REIPPP Projects

Total Page:16

File Type:pdf, Size:1020Kb

REIPPP Projects REIPPP Projects Window 1 Projects Net capacity Technology Project Location Technology Developer Contractor Status MW supplier Klipheuwel – Dassiefontein Group 5, Dassiesklip Wind Energy Facility Caledon, WC Wind 26,2 Sinovel Operational Wind Energy fFcility Iberdrola MetroWind Van Stadens Wind Port Elizabeth, EC Wind 26,2 MetroWind Sinovel Basil Read Operational Farm Hopefield Wind Farm Hopefield, WC Wind 65,4 Umoya Energy Vestas Vestas Operational Noblesfontein Noblesfontein, NC Wind 72,8 Coria (PKF) Investments 28 Vestas Vestas Operational Red Cap Kouga Wind Farm – Port Elizabeth, EC Wind 77,6 Red Cap Kouga Wind Farm Nordex Nordex Operational Oyster Bay Dorper Wind Farm Stormberg, EC Wind 97,0 Dorper Wind Farm Nordex Nordex Operational South Africa Mainstream Jeffreys Bay Jeffereys Bay, EC Wind 133,9 Siemens Siemens Operational Renewable Power Jeffreys Bay African Clean Energy Cookhouse Wind Farm Cookhouse, EC Wind 135,0 Suzlon Suzlon Operational Developments Khi Solar One Upington, NC Solar CSP 50,0 Khi Dolar One Consortium Abengoa Abengoa Construction KaXu Solar One Pofadder, NC Solar CSP 100,0 KaXu Solar One Consortium Abengoa Abengoa Operational SlimSun Swartland Solar Park Swartland, WC Solar PV 5,0 SlimSun BYD Solar Juwi, Hatch Operational RustMo1 Solar Farm Rustenburg, NWP Solar PV 6,8 RustMo1 Solar Farm BYD Solar Juwi Operational Mulilo Renewable Energy Solar De Aar, NC Solar PV 9,7 Gestamp Mulilo Consortium Trina Solar Gestamp, ABB Operational PV De Aar Konkoonsies Solar Pofadder, NC Solar PV 9,7 Limarco 77 BYD Solar Juwi Operational Aries Solar Kenhardt, NC Solar PV 9,7 Sevenstones 159 BYD Solar Juwi, Hatch Operational AE-AMD Independent Power Greefspan PV Power Plant Douglas, NC Solar PV 10,0 Tenesol Tenesol Operational Producer 1 AE-AMD Independent Power Herbert PV Power Plant Douglas, NC Solar PV 19,9 Tenesol Tenesol Operational Producer 1 Mulilo Renewable Energy Solar Prieska, NC Solar PV 19,9 Gestamp Mulilo Consortium Trina Solar Gestamp, ABB Operational PV Prieska Soutpan Solar Park Waterberg, Li Solar PV 28,0 Erika Energy Chint Solar Sun Edison, ABB Operational Witkop Solar Park Waterberg, Li Solar PV 30,0 Core Energy Chint Solar Sun Edison, ABB Operational Touwsrivier Project Touwsrivier, WC Solar PV 36,0 CPV Power Plant No. 1 Soitec CPV Schneider Electric Operational Pixley Ka seme, South Africa Mainstream De Aar Solar PV Solar PV 48,3 Moncado Moncado Operational NC Renewable Power De Aar PV South Africa Mainstream South Africa Mainstream Kimberley, NC Solar PV 48,3 Renewable Power Suntech Siemens Operational Renewable Power Droogfontein Droogfontein Consortium consisting of Kensani Capital Investments, Hanwa Solar Letsatsi Power Company Bloemfontein, FS Solar PV 64,0 SolarReserve South Africa and ACS Cobra Operational One Oakleaf Investment Holdings 80 Consortium consisting of SolarReserve South Africa, Hanwa Solar Lesedi Power Company Postmasburg, NC Solar PV 64,0 Kensani Capital Investments ACS Cobra Operational One and Oakleaf Investment Holdings 80 Kalkbult NWP Solar PV 72,5 Scatec Solar Scatec Scatec Operational Kathu Solar Energy Facility Kathu, NC Solar PV 75,0 Lokian Trading & Investments Jinko WHBO, Aurecon Operational Solar Capital De Aar De Aar, NC Solar PV (TF) 75,0 Solar Capital De Aar Moncado Moncado Operational Total 1415,5 Window 2 Projects Net capacity Technology Project Location Technology Developer Contractor Status MW supplier ACWA Power Solafrica Bokpoort Sener, Acciona, Bokpoort CSP Project Bokpoort CSP 50,0 Sener, Acciona Construction CSP Power Plant (RF) Crowie and TSK Stortemelk Hydro Bethlehem Small hydro 4,4 Stortemelk Hydro (Nuplanet) Andritz Nuplanet Construction Neusberg Hydro Electric Project Kakamas Small hydro 10,0 Kakamas Hydro Electric Power HDD France Hydro Tasmania Operational Windfall 59 Properties (RF) Sishen Solar Facility Dibeng Solar PV 74,0 Jinko Acciona Operational (Acciona Aveng) Aurora-Rietvlei Solar Power Aurora Solar PV 9,0 Aurora-Rietvlei Solar Power (RF) Solaire Direct Solaire Direct Construction Vredendal Solar Park Vredendal Solar PV 8,8 Vredendal Solar Power Park (RF) Solaire Direct Solaire Direct Operational Linde De Aar Solar PV 36,8 Simacel 155 (RF) Scatec Scatec Operational Dreunberg Dreunberg Solar PV 69,6 Simacel 160 (RF) Scatec Scatec Operational Energize RE 4: Renewable Energy Supplement - March 2016 – Page 8 REIPPP Projects Jasper Power Company Postmasberg Solar PV 75,0 Solar Reserve Consortium Yingli Iberdrola Operational Boshoff Solar Park Jacaranda Boshoff Solar PV 60,0 Sun Edison Operational Energy Upington Airport Upimgton Solar PV 8,9 Enel Green Power 3Sun TerniEnergia Operational Moncado and Solar Capital Solar De Aar 3 De Aar Solar PV (TF) 75,0 Moncado Moncado Operational De Aar 3 (RF) Amakhala Emoyeni RE Project 1 Amakhala Emoyeni Bedford Wind 133,7 Nordex Nordex Construction (Cennergi Consortium) Tsitsikamma Community Wind Tsitsikamma Community Wind Tsitsikamma Wind 94,8 Vestas Vestas Construction Farm Project Farm (Cennergi Consortium) Aurora Wind Power (RF) Partially Wind Farm West Coast 1 Vredenburg Wind 90,8 Vestas Vestas (Suez Consortium) operational Waainek Wind Power (RF) Waainek Grahamstown Wind 23,3 Vestas Vestas Construction (Inno Wind-EDF) Nelson Mandela Grassridge Wind Power (RF) Grassridge Wind 59,8 Vestas Vestas Operational Bay (Inno Wind-EDF) Chaba Wind Power (RF) Chaba Komga Wind 21,0 Vestas Vestas Construction (Inno wind-EDF) Blue Falcon 140 Trading (RF) Gouda Wind Project Gouda Wind 135,5 Acciona Adenco Construction (Acciona Aveng) Total 1040,42 no information on hand Window 3 Projects Net capacity Technology Project Location Technology Developer Contractor Status MW supplier Adams Solar PV2 Hotazel Solar PV 75 Enel Green Power 3Sun Erigenix Construction Tom Burke Solar Park Lephalale Solar PV (TF) 60 Enel Green Power/PGE 3Sun TerniEnergia Construction Mulilo Sonnedix Prieska PV Prieksa Solar PV 75 Sonnedix Consortium BYD Juwi Oprational Electra Capital (Paleisheuwel) Sandveld Solar PV (TF) 75 Enel Green Power/PGE 3Sun TerniEnergia Construction Awaiting Pulida Solar Park Kimberley Solar PV (TF) 75 Enel Green Power/PGE 3Sun Enertronica construction Mulilo Prieska PV Preiska Solar PV 75 Mulilo Sunpower Gestamp Construction Enel Green Power/ Awaiting Red Cap Gibson Bay Gibson Bay Wind 110 Nordex Nordex Red Cap construction Longyan Mulilo De Aar 2 China Longyuan Power, Mulilo Guodian United Awaiting De Aar Wind 139 Longyuan Power North Wind Energy Facilty Renewable Energy Power construction Awaiting Nojoli Wind Farm Bedford Wind 87 Enel Green Power/PGE Vestas Vestas construction Longyuan Mulilo De Aar China Longyuan Power, Mulilo Guodian United Awaiting De Aar Wind 96 Longyuan Power Maanhaarberg Wind Energy Renewable Energy Power construction Hantam Mainstream Renewable Power Khobab Wind Farm Wind 138 Siemens Siemens Construction Municipality Consortium Mainstream Renewable Power Siemens/Conco/ Noupoort Mainstream Wind Noupoort Wind 79 Siemens Commissioning Consortium M&R Mainstream Renewable Power Loeriesfontein 2 Wind Farm Leoriesfontein Wind 138 Siemens Siemens Construction Consortium Awaiting Xina CSP South Africa Pofadder CSP 100 Abengoa Consortium Abengoa Abengoa construction Awaiting Karoshoek Consortium Upington CSP 100 Emvelo Consortium ACS Cobra ACS Cobra construction Johannesburg Landfill Gas to Partially Johannesburg LFG 18 City of Johannesburg Electricity operational Approvals, Mkuzi Mkuzi Co-gen 16 Building energy planning & financing Total 1456 no information on hand Window 3.5 Projects Net capacity Technology Project Location Technology Developer Contractor Status MW supplier Redstone Solar Thermal Postmasburg Solar CSP 100 ACWA, Solar Reserve Solar Reserve Solar Reserve Awaiting construction Project Kathu Solar Park Kathu Solar CSP 100 GDF Suez Sener, Aciona Acciona Awaiting construction Total 200 Energize RE 4: Renewable Energy Supplement - March 2016 – Page 9.
Recommended publications
  • Environmental Impact Assessment
    Environmental Impact Assessment Study for the proposed Concentrated Solar Power Plant (Parabolic Trough) on the farm Sand Draai 391, Northern Cape – Environmental Scoping Report A Report for Solafrica 14/12/16/3/3/3/203 – Parabolic Trough DOCUMENT DESCRIPTION Client: Solafrica Energy (Pty) Ltd Project Name: Environmental Impact Assessment Study for the proposed Concentrated Solar Power Plant (Parabolic Trough) on the farm Sand Draai 391, Northern Cape Royal HaskoningDHV Reference Number: T01.JNB.000565 Authority Reference Number: 14/12/16/3/3/3/203 – Parabolic Trough Compiled by: Johan Blignaut Date: July 2015 Location: Woodmead Review: Prashika Reddy & Malcolm Roods Approval: Malcolm Roods _____________________________ Signature © Royal HaskoningDHV All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, without the written permission from Royal HaskoningDHV. Table of Contents 1 INTRODUCTION ........................................................................................................................................... 1 1.1 Background ............................................................................................................................................ 1 1.2 Need and Desirability ............................................................................................................................. 1 1.2.1 Renewable Energy Independent Power Producers Programme (REIPPPP) and Integrated Resource Plan (2010) ....................................................................................................................
    [Show full text]
  • Analysis of New International Interconnectors to the South African Power System
    Analysis of new international interconnectors to the South African power system 08-01-2016 1 2 Table of contents Key findings .......................................................................................................... 4 Introduction .......................................................................................................... 6 The South African power system ........................................................................... 7 Methodology and scenarios ................................................................................... 9 Scenarios .............................................................................................................. 11 Reference scenario ............................................................................................... 11 Hydro import scenarios ........................................................................................ 12 Value of interconnectors ...................................................................................... 13 Main results and conclusions ............................................................................... 15 Economic consequences for the system .............................................................. 17 Value of increasing interconnector capacity internally in South Africa ............... 19 Conclusion ............................................................................................................ 20 Detailed results of the scenario analysis ..............................................................
    [Show full text]
  • CSP Technologies
    CSP Technologies Solar Solar Power Generation Radiation fuel Concentrating the solar radiation in Concentrating Absorbing Storage Generation high magnification and using this thermal energy for power generation Absorbing/ fuel Reaction Features of Each Types of Solar Power PTC Type CRS Type Dish type 1Axis Sun tracking controller 2 Axis Sun tracking controller 2 Axis Sun tracking controller Concentrating rate : 30 ~ 100, ~400 oC Concentrating rate: 500 ~ 1,000, Concentrating rate: 1,000 ~ 10,000 ~1,500 oC Parabolic Trough Concentrator Parabolic Dish Concentrator Central Receiver System CSP Technologies PTC CRS Dish commercialized in large scale various types (from 1 to 20MW ) Stirling type in ~25kW size (more than 50MW ) developing the technology, partially completing the development technology development is already commercialized efficiency ~30% reached proper level, diffusion level efficiency ~16% efficiency ~12% CSP Test Facilities Worldwide Parabolic Trough Concentrator In 1994, the first research on high temperature solar technology started PTC technology for steam generation and solar detoxification Parabolic reflector and solar tracking system were developed <The First PTC System Installed in KIER(left) and Second PTC developed by KIER(right)> Dish Concentrator 1st Prototype: 15 circular mirror facets/ 2.2m focal length/ 11.7㎡ reflection area 2nd Prototype: 8.2m diameter/ 4.8m focal length/ 36㎡ reflection area <The First(left) and Second(right) KIER’s Prototype Dish Concentrator> Dish Concentrator Two demonstration projects for 10kW dish-stirling solar power system Increased reflection area(9m dia. 42㎡) and newly designed mirror facets Running with Solo V161 Stirling engine, 19.2% efficiency (solar to electricity) <KIER’s 10kW Dish-Stirling System in Jinhae City> Dish Concentrator 25 20 15 (%) 10 발전 효율 5 Peak.
    [Show full text]
  • Optimising the Concentrating Solar Power Potential in South Africa Through an Improved GIS Analysis
    energies Article Optimising the Concentrating Solar Power Potential in South Africa through an Improved GIS Analysis Dries. Frank Duvenhage 1,* , Alan C. Brent 1,2 , William H.L. Stafford 1,3 and Dean Van Den Heever 4 1 Engineering Management and Sustainable Systems, Department of Industrial Engineering, the Solar Thermal Energy Research Group and the Centre for Renewable and Sustainable Energy Studies, Stellenbosch University, Stellenbosch 7602, South Africa; [email protected] (A.C.B.); wstaff[email protected] (W.H.L.S.) 2 Sustainable Energy Systems, School of Engineering and Computer Science, Victoria University of Wellington, Wellington 6140, New Zealand 3 Green Economy Solutions, Natural Resources and the Environment, Council for Scientific and Industrial Research, Stellenbosch 7600, South Africa 4 Legal Drone Solutions, Stellenbosch 7600, South Africa; [email protected] * Correspondence: [email protected] Received: 11 May 2020; Accepted: 16 June 2020; Published: 23 June 2020 Abstract: Renewable Energy Technologies are rapidly gaining uptake in South Africa, already having more than 3900 MW operational wind, solar PV, Concentrating Solar Power (CSP) and biogas capacity. CSP has the potential to become a leading Renewable Energy Technology, as it is the only one inherently equipped with the facility for large-scale thermal energy storage for increased dispatchability. There are many studies that aim to determine the potential for CSP development in certain regions or countries. South Africa has a high solar irradiation resource by global standards, but few studies have been carried out to determine the potential for CSP. One such study was conducted in 2009, prior to any CSP plants having been built in South Africa.
    [Show full text]
  • Participants List
    Workshop on Scaling-up Renewables through Decentralised Energy Solutions Confirmed Participants List Paris, 28 March 2017 Representing Last Name: First Name Abengoa Solar GEYER Michael Acciona Energía PRIETO CASAÑA Elisa Acciona Energía MATEO Rafael ADEME MOISAN François ADEME GERSON Raphael Association of the European Heating Industry BASSO Paolo Australian Govt. Department of the Environment and Energy THOMAS Nicole Austrian Energy Agency INDINGER Andreas BayWa r.e. and BayWa AG TAFT Matthias Bloomberg New Energy Finance CHASE Jenny Bloomberg New Energy Finance HENBEST Seb BNP Paribas MAURIN Matthieu CEA MALBRANCHE Philippe CEDEC DE BLOCK Gert CEDEC FONDI Ludovica CESI CODAZZI Matteo China General Certification Center QI Linlin China General Certification Center SUN Peijun China National Renewable Energy Centre SANDHOLT Kaare Cimate Action Network International SINGER Stephan City of Frankfurt FIEBIG Wiebke City of Stockholm TOLF Jonas Compass Lexecon ROQUES Fabien Danish District Heating Association LAUERSEN Birger Danish Energy Agency TENGVAD Rasmus DONG Energy STEIWER HEIN Christian EDF Energies Nouvelles SCALONE Carmelo EDSO for Smart Grids CARAMIZARU Aura EHPA JUNG Oliver ENEA Italy DELILLO Anna ENEA Italy DE IULIIS Simona Enedis STRANG Karl Axel Enel MELCHIOTTI Nicola 1 Enel Green Power VENTURINI Francesco Enel Green Power D'AUSILIO Michel Enercon DUENING Katrin ENGIE STEVERLYNCK Alexis ENGIE MANTEL Catherine ENGIE GRENON Georgina ENGIE SCHACK Michael EREF HINRICHS-RAHLWES Rainer ERI/NDRC LIU Jian ERI/NDRC TAO Ye ERI/NDRC ZHAO
    [Show full text]
  • Sustainability in the Power Sector 2010 Update Europe
    Sustainability in the Power Sector 2010 Update - Europe Tim Steinweg, Albert ten Kate & Kristóf Rácz November 2010 Sustainability in the Power Sector 2010 Update - Europe Sustainability in the Power Sector 2010 update: Europe Tim Steinweg, Albert ten Kate & Kristóf Rácz (SOMO) Amsterdam, November 2010 1 Colophon Sustainability in the Power Sector 2010 Update - Europe November 2010 Authors: Tim Steinweg, Albert ten Kate & Kristóf Rácz Cover design: Annelies Vlasblom ISBN: 978-90-71284-63-2 Funding This publication has been produced with the financial assistance of Greenpeace Nederland. The content of this publication is the sole responsibility of SOMO and can in no way be taken to reflect the views of Greenpeace Nederland. Published by Stichting Onderzoek Multinationale Ondernemingen Centre for Research on Multinational Corporations Sarphatistraat 30 1018 GL Amsterdam The Netherlands Tel: + 31 (20) 6391291 Fax: + 31 (20) 6391321 E-mail: [email protected] Website: www.somo.nl This document is licensed under the Creative Commons Attribution-NonCommercial-NoDerivateWorks 2.5 License. 2 Sustainability in the Power Sector 2010 Update - Europe Contents Contents .......................................................................................................................... 3 List of Figures................................................................................................................. 5 List of Tables .................................................................................................................. 5 Abbreviations
    [Show full text]
  • Advances in Concentrating Solar Thermal Research and Technology Related Titles
    Advances in Concentrating Solar Thermal Research and Technology Related titles Performance and Durability Assessment: Optical Materials for Solar Thermal Systems (ISBN 978-0-08-044401-7) Solar Energy Engineering 2e (ISBN 978-0-12-397270-5) Concentrating Solar Power Technology (ISBN 978-1-84569-769-3) Woodhead Publishing Series in Energy Advances in Concentrating Solar Thermal Research and Technology Edited by Manuel J. Blanco Lourdes Ramirez Santigosa AMSTERDAM • BOSTON • HEIDELBERG LONDON • NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Woodhead Publishing is an imprint of Elsevier Woodhead Publishing is an imprint of Elsevier The Officers’ Mess Business Centre, Royston Road, Duxford, CB22 4QH, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, OX5 1GB, United Kingdom Copyright © 2017 Elsevier Ltd. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.
    [Show full text]
  • The Status of CSP Development
    The Status of CSP Development DISH STIRLING POWER TOWER CLFR Tom Mancini CSP Program Manager Sandia National Laboratories PARABOLIC TROUGH 505.844.8643 DISH STIRLING [email protected] [email protected] 1 Presentation Content • Brief Overview of Sandia National Laboratories • Background information • Examples of CSP Technologies − Parabolic Trough Systems − Power Tower Systems − Thermal Energy Storage − Dish Stirling Systems • Status of CSP Technologies • Cost of CSP and Resource Availability • Deployments • R & D Directions [email protected] 2 Four Mission Areas Sandia’s missions meet national needs in four key areas: • Nuclear Weapons • Defense Systems and Assessments • Energy, Climate and Infrastructure Security • International, Homeland, and Nuclear Security [email protected] 3 Research Drives Capabilities High Performance Nanotechnologies Extreme Computing & Microsystems Environments Computer Materials Engineering Micro Bioscience Pulsed Power Science Sciences Electronics Research Disciplines 4 People and Budget . On-site workforce: 11,677 FY10 operating revenue . Regular employees: 8,607 $2.3 billion 13% . Over 1,500 PhDs and 2,500 MS/MA 13% 43% 31% Technical staff (4,277) by discipline: (Operating Budget) Nuclear Weapons Defense Systems & Assessments Energy, Climate, & Infrastructure Security International, Homeland, and Nuclear Security Computing 16% Math 2% Chemistry 6% Physics 6% Other science 6% Other fields 12% Electrical engineering 21% Mechanical engineering 16% Other engineering 15% 5 Sandia’s NSTTF Dish Engine Engine Test Rotating Testing Facility Platform Established in 1976, we provide ………. • CSP R&D NSTTF • Systems analysis and FMEA • System and Tower Testing Solar Furnace component testing and support NATIONAL SOLAR THERMAL TEST FACILITY [email protected] 6 Labs Support the DOE Program The CSP Programs at Sandia and the National Renewable Energy Laboratory (NREL) support the DOE Solar Energy Technology Program.
    [Show full text]
  • DCSP Newsletter 42018
    From: Annelie Pitz-paal [email protected] Subject: Fwd: DCSP Newsletter 4/2018 Date: 11. June 2019 at 14:26 To: Sabrina Braemer [email protected] Gesendet mit der WEB.DE Mail App Anfang der weitergeleiteten E-Mail Von: "Deutsche CSP - Newsletter" Datum: 3. Dezember 2018 um 11:57 An: [email protected] Betreff: DCSP Newsletter 4/2018 Newsletter Ihre Newsletter-Registrierung: Sind Sie weiter interessiert? Wir freuen uns, dass Sie bisher unsere Newsletter erhalten wollen. Aufgrund der neuen Datenschutzverordnung müssen wir Sie bitten, uns kurz zu bestätigen, dass Sie den Newsletter auch weiterhin beziehen möchten. Klicken Sie dazu einfach auf den folgenden Button. Herzlichen Dank! Ja, Ich will den Newsletter weiterhin beziehen Guten Tag, sehr geehrte Damen und Herren, im Folgenden übersenden wir Ihnen eine Übersicht mit aktuellen Branchen-News. Mit freundlichen Grüßen Ihr Vorstand des Deutschen Industrieverband Concentrated Solar Power. International News Project overview of CGN Solar Delingha 50MW parabolic trough CSP plant The CGN Solar Delingha 50MW parabolic trough CSP plant is one of China’s first batch of demonstration CSP projects and one of China’s first batch of demonstration CSP projects and leads the construction progress. The project has a total investment of 1.938 billion yuan and is equipped with 9 hours of molten salt heat storage. Once completed, CGN Solar Delingha 50MW parabolic trough CSP plant will be the first commercial parabolic trough project and the first operational demonstation CSP project in China. (cspplaza, 07.08.2018) Mehr Ten "CSP+" Power Station Development Modes In view of the fact that CSP still faces the problems of high investment cost and high cost of electricity, the development mode of “CSP+” seems a good choice for building new plants.
    [Show full text]
  • The Case of Bokpoort CSP Plant in South Africa
    Dispatchable Solar Energy 24/7 – The Case of Bokpoort CSP plant in South Africa Nandu Bhula Deputy Managing Director (Southern Africa) At A Glance We develop power and desalination water plants In over a decade we have become the second largest power & water developer in the GCC region, and a name to contend with internationally. We have achieved this by developing, investing in and operating a world-class 2004 portfolio... Saudi Arabia 58 37.7+ 5.8 Assets* GW Power* Mm3 per day Desalinated Water* 2008 – 2010 Oman 12 $59+ bn 21.5% Jordan Countries USD of Assets Portfolio in Renewable Under Energy based on Management** Share of project cost 2012 – 2014 3,500+ 30+ ~60% Morocco Employees Nationalities Local South Africa Employment Turkey in projects * Figures inclusive of advanced development projects ** There is another $10.5 bn of projects in advanced development DEVELOP INVEST OPERATE 2015 – UAE We win bids as lead developer, While taking significant, We operate and maintain our by partnering with the best and long-term stakes in all our plants plants to the highest global Egypt focusing on cost leadership. standards Vietnam 15/12/2020 CSP – Status across the Globe •CSP technology implemented in 23 countries 30 000 across the globe 25 000 20 000 •Over 6,000MW in operation 15 000 10 000 •Over 3,500MW in construction 5 000 - •Almost 25,000MW planned or in development Planned CSP Under Operational stages Projects Construction Source: https://solargis.com/maps-and-gis-data/overview/ 15/12/2020 ACWA Power CSP’s in MENA Region 150MW 950MW – (3 x 200MW CSP Trough, 1 x - Tower CSP+PV Hybrid 100MW CSP Tower & 250MW PV) 200MW - Trough 160MW - Trough 510MW – CSP Complex 15/12/2020 South African Renewable Energy IPP Program (REIPPP) • Started in 2011, the REIPPP is widely recognized as one of the most successful renewable energy procurement models in the world.
    [Show full text]
  • See Who Attended
    Company Name First Name Last Name Job Title Country 24Sea Gert De Sitter Owner Belgium 2EN S.A. George Droukas Data analyst Greece 2EN S.A. Yannis Panourgias Managing Director Greece 3E Geert Palmers CEO Belgium 3E Baris Adiloglu Technical Manager Belgium 3E David Schillebeeckx Wind Analyst Belgium 3E Grégoire Leroy Product Manager Wind Resource Modelling Belgium 3E Rogelio Avendaño Reyes Regional Manager Belgium 3E Luc Dewilde Senior Business Developer Belgium 3E Luis Ferreira Wind Consultant Belgium 3E Grégory Ignace Senior Wind Consultant Belgium 3E Romain Willaime Sales Manager Belgium 3E Santiago Estrada Sales Team Manager Belgium 3E Thomas De Vylder Marketing & Communication Manager Belgium 4C Offshore Ltd. Tom Russell Press Coordinator United Kingdom 4C Offshore Ltd. Lauren Anderson United Kingdom 4Cast GmbH & Co. KG Horst Bidiak Senior Product Manager Germany 4Subsea Berit Scharff VP Offshore Wind Norway 8.2 Consulting AG Bruno Allain Président / CEO Germany 8.2 Consulting AG Antoine Ancelin Commercial employee Germany 8.2 Monitoring GmbH Bernd Hoering Managing Director Germany A Word About Wind Zoe Wicker Client Services Manager United Kingdom A Word About Wind Richard Heap Editor-in-Chief United Kingdom AAGES Antonio Esteban Garmendia Director - Business Development Spain ABB Sofia Sauvageot Global Account Executive France ABB Jesús Illana Account Manager Spain ABB Miguel Angel Sanchis Ferri Senior Product Manager Spain ABB Antoni Carrera Group Account Manager Spain ABB Luis andres Arismendi Gomez Segment Marketing Manager Spain
    [Show full text]
  • An Economically Viable Solution to the South African Electricity Crisis?
    Style Definition: TOC 4: No underline, English (AUS) Deleted: ... [1] Formatted: Font:Calibri, 17 pt, Bold MOZAMBICAN GAS – AN ECONOMICALLY VIABLE SOLUTION TO THE SOUTH AFRICAN ELECTRICITY CRISIS? MSc (50/50) RESEARCH PROJECT Formatted: English (UK) Formatted: English (UK) Prepared by Stuart Brown 797467 Submitted to School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa Supervisor(s): Dr DiAkanuA Nkazi 24 August 2016 Deleted: Marc Formatted: English (UK) Moved down [1]: Page Break Table of Contents Formatted: Line spacing: 1.5 lines Deleted: 1. INTRODUCTION: 6 ... [2] DeclAration Formatted: English (UK) I Declare that this research report is my own unaided work. It is being submitted for the Deleted: to Formatted: English (UK) degree of Master of Science (Engineering) to the University of Witwatersrand, Johannesburg. It has not been submitted for any degree or examination to any other University ____________________ Stuart Brown – 797467 ______ day of _________________ year _____________ 2 Acknowledgments My thanks and appreciation to Dr Nkazi for persevering with me as my advisor throughout the time it took me to complete this research and write the dissertation. The program at the School of Engineering was one of the most important and formative experiences in my life. I must acknowledge as well the many friends, colleagues, students, teachers who assisted, advised, and supported my research and writing efforts. 3 DedicAtion To my Family and friend who provided me with unwavering support throughout this entire process. 4 Keywords Economics of Using Mozambique Gas, Mozambique, Mozambique Gas, Mozambique Gas Cost, Mozambique Gas utilised for Power in South Africa, South African Power Shortage, Gas to Power South Africa.
    [Show full text]