Introduction to System IC Design Flow

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to System IC Design Flow Introduction to System IC and Design Flow Outline System-on-a-Chip (SoC) Trend SoC Integration & Challenge System-in-a-Package (SIP) IC Industry and Chip Production Flow System IC Design Flow Chip Debugging Tools and Reliability Issues 2 SoC Concept Analog Memory PCB ASIC CPU Chip System on a Board Analog IP Memory IP Chip IP IP CPU System on a Chip 3 Soc Advantages Minimize System Cost PCB, passive components Assembling Testing Compact System Size Board layout vs. chip layout Reduce System Power Consumption I/O, passive components, current levels Increase System Performance Interconnecting delay High speed parallel bus 4 Years 2002 – 2008 Worldwide Communication SoC Market Values Unit: Million U.S. Dollars Product 2002 2003 2004 2005 2006 2007 2008 Digital Cellular 7,480 9,463 12,560 15,210 15,855 17,202 19,013 LAN Wireless 138 333 492 662 777 938 1,134 Mobile Infrastructure 325 344 418 537 511 479 481 Other Mobile Comms. 378 520 673 859 1,077 1,215 1,440 LAN 140 184 248 316 348 392 446 Premises and CO Line Card 167 161 188 201 199 204 219 Broadband Remote Access 918 1,313 1,617 1,793 1,717 1,837 1,978 Public Infrastructure 304 360 481 607 667 810 934 Other Wired Comms. 428 568 811 1,128 1,175 1,365 1,515 Total Communications 10,278 13,246 17,488 21,313 22,326 24,442 27,160 Source: Dataquest (2004/06) 5 Example1: Siemens C35i Phone 13 1. Infineon E-GOLD PMB2851E, GSM Baseband controller and DSP. 2. 32.768kHz crystal 3. NIY 14 4. Bottom connector 15 12 5. FLASH 6. Power supply IC 11 16 7. VCO 8. Epcoc B4846; SAW filter, 225.0MHz 17 10 9. PCB pads to Battery 18 9 10. 13MHz crystal 8 11. Tx VCO 19 12. Hitachi PF08112B; Power amplifier 20 7 13. External antenna connetor with switch. 14. Diplex filter 6 21 15. NIY 1 16. Epcos B4127 SAW filter 942.5MHz 17. NIY 2 18. PCB pads to SIM card holder 19. Synthesizer (?) 3 5 20. Hitachi HD155124F– Bright II; GSM Transceiver Circuit 21. Infineon PMB2906: Analog interface IC (E-GAIM). Interfaces analogue signals (I/Q, voiceband, PA-control, charging control signals) to the digital domain 4 6 Example2: Philips DAB Receiver Data IF A/D MPEG MPEG Audio Audio Tuner OFDM Demodulation Channel Decoding Decoder DAC AGC L R Micro- controller Integration vs. Diversity & Process 7 System Integration Trend- Cfone ~2000 2001-2002 2003-2004 2005 Transistors Diodes PA PA PA Synthesizer IC Frequency Converter LNA RF/IF RF Switch VCOs RF RF Filters PA ⋯ Single Chip CPU/DSP Digital Baseband Audio Processor Memories Power Management Analog Baseband Baseband A/D Baseband Power management D/A ⋯ Digital Baseband Resistors Inductors Passive Capacitors Passive components Passive components Passive components ⋯ Source: 工研院經資中心ITIS計畫(2002/10) 8 TI- DRP GSM cellular phone solution RF Codec Digital Power Amplifier ADC and DAC Baseband Frequency Transceiver Memory Synthesizer Power Management Digital and RF Power Amplifier SOC ½ Board size ½Power ½ Silicon Area Power Management Memory 9 Outline System-on-a-Chip (SoC) Trend SoC Integration & Challenge System-in-a-Package (SiP) IC Industry and Chip Production Flow System IC Design Flow Chip Debugging Tools and Reliability Issues 10 Affecting Factors for System Integration Process Migration Faster digital to implement RF Density & Yield improving IP Resources Reusable IP Cooperation or Merge EDA Tools Support System Integration Tools System Verification Tools 11 Histories of Key IC Components Logic 1st Bipolar Transistor Belllab in 1956 Memory 1st integrated memory-cell NEC in 1966 1st Bipolar ECL IBM in 1957 1st 1Kb 3T MOS DRAM Intel/Honeywell in 1970 1st IC Fairchild in 1960 1st 2Kb EPROM Intel in 1971 1st TTL Fairchild in 1962 1st 1T DRAM Siemens in 1972 1st CM OS Fairchild in 1963 1st mux-addressed 16Kb DRAM Mostek in 1977 1st 4-bit NMOS uP Intel in 1974 1st 4Kb pseudo-SRAM Intel in 1979 1st 32-bit CMOS uP Belllab in 1981 1st 16Kb EEPROM Intel in 1980 1st 32-bit RISC uP Standford+Berkeley in 1984 1st 256Kb Flash Toshiba in 1985 1st 100Mhz CMOS uP Intel in 1991 1st 256b FRAM Ramtron in 1988 1st 64-bit CMOS uP-200Mhz DEC in 1992 1st multi-level 32Mb Flash Intel in 1995 1st out-of-orde r-execution uP Intel in 1995 DSP 1st sampled-data band-pass Filter Belllab in 1960 1st 32-bit 1Ghz uP-0.18u Intel in 2000 1st analog shift-register Philips in 1972 Analog 1st PLL IC Signetics in 1969 1st switched-capacitor Filte r Berkeley in 1978 1st MOS voice-encoder Berkeley in 1976 1st DSP Belllab in 1980 1st switch-capacitor Filter Berkeley in 1977 1st floating-point 32-bit DSP Bellab in 1985 1st echo-canceller Belllab in 1983 1st Vide o DSP NEC in 1987 1st 1-chip Pager Philips in 1991 1st CM OS re ad-c ha nne l Hitachi in 1993 1st GSM Transceiver Belllab in 1995 1st low-power 16-bit DSP Matsushida in 1993 1st 1024-QAM cable-modem DSP Broadcom in 1998 1st 5Ghz OFDM-BB 80Mb/s Imec in 2000 Source: ISSCC 50th years 12 Moore’s Law and Extensions Source: Intel Gordon Moore (ISSCC2003): - Moore’s Law will extend another 10-15 years. - But no exponential is forever, so delayed Moore’s Law (valid in the past 50 years) will be more realistic for the next 10-15 years. 13 Technology Migration TSMC Logic Technology Roadmap CL018LP CLN90LP CLN90LP Low Power CL015LP CLN65LP 1.2V/2.5V 1.2V/3.3V CL013LP CLN90GT CL013LV(LK) CL018LV 1.2V/2.5V High Speed CL015LV CLN011LV CLN65HS CL013LV 1.2V/1.8, CLN90GT 2.5,3.3V 1.2V/1.8V 1.2~0.15um CLN90G General 1.0V/2.5V CLN65G Purpose CL013G 1.2V/2.5,3.3V CLN90G 1.0V/1.8,3.3V Available Technologies 2004 2005 2006 Source: TSMC Technology Roadmap (Fall 2004) 14 IP Resources IP Libraries (in-company) IP Providers Faraday, Global UniChip, PGC, FameG, … Artisan, ARM, MIPS, Synopsys, Mentor, … Cooperation Partners/Merge companies Free IP (*typically buggy, need some efforts to verify functions and get them work) OpenCores: http://www.opencores.org FPGA CPU News: http://www.fpgacpu.org http://www.mindspring.com/~tcoonan/newpic.html ... 15 EDA Tool Markets 6,000 PCB Design 單 位 5,000 IC CAD : CAE/Misc. 百 CAE/Gate Level 萬 4,000 美 CAE/RTL 元 CAE/ESL 3,000 2,000 1,000 0 2000 2001 2002 2003(e) 2004(e) 2005(f) 2006(f) 2007(f) 資料來源:工研院IEK (2004/04) 16 SoC Challenges IP Resource IP library, IP provider, IP quality, IP cost Chip Integration IP cores with different manufacturer processes (logic, memory, analog, high V, …) Chip Design Verification EDA Tools that support system verification at all or mixed design phases Chip Testing Soft/firm/hard cores (logic, memory, analog, …) with or without test circuits, or with different testing strategies 17 Outline System-on-a-Chip (SoC) Trend SoC Integration & Challenge System-in-a-Package (SiP) IC Industry and Chip Production Flow System IC Design Flow Chip Debugging Tools and Reliability Issues 18 System-in-a-Package (SiP) SiP concept Analog Memory ASIC CPU Packaged Chip die substrate 19 Benefits of SiP SiP benefits: Ö Reduced developing schedule Ö Reduced developing cost Ö Possible mounting of different technologies Ö Increased yields enabled by smaller chip size 20 SiP Examples Examples of practical SiP Stack Double side Side by Side 21 Outline System-on-a-Chip (SoC) Trend SoC Integration & Challenge System-in-a-Package (SIP) IC Industry and Chip Production Flow System IC Design Flow Chip Debugging Tools and Reliability Issues 22 IC Industry Co-Operation Mode IDM Sales Channel / Service Provider System House (OEM/ODM) Design House (fabless) Siemens Motorola To shiba EDA Tool Company IP Provider Photo Mask/Foundry Service Packaging Service Testing Service 23 Taiwan IC Industry and Supporting system Equipment Capital & HR EDA Foundry Design Assembly Testing Supporting IDM Services Transportation Custom Science Park Mask Wafer Chemicals Lead Frame etc. Materials Source: ITRI, DigiTimes 24 Role of a Design House in an IC Supply Chain Product Development Photo Mask In-house or sub-contract •Market Survey •Product Planning •Chip Design Design House Final Test, QC Chip Manufacturing Packaging Wafer Testing Marketing and Sales In-house or sub-contract Design House Source: Weltrend Semiconductor, Inc 25 IC其實是高科技印刷出版產業 Product Mask Wafer Final Sales & Package R&D &Wafer CP Test Test Logistics IC設計公司 晶圓代工廠 封測公司 封測公司 封測公司 IC設計公司 Turn-key Service 作家/出版商 印刷廠 印刷廠 印刷廠 印刷廠 出版商 製版 作品撰稿 品管檢查 裝訂 成品檢視 配銷 &印刷 Source: IC 設計業與半導體供應鍊 By Jeff Tsai 26 Chip Production Flow Spec. Market/Competitors/IP/Spec. EDA Tools ASIC Design HW/SW Design and Verification Wafer Test Manufacture Mask (Chip Probing) and Modification EDA Tools Package Production Run Pilot Run Chip No good Chip Final Test Chip Verification Debugging Debugging Tools Ok Reliability Test Chip No good Ready Ok 27 Outline System-on-a-Chip (SoC) Trend SoC Integration & Challenge System-in-a-Package (SIP) IC Industry and Chip Production Flow System IC Design Flow Chip Debugging Tools and Reliability Issues *Ref: Reuse Methodology Manual For SYSTEM-ON-A-CHIP Designs, THIRD EDITION By Michael Keating & Pierre Bricaud KLUWER ACADEMIC PUBLISHERS 28 Typical System IC Architecture 29 Traditional Sequential ASIC Design Flow Specification Specification Define System Algorithm and Architecture Design Modeling Circuit Design & HDL/Schematic Circuit Design and Functional Verification function-simulation Logical Synthesis & Logic Synthesis and Timing Verification Pre-simulation P & R & Physical Design and Physical Verification Post-simulation Prototype Build & Prototype Test 30 Parallel System IC Design Flow System Design and Verification Physical Timing Hardware Software Hardware Software Physical Specification: Timing Specification: Specification
Recommended publications
  • Custom and Multichip Packaging Contract Manufacturing
    Custom & Multichip Packaging Contract Manufacturing Micross’ contract assembly offers design and engineering support, BOM procurement, and a wide selection of package, substrate and interposer materials. Micross provides comprehensive semiconductor packaging services for multiple electronic components, including digital, mixed signal, analog, multi-chip and System-in-Package (SiP). We design, build and test hermetic QML and chip scale packaging for various markets including down-hole, aerospace, satellite and military. We combine advanced processes and product development to provide full turnkey support for prototype to volume production of flip chip and wire bond packages including single chip, multichip and SiP applications on organic substrates or ceramic substrates. By ensuring delivery of finished wafers through our relationships with silicon OCMs, and full coordination of customer BOM requirements, we offer complete supply-chain management services for micro- electronic assemblies. Micross Components can support your custom design with: Micross supplies modules and contract assembly services for multiple platforms: industrial, airborne; commercial and government satellites; • Complete turnkey product - including program missile and ordnance; C4ISR and medical. and vendor management of all elements throughout the product lifecycle • Co-development of a statement of work (SOW) Custom Multichip Packaging (MCP) is a die based system or sub-system • Co-design, starting with schematic, netlist or product definition and documentation assembled into a single package which is then mounted to the PCB. • Environmental requirements review In its simplest form factor, two or more of the same die are combined in one industry standard package that is smaller than the equivalent • Package and material selection for optimization of electrical and environmental performance, single die packages combined.
    [Show full text]
  • Fpga Hardware
    L2: FPGA HARDWARE 18-545: ADVANCED DIGITAL DESIGN PROJECT FALL 2011 BILL NACE Administrivia Team assignments are done Lab 1 is due Monday Project Proposals happen on Monday Reading Assignment #1 due today 13/14 students got it in to Blackboard on time David's attempt didn't get saved (?) Submit a PDF, don't fill in the web form 18-545: FALL 2011 2 Game Plan Overview Why use FPGAs? FPGA Internals Caveat: I will use Xilinx specific terminology since that’s the FPGA company you will be using. Beware that other companies use different terms 18-545: FALL 2011 3 FPGA Overview Field Programmable Gate Array Array of generic logic gates Gates where logic function can be programmed Programmable interconnection between gates Fielded systems can be programmed i.e. post-fabrication Xilinx Virtex-5 FPGA 18-545: FALL 2011 5 Design Platform Virtex-5 Development System Xilinx XC5VLX110T FPGA 17280 slices of CLB goodness 256MB DDR2 (SODIMM) DVI Video port VGA port is for input 10/100/1000 Ethernet port Audio Codec (AC97) USB2 port 16x2 LCD, RS-232 Compact Flash card slot Expansion connectors 18-545: FALL 2011 6 Game Plan Overview Why use FPGAs? FPGA Internals 18-545: FALL 2011 7 Why use FPGAs? System designers have a Goldilocks problem Off-the-shelf parts are not efficient enough Custom ASICs cost too much Need a “just right” solution ASIC Design Difficult to design Large and complex Issues in advanced processes Interconnect delay Device leakage Power density constraints Expensive to design / fabricate Mask set costs Non-recurring engineering costs Need a high-volume, high-profit market to justify costs! Energy Efficiency (MOPS/mW) Area Efficiency (MOPS/mm2) 10000 1000 Microprocessors 100 10 1 0.1 DSPs ASICs 0.01 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Efficiency View An efficiency gap exists between ASICs and CPUs N.
    [Show full text]
  • Integrated Circuit Package Types
    APPENDIX C Integrated Circuit Package Types Overview With the ever-increasing levels of integration, packing more circuitry into ever smaller packages, electronic systems now rely on semiconductor devices. Anything from a few circuit components (transistors, resistors, and capacitors) to complete computer systems can be placed on a single silicon die. An integrated circuit is a package containing a single silicon (silicon germanium for RF circuits, or gallium arsenide for microwave frequency circuits) that forms either part of a larger electronic circuit or system or is a complete electronic system in its own right. When the IC forms a complete electronic system, it is commonly referred to as a system on a chip (SoC). Modern communications ICs are SoC designs. An extension to the IC is the multichip module (MCM), which contains multiple dies; for example, when sensors and circuits are to be housed in a single package but which cannot be fabricated on a single die. Originally referred to as a hybrid circuit, the MCM consists of two or more ICs and passive components on a common circuit base that are interconnected by conductors fabricated within that base. The MCM helps with size reduction problem and helps alleviate signal degradation. An extension to the MCM is the system in a package (SiP), on which devices are stacked vertically. Wire bonding to the substrate is common. An extension to the SiP is the package on a package (PoP). www.newnespress.com 2 Appendix C IC Package Types The package that the IC uses is either a through-hole package or a surface mount package, made of either plastic or ceramic.
    [Show full text]
  • 3-D Packaging: a Technology Review
    3-D Packaging: A Technology Review R. Wayne Johnson Auburn University 162 Broun Hall/ECE Dept. Auburn, AL 36849 334-844-1880 [email protected] Mark Strickland NASA/MSFC Huntsville, AL David Gerke NASA/JPL Pasadena, CA June 23, 2005 3-D PACKAGING A TECHNOLOGY REVIEW Table of Contents 2 INTRODUCTION 3 Package Stacking 8 Benefits of Package Stacking 14 Limitations of Package Stacking 14 Reliability 15 Technology Readiness Level Assessment 17 Die Stacking 17 Benefits of Die Stacking 33 Limitations of Die Stacking 34 Reliability 35 Technology Readiness Level Assessment 36 3-D Multichip Modules 37 Benefits of 3-D Multichip Modules 54 Limitations of 3-D Multichip Modules 54 Reliability 54 Technology Readiness Level Assessment 55 Wafer Stacking 56 Benefits of Wafer Stacking 60 Limitations of Wafer Stacking 60 Technology Readiness Level Assessment 63 Conclusions and Recommendations 64 References 65 2 3-D Packaging A Technology Review Introduction Traditional electronics are assembled as a planar arrangement of components on a printed circuit board (PCB) or other type of substrate. These planar assemblies may then be ‘plugged’ into a motherboard or card cage creating a ‘volume’ of electronics. This architecture is common in many military and space electronic systems as well as large computer and telecommunications systems and industrial electronics. The individual PCB assemblies can be replaced if defective or for system upgrade. Some applications are constrained by the volume or the shape of the system and are not compatible with the motherboard or card cage architecture. Examples include missiles, camcorders, and digital cameras. In these systems, planar rigid-flex substrates are folded to create complex 3-D shapes.
    [Show full text]
  • For Your System in a Package
    Unify ASICs for your System in a Package with TEKMOS Introducing Unify ASICs Applications for System in a Package are driven by the requirements of space, power, and development time. The total solution needs to be small. It typically runs off of a battery. And it needs a quick time-to-market. The major semiconductor suppliers have developed a number of cost effective blocks that can meet 90% of the requirements of an application. It is the last 10% that is the problem. Developers typically face two approaches for the last 10%. You can build what you need out of discrete components. This is inexpensive, but Picture of Stacked Die. requires a lot of board space. Or you can take a SOC (System on a Chip) approach. This will work, BGA packages, die can be stacked side by side as but can be very expensive, since the presence of well as on top of each other. And in some cases, we wireless interfaces and ARM processors requires can also include components that we cannot put on advanced processing to accommodate the diverse the ASIC such as large capacitors, and crystals. No requirements of diverse technologies as well as matter what package we use, the customer wins by expensive NREs. And such solutions require more having a single, highly integrated device for their development time because of the chip complexity. system. Tekmos has a third approach. We create a cost Technology effective ASIC using an appropriate technology to It is a fact that the NRE costs roughly double for implement the missing 10%.
    [Show full text]
  • Pfesip EP-1 Configurable IC Card Reader/Writer Engine PF
    To our customers, Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. Notice 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples.
    [Show full text]
  • Trends in Assembling of Advanced IC Packages Ryszard Kisiel and Zbigniew Szczepański
    Invited paper Trends in assembling of advanced IC packages Ryszard Kisiel and Zbigniew Szczepa«ski Abstract|In the paper, an overview of the current trends ical area occupancy on the PCB, about three times com- in the development of advanced IC packages will be pre- pared to QFP for this I/O range. Shorter connections of- sented. It will be shown how switching from peripheral fered by CSP reduce parasitic inductance and capacitance. packages (DIP, QFP) to array packages (BGA, CSP) and multichip packages (SiP, MCM) affects the assembly pro- Table 2 cesses of IC and performance of electronic systems. The Comparison of key features of various packages [2] progress in bonding technologies for semiconductor packages will be presented too. The idea of wire bonding, flip chip Feature QFP BGA CSP and TAB assembly will be shown together with the bound- I/O 208 225 313 aries imposed by materials and technology. The construction Pitch [mm] 0.5 1.27 0.5 of SiP packages will be explained in more detail. The paper Footprint [mm2] 785 670 252 addresses also the latest solutions in MCM packages. Height [mm] 3.37 2.3 0.8 Keywords| IC packages, SiP, wire bonding, TAB, flip chip. Package to die ratio 8 7 1 Inductance [nH] 6.7 1.3 { 5.5 0.5 { 2.1 Capacitance [pF] 0.5 { 1 0.4 { 2.4 0.05 { 0.2 1. Introduction Compared to leaded packages such as QFPs, BGA and CSP The development of the electronics industry is dominated packages are expensive. The cost is about twice as high, by communication products, which are characterised by but when cost per I/O is taken into account the prices be- rapid market introduction and fast mass-manufacturing ca- come almost the same.
    [Show full text]
  • 実装WG「先端パッケージ技術 -More Than Mooreを実現するsip技術
    STRJワークショップ2008 (2009.03.06) 実装WG 先端パッケージ技術 More than Mooreを実現するSiP技術 (社)電子情報技術産業協会 半導体部会 半導体技術委員会 半導体技術ロードマップ専門委員会 WG7/春田 亮(ルネサステクノロジ) STRJ WS: March 6, 2009, WG7 A&P 1 用語集 BG : Back Grinding BGA : Ball Grid Array Package COC : Chip on Chip CSP : Chip Size Package/Chip Scale Package FC : Flip Chip ITRS : International Technology Roadmap for Semiconductors KGD : Known Good Die MMC : Multi Media Card SEAJ : Semiconductor Equipment Association of Japan SiP : System in a Package SSD : Solid State Drive TSV : Through Silicon Via WB : Wire Bonding STRJ WS: March 6, 2009, WG7 A&P 2 目次 1.はじめに 2.最新のSiP技術 3.SiP組立技術の動向 4.まとめ STRJ WS: March 6, 2009, WG7 A&P 3 2008年度 WG7 メンバ リーダ : 春田 亮(ルネサス) サブリーダ : 中島 宏文(NECエレ) 国際対応委員 : 宇都宮 久修(ICT)、中島 兼務 委員 : 吉田 英治(富士通)、松浦 雅夫(ソニー)、 木村 通孝(ルネサス)、大内 伸仁(OKI)、 春口 秀哉(シャープ)、上田 茂幸(ローム)、 大塚 雅司(東芝)、杉崎 吉昭(東芝)、 臼井 良輔(三洋)、春日 壽夫(NECエレ)、 高田 隆(松下)、大槻 哲也(エプソン)、 特別委員 : 久保 貴則(京セラ)、 林 智雄(SEAJ;東京精密)、 横田 寛(SEAJ;住友重機械工業)、 喜多村 章司(SEAJ;キヤノンマシナリ) STRJ WS: March 6, 2009, WG7 A&P 4 LSIパッケージの開発動向 第1次革命 第2次革命 第3次革命 第4次革命? (3次元実装) (光実装) (MEMS) (挿入型→表面実装型) (周辺配置→エリアアレイ) (Wafer Level Packaging) (異種接合) IC nce IC (実装面積) (実装面積) rma Perfo Wireless Interconnect T-BGA High Si-Interposer TCP Optical Interconnect FC-BGA POP P-BGA(WB) SiP TSV Die Stacking QFP ost Performance QFJ C Mounted Area Area Mounted Mounted FBGA Stacked SiP 3D-Bare Lo w Cost / Handhe DIP SOJ SOP ld MEMS Devices WL-CSP KGDベアチップ 1980 1990 2000 2010 2020 STRJ WS: March 6, 2009, WG7 A&P 5 Biochips Sensors Actuators HV Power Interactingand environment with people 2005 edition More than Moore:Passives Diversification Non-digital(SiP) content System-in-package More Moore vs.
    [Show full text]
  • Key Words for Sip White Paper
    SiP White Paper V9.0 The next Step in Assembly and Packaging: System Level Integration in the package (SiP) Our intent is that this paper will be a living document that is kept up to date as System in Package progresses and the technology evolves. We would like to ask the readers to send any suggestions and/or corrections to [email protected]. This will assist us in keeping the document up to date and accurate so that it can be a continuing reference to the state of the art in SiP and a guide to developments critical to meeting future market requirements. Page 1 SiP White Paper V9.0 Table of Contents 1. Executive Summary .................................................................................................. 5 Background .................................................................................................................. 6 Definition of SiP ........................................................................................................... 8 Level Structures ........................................................................................................... 8 SiP vs. SoC Comparison ............................................................................................. 11 Market Trends ............................................................................................................ 12 2. System Level Requirements for SiP ....................................................................... 13 2.1 General Requirements ...................................................................................
    [Show full text]
  • Assembly and Packaging
    INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2009 EDITION ASSEMBLY AND PACKAGING THE INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS: 2009 TABLE OF CONTENTS Scope....................................................................................................................................1 Difficult Challenges................................................................................................................2 Single Chip Packaging ..........................................................................................................2 Overall Requirements......................................................................................................................2 Electrical Requirements ...............................................................................................................................3 Cross Talk ....................................................................................................................................................3 Power Integrity .............................................................................................................................................3 Thermal Requirements.................................................................................................................................3 Hot spots ......................................................................................................................................................4 Mechanical Requirements............................................................................................................................4
    [Show full text]
  • Integrated Circuit Test Engineering Iana.Grout Integrated Circuit Test Engineering Modern Techniques
    Integrated Circuit Test Engineering IanA.Grout Integrated Circuit Test Engineering Modern Techniques With 149 Figures 123 Ian A. Grout, PhD Department of Electronic and Computer Engineering University of Limerick Limerick Ireland British Library Cataloguing in Publication Data Grout, Ian Integrated circuit test engineering: modern techniques 1. Integrated circuits - Verification I. Title 621.3’81548 ISBN-10: 1846280230 Library of Congress Control Number: 2005929631 ISBN-10: 1-84628-023-0 e-ISBN: 1-84628-173-3 Printed on acid-free paper ISBN-13: 978-1-84628-023-8 © Springer-Verlag London Limited 2006 HSPICE® is the registered trademark of Synopsys, Inc., 700 East Middlefield Road, Mountain View, CA 94043, U.S.A. http://www.synopsys.com/home.html MATLAB® is the registered trademark of The MathWorks, Inc., 3 Apple Hill Drive Natick, MA 01760- 2098, U.S.A. http://www.mathworks.com Verifault-XL®, Verilog® and PSpice® are registered trademarks of Cadence Design Systems, Inc., 2655 Seely Avenue, San Jose, CA 95134, U.S.A. http://www.cadence.com/index.aspx T-Spice™ is the trademark of Tanner Research, Inc., 2650 East Foothill Blvd. Pasadena, CA 91107, U.S.A. http://www.tanner.com/ Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency.
    [Show full text]
  • 3-D System Integration of Processor and Multi-Stacked Srams Using
    856 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 4, APRIL 2010 3-D System Integration of Processor and Multi-Stacked SRAMs Using Inductive-Coupling Link Makoto Saen, Kenichi Osada, Member, IEEE, Yasuyuki Okuma, Kiichi Niitsu, Member, IEEE, Yasuhisa Shimazaki, Member, IEEE, Yasufumi Sugimori, Yoshinori Kohama, Kazutaka Kasuga, Itaru Nonomura, Naohiko Irie, Toshihiro Hattori, Member, IEEE, Atsushi Hasegawa, and Tadahiro Kuroda, Fellow, IEEE Abstract—This paper describes a three-dimensional (3-D) and wireless) have been proposed [1]–[10]. A major wired-in- system integration of a full-fledged processor chip and two terconnect technique is through-silicon via (TSV) [6]–[10]. The memory chips using inductive coupling. To attain a 3-D commu- density of 3-D inter-chip connections can near that of on-chip nication link with a smaller area and lower power-consumption, shortening the link distance and preventing signal degradation wires when using the TSV technique. However, it increases due to unused inductors are important challenges. Therefore, cost of chip fabrication due to increase of fabrication-process we developed a new 3D-integrated wire-penetrated multi-layer complexity. On the other hand, inductive coupling [1]–[4], a structure for a shorter link distance and an open-skipped-inductor major wireless-interconnect technique, does not increase the scheme for suppressing signal degradation. In addition, to avoid process complexity because inductors for inductive coupling undefined-value propagation in stacking multi-memories using an inductive-coupling link, we proposed a memory-access-control are formed using metal layers of standard CMOS process. scheme with a pinpoint-data-capture scheme.
    [Show full text]