3-D System Integration of Processor and Multi-Stacked Srams Using

Total Page:16

File Type:pdf, Size:1020Kb

3-D System Integration of Processor and Multi-Stacked Srams Using 856 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 4, APRIL 2010 3-D System Integration of Processor and Multi-Stacked SRAMs Using Inductive-Coupling Link Makoto Saen, Kenichi Osada, Member, IEEE, Yasuyuki Okuma, Kiichi Niitsu, Member, IEEE, Yasuhisa Shimazaki, Member, IEEE, Yasufumi Sugimori, Yoshinori Kohama, Kazutaka Kasuga, Itaru Nonomura, Naohiko Irie, Toshihiro Hattori, Member, IEEE, Atsushi Hasegawa, and Tadahiro Kuroda, Fellow, IEEE Abstract—This paper describes a three-dimensional (3-D) and wireless) have been proposed [1]–[10]. A major wired-in- system integration of a full-fledged processor chip and two terconnect technique is through-silicon via (TSV) [6]–[10]. The memory chips using inductive coupling. To attain a 3-D commu- density of 3-D inter-chip connections can near that of on-chip nication link with a smaller area and lower power-consumption, shortening the link distance and preventing signal degradation wires when using the TSV technique. However, it increases due to unused inductors are important challenges. Therefore, cost of chip fabrication due to increase of fabrication-process we developed a new 3D-integrated wire-penetrated multi-layer complexity. On the other hand, inductive coupling [1]–[4], a structure for a shorter link distance and an open-skipped-inductor major wireless-interconnect technique, does not increase the scheme for suppressing signal degradation. In addition, to avoid process complexity because inductors for inductive coupling undefined-value propagation in stacking multi-memories using an inductive-coupling link, we proposed a memory-access-control are formed using metal layers of standard CMOS process. scheme with a pinpoint-data-capture scheme. We demonstrate Therefore, inductive coupling is an inexpensive 3D-integra- that three fabricated chips can be successfully AC-coupled using tion solution. An inductive-coupling link for high-bandwidth inductive coupling. The power and area efficiency of the link are P between one processor chip and one memory chip was reported 1 pJ/b and 0.15 mm Gbps, respectively, which are the same as [2]. Their work shows that an inductive coupling link can con- those of two-chip integration. nect a processor chip and a memory chip with high-bandwidth. Index Terms—Inductive coupling, three-dimensional system In addition to the increase in bandwidth, increase in memory integration. capacity is also necessary to improve performance of processor systems. Our technical challenge is to achieve large memory ca- I. INTRODUCTION pacity using the inductive-coupling link [1]. The simple and ef- fective solution for this purpose is to stack multiple same-sized memory chips on a processor chip. However, there are two is- HE processing performance of processor chips continues sues to address. The first is to develop 3D-stacking technology T to increase by integrating more processing cores in a to attain a shorter link distance for a smaller area and lower chip, from dual core to many core. To improve the performance power consumption of interconnect circuits. The second issue for practical applications, inter-chip bandwidth between a is to prevent signal degradation due to unused inductors. processor chip and a memory chip and memory capacity must We developed 3-D system integration techniques as solutions be also increased. to these issues. For the first issue, we developed a new 3D-in- In improving inter-chip bandwidth with conventional tegrated wire-penetrating multi-layer structure. For the second system-on-a-board implementation, long inter-chip distance issue, we developed an open-skipped-inductor scheme. In the and limited number of interconnections prevent improvement following sections, we discuss these techniques and also de- in inter-chip bandwidth. Three-dimensional (3-D) integration scribe a proposed memory-access-control scheme with a pin- is recognized as a breakthrough technology for improving the point-data-capture scheme for avoiding undefined-value propa- interconnect bandwidth. It reduces the inter-chip distance and gation in stacking multi-memories using the inductive-coupling increases the number of interconnections dynamically by ver- link. tical stacking. Several 3-D interconnection techniques (wired II. 3D INTEGRATION WITH INDUCTIVE-COUPLING Manuscript received August 24, 2009; revised November 16, 2009. Current LINKS AND WIRES version published March 24, 2010. This paper was approved by Guest Editor Masayuki Mizuno. M. Saen, K. Osada, Y. Okuma, and N. Irie are with the Central Research Lab- A. System Overview oratory, Hitachi, Ltd., Kokubunji-shi, Tokyo 185-8601, Japan (e-mail: makoto. [email protected]). In this section, we explain our 3-D integrated system. In this K. Niitsu, Y. Shimazaki, Y. Sugimori, Y. Kohama, K. Kasuga, and T. Kuroda system, a full-fledged processor chip [11] and two memory are with Keio University, Yokohama, Kanagawa 223-8522, Japan. chips (SRAM0/1) are stacked, and they are connected using Y. Shimazaki, I. Nonomura, T. Hattori, and A. Hasegawa are with Renesas Technology Corporation, Kodaira-shi, Tokyo 187-8588, Japan. inductive coupling. The processor accesses stacked memories Digital Object Identifier 10.1109/JSSC.2010.2040310 via the inductive-coupling links. 0018-9200/$26.00 © 2010 IEEE Authorized licensed use limited to: Soochow University. Downloaded on March 24,2010 at 21:18:05 EDT from IEEE Xplore. Restrictions apply. SAEN et al.: 3-D SYSTEM INTEGRATION OF PROCESSOR AND MULTI-STACKED SRAMS USING INDUCTIVE-COUPLING LINK 857 Fig. 1. Block diagram of 3D-system. Fig. 3. 3D-integration with wire-penetrated multi-layer structure. on the SRAM0 chip. Each chip is back grinded to a thickness of m for a shorter link distance. The data are vertically transmitted using the inductive-coupling links among the chips. On the other hand, the power for the SRAM0 and SRAM1 chips is supplied using conventional low-cost wire bonding. Although inductive coupling can supply power, it is inferior to wire in transmission efficiency. Such 3D-integration with hybrid connections makes integra- Fig. 2. Micrographs of chips and risks of 3D-integration. tion difficult. To attain a shorter link distance, two points need to be improved. One is to reduce the space for wire bonding as much as possible while avoiding a short between the SRAM0 A block diagram of the system is shown in Fig. 1. The wire and the back-side of the SRAM1 chip (short risk A in processor chip includes eight processor-cores (PUs), a control Fig. 2), or a short between the SRAM0 wire and the edge of circuit of inductive-coupling connection (ICCP), an on-chip in- the SRAM0 chip (short risk B in Fig. 2). The other point is to terconnect (OCIC), which is a switch fabric connecting the PUs apply wire bonding to the very thin SRAM1 chip without any to the ICCP, a transmitter circuit (Txp), a receiver circuit (Rxp), cracks (crack risk in Fig. 2). To achieve this bonding, it is neces- and inductors. Each memory chip includes a 1-MB SRAM sary to fill the narrow space with glue without any gaps despite array, a control circuit of an inductive-coupling link (ICC0/1), the existence of wire bonding. To satisfy both points, we devel- a transmitter circuit (Tx0/1), a receiver circuit (Rx0/1), and oped a new structure. inductors. An overview of the new structure is shown in Fig. 3. This The inductive-coupling links are classified into an uplink structure is based on two techniques. One is a wire-shaped con- from the processor to the memories and a downlink from the trol technique for reducing the space between stacked chips memories to the processor. The links use a source-synchronous without any shorts. A key to the wire control is to place ad- method, sourcing a clock along with data. Each link contains a ditional shaping plates on the package board. By using these 600-MHz clock signal, 16-bit data signals, and control signals. shaping plates, we can change the direction of the wire and control the wire shape. The other technique is a wire-penetra- B. 3D-Integrated Wire-Penetrated Multi-Layer Structure tion-into-glue technique for filling the space without any gaps. Microphotographs of the fabricated chips are shown in Fig. 2. This is achieved by applying a special glue, Hitachi-Chemical The processor chip is fabricated in a 90-nm-CMOS process and glue (HS series), in which the wires penetrate. A 40- m-thick the memory chips are fabricated in a 60-nm-CMOS process. A space is achieved using these techniques. good feature of 3-D integration is that chips fabricated in dif- The process flow of the wire-penetration-into-glue is de- ferent processes can be integrated. scribed. First, the SRAM0 chip is glued on the processor chip A side view of 3-D integration by stacking the chips is also which is mounted on the package board. Next, wire bonding for shown in Fig. 2. The processor chip is mounted face down on a the SRAM0 is made with the shaping plates. In addition, the package board using C4 bumps. The SRAM0 chip is glued face special glue is attached to the back side of the SRAM1. Then, up on the processor chip, and the SRAM1 chip is glued face up the SRAM1 is stacked on the SRAM0 and they are heated with Authorized licensed use limited to: Soochow University. Downloaded on March 24,2010 at 21:18:05 EDT from IEEE Xplore. Restrictions apply. 858 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 4, APRIL 2010 TABLE I DEGRADATION OF SIGNAL STRENGTH BY UNUSED INDUCTOR a pressure. In this process, wires penetrate the glue. After that, this integrated module is cured. Finally, wire bonding for the SRAM1 is made. As described above, this process flow does not include technical difficulties, so the wire-penetration-into-glue is manufacturable.
Recommended publications
  • Custom and Multichip Packaging Contract Manufacturing
    Custom & Multichip Packaging Contract Manufacturing Micross’ contract assembly offers design and engineering support, BOM procurement, and a wide selection of package, substrate and interposer materials. Micross provides comprehensive semiconductor packaging services for multiple electronic components, including digital, mixed signal, analog, multi-chip and System-in-Package (SiP). We design, build and test hermetic QML and chip scale packaging for various markets including down-hole, aerospace, satellite and military. We combine advanced processes and product development to provide full turnkey support for prototype to volume production of flip chip and wire bond packages including single chip, multichip and SiP applications on organic substrates or ceramic substrates. By ensuring delivery of finished wafers through our relationships with silicon OCMs, and full coordination of customer BOM requirements, we offer complete supply-chain management services for micro- electronic assemblies. Micross Components can support your custom design with: Micross supplies modules and contract assembly services for multiple platforms: industrial, airborne; commercial and government satellites; • Complete turnkey product - including program missile and ordnance; C4ISR and medical. and vendor management of all elements throughout the product lifecycle • Co-development of a statement of work (SOW) Custom Multichip Packaging (MCP) is a die based system or sub-system • Co-design, starting with schematic, netlist or product definition and documentation assembled into a single package which is then mounted to the PCB. • Environmental requirements review In its simplest form factor, two or more of the same die are combined in one industry standard package that is smaller than the equivalent • Package and material selection for optimization of electrical and environmental performance, single die packages combined.
    [Show full text]
  • Introduction to System IC Design Flow
    Introduction to System IC and Design Flow Outline System-on-a-Chip (SoC) Trend SoC Integration & Challenge System-in-a-Package (SIP) IC Industry and Chip Production Flow System IC Design Flow Chip Debugging Tools and Reliability Issues 2 SoC Concept Analog Memory PCB ASIC CPU Chip System on a Board Analog IP Memory IP Chip IP IP CPU System on a Chip 3 Soc Advantages Minimize System Cost PCB, passive components Assembling Testing Compact System Size Board layout vs. chip layout Reduce System Power Consumption I/O, passive components, current levels Increase System Performance Interconnecting delay High speed parallel bus 4 Years 2002 – 2008 Worldwide Communication SoC Market Values Unit: Million U.S. Dollars Product 2002 2003 2004 2005 2006 2007 2008 Digital Cellular 7,480 9,463 12,560 15,210 15,855 17,202 19,013 LAN Wireless 138 333 492 662 777 938 1,134 Mobile Infrastructure 325 344 418 537 511 479 481 Other Mobile Comms. 378 520 673 859 1,077 1,215 1,440 LAN 140 184 248 316 348 392 446 Premises and CO Line Card 167 161 188 201 199 204 219 Broadband Remote Access 918 1,313 1,617 1,793 1,717 1,837 1,978 Public Infrastructure 304 360 481 607 667 810 934 Other Wired Comms. 428 568 811 1,128 1,175 1,365 1,515 Total Communications 10,278 13,246 17,488 21,313 22,326 24,442 27,160 Source: Dataquest (2004/06) 5 Example1: Siemens C35i Phone 13 1. Infineon E-GOLD PMB2851E, GSM Baseband controller and DSP.
    [Show full text]
  • Fpga Hardware
    L2: FPGA HARDWARE 18-545: ADVANCED DIGITAL DESIGN PROJECT FALL 2011 BILL NACE Administrivia Team assignments are done Lab 1 is due Monday Project Proposals happen on Monday Reading Assignment #1 due today 13/14 students got it in to Blackboard on time David's attempt didn't get saved (?) Submit a PDF, don't fill in the web form 18-545: FALL 2011 2 Game Plan Overview Why use FPGAs? FPGA Internals Caveat: I will use Xilinx specific terminology since that’s the FPGA company you will be using. Beware that other companies use different terms 18-545: FALL 2011 3 FPGA Overview Field Programmable Gate Array Array of generic logic gates Gates where logic function can be programmed Programmable interconnection between gates Fielded systems can be programmed i.e. post-fabrication Xilinx Virtex-5 FPGA 18-545: FALL 2011 5 Design Platform Virtex-5 Development System Xilinx XC5VLX110T FPGA 17280 slices of CLB goodness 256MB DDR2 (SODIMM) DVI Video port VGA port is for input 10/100/1000 Ethernet port Audio Codec (AC97) USB2 port 16x2 LCD, RS-232 Compact Flash card slot Expansion connectors 18-545: FALL 2011 6 Game Plan Overview Why use FPGAs? FPGA Internals 18-545: FALL 2011 7 Why use FPGAs? System designers have a Goldilocks problem Off-the-shelf parts are not efficient enough Custom ASICs cost too much Need a “just right” solution ASIC Design Difficult to design Large and complex Issues in advanced processes Interconnect delay Device leakage Power density constraints Expensive to design / fabricate Mask set costs Non-recurring engineering costs Need a high-volume, high-profit market to justify costs! Energy Efficiency (MOPS/mW) Area Efficiency (MOPS/mm2) 10000 1000 Microprocessors 100 10 1 0.1 DSPs ASICs 0.01 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Efficiency View An efficiency gap exists between ASICs and CPUs N.
    [Show full text]
  • Integrated Circuit Package Types
    APPENDIX C Integrated Circuit Package Types Overview With the ever-increasing levels of integration, packing more circuitry into ever smaller packages, electronic systems now rely on semiconductor devices. Anything from a few circuit components (transistors, resistors, and capacitors) to complete computer systems can be placed on a single silicon die. An integrated circuit is a package containing a single silicon (silicon germanium for RF circuits, or gallium arsenide for microwave frequency circuits) that forms either part of a larger electronic circuit or system or is a complete electronic system in its own right. When the IC forms a complete electronic system, it is commonly referred to as a system on a chip (SoC). Modern communications ICs are SoC designs. An extension to the IC is the multichip module (MCM), which contains multiple dies; for example, when sensors and circuits are to be housed in a single package but which cannot be fabricated on a single die. Originally referred to as a hybrid circuit, the MCM consists of two or more ICs and passive components on a common circuit base that are interconnected by conductors fabricated within that base. The MCM helps with size reduction problem and helps alleviate signal degradation. An extension to the MCM is the system in a package (SiP), on which devices are stacked vertically. Wire bonding to the substrate is common. An extension to the SiP is the package on a package (PoP). www.newnespress.com 2 Appendix C IC Package Types The package that the IC uses is either a through-hole package or a surface mount package, made of either plastic or ceramic.
    [Show full text]
  • 3-D Packaging: a Technology Review
    3-D Packaging: A Technology Review R. Wayne Johnson Auburn University 162 Broun Hall/ECE Dept. Auburn, AL 36849 334-844-1880 [email protected] Mark Strickland NASA/MSFC Huntsville, AL David Gerke NASA/JPL Pasadena, CA June 23, 2005 3-D PACKAGING A TECHNOLOGY REVIEW Table of Contents 2 INTRODUCTION 3 Package Stacking 8 Benefits of Package Stacking 14 Limitations of Package Stacking 14 Reliability 15 Technology Readiness Level Assessment 17 Die Stacking 17 Benefits of Die Stacking 33 Limitations of Die Stacking 34 Reliability 35 Technology Readiness Level Assessment 36 3-D Multichip Modules 37 Benefits of 3-D Multichip Modules 54 Limitations of 3-D Multichip Modules 54 Reliability 54 Technology Readiness Level Assessment 55 Wafer Stacking 56 Benefits of Wafer Stacking 60 Limitations of Wafer Stacking 60 Technology Readiness Level Assessment 63 Conclusions and Recommendations 64 References 65 2 3-D Packaging A Technology Review Introduction Traditional electronics are assembled as a planar arrangement of components on a printed circuit board (PCB) or other type of substrate. These planar assemblies may then be ‘plugged’ into a motherboard or card cage creating a ‘volume’ of electronics. This architecture is common in many military and space electronic systems as well as large computer and telecommunications systems and industrial electronics. The individual PCB assemblies can be replaced if defective or for system upgrade. Some applications are constrained by the volume or the shape of the system and are not compatible with the motherboard or card cage architecture. Examples include missiles, camcorders, and digital cameras. In these systems, planar rigid-flex substrates are folded to create complex 3-D shapes.
    [Show full text]
  • For Your System in a Package
    Unify ASICs for your System in a Package with TEKMOS Introducing Unify ASICs Applications for System in a Package are driven by the requirements of space, power, and development time. The total solution needs to be small. It typically runs off of a battery. And it needs a quick time-to-market. The major semiconductor suppliers have developed a number of cost effective blocks that can meet 90% of the requirements of an application. It is the last 10% that is the problem. Developers typically face two approaches for the last 10%. You can build what you need out of discrete components. This is inexpensive, but Picture of Stacked Die. requires a lot of board space. Or you can take a SOC (System on a Chip) approach. This will work, BGA packages, die can be stacked side by side as but can be very expensive, since the presence of well as on top of each other. And in some cases, we wireless interfaces and ARM processors requires can also include components that we cannot put on advanced processing to accommodate the diverse the ASIC such as large capacitors, and crystals. No requirements of diverse technologies as well as matter what package we use, the customer wins by expensive NREs. And such solutions require more having a single, highly integrated device for their development time because of the chip complexity. system. Tekmos has a third approach. We create a cost Technology effective ASIC using an appropriate technology to It is a fact that the NRE costs roughly double for implement the missing 10%.
    [Show full text]
  • Pfesip EP-1 Configurable IC Card Reader/Writer Engine PF
    To our customers, Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. Notice 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples.
    [Show full text]
  • Trends in Assembling of Advanced IC Packages Ryszard Kisiel and Zbigniew Szczepański
    Invited paper Trends in assembling of advanced IC packages Ryszard Kisiel and Zbigniew Szczepa«ski Abstract|In the paper, an overview of the current trends ical area occupancy on the PCB, about three times com- in the development of advanced IC packages will be pre- pared to QFP for this I/O range. Shorter connections of- sented. It will be shown how switching from peripheral fered by CSP reduce parasitic inductance and capacitance. packages (DIP, QFP) to array packages (BGA, CSP) and multichip packages (SiP, MCM) affects the assembly pro- Table 2 cesses of IC and performance of electronic systems. The Comparison of key features of various packages [2] progress in bonding technologies for semiconductor packages will be presented too. The idea of wire bonding, flip chip Feature QFP BGA CSP and TAB assembly will be shown together with the bound- I/O 208 225 313 aries imposed by materials and technology. The construction Pitch [mm] 0.5 1.27 0.5 of SiP packages will be explained in more detail. The paper Footprint [mm2] 785 670 252 addresses also the latest solutions in MCM packages. Height [mm] 3.37 2.3 0.8 Keywords| IC packages, SiP, wire bonding, TAB, flip chip. Package to die ratio 8 7 1 Inductance [nH] 6.7 1.3 { 5.5 0.5 { 2.1 Capacitance [pF] 0.5 { 1 0.4 { 2.4 0.05 { 0.2 1. Introduction Compared to leaded packages such as QFPs, BGA and CSP The development of the electronics industry is dominated packages are expensive. The cost is about twice as high, by communication products, which are characterised by but when cost per I/O is taken into account the prices be- rapid market introduction and fast mass-manufacturing ca- come almost the same.
    [Show full text]
  • 実装WG「先端パッケージ技術 -More Than Mooreを実現するsip技術
    STRJワークショップ2008 (2009.03.06) 実装WG 先端パッケージ技術 More than Mooreを実現するSiP技術 (社)電子情報技術産業協会 半導体部会 半導体技術委員会 半導体技術ロードマップ専門委員会 WG7/春田 亮(ルネサステクノロジ) STRJ WS: March 6, 2009, WG7 A&P 1 用語集 BG : Back Grinding BGA : Ball Grid Array Package COC : Chip on Chip CSP : Chip Size Package/Chip Scale Package FC : Flip Chip ITRS : International Technology Roadmap for Semiconductors KGD : Known Good Die MMC : Multi Media Card SEAJ : Semiconductor Equipment Association of Japan SiP : System in a Package SSD : Solid State Drive TSV : Through Silicon Via WB : Wire Bonding STRJ WS: March 6, 2009, WG7 A&P 2 目次 1.はじめに 2.最新のSiP技術 3.SiP組立技術の動向 4.まとめ STRJ WS: March 6, 2009, WG7 A&P 3 2008年度 WG7 メンバ リーダ : 春田 亮(ルネサス) サブリーダ : 中島 宏文(NECエレ) 国際対応委員 : 宇都宮 久修(ICT)、中島 兼務 委員 : 吉田 英治(富士通)、松浦 雅夫(ソニー)、 木村 通孝(ルネサス)、大内 伸仁(OKI)、 春口 秀哉(シャープ)、上田 茂幸(ローム)、 大塚 雅司(東芝)、杉崎 吉昭(東芝)、 臼井 良輔(三洋)、春日 壽夫(NECエレ)、 高田 隆(松下)、大槻 哲也(エプソン)、 特別委員 : 久保 貴則(京セラ)、 林 智雄(SEAJ;東京精密)、 横田 寛(SEAJ;住友重機械工業)、 喜多村 章司(SEAJ;キヤノンマシナリ) STRJ WS: March 6, 2009, WG7 A&P 4 LSIパッケージの開発動向 第1次革命 第2次革命 第3次革命 第4次革命? (3次元実装) (光実装) (MEMS) (挿入型→表面実装型) (周辺配置→エリアアレイ) (Wafer Level Packaging) (異種接合) IC nce IC (実装面積) (実装面積) rma Perfo Wireless Interconnect T-BGA High Si-Interposer TCP Optical Interconnect FC-BGA POP P-BGA(WB) SiP TSV Die Stacking QFP ost Performance QFJ C Mounted Area Area Mounted Mounted FBGA Stacked SiP 3D-Bare Lo w Cost / Handhe DIP SOJ SOP ld MEMS Devices WL-CSP KGDベアチップ 1980 1990 2000 2010 2020 STRJ WS: March 6, 2009, WG7 A&P 5 Biochips Sensors Actuators HV Power Interactingand environment with people 2005 edition More than Moore:Passives Diversification Non-digital(SiP) content System-in-package More Moore vs.
    [Show full text]
  • Key Words for Sip White Paper
    SiP White Paper V9.0 The next Step in Assembly and Packaging: System Level Integration in the package (SiP) Our intent is that this paper will be a living document that is kept up to date as System in Package progresses and the technology evolves. We would like to ask the readers to send any suggestions and/or corrections to [email protected]. This will assist us in keeping the document up to date and accurate so that it can be a continuing reference to the state of the art in SiP and a guide to developments critical to meeting future market requirements. Page 1 SiP White Paper V9.0 Table of Contents 1. Executive Summary .................................................................................................. 5 Background .................................................................................................................. 6 Definition of SiP ........................................................................................................... 8 Level Structures ........................................................................................................... 8 SiP vs. SoC Comparison ............................................................................................. 11 Market Trends ............................................................................................................ 12 2. System Level Requirements for SiP ....................................................................... 13 2.1 General Requirements ...................................................................................
    [Show full text]
  • Assembly and Packaging
    INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2009 EDITION ASSEMBLY AND PACKAGING THE INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS: 2009 TABLE OF CONTENTS Scope....................................................................................................................................1 Difficult Challenges................................................................................................................2 Single Chip Packaging ..........................................................................................................2 Overall Requirements......................................................................................................................2 Electrical Requirements ...............................................................................................................................3 Cross Talk ....................................................................................................................................................3 Power Integrity .............................................................................................................................................3 Thermal Requirements.................................................................................................................................3 Hot spots ......................................................................................................................................................4 Mechanical Requirements............................................................................................................................4
    [Show full text]
  • Integrated Circuit Test Engineering Iana.Grout Integrated Circuit Test Engineering Modern Techniques
    Integrated Circuit Test Engineering IanA.Grout Integrated Circuit Test Engineering Modern Techniques With 149 Figures 123 Ian A. Grout, PhD Department of Electronic and Computer Engineering University of Limerick Limerick Ireland British Library Cataloguing in Publication Data Grout, Ian Integrated circuit test engineering: modern techniques 1. Integrated circuits - Verification I. Title 621.3’81548 ISBN-10: 1846280230 Library of Congress Control Number: 2005929631 ISBN-10: 1-84628-023-0 e-ISBN: 1-84628-173-3 Printed on acid-free paper ISBN-13: 978-1-84628-023-8 © Springer-Verlag London Limited 2006 HSPICE® is the registered trademark of Synopsys, Inc., 700 East Middlefield Road, Mountain View, CA 94043, U.S.A. http://www.synopsys.com/home.html MATLAB® is the registered trademark of The MathWorks, Inc., 3 Apple Hill Drive Natick, MA 01760- 2098, U.S.A. http://www.mathworks.com Verifault-XL®, Verilog® and PSpice® are registered trademarks of Cadence Design Systems, Inc., 2655 Seely Avenue, San Jose, CA 95134, U.S.A. http://www.cadence.com/index.aspx T-Spice™ is the trademark of Tanner Research, Inc., 2650 East Foothill Blvd. Pasadena, CA 91107, U.S.A. http://www.tanner.com/ Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency.
    [Show full text]