ENGIE Renewable Energy Sources Outlook Télécharger

Total Page:16

File Type:pdf, Size:1020Kb

ENGIE Renewable Energy Sources Outlook Télécharger ENGIE Renewable Energy Sources Outlook 2020 Edition ENGIE Renewable Energy Sources Outlook | Foreword Foreword I am pleased to share with you In many ways, the pandemic has shown us the this first edition of our ENGIE renewable Outlook way to build a more sustainable system tomor- which encompasses both a strategic view on row. It notably emphasised the key role that renewable resources and solutions as well as a renewable energy solutions could play to make documented approach on energy transition our energy system more resilient should it be challenges. through power production, storage, green gases or green hydrogen. This report will also explore The strong trends to fight climate change, the how those solutions could be used, developed real urge for a low carbon economy, the clear and combined to draw a sustainable future. shift towards a greener energy paradigm, have 2 not been derailed by Covid. They have been reaf- Of course, strong efforts will be needed to firmed despite the health and economic crisis, stop and reverse the increase of CO2 emissions. pushing many stakeholders to align on a trajec- There will be struggles and the battle is far from tory for carbon neutrality during the first half of being won to contain the rise in global tempera- the century. tures below 2°C. Nevertheless, we can already Gwenaëlle Avice-Huet, notice that the approach on energy has changed Executive Vice President, Challenges linked with climate change are a with a global awareness on social and environ- responsible for the Global concern for our societies as a whole: they will mental challenges, with a drop in production Renewable Business Line require engagement from territories, institutional costs for renewables, with technological break- players, companies, industrial players and from throughs that have made green, sustainable individuals. In this report we intend to give an energy reach a whole new dimension. And what update on energy transition and to describe what we can already say is that this trend is set to still needs to be done to meet our collective envi- continue and to intensify. ronmental imperatives. ENGIE Renewable Energy Sources Outlook | Foreword Since 2000, global installed renewable capa- Of course, the Energy sector has a specific to make our future power systems stronger, city has more than tripled, and if we look speci- responsibility when it comes to environmental cost-effective and reliable. fically at wind and solar: installed capacity has targets as 75% of greenhouse gases come from been multiplied by almost 70. Several factors are energy combustion. But at the same time, the We dedicate a large portion of this document driving this tremendous growth of renewable sector could provide a large proportion of the to explore the wide range of solutions which will energy, among them: government policies. Over solutions. Thanks to the commitment of a wide play a part in the energy transition, describing the last few years, almost all countries have range of stakeholders, including ENGIE, the their potential and current stage of development. adopted renewable energy targets and, today steps that need to be taken are now clearly Our analysis has notably benefited from the more than ever, we see strong policy initiatives identified. enlightened views of renowned expertise centers to support renewable development. In a post-co- that responded to our invitation to comment on vid context, the EU €750 billion recovery pac- At ENGIE, we are engaged to increase the energy transition. kage, with funds at European level, is a first of a development of renewable energy capacities, kind with 30% of this package to fight against keeping notably in mind one of the learnings of Obviously, at the end of the day, the energy climate change. This is a clear choice to invest in this crisis: namely the importance of local energy transition agenda will be subject to different a green, digital and resilient Europe, including in resources and production, favoring short supply approaches depending on geography and local or ambitious, innovative technologies like Hydrogen. chains. But we are also convinced that no decar- national priorities. But to reach the ambitious 3 We see daring ambitions in other continents too, bonisation pathway is achievable without signi- global long-term targets that the world needs notably pushed by the newly elected US President ficant deployment of energy efficiency measures. we’ll have anyway to push, combine and accele- to reach carbon neutrality by 2050. Should we talk about buildings, cities, industry, rate the implementation of effective solutions transports. Through energy efficiency we could including efficient technologies, green finance, And it’s not only about states and about public potentially reduce global energy consumption by innovative business models and incentivising engagement: private sector and corporate also over a third. A decarbonised energy system in a policy measures. And that way, we’ll be able to play their part of the game and set strong targets. secure, and cost-effective manner will require a make it. There is a strong surge in corporate sustainability full range of solutions, including district cooling commitments around the world. Nearly 400 com- and heating or energy storage. I hope this report can bring new angles to panies around the world committed to setting a your thoughts on the energy challenges ahead science-based target in 2019, more than dou- Finally, to reach a zero-carbon world and com- and interesting inputs to your work towards new bling the total number of firms with these goals. plement the deployment of renewables we’ll also solutions. Wishing you a nice read. These firms have pledged to reduce their emis- need to link up technologies across energy car- sions in line with the Paris Agreement, and clean riers: we’ll notably need low carbon energy vec- energy will be an essential part of this strategy. tors (hydrogen, biogas, etc.) and sector coupling ENGIE Renewable Energy Sources Outlook | Summary Summary 4 Setting Panorama of Enablers in a Renewables in the scene renewable decarbonised COVID times p. 5 solutions energy system p. 56 p. 17 p. 40 Main references p. 63 Notes p. 64 ANNEX: Abstract of the Dashboard of Energy Transition - 2020 Edition p. 68 Setting the scene With the Paris Agreement, the international community set the objective to limit the increase in global temperature to well below 2°C1. Reaching this objective will require a sharp reduction in greenhouse gas emissions (GHG). Aspirations of consumers towards low-carbon solutions are growing, and countries are pushing for increasingly ambitious regulations. This environmental consciousness places the energy sector as a whole in the limelight. Whereas electricity generation only represents 25% of global greenhouse gas emissions, the use of the combustion energy of fossil fuels altogether represents around 75% of GHG emissions2. 5 The energy sector therefore has a major role to play, not only in reducing its own emissions but also in enabling emission reductions for all the different usages of energy. While energy-efficiency remains the first objective, another fundamental component of lowering GHG emissions will be the decarbonisation of energy vectors. This will require a full range of solutions, from the further deployment of renewable electrical and thermal energies, to the greening of gas, and the search for local, system-oriented solutions within a circular economy approach. ENGIE Renewable Energy Sources Outlook | Setting the scene MASSIVE ACCELERATION OF recently, the production of biogas and biome- RENEWABLE DEVELOPMENT thane has experienced a significant growth. AROUND THE WORLD These green gases can be used in a variety of Panorama of renewable applications such as electricity, heating, and transport. Global installed capacity of bio- energy sources Massive acceleration of renewable develop- gas-based electricity generation has more ment around the world is driven by growing than doubled, from 8.2 GW in 2009 to development societal expectations, increasingly stringent 18.1 GW in 20187 and another estimated 700 regulations and falling costs. The rela- plants upgrade biogas to biomethane8 for tionship to energy has changed drastically injection into the gas grids. Overall, although in the past ten years, with a global aware- fossil-fuel generation capacities still domi- Whether solar, wind, hydro or biomass based, energy ness of social and environmental challenges nate the global energy mix, renewable is now increasingly green. This section provides an and increasing regulation. The drop in pro- energy grew faster than any fossil fuel. Fig. 1 overview of the current state of renewable energy duction costs and technological break- throughs have made renewable energy deployment since early 2000s. It looks at the more competitive and this trend is set to Emerging economies are becoming expansion of renewable energy across technologies continue. leading players and world regions. The section also emphasises the Attention is more and more being focused on emerging economies as the growth in drivers for the expansion of renewable energy as well 6 Significant acceleration over the past RES developments moves beyond Europe as the increasingly important role of green gas in the decades and the U.S. to new markets. For almost a future of decarbonisation. Over the past decades, global installed decade, China has been a leader in the glo- renewable energy sources (RES) capacity has bal deployment of renewables. The country more than tripled, going from 754 GW in is the largest market for solar PV globally, 2000 to 2,537 GW in 20193. As a result, ins- with a cumulative installed capacity repre- talled RES capacity was enough to provide an senting more than 30% of the global market estimated 27% of global electricity genera- in 2019. Solar PV capacity in the country tion at the end of 20194. The International rose significantly, from 0.8 GW in 2010 to Energy Agency (IEA) projects an even greater 204.6 GW in 2019 at a compound annual increase in renewable capacities worldwide, growth rate of 85%.
Recommended publications
  • U.S. Energy in the 21St Century: a Primer
    U.S. Energy in the 21st Century: A Primer March 16, 2021 Congressional Research Service https://crsreports.congress.gov R46723 SUMMARY R46723 U.S. Energy in the 21st Century: A Primer March 16, 2021 Since the start of the 21st century, the U.S. energy system has changed tremendously. Technological advances in energy production have driven changes in energy consumption, and Melissa N. Diaz, the United States has moved from being a net importer of most forms of energy to a declining Coordinator importer—and a net exporter in 2019. The United States remains the second largest producer and Analyst in Energy Policy consumer of energy in the world, behind China. Overall energy consumption in the United States has held relatively steady since 2000, while the mix of energy sources has changed. Between 2000 and 2019, consumption of natural gas and renewable energy increased, while oil and nuclear power were relatively flat and coal decreased. In the same period, production of oil, natural gas, and renewables increased, while nuclear power was relatively flat and coal decreased. Overall energy production increased by 42% over the same period. Increases in the production of oil and natural gas are due in part to technological improvements in hydraulic fracturing and horizontal drilling that have facilitated access to resources in unconventional formations (e.g., shale). U.S. oil production (including natural gas liquids and crude oil) and natural gas production hit record highs in 2019. The United States is the largest producer of natural gas, a net exporter, and the largest consumer. Oil, natural gas, and other liquid fuels depend on a network of over three million miles of pipeline infrastructure.
    [Show full text]
  • Electrical Modeling of a Thermal Power Station
    Electrical Modeling of a Thermal Power Station Reinhard Kaisinger Degree project in Electric Power Systems Second Level Stockholm, Sweden 2011 XR-EE-ES 2011:010 ELECTRICAL MODELING OF A THERMAL POWER STATION Reinhard Kaisinger Masters’ Degree Project Kungliga Tekniska Högskolan (KTH) Stockholm, Sweden 2011 XR-EE-ES 2011:010 Table of Contents Page ABSTRACT V SAMMANFATTNING VI ACKNOWLEDGEMENT VII ORGANIZATION OF THE REPORT VIII 1 INTRODUCTION 1 2 BACKGROUND 3 2.1 Facilities in a Thermal Power Plant 3 2.2 Thermal Power Plant Operation 4 2.2.1 Fuel and Combustion 4 2.2.2 Rankine Cycle 4 2.3 Thermal Power Plant Control 6 2.3.1 Turbine Governor 7 2.4 Amagerværket Block 1 7 2.5 Frequency Control 9 2.5.1 Frequency Control in the ENTSO-E RG Continental Europe Power System 9 2.5.2 Frequency Control in the ENTSO-E RG Nordic Power System 10 2.5.3 Decentralized Frequency Control Action 11 2.5.4 Centralized Frequency Control Action 12 3 MODELING 14 3.1 Modeling and Simulation Software 14 3.1.1 Acausality 14 3.1.2 Differential-Algebraic Equations 15 3.1.3 The ObjectStab Library 15 3.1.4 The ThermoPower Library 16 3.2 Connectors 16 3.3 Synchronous Generator 17 3.4 Steam Turbine 22 3.5 Control Valves 23 3.6 Boiler, Re-heater and Condenser 23 3.7 Overall Steam Cycle 23 3.8 Excitation System and Power System Stabilizer 24 3.9 Turbine Governor 25 3.10 Turbine-Generator Shaft 26 3.11 Overall Model 26 3.12 Boundary Conditions 27 3.13 Simplifications within the Model 28 3.13.1 Steam Cycle 28 3.13.2 Governor 28 3.13.3 Valves and Valve Characteristics 29 3.13.4
    [Show full text]
  • Integrating Into Our Strategy
    INTEGRATING CLIMATE INTO OUR STRATEGY • 03 MAY 2017 Integrating Climate Into Our Strategy INTEGRATING CLIMATE INTO OUR STRATEGY • 03 CONTENTS Foreword by Patrick Pouyanné, Chairman and Chief Executive Officer, Total 05 Three Questions for Patricia Barbizet, Lead Independent Director of Total 09 _____________ SHAPING TOMORROW’S ENERGY Interview with Fatih Birol, Executive Director of the International Energy Agency 11 The 2°C Objective: Challenges Ahead for Every Form of Energy 12 Carbon Pricing, the Key to Achieving the 2°C Scenario 14 Interview with Erik Solheim, Executive Director of UN Environment 15 Oil and Gas Companies Join Forces 16 Interview with Bill Gates, Breakthrough Energy Ventures 18 _____________ TAKING ACTION TODAY Integrating Climate into Our Strategy 20 An Ambition Consistent with the 2°C Scenario 22 Greenhouse Gas Emissions Down 23% Since 2010 23 Natural Gas, the Key Energy Resource for Fast Climate Action 24 Switching to Natural Gas from Coal for Power Generation 26 Investigating and Strictly Limiting Methane Emissions 27 Providing Affordable Natural Gas 28 CCUS, Critical to Carbon Neutrality 29 A Resilient Portfolio 30 Low-Carbon Businesses to Become the Responsible Energy Major 32 Acquisitions That Exemplify Our Low-Carbon Strategy 33 Accelerating the Solar Energy Transition 34 Affordable, Reliable and Clean Energy 35 Saft, Offering Industrial Solutions to the Climate Change Challenge 36 The La Mède Biorefinery, a Responsible Transformation 37 Energy Efficiency: Optimizing Energy Consumption 38 _____________ FOCUS ON TRANSPORTATION Offering a Balanced Response to New Challenges 40 Our Initiatives 42 ______________ OUR FIGURES 45 04 • INTEGRATING CLIMATE INTO OUR STRATEGY Total at a Glance More than 98,109 4 million employees customers served in our at January 31, 2017 service stations each day after the sale of Atotech A Global Energy Leader No.
    [Show full text]
  • Innovation Insights Brief 2019
    Innovation Insights Brief 2019 NEW HYDROGEN ECONOMY - HOPE OR HYPE? ABOUT THE WORLD ENERGY COUNCIL ABOUT THIS INNOVATION INSIGHTS BRIEF The World Energy Council is the principal impartial This Innovation Insights brief on hydrogen is part of network of energy leaders and practitioners promoting a series of publications by the World Energy Council an affordable, stable and environmentally sensitive focused on Innovation. In a fast-paced era of disruptive energy system for the greatest benefit of all. changes, this brief aims at facilitating strategic sharing of knowledge between the Council’s members and the Formed in 1923, the Council is the UN-accredited global other energy stakeholders and policy shapers. energy body, representing the entire energy spectrum, with over 3,000 member organisations in over 90 countries, drawn from governments, private and state corporations, academia, NGOs and energy stakeholders. We inform global, regional and national energy strategies by hosting high-level events including the World Energy Congress and publishing authoritative studies, and work through our extensive member network to facilitate the world’s energy policy dialogue. Further details at www.worldenergy.org and @WECouncil Published by the World Energy Council 2019 Copyright © 2019 World Energy Council. All rights reserved. All or part of this publication may be used or reproduced as long as the following citation is included on each copy or transmission: ‘Used by permission of the World Energy Council’ World Energy Council Registered in England
    [Show full text]
  • Nuclear Energy Education and Training in France
    NUCLEAR ENERGY IN FRANCE France now obtains about 78 percent of its electricity from nuclear energy, generated by 58 highly standardized pressurized-water reactors (PWR) at 19 locations. The operation of these reactors has provided extensive feedback on safety, cost effectiveness, proficiency, and public outreach. In producing nuclear energy, France has always relied on a closed- fuel-cycle approach, including reprocessing of the spent nuclear fuel, an approach deemed essential to conserve uranium resources and to manage the ultimate waste products efficiently and selectively. Recent years have confirmed the central role that safe and sustain- able nuclear energy plays in the French electricity supply with addi- tional renewable energy technologies. France is pursuing the development of fourth-generation fast-neutron reactors, as well as a continuing investigation of improved methods for the separation and transmutation of high-level, long-lived nuclear waste. Scientific and AERIAL VIEW OF LA HAGUE engineering research into the safe and appropriate geological REPROCESSING PLANT disposal of radioactive waste products is also ongoing. ©AREVA/J-M.TAILLAT In May 2006, the board of Electricité de France (EDF) approved the construction of a new 1650 MWe European Pressurized Reactor (EPR) at Flamanville near the tip of Normandy. In 2009, the French government strengthened its commitment to pressurized-water reactors by endorsing the construction of a second EPR unit at Penly, near Dieppe. NEW CHALLENGES AND NEW REQUIREMENTS In its continuing use of nuclear power, France faces numerous chal- lenges, including the operation and maintenance of its existing array of reactors, waste management, the decommissioning of obsolete reactors, and research and development for future nuclear systems.
    [Show full text]
  • Case Study Report: Energiewende – Mission-Oriented R&I Policies
    Mission-oriented R&I policies: In-depth case studies Case Study Report Energiewende Hanna Kuittinen, Daniela Velte January 2018 Mission-oriented R&I policies: In-depth case studies European Commission Directorate-General for Research and Innovation Directorate A – Policy Development and coordination Unit A6 – Open Data Policy and Science Cloud Contact Arnold Weiszenbacher E-mail [email protected] [email protected] [email protected] European Commission B-1049 Brussels Manuscript completed in January 2018. This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. More information on the European Union is available on the internet (http://europa.eu). Luxembourg: Publications Office of the European Union, 2018 PDF ISBN 978-92-79-80159-4 doi: 10.2777/835267 KI-01-18-150-EN-N © European Union, 2018. Reuse is authorised provided the source is acknowledged. The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39). For any use or reproduction of photos or other material that is not under the EU copyright, permission must be sought directly from the copyright holders EUROPEAN COMMISSION Mission-oriented R&I policies: In-depth case studies Case Study Report: Energiewende Hanna Kuittinen Daniela Velte 2018 Directorate-General for Research and Innovation Table of Contents 1 Summary of the case study ................................................................................... 3 2 Context and objectives of the initiative ................................................................... 5 2.1 Origins of initiative and the main contextual factors ........................................
    [Show full text]
  • Hydrogen and Fuel Cells in Japan
    HYDROGEN AND FUEL CELLS IN JAPAN JONATHAN ARIAS Tokyo, October 2019 EU-Japan Centre for Industrial Cooperation ABOUT THE AUTHOR Jonathan Arias is a Mining Engineer (Energy and Combustibles) with an Executive Master in Renewable Energies and a Master in Occupational Health and Safety Management. He has fourteen years of international work experience in the energy field, with several publications, and more than a year working in Japan as an energy consultant. He is passionate about renewable energies, energy transition technologies, electric and fuel cell vehicles, and sustainability. He also published a report about “Solar Energy, Energy Storage and Virtual Power Plants in Japan” that can be considered the first part of this document and is available in https://lnkd.in/ff8Fc3S. He can be reached on LinkedIn and at [email protected]. ABOUT THE EU-JAPAN CENTRE FOR INDUSTRIAL COOPERATION The EU-Japan Centre for Industrial Cooperation (http://www.eu-japan.eu/) is a unique venture between the European Commission and the Japanese Government. It is a non-profit organisation established as an affiliate of the Institute of International Studies and Training (https://www.iist.or.jp/en/). It aims at promoting all forms of industrial, trade and investment cooperation between the EU and Japan and at improving EU and Japanese companies’ competitiveness and cooperation by facilitating exchanges of experience and know-how between EU and Japanese businesses. (c) Iwatani Corporation kindly allowed the use of the image on the title page in this document. Table of Contents Table of Contents ......................................................................................................................... I List of Figures ............................................................................................................................ III List of Tables ..............................................................................................................................
    [Show full text]
  • The Best Energy Mix and the Need for Comprehensive Viewpoints
    IEEJ: April 2013 All Right Reserved The Best Energy Mix and the Need for Comprehensive Viewpoints Wednesday, November 16, 2011 Masakazu Toyoda The Institute of Energy Economics, Japan IEEJ: April 2013 All Right Reserved Contents 1. The Best Energy Mix from Comprehensive Viewpoints 2. Overall, There Is No Perfect Energy Option 3. Short- to Mid-Term Challenges to Achieving the Best Energy Mix 4. Mid- to Long-Term Challenges to Achieving the Best Energy Mix Unauthorized reproduction is prohibited. 2 IEEJ: April 2013 All Right Reserved 1. The Best Energy Mix from Comprehensive Viewpoints 1. When reviewing the energy mix, we must solve simultaneous equations with many variables. This requires objective and quantitative analyses. 2. The following variables are important: 1) S (safety) 2) Three Es (i) Energy security (ii) Economic efficiency (particularly in terms of cost) (iii) The environment (compatibility with mitigating global warming) 3) M (impacts on the macro economy) Unauthorized reproduction is prohibited. 3 IEEJ: April 2013 All Right Reserved 1. The Best Energy Mix from Comprehensive Viewpoints 1) S (safety) ● Safety is a prerequisite for energy policies and the activities of the energy industry itself. ● Safety is a measure of the overall competence in various areas including technology, appropriate regulatory framework, cooperation among national and local governments, and the allocation of responsibility among the national government, local governments and utilities. ● Since other energy options also have their advantages and disadvantages (in terms of supply stability, economic efficiency, global warming mitigation, etc.), completely phasing out nuclear power would incur significant risk. Japan must develop safer nuclear power, which is supported by people.
    [Show full text]
  • UNIT-1 THERMAL POWER STATIONS Introduction
    UNIT-1 THERMAL POWER STATIONS Introduction ➢ Thermal energy is the major source of power generation in India. More than 60% of electric power is produced by steam plants in India. India has large deposit of coal (about 170 billion tonnes), 5th largest in world. Indian coals are classified as A-G grade coals. ➢ In Steam power plants, the heat of combustion of fossil fuels is utilized by the boilers to raise steam at high pressure and temperature. The steam so produced is used in driving the steam turbines or sometimes steam engines couples to generators and thus in generating electrical energy. ➢ Steam turbines or steam engines used in steam power plants not only act as prime movers but also as drives for auxiliary equipment, such as pumps, stokers fans etc. ➢ Steam power plants may be installed either to generate electrical energy only or generate electrical energy along with generation of steam for industrial purposes such as in paper mills, textile mills, sugar mills and refineries, chemical works, plastic manufacture, food manufacture etc. ➢ The steam for process purposes is extracted from a certain section of turbine and the remaining steam is allowed to expand in the turbine. Alternatively the exhaust steam may be used for process purposes. ➢ Thermal stations can be private industrial plants and central station. Advantages And Disadvantages Of A Thermal Power Plant Advantages: ▪ Less initial cost as compared to other generating stations. ▪ It requires less land as compared to hydro power plant. ▪ The fuel (i.e. coal) is cheaper. ▪ The cost of generation is lesser than that of diesel power plants.
    [Show full text]
  • From the History of Sources and Sectors to the History of Systems and Transitions
    Journal of Energy History Revue d’histoire de l’énergie AUTHOR Geneviève Massard- From the history of sources and Guilbaud sectors to the history of systems École des Hautes Études en Sciences Sociales and transitions: how the history of [email protected] energy has been written in France POST DATE and beyond* 04/12/2018 ISSUE NUMBER Abstract JEHRHE #1 This historiographical essay shows how historians have dealt with SECTION energy since the beginning of the 20th c. and until today. During the Special issue two first third of the 20th c., only a handful of authors have tried THEME OF THE SPECIAL ISSUE to give an overview of humans made use of the energy existing all For a history of energy around them over centuries. Historians of the last decades of the KEYWORDS 20th centuries were interested in specific energy sources as well as Transition, Production, in energy sectors. More recently, tendency has come back to con- Consumption, Environment, sidering energy as a whole, studying energetic systems and the Regime transitions between them. There has been so far no consensus on DOI the nature and the stakes involved in the past transitions. in progress Plan of the article TO CITE THIS ARTICLE → Historians and energy, initial research Geneviève Massard- → Studies by energy source and sector Guilbaud, “From the history → Wood, water, and wind of sources and sectors to → Fossil energies the history of systems and → Electricity transitions: how the history → Studies of energy systems and transitions of energy has been written → Conclusion: writing the history of energy during a time of global in France and beyond”, warming Journal of Energy History/ Revue d’Histoire de l’Énergie [Online], n°1, published 04 December 2018, URL: http:// energyhistory.eu/node/88.
    [Show full text]
  • REIPPP Projects
    REIPPP Projects Window 1 Projects Net capacity Technology Project Location Technology Developer Contractor Status MW supplier Klipheuwel – Dassiefontein Group 5, Dassiesklip Wind Energy Facility Caledon, WC Wind 26,2 Sinovel Operational Wind Energy fFcility Iberdrola MetroWind Van Stadens Wind Port Elizabeth, EC Wind 26,2 MetroWind Sinovel Basil Read Operational Farm Hopefield Wind Farm Hopefield, WC Wind 65,4 Umoya Energy Vestas Vestas Operational Noblesfontein Noblesfontein, NC Wind 72,8 Coria (PKF) Investments 28 Vestas Vestas Operational Red Cap Kouga Wind Farm – Port Elizabeth, EC Wind 77,6 Red Cap Kouga Wind Farm Nordex Nordex Operational Oyster Bay Dorper Wind Farm Stormberg, EC Wind 97,0 Dorper Wind Farm Nordex Nordex Operational South Africa Mainstream Jeffreys Bay Jeffereys Bay, EC Wind 133,9 Siemens Siemens Operational Renewable Power Jeffreys Bay African Clean Energy Cookhouse Wind Farm Cookhouse, EC Wind 135,0 Suzlon Suzlon Operational Developments Khi Solar One Upington, NC Solar CSP 50,0 Khi Dolar One Consortium Abengoa Abengoa Construction KaXu Solar One Pofadder, NC Solar CSP 100,0 KaXu Solar One Consortium Abengoa Abengoa Operational SlimSun Swartland Solar Park Swartland, WC Solar PV 5,0 SlimSun BYD Solar Juwi, Hatch Operational RustMo1 Solar Farm Rustenburg, NWP Solar PV 6,8 RustMo1 Solar Farm BYD Solar Juwi Operational Mulilo Renewable Energy Solar De Aar, NC Solar PV 9,7 Gestamp Mulilo Consortium Trina Solar Gestamp, ABB Operational PV De Aar Konkoonsies Solar Pofadder, NC Solar PV 9,7 Limarco 77 BYD Solar Juwi Operational
    [Show full text]
  • For Health and Climate: Retiring Coal-Fired Electricity and Promoting Sustainable Energy Transition in Developing Countries Author: by Donald P
    For Health and Climate: Retiring Coal-Fired Electricity and Promoting Sustainable Energy Transition in Developing Countries Author: By Donald P. Kanak1 Abstract • Coal fuels 38% of global electricity and there are plans to build over 1,000 new coal-fired power plants, mostly in the developing countries with growing energy needs. • Carbon emissions from those current and planned power plants will prevent the world from achieving the 1.5⁰C climate scenarios that call for a reduction of coal-fired electricity from 38% to 9% of total generation by 2030 and to 0.6% by 2050. • ESG initiatives are resulting in leading global financial institutions exiting and/or avoiding new investments in coal, but other buyers are stepping in; thus, many existing and planned coal assets are likely, without intervention, to continue to operate well beyond 2030-2050. • Proposed solution: Coal Retirement Mechanisms (CRMs) financial facilities that purchase coal-fired power plants in developing countries from existing owners and retire the plants in 10-15 years vs. typical 30-40 years of operation. Funds paid to current owners of coal-fired power plants to be recycled into new greenfield sustainable power. • The CRM’s capital would come from developed countries, multilateral development banks, climate funds and/or blended finance. Those investors would be paid back from the power plants’ operating revenues, but at a lower rate of return reflecting today’s low costs of funds. Supplementary revenue from carbon credits, transfer of fossil fuel subsidies, or energy surcharges might be used to meet or accelerate the retirement date. • Parallel to the CRM, a Sustainable Energy Transition Mechanism (SETM) will provide host countries with both financial and technical assistance to accelerate transition towards renewables (including storage, transmission, and distribution infrastructure).
    [Show full text]