal 3. Punching, Drilling, and Riveting Folding Edges and Making Seams 4. Turning, Barring and Raising, Forming, Crimping, Beading and Grooving 5. Soldering 6. Drawing for Pattern Drafting 7. Making and Notching Simple Patterns 8. Parallel Line Development 9. Lab Projects 10. Review / Final Exam Welding Technology General Outcomes (Educational objectives) 1. Reach their full potential in the welding field. 2. Use the correct procedure in setting up equipment, and the skills used in welding. 3. Use Shielded Metal Arc Welding, Gas Metal Arc Welding, and Gas Tungsten Arc Welding machines in both pipe and plate welding. 4. Explain the physical characteristics of different metals 5. Develop the cognitive and physical skills necessary to pass certification tests. 6. Apply welding knowledge to effectively utilize problem solving skills as it relates to the operation of equipment in the industry.
    [Show full text]
  • A Comparison of Thixocasting and Rheocasting
    A Comparison of Thixocasting and Rheocasting Stephen P. Midson The Midson Group, Inc. Denver, Colorado USA Andrew Jackson Arthur Jackson & Co., Ltd. Brighouse UK Abstract The first semi-solid casting process to be commercialized was thixocasting, where a pre-cast billet is re-heated to the semi-solid solid casting temperature. Advantages of thixocasting include the production of high quality components, while the main disadvantage is the higher cost associated with the production of the pre-cast billets. Commercial pressures have driven casters to examine a different approach to semi-solid casting, where the semi-solid slurry is generated directly from the liquid adjacent to a die casting machine. These processes are collectively referred to as rheocasting, and there are currently at least 15 rheocasting processes either in commercial production or under development around the world. This paper will describe technical aspects of both thixocasting and rheocasting, comparing the procedures used to generate the globular, semi-solid slurry. Two rheocasting processes will be examined in detail, one involved in the production of high integrity properties, while the other is focusing on reducing the porosity content of conventional die castings. Key Words Semi-solid casting, thixocasting, rheocasting, aluminum alloys 22 / 1 Introduction Semi-solid casting is a modified die casting process that reduces or eliminates the porosity present in most die castings [1] . Rather than using liquid metal as the feed material, semi-solid processing uses a higher viscosity feed material that is partially solid and partially liquid. The high viscosity of the semi-solid metal, along with the use of controlled die filling conditions, ensures that the semi-solid metal fills the die in a non-turbulent manner so that harmful gas porosity can be essentially eliminated.
    [Show full text]
  • PRESS BRAKE CAPACITIES SPRINGBACK a True 90° Air Bend, the Tooling Must Formed Flanges and Causing Distortion
    www.e-ci.com 1 CONTENTS 2 Safety 2 Bending on a CI Press Brake 8 Press Brake Bending Capacity 9 Mild Steel Air Bend Capacity Chart 13 Bending Factors Chart 17 Punching on a Press Brake SAFETY Good safety practices and proper training of each press brake operator is mandatory. Comprehensive operator, maintenance and safety manuals provide instruction on proper procedures and safety methods and BENDING ON A CINCINNATI should be with the press brake at all times. Warning signs and a checklist PRESS BRAKE of operator safety guidelines should be placed at strategic locations on PRESS BRAKE RATING For thicker than 1/2” mild steel, it may the press brake. be necessary to increase the vee die All CINCINNATI press brakes are opening up to ten times the material Users are responsible for proper rated for maximum bending pressure, thickness to minimize cracking of the installation and continued use of or tonnage. Tonnage can then be material. To determine the vee opening point-of-operation safeguarding converted into bending capacities for a simple 90° bend, multiply the and other machine guards. This through an understanding of basic metal thickness by eight. The answer helps assure operator safety factors affecting the formability of is then rounded to the next higher 1/8” and compliance with OSHA metal. Bending factors, or “rules of figure. For example: 14ga. (.075”) x 8 requirements. thumb,” for press brake forming are = .600”. This is rounded to a 5/8” vee based on using mild steel (60,000 Each new CINCINNATI press opening. psi maximum tensile strength).
    [Show full text]