Metalworking & Forging Safety and Tool Use Certification (STUC

Total Page:16

File Type:pdf, Size:1020Kb

Metalworking & Forging Safety and Tool Use Certification (STUC Metalworking & Forging Safety and Tool Use Certification (STUC) STUC-at-Home; Fall 2020 Thank you for registering for 1 or more Department STUCs! Fall 2020 OSA dates are September 14- December 23. We look forward to having you in the Shops soon! In this STUC packet, you will find: 1. CIADC Health Safety Guidelines (Before Entering and In-Shop) • Our guide on health safety measures that Staff, Students, Members, and Visitors must follow to ensure the health safety of everyone while at CIADC. We appreciate your cooperation with this! For more details about our Healthy Safety Plan, click here. 2. Metal Shop-Specific PPE – Shared vs. Purchase • What PPE is required in the Metal Shop, and what we require/recommend YOU purchase 3. Metalworking & Forging Department STUC • **NEW** Items in Department • General and Department-specific information for you to know 4. Metalworking & Forging Department Material & Supply Purchase Form • What is currently offered 4-Sale in the Metal Shop 5. Metalworking & Forging Department Resource List • Where else to purchase material, supplies, PPE, etc. specific to Department 6. **NEW** Members: CNC Machining Services 7. OSA Reservation Procedure • To ensure we do not exceed the maximum safe amount of people in Shops during OSA, we are implementing an OSA reservation system 8. Programming Schedule • Class and OSA schedule for the upcoming term To Complete STUC: 1. Submit shop-specific online STUC quiz (click here for link) 2. Pre-Pay for 5-OSAs (Access Members only; will be invoiced) 3. Renew Liability Waiver (as needed; to complete at CIADC) rev090920 PLEASE, SELF-SCREEN PRIOR TO ENTERING Have you had a Have you recently been temperature over in close contact with 100°F, felt feverish someone who has been (e.g., body aches, diagnosed with chills), or used a fever reducer in the previous COVID-19? 24 hours? Do you have a new Do you have a new or cough that you cannot worsening sore attribute to another throat that you cannot health condition? attribute to another health condition? Do you have new Have you recently shortness of breath developed a complete X that you cannot attribute loss of smell or to another health taste? condition? IF YOU ANSWERED YES TO ANY OF THESE QUESTIONS, PLEASE STAY HOME! Metal Shop-Specific PPE With health safety in mind, we have made a few adjustments to what PPE CIADC offers. Highlighted items are not provided by CIADC, but select items are available for sale at CIADC, as noted: General • CIADC will have disposable face coverings for sale ALL Shops • CIADC offers shared safety glasses for use • CIADC offers shared clear face shields for use • CIADC offers shared earmuff hearing protection for use • CIADC offers disposable ear plugs for use • CIADC temporarily will not have dust masks available • CIADC temporarily will not have N95 respirators available • CIADC temporarily will not have N95 + Organic Vapor respirators available Additional Metalworking • CIADC offers shared flame-retardant jackets for use • CIADC offers shared #5 shade face shields for use • CIADC offers shared #9-13 shade welding helmets for use • CIADC will not offer all-leather work gloves for common use, but will have them for sale Although all hard-surface shared PPE will be disinfected at the end of every Class and OSA by CIADC Staff, we recommend frequent users of CIADC purchase the following PPE. All can be found easily on Amazon -or- from vendors listed on your Resource List: 1. Unlined, all-leather work gloves (CIADC has these for sale) 2. Safety glasses (ANSI Z87.1 rating) 3. Earmuff hearing protection (only if you prefer earmuffs to foam ear plugs) 4. Flame retardant jacket, leather or treated cotton. Must be full front, back, and sleeves 5. Flame retardant apron, leather or treated cotton. Only when forging and prefer an apron to a jacket 6. #5 shade face shield (oxy/acetylene welding, cutting and plasma cutting) 7. #9-13 shade auto darkening welding helmet (MIG, TIG, and Stick welding) rev090920 Metalworking & Forging Department STUC New in Metalworking & Forging 1. Mitre gauges for 6” belt sander for truing up straight and 45deg. Cuts 2. Plasma water table to contain sparks and reduce smoke/fumes 3. Additional fan in ARC bay to exhaust fumes General CIADC Orientation and Procedures 1. STUC Reminders • Department STUCs must be renewed every Term you want to remain active in a Shop, as a safety refresher and new tool/process orientation • This STUC is NOT intended as instruction, but as a refresher • In general, you should be comfortable working with Department-specific tools and processes, both safely and properly • Learn new tools and processes in Classes/Workshops/Private Instruction 2. Know the Location of these Important Items/Areas in Shop • Announcement Board • Shared PPE • First Aid Kit • First Aid Blanket • Fire Extinguishers • 4-Sale Material and Supplies • Scrap Areas • Student/Member Material and Project Storage Areas • Broom and Dustpans 3. Open Studio Access (OSA) • OSA is NOT instruction time • It’s OK to ask the Monitor for safety and tool setup refreshers • Learn new tools and processes in Classes/Workshops/Private Instruction • OSA is Monitored for safety and proper tools use • Monitor is voice of CIADC during OSA • Pay for OSA at Front Desk before entering Shop • Give Receipt to Monitor rev090920 • If certified, and using more than 1 Department during same OSA work block, take OSA receipt with you from shop to shop; giving to each Department Monitor as you go 4. Material / Supply Purchases • Fill out Department Purchase Form (with Monitor assistance, as necessary) • Make payment at Front Desk • Give receipt to Monitor General and Department-Specific Safety 1. CIADC Safe Practices • Industrial processes: inherently dangerous work environment • At CIADC, safety is priority #1 • Know how to react to accident or injury INSTINCTIVELY; this is why we require STUC renewal • Can have it all: creativity, productivity, fun, AND a safe workplace 2. Best Practices to Prevent Accidents and Injuries • Common sense: Use your head! • Awareness of self and others; make sure you set up so you can work safe and others can work safely around you • If unsure of tool or process, choose another method • Ask Monitor for safety refresher/suggestions • Group environment – ask for assistance if needed! 3. Personal Clothing • Natural fibers (cotton, wool), long pants, closed-toe shoes MANDATORY while working in ALL Departments 4. Department-Specific PPE • Safety Glasses (-or- prescriptions if full eye coverage): wear anytime using hand -or- powers tools where material becomes airborne at LOW velocity o Metal: forge, drill press, bandsaw, corded/cordless drill, etc. • Safety Glasses + Clear Face Shield: wear double eye/face protection anytime using power tools (hand power, or stationary) where material becomes airborne at HIGH velocity o Metal: chop saw, bench grinder/wire brush, Dremel, die grinder, right angle grinder, stationary and handheld belt sanders, etc. • #5 Welding Shade o Metal: anytime using oxy-acetylene torch, oxy-propane torch, -or- plasma cutter • #9-13 Welding Shade o Metal: anytime using MIG, TIG, Stick, -or- Flux-Cored welder • Flame Retardant Jacket o Metal: torch use, plasma cutter, MIG/TIG/Stick/Flux-Core welders, EVERYTHING in Grinding Room, forging (-or- apron) • Flame Retardant Apron o Metal: forging rev090920 • Hearing Protection: Earmuff-style -or- foam ear plugs anytime you say “it’s loud in here” • Respiratory Protection o N95 Respirator - Metal: general fabrication (particulates, welding and brazing fumes) o N95 + Organic Chemical Respirator – ALL Shops: finishing processes using solvent-based products • Monitors will remind for required and suggested PPE, as necessary 5. Minor Accidents / Injuries • First Aid Kit location • Includes items for: minor cuts, burns, particles in the eye 6. More Serious Accidents / Injuries • Call 911 for outside help • CIADC address: posted on First Aid Kit • Notify Front Desk that outside help called • Never leave injured person unattended 7. Emergency First Aid Blanket • First Aid Blanket location • Used to smother flames • Used as warming blanket to prevent shock of injured person 8. Fire Extinguishers • Fire Extinguisher locations in Department • Type A, B, C for all flame sources (combustible, chemical, electrical) • Proper use (P.A.S.S.): Pull pin, Aim at base of flame, Squeeze handles, use Sweeping motion 9. Emergency Building Evacuation • East and west Emergency Exit locations in all Shops • Do NOT use Freight Elevator for emergency exit • Outside Meeting Location: north across Schreiber Ave, at Chicago Streets and Sanitation Recycling Center Drop-Off Area (near large Blue Recycling Dumpsters) 10. All Studio Users: Extra Eyes and Ears for CIADC • Safe work conditions • Tool condition • Material and Supply inventory • Notify any concerns to Monitor immediately! 11. Headphones in Shop • MUST be able to hear Monitor • NO dangling headphone wires 12. Equipment “Cheat” Sheets • Reminders for proper tool use safety, setup, and capacities • NOT to replace instruction rev090920 13. Flammable materials, cleaners, finishing supplies, etc. to be labeled and located in YELLOW Flammable Material Cabinet 14. Clean-Up (10-15 Minutes Before End of OSA -or- before you leave Shop) • Put tools, material, projects, and scrap away • Sweep (Individual and common work areas) • A CLEAN workspace is a SAFE workspace • Many people using facility; keep the common workspace efficient and effective for EVERYONE Personal Deliveries, Personal Tool Use, and Storage 1. Deliveries • No outside material / supply purchases delivered to CIADC unless approved by Department Manager in advance • If approved, delivery MUST be scheduled to be received by purchaser or Department Manager during CIADC open hours 2. Personal Tool Use at CIADC • Personal non-powered hand tool use is OK • Personal power hand tools (electric, pneumatic, other) MUST be approved by Department Manager for safe condition prior to using • Personal powered -or- non-powered, freestanding “shop” equipment NOT allowed at CIADC 3.
Recommended publications
  • Mechanical Metalworking: from Manual to Computer-Based Processes
    August 04, 2021 Mechanical metalworking: from manual to computer-based processes Just like in an ordinary kitchen, there is more to the steelmaker’s kitchen than just the processes where high temperature plays a crucial role, such as boiling, roasting or baking. Before a dish can be served, it needs additional work to make it more appealing. The same is true of metals. Prior to their use, plates, tubes, rods and complex steel castings are subject to cold forming by special metalworking machines and lathes, which become more and more sophisticated each year. History of mechanical metalworking Let’s look first into the history of mechanical metalworking and its origins. Unlike many other processes that are unique to steelmaking, some ideas related to the mechanical working of metal surfaces came from related areas. The ancient Egyptians had devices for drilling holes in stones. Wood machining equipment that later evolved into turning lathes existed in the sixth and seventh centuries BC. Yet these types of processes were not applied to metals for hundreds of years. For a long time, metal surface treatment had several restricting factors. First, it required harder tools. Second, small-batch production did not need high-precision metalworking. Third, the industrial revolution and mass production of uniform products only became a reality in the 18th-19th centuries. The third reason was a key prerequisite for the appearance of mechanical metalworking. Smiths that made goods for individual orders gave way to large industrial manufacturers and factories that had the capacity to produce large quantities of uniform metal goods. Gunsmiths were among the first to appreciate the importance of standardised metalworking.
    [Show full text]
  • A Comparison of Thixocasting and Rheocasting
    A Comparison of Thixocasting and Rheocasting Stephen P. Midson The Midson Group, Inc. Denver, Colorado USA Andrew Jackson Arthur Jackson & Co., Ltd. Brighouse UK Abstract The first semi-solid casting process to be commercialized was thixocasting, where a pre-cast billet is re-heated to the semi-solid solid casting temperature. Advantages of thixocasting include the production of high quality components, while the main disadvantage is the higher cost associated with the production of the pre-cast billets. Commercial pressures have driven casters to examine a different approach to semi-solid casting, where the semi-solid slurry is generated directly from the liquid adjacent to a die casting machine. These processes are collectively referred to as rheocasting, and there are currently at least 15 rheocasting processes either in commercial production or under development around the world. This paper will describe technical aspects of both thixocasting and rheocasting, comparing the procedures used to generate the globular, semi-solid slurry. Two rheocasting processes will be examined in detail, one involved in the production of high integrity properties, while the other is focusing on reducing the porosity content of conventional die castings. Key Words Semi-solid casting, thixocasting, rheocasting, aluminum alloys 22 / 1 Introduction Semi-solid casting is a modified die casting process that reduces or eliminates the porosity present in most die castings [1] . Rather than using liquid metal as the feed material, semi-solid processing uses a higher viscosity feed material that is partially solid and partially liquid. The high viscosity of the semi-solid metal, along with the use of controlled die filling conditions, ensures that the semi-solid metal fills the die in a non-turbulent manner so that harmful gas porosity can be essentially eliminated.
    [Show full text]
  • An Analysis of the Metal Finds from the Ninth-Century Metalworking
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 8-2017 An Analysis of the Metal Finds from the Ninth-Century Metalworking Site at Bamburgh Castle in the Context of Ferrous and Non-Ferrous Metalworking in Middle- and Late-Saxon England Julie Polcrack Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Medieval History Commons Recommended Citation Polcrack, Julie, "An Analysis of the Metal Finds from the Ninth-Century Metalworking Site at Bamburgh Castle in the Context of Ferrous and Non-Ferrous Metalworking in Middle- and Late-Saxon England" (2017). Master's Theses. 1510. https://scholarworks.wmich.edu/masters_theses/1510 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. AN ANALYSIS OF THE METAL FINDS FROM THE NINTH-CENTURY METALWORKING SITE AT BAMBURGH CASTLE IN THE CONTEXT OF FERROUS AND NON-FERROUS METALWORKING IN MIDDLE- AND LATE-SAXON ENGLAND by Julie Polcrack A thesis submitted to the Graduate College in partial fulfillment of the requirements for the degree of Master of Arts The Medieval Institute Western Michigan University August 2017 Thesis Committee: Jana Schulman, Ph.D., Chair Robert Berkhofer, Ph.D. Graeme Young, B.Sc. AN ANALYSIS OF THE METAL FINDS FROM THE NINTH-CENTURY METALWORKING SITE AT BAMBURGH CASTLE IN THE CONTEXT OF FERROUS AND NON-FERROUS METALWORKING IN MIDDLE- AND LATE-SAXON ENGLAND Julie Polcrack, M.A.
    [Show full text]
  • Tool and Die Makers, Turret and Engine Lathe Operators, Sheet Metal
    DO CU M E N T R ES U ME ED 025 582 VT 000 415 A Survey of Demand in Selected MetalworkingOccupations for Major Areas of Idaho. Idaho State Dept. of Employment, Boise. Pub Date Oct 66 Note- 34p. EDRS Price MF-$0.25 HC-$1.80 Descriptors-*Educational Needs, Employer Attitudes, *EmploymentOpportunities, *Employment Projections, Employment Statistics, Labor Supply, Metal WorkingOccupations, Occupational Information,*Occupational Surveys, Questionnaires, Skilled Occupations, Trade andIndustrial Education Identifiers- Idaho To determine the state and area impactof occupational shortages inthe metal working,skills in Idaho and to provide abasis for planningeffective vocational education programs, the IdahoDepartment of Employmentconducted a sample survey of 68 employers in the metal workingoccupations. The occupations wereselected from a national list of hard-to-findmetal workers and ihcludedmachinists, welders, tool and die makers, turret and enginelathe operators, sheetmetal workers, structural steel workers, andboilermakers. The study,conducted inApril1966, .encompasses the ninemost populous counties inIdaho including 55 percentof the (1) The lack of qualified metalworkers has population. Some weneral conclusions were: of the not caused curtailmentof operation, (2) More welderswill be needed than any other survey occupations, (3)The demand for qualifiedmachinists should remain at a high level and (4) Seasonality inthe total employment ofworkers was implied bythe survey for the occupationsof welders, structural steelworkers, sheet metal workers, machinists, and. boilermakers.Statistical data is presented intable form and the interview questionnaire is included inthe appendix. (DM) 4 Ow. 111111111111111 11111111higill U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGLNIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL Of FICE OF EDUCATION POSITION OR POLICY.
    [Show full text]
  • Hand-Forging and Wrought-Iron Ornamental Work
    This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world’s books discoverable online. It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that’s often difficult to discover. Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book’s long journey from the publisher to a library and finally to you. Usage guidelines Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying. We also ask that you: + Make non-commercial use of the files We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes. + Refrain from automated querying Do not send automated queries of any sort to Google’s system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us.
    [Show full text]
  • 1. Hand Tools 3. Related Tools 4. Chisels 5. Hammer 6. Saw Terminology 7. Pliers Introduction
    1 1. Hand Tools 2. Types 2.1 Hand tools 2.2 Hammer Drill 2.3 Rotary hammer drill 2.4 Cordless drills 2.5 Drill press 2.6 Geared head drill 2.7 Radial arm drill 2.8 Mill drill 3. Related tools 4. Chisels 4.1. Types 4.1.1 Woodworking chisels 4.1.1.1 Lathe tools 4.2 Metalworking chisels 4.2.1 Cold chisel 4.2.2 Hardy chisel 4.3 Stone chisels 4.4 Masonry chisels 4.4.1 Joint chisel 5. Hammer 5.1 Basic design and variations 5.2 The physics of hammering 5.2.1 Hammer as a force amplifier 5.2.2 Effect of the head's mass 5.2.3 Effect of the handle 5.3 War hammers 5.4 Symbolic hammers 6. Saw terminology 6.1 Types of saws 6.1.1 Hand saws 6.1.2. Back saws 6.1.3 Mechanically powered saws 6.1.4. Circular blade saws 6.1.5. Reciprocating blade saws 6.1.6..Continuous band 6.2. Types of saw blades and the cuts they make 6.3. Materials used for saws 7. Pliers Introduction 7.1. Design 7.2.Common types 7.2.1 Gripping pliers (used to improve grip) 7.2 2.Cutting pliers (used to sever or pinch off) 2 7.2.3 Crimping pliers 7.2.4 Rotational pliers 8. Common wrenches / spanners 8.1 Other general wrenches / spanners 8.2. Spe cialized wrenches / spanners 8.3. Spanners in popular culture 9. Hacksaw, surface plate, surface gauge, , vee-block, files 10.
    [Show full text]
  • S2P Conference
    The 9th International Conference on Semi-Solid Processing of Alloys and Composites —S2P Busan, Korea, Conference September 11-13, 2006 Qingyue Pan, Research Associate Professor Metal Processing Institute, WPI Worcester, Massachusetts Busan, a bustling city of approximately 3.7 million resi- Pusan National University, in conjunction with the Korea dents, is located on the Southeastern tip of the Korean Institute of Industrial Technology, and the Korea Society peninsula. It is the second largest city in Korea. Th e natu- for Technology of Plasticity hosted the 9th S2P confer- ral environment of Busan is a perfect example of harmony ence. About 180 scientists and engineers coming from 23 between mountains, rivers and sea. Its geography includes countries attended the conference to present and discuss all a coastline with superb beaches and scenic cliff s, moun- aspects on semi-solid processing of alloys and composites. tains which provide excellent hiking and extraordinary Eight distinct sessions contained 113 oral presentations views, and hot springs scattered throughout the city. and 61 posters. Th e eight sessions included: 1) alloy design, Th e 9th International Conference on Semi-Solid Pro- 2) industrial applications, 3) microstructure & properties, cessing of Alloys and Composites was held Sept. 11-13, 4) novel processes, 5) rheocasting, 6) rheological behavior, 2006 at Paradise Hotel, Busan. Th e fi ve-star hotel off ered a modeling and simulation, 7) semi-solid processing of high spectacular view of Haeundae Beach – Korea’s most popular melting point materials, and 8) semi-solid processing of resort, which was the setting for the 9th S2P conference.
    [Show full text]
  • Boilermaker, Stainless Steel, Sheet Metal Worker)
    ENGINEERING – FABRICATION TRADE (BOILERMAKER, STAINLESS STEEL, SHEET METAL WORKER) Boilermakers cut, shape, assemble and join metal parts to produce or repair containers that have to withstand pressure, such as ships, boilers and storage tanks. Typical Duties: Read and interpret plans Mark off on the metal where to cut, drill, bend and carry out other types of work, using measuring and marking-off tools such as rulers, punches and dividers Cut marked metal sections using hand tools, flame cutting torches, or metalworking machines such as guillotines and shearing machines Shape and bend sections and pipes by forging or using hand and machine tools such as vices, hydraulic presses and rolling machines Assemble parts and structures by lining up and joining them by welding, bolting or riveting, or with the aid of cranes and other equipment if the job is large Make templates in order to produce large numbers of identical shapes Program and operate numerically controlled profile-cutting machines. Ideal Personal Requirements to gain an Apprenticeship: Physically fit with high degree of manual dexterity Good eyesight Aptitude for mechanical work Aptitude for understanding mechanical drawings and specifications Attention to detail Entry requirements may vary but, generally, you need at least the successful completion of Year 10/11, including maths Having completed some work experience or study (VET/pre-apprenticeship program) in this industry is highly recommended Education and Training to become qualified: Complete a 4 year apprenticeship Trade school training is ‘off the job’ at a Trade training facility gforce.org.au ‘job vacancies’ .
    [Show full text]
  • Abana Controlled Hand Forging Study Guide As Paginated by the Guild of Metalsmiths - Abana Chapter - Jan 2020 Index
    ABANA CONTROLLED HAND FORGING STUDY GUIDE AS PAGINATED BY THE GUILD OF METALSMITHS - ABANA CHAPTER - JAN 2020 INDEX Lesson Number Number Description of Pages Credits (click on box) L 1.01 Drawing Out: Draw a sharp point on a 1/2" square bar 3 Peter Ross and Doug Wilson L 2.01 Hot Punching: Create holes or recesses in bars or plate by driving 2 By Doug Wilson Illustrations by Tom Latané punches into or through hot material. L 3.01 Drawing Out a Round Taper 3 By Jay Close Illustrations by Tom Latané L 4.01 Bending Bar Stock 5 By Jay Close Illustrations by Tom Latané L 5.01 Twisting a Square Bar 4 By Bob Fredell Illustrations by Tom Latané L 6.01 Drawing , Punching, and Bending 4 By Peter Ross Illustrations by Tom Latané L 7.01 Upsetting a Square Bar 3 By Peter Ross Illustrations by Tom Latané L 8.01 Slitting and Drifting Two Mortises or Slots in a Square Sectioned Bar 5 By Jay Close llustrations by Doug Wilson, photos by Jay Close L 9.01 Mortise and Tenon Joinery 3 Text and Illustrations by Doug Wilson L 10.01 Forge Welding 6 By Dan Nauman Illustrations by Tom Latané Photos by Dan Nauman L 11.01 Drawing Down - Part One 6 by Jay Close Illustrations by Tom Latané, photos by Jay Close and Jane Gulden L 11.07 Drawing Down - Part Two 6 by Jay Close Illustrations by Tom Latané, photos by Jay Close and Jane Gulden L 12.01 Forging a Shoulder 4 by Bob Fredell Illustrations by Tom Latané L 13.01 Cutting a Bar 2 by Dan Nauman Illustrations by Doug Wilson L 14.01 Forging a 90-degree Corner 3 Text and Photos by Dan Nauman L 15.01 Forge an Eye on the
    [Show full text]
  • 2000 Pig Book.Pdf
    2 INTRODUCTION We may be entering a new millennium, but it’s the same old story inside the Beltway. Members of Congress continue to gouge and gore, lobbyists try to coax and cajole, and rattled taxpayers struggle to cling to the few dollars left in their pockets. No matter what the year, if it’s spring in Washington, taxpayers must beware the running of the pigs. This annual rite of passage takes on special meaning in 2000. Citizens Against Government Waste (CAGW) spent the entire winter searching through the fine print of the fiscal year (FY) 2000 appropriations bills, and the results were not the usual assortment of unnecessary and wasteful projects. CAGW found more pork- barrel spending than ever before, and that means it’s more difficult for taxpayers to avoid being run over by their own money. The 2000 Congressional Pig Book is cluttered with 4,326 porcine projects – a 52 percent increase over FY 1999. The final tally of $17.7 billion, a 47 percent increase over FY 1999, brings total pork identified by CAGW since 1991 to $100 billion. The eclipse of the $100 billion mark proves beyond a doubt that pork-barrel spending is a perpetual raid on the Treasury. The president, Congress, and even the taxpayers share the blame for this national embarrassment. First, our elected leaders in Washington can’t keep their hands off our money. Second, the big spenders believe they have the right to waste our tax dollars because they believe it helps them get reelected. In the end, the American people have bought into an anonymous bribe-taking scheme, selling their votes for a few measly little pieces of pork.
    [Show full text]
  • Boilermaking Manual. INSTITUTION British Columbia Dept
    DOCUMENT RESUME ED 246 301 CE 039 364 TITLE Boilermaking Manual. INSTITUTION British Columbia Dept. of Education, Victoria. REPORT NO ISBN-0-7718-8254-8. PUB DATE [82] NOTE 381p.; Developed in cooperation with the 1pprenticeship Training Programs Branch, Ministry of Labour. Photographs may not reproduce well. AVAILABLE FROMPublication Services Branch, Ministry of Education, 878 Viewfield Road, Victoria, BC V9A 4V1 ($10.00). PUB TYPE Guides Classroom Use - Materials (For Learner) (OW EARS PRICE MFOI Plus Postage. PC Not Available from EARS. DESCRIPTORS Apprenticeships; Blue Collar Occupations; Blueprints; *Construction (Process); Construction Materials; Drafting; Foreign Countries; Hand Tools; Industrial Personnel; *Industrial Training; Inplant Programs; Machine Tools; Mathematical Applications; *Mechanical Skills; Metal Industry; Metals; Metal Working; *On the Job Training; Postsecondary Education; Power Technology; Quality Control; Safety; *Sheet Metal Work; Skilled Occupations; Skilled Workers; Trade and Industrial Education; Trainees; Welding IDENTIFIERS *Boilermakers; *Boilers; British Columbia ABSTRACT This manual is intended (I) to provide an information resource to supplement the formal training program for boilermaker apprentices; (2) to assist the journeyworker to build on present knowledge to increase expertise and qualify for formal accreditation in the boilermaking trade; and (3) to serve as an on-the-job reference with sound, up-to-date guidelines for all aspects of the trade. The manual is organized into 13 chapters that cover the following topics: safety; boilermaker tools; mathematics; material, blueprint reading and sketching; layout; boilershop fabrication; rigging and erection; welding; quality control and inspection; boilers; dust collection systems; tanks and stacks; and hydro-electric power development. Each chapter contains an introduction and information about the topic, illustrated with charts, line drawings, and photographs.
    [Show full text]
  • BULK DEFORMATION PROCESSES in METALWORKING Introduction 1
    Introduction BULK DEFORMATION • Input: bulk materials in a form of cylindrical bars PROCESSES IN and billets, rectangular billets and slabs or METALWORKING elementary shapes • Process: large plastic deformation - Rolling, 1. Rolling Forging, Extrusion and Wire and Bar drawing 2. Forging under cold, warm and hot working conditions 3. Extrusion • Output: work materials for subsequent processes or final products (net shaping) 4. Wire and Bar Drawing 1 2 1. Rolling Process Information • Thickness of a work material is reduced by the • Cold Rolling compressive forces exerted by two opposing rolls. • Ingot casting – Input: Molten metal – tight tolerance, better – plates (>6mm or 1/4 in) - ship hull, bridge surface and mechanical – sheets (<6mm) - car bodies, appliance – Output: Ingot properties – foil (<0.1mm) - aluminum foil • Soaking • Hot Rolling • Flat (typical) and shape rolling – Input: Ingot – above recrystallization temp. • Equipment: roll mills (expansive) – Output: heated Ingot (450C for Al alloy, 1250C for steel alloy and 1650C for • Hot rolling – large deformation, low force, no residual • Rolling refractory alloy) converts the stress and isotropic properties but problems with – Input: Heated Ingot cast structure to a wrought tolerance and surface finish – Output: bloom, billet or structure slab • Cold Rolling - strengthen, tight tolerance, better surface – Heavy scale forms on the surface. 3 4 Flat rolling Spreading: Conservation of Mass Rolling Analysis I • Friction at the entrance controls the maximum possible draft. towo Lo = t f wf L f dmax = maximum draft (mm); vr or towovo = t f wf v f 2 µ = the coefficient of friction; dmax = µ R where R R = Roll Radius (mm) Draft: d = to − t f θ d • It however depending on lubrication, work and roller materials Reduction:r = and temperature.
    [Show full text]