Quick viewing(Text Mode)

Increasing the Share of Renewable Energy in the Global Energy Mix

Increasing the Share of Renewable Energy in the Global Energy Mix

Increasing the share of renewable in the global energy mix

Atle Harby, SINTEF Energy Research Centre for environmental design of Ensure access to affordable, reliable, sustainable and modern energy for all

The role of Energy-water-food nexus - development versus environment? • Energy is vital for eradicating poverty, 2,5 billion without reliable access to • 2,8 billion live in areas with high water stress • Use of resources, degradation of habitats, pollution and emissions • Water for food production • Climate change impacts on draughts, floods, water for energy and food

More reservoirs and potential impacts on rivers and lakes Sources of Greenhouse Gas (GHG) emissions Why talk about hydropower? Modern hydropower plant - inside the mountain Hydrological circle

 Powered by the sun

 About 50 % of solar energy used to drive the hydro circle

 Hydropower = solar power Hydropower is the most important renewable today Hydropower– Resource base Abundance of water, high head, large natural reservoirs

China, USA, Russia, Canada, Brazil, India, Norway Small scale hydropower for rural electricity Hydropower and Climate Change – A Global view

Source: Hamududu & Killingtveit, NTNU (2012)

Hydropower Potential – A Global overview (IPCC-SRREN) Professor Ånund Killingtveit NTNU/CEDREN KillingtveitProfessor Ånund Worldwide technical potential for hydropower generation: ca 14 576 TWh Today ca 3 975 TWh is developed (27%)

Estimate of total capacity potential: 3 721 GW; Today (2015) 1 211 GW is developed (33%) Hydropower development

 Increase capacity in  Retrofit non-hydro exisiting reservoir hydro dams Environmental design

Adapting downstream flow

Constructing habitats

 Build the right reservoir in the right place the right way

 Operate the hydropower the right way Increasing power production Need to keep some undisturbed nature

Perfect for hydropower

from Lars Haltbrekken Hydropower – supporting other renewables

Hydro Wind + Solar week 12 2014 Capacity ~30 000 MW Wind + 30 000 MW PV

24/3 2014 at 20.00 550 MW in production 59450 MW unused Source: JRC Emirhes data base Simulated wind production in the North Sea area in 2030 – 95 000 MW installed capacity

90000,00

80 000 MW80000,00

70000,00

60000,00

50000,00

40000,00

30000,00

20000,00

10000,00

0,00

1

916

733

550

367

184

8602

8419

8236

8053

7870

7687

7504

7321

7138

6955

6772

6589

6406

6223

6040

5857

5674

5491

5308

5125

4942

4759

4576

4393

4210

4027

3844

3661

3478

3295

3112

2929

2746

2563

2380

2197

2014

1831

1648

1465 1282 1099 one year Wind Power North-Sea Region - Jan – March

90000 (Wind data 2001)

8080000 000 MW 7 x 24 h One week balancing means 70000 Ca 30 000 MW in 168h   5 000 GWh energy storage 60000

30 000 MW 30 000 Same as 1 000 typical pumped

50000 +

storage plants -

40000 30 000 MW Same as 714 million Tesla

30000 Powerwall Home Battery 7 x 24 h

20000 7 x 24 h

10000

0

1

69 35

239 273 409 443 613 783 817 953 987 103 137 171 205 307 341 375 477 511 545 579 647 681 715 749 851 885 919

1157 1327 1361 1497 1531 1701 1871 1905 2075 1021 1055 1089 1123 1191 1225 1259 1293 1395 1429 1463 1565 1599 1633 1667 1735 1769 1803 1837 1939 1973 2007 2041 2109 2143 2177 Norwegian hydropower

Currently: 32 GW 130 TWh/year

 Hundreds of large reservoirs

 20 reservoirs with more than 100 Mm3

 20 GW of extra capacity possible

 ~15 TWh always availble storage Tyin CEDREN Case Aurland study 2030

Hol 20 000 MW Sima

Nore possible

Mauranger/Oksla/Tysso

Tinnsjø

Kvilldal

Shetland Jøsenfjorden Holen

Orknøyene

Lysebotn

Tonstad Reservoirs 16:00 Flood protection

16:15 Drought mitigation Irrigation and water supply Challenges

Owens Lake, California Combination of renewables

Source: IHA Hydropower and reservoirs are needed