Trends in Assembling of Advanced IC Packages Ryszard Kisiel and Zbigniew Szczepański

Total Page:16

File Type:pdf, Size:1020Kb

Trends in Assembling of Advanced IC Packages Ryszard Kisiel and Zbigniew Szczepański Invited paper Trends in assembling of advanced IC packages Ryszard Kisiel and Zbigniew Szczepa«ski Abstract|In the paper, an overview of the current trends ical area occupancy on the PCB, about three times com- in the development of advanced IC packages will be pre- pared to QFP for this I/O range. Shorter connections of- sented. It will be shown how switching from peripheral fered by CSP reduce parasitic inductance and capacitance. packages (DIP, QFP) to array packages (BGA, CSP) and multichip packages (SiP, MCM) affects the assembly pro- Table 2 cesses of IC and performance of electronic systems. The Comparison of key features of various packages [2] progress in bonding technologies for semiconductor packages will be presented too. The idea of wire bonding, flip chip Feature QFP BGA CSP and TAB assembly will be shown together with the bound- I/O 208 225 313 aries imposed by materials and technology. The construction Pitch [mm] 0.5 1.27 0.5 of SiP packages will be explained in more detail. The paper Footprint [mm2] 785 670 252 addresses also the latest solutions in MCM packages. Height [mm] 3.37 2.3 0.8 Keywords| IC packages, SiP, wire bonding, TAB, flip chip. Package to die ratio 8 7 1 Inductance [nH] 6.7 1.3 { 5.5 0.5 { 2.1 Capacitance [pF] 0.5 { 1 0.4 { 2.4 0.05 { 0.2 1. Introduction Compared to leaded packages such as QFPs, BGA and CSP The development of the electronics industry is dominated packages are expensive. The cost is about twice as high, by communication products, which are characterised by but when cost per I/O is taken into account the prices be- rapid market introduction and fast mass-manufacturing ca- come almost the same. In addition, the substrates on which pabilities. The main drivers of this development are minia- chips have to be used are generally more expensive because turisation and styling or eco design and production. The more layers and possibly microvias are needed. industry has made great strides in reducing the package size from the dual in line package (DIP) and quad flat pack (QFP) to ball grid array (BGA) and chip scale pack- 2. Packaging technology requirements age (CSP). Table 1 illustrates the current trends in IC pack- aging. Standard leadframe packages still have the largest System integration is a key element for manufacturing market share. Packages like BGA and CSP have gained future products. The idea behind system integration is increasing importance and popularity. CSPs are used more to combine individual components and subsystems into often than BGAs, in packaging, e.g., of memory prod- a functional electronic system. Assembly and packaging ucts, controllers and digital signal processors, due to their of the semiconductor products are an essential part of this smaller size. process. The most difficult challenges facing the assembly and packaging industry, according to the ITRS roadmap, Table 1 are as follows [1, 3]: Trends in IC packages, 2001{2006 [1] • Improved organic substrates. The substrates must Standard be compatible with Pb-free solder processing. Im- Package type BGA CSP (QFP) proved impedance control and lower dielectric losses Max body size [mm] 30!32 40!50 27!20 are needed to support higher frequency applications. Max number of I/Os 300!320 900!3500 400!650 The substrates must be characterised by low mois- Min lead/ball pitch [mm] 0:4!0:3 0:75!0:5 0:5!0:3 ture absorption, improved planarity and low wrapage Max package at higher process temperatures as well as low-cost 1:4!1:0 2:0!1:0 1:2!0:7 thickness [mm] embedded passives. Market share [%] 88!78 4!7 4!15 • Improved underfillers for flip chip on organic sub- US$ ct/I/O 0:8!0:4 0:9!0:6 0:9!0:4 strates. Underfiller must have improved flow, fast dispense/cure properties, better interface adhesion, and lower moisture absorption, as well as higher Table 2 compares the main features of QFP, BGA and CSP operating temperature range for automotive appli- at a comparable I/O number in the range of 200{300. It is cations and Pb-free soldering in liquid dispense obvious that switching to CSP packages reduces the phys- underfiller. 63 Ryszard Kisiel and Zbigniew Szczepa«ski • Impact of Cu/low κ on packaging. Direct wire- telecommunication equipment [3, 4]. The key single-chip- bond and bump to Cu must be possible. Mechanical package technology requirements are shown in Table 3. strength of dielectrics must be improved and bump Economic aspects are especially important here. Assem- as well as underfill technology must assure low κ di- bly and packaging costs are expected to decrease over time electric integrity. New tests to measure the critical on a cost-per-pin basis, but the chip and package pin- properties need to be developed. count is increasing more rapidly than the cost-per-pin is • New system level technologies must be capable to decreasing. integrate chips, passives and substrates. Embeded passives may be integrated into the \bumps" as well as the substrates. Bumpless area array technologies 3. Bonding technology for chip must be developed, for example for face-to-face con- packaging level nection. • Pb, Sb and Br free packaging materials. New ma- There are three chip-level interconnection technologies cur- terials and processes must meet new requirements, rently in use: including higher reflow temperature and reliability under thermal cycling. { wire bonding (WB), To fulfil these requirements special attention must be paid { flip chip (FC), to [8]: { tape automated bonding (TAB). { area array packaging (flip chip, CSP, SiP), Wire bonding is a well established bonding technology. { cost efficient and flexible substrate materials, This technique is used for over 90% of all interconnections. { thin semiconductor chips, Flip chip is another technique that has been a steadly gain { cost efficient bumping process, in importance, particularly in new applications where sys- tem performance and miniaturisation is important. It also { fine pitch and multilayer technology, offers special advantages in terms of high accuracy in chip { integration of passive components into the substrate, placement by self-adjustment when solder bumps are on { integration of optical and electrical signal transmis- the die. This is of special interest for the integration of sion, optical interfaces in electro-optical devices. { material characterization (model and measurement), A concept of TAB process was initiated in the 1960s by General Electric. In the mid-90s TAB process was widely { environmentally compatible choice of materials and used in high volume products, such as Pentium laptops processes. and high resolution printers [7]. Now it is not use so often. Such requirements are more prominent in cost-performance The comparison of the three bonding techniques, mentioned applications, such as notebooks, personal computers and above, in aspect of signal propagation delay is shown in Table 4. Table 3 Table 4 Development of selected packaging parameters in the next Typical values for lead capacitance and inductance [7] decade [3, 4] Bonding technique Capacitance [pF] Inductance min [nH] Year Wire bond 0.5 6 Parameter TAB 0.6 2 2002 2006 2010 Flip chip 0.1 0.2 Chip size [mm2] 178 206 268 Cost [cents/pin] 0.75{1.44 0.56{1.03 0.48{0.98 Core voltage [V] 1.5 0.9 0.6 Propagation time is directly proportional to the length of Package pincount 480{1320 550{1936 780{2700 interconnection, the longer the lead the greater the propa- Package thickness [mm] 1.0{1.2 0.8{1.2 0.65{0.80 gation delay and the slower the off-the-chip system speed. Performance 2320 5630 12000 on chip [MHz] 3.1. Wire bonding assembly Performance: peripheral 200/660 300/966/1062 300/1415 buses [MHz] In \standard" packaging , the interconnection between the Junction temp. ◦ 85 85 85 die and the carrier is made using the wire. Different max [ C] types of wires are used for the wire bond process: gold, Chip interconnect 35 20 20 aluminium and copper. The die is attached to the car- pitch [mm] rier face up, then a wire is bonded first to the die, then Flip chip pitch [ m] 160 130 90 m looped and bonded to the carrier (Fig. 1) [9]. Wires are 64 Trends in assembling of advanced IC packages The bump material is predominantly gold. Without the danger of solder-bridge formation, smaller pitches can be implemented with adhesive techniques. Furthermore, sub- strates can be used which cannot withstand the melting tem- perature of the eutectic lead/tin solder or lead-free alloys. Adhesive flip chip bonding, based mainly on the anisotrop- ically conductive adhesive, is the dominant technology for LC-displays assembly. The main benefits and features that flip chip can offer are: • Fig. 1. Wire bonding technology applied in BGA package. High package density without the need for lead frame. • Enhanced electrical performance as a result of short typically 1{5 mm in length and 25{35 µm in diameter. distance between chip and substrate, including min- The process used most often to realize these interconnec- imal propagation delay, minimal transmission losses tions is thermosonic bonding with gold wire. at high frequency, and low parasitic capacitance as well as inductance values. 3.2. Flip chip assembly • Low thermal resistance solder bonds serve primarily The term flip chip describes a method of establishing elec- as heat-dissipating paths, thus suitable for high-speed trical connectors between the die and the package carrier. electronic devices. The interconnection between the die and the carrier in • Power can be spread directly from the core of the die flip chip packaging is made through a conductive \bump" to laminate (substrate).
Recommended publications
  • Custom and Multichip Packaging Contract Manufacturing
    Custom & Multichip Packaging Contract Manufacturing Micross’ contract assembly offers design and engineering support, BOM procurement, and a wide selection of package, substrate and interposer materials. Micross provides comprehensive semiconductor packaging services for multiple electronic components, including digital, mixed signal, analog, multi-chip and System-in-Package (SiP). We design, build and test hermetic QML and chip scale packaging for various markets including down-hole, aerospace, satellite and military. We combine advanced processes and product development to provide full turnkey support for prototype to volume production of flip chip and wire bond packages including single chip, multichip and SiP applications on organic substrates or ceramic substrates. By ensuring delivery of finished wafers through our relationships with silicon OCMs, and full coordination of customer BOM requirements, we offer complete supply-chain management services for micro- electronic assemblies. Micross Components can support your custom design with: Micross supplies modules and contract assembly services for multiple platforms: industrial, airborne; commercial and government satellites; • Complete turnkey product - including program missile and ordnance; C4ISR and medical. and vendor management of all elements throughout the product lifecycle • Co-development of a statement of work (SOW) Custom Multichip Packaging (MCP) is a die based system or sub-system • Co-design, starting with schematic, netlist or product definition and documentation assembled into a single package which is then mounted to the PCB. • Environmental requirements review In its simplest form factor, two or more of the same die are combined in one industry standard package that is smaller than the equivalent • Package and material selection for optimization of electrical and environmental performance, single die packages combined.
    [Show full text]
  • Introduction to System IC Design Flow
    Introduction to System IC and Design Flow Outline System-on-a-Chip (SoC) Trend SoC Integration & Challenge System-in-a-Package (SIP) IC Industry and Chip Production Flow System IC Design Flow Chip Debugging Tools and Reliability Issues 2 SoC Concept Analog Memory PCB ASIC CPU Chip System on a Board Analog IP Memory IP Chip IP IP CPU System on a Chip 3 Soc Advantages Minimize System Cost PCB, passive components Assembling Testing Compact System Size Board layout vs. chip layout Reduce System Power Consumption I/O, passive components, current levels Increase System Performance Interconnecting delay High speed parallel bus 4 Years 2002 – 2008 Worldwide Communication SoC Market Values Unit: Million U.S. Dollars Product 2002 2003 2004 2005 2006 2007 2008 Digital Cellular 7,480 9,463 12,560 15,210 15,855 17,202 19,013 LAN Wireless 138 333 492 662 777 938 1,134 Mobile Infrastructure 325 344 418 537 511 479 481 Other Mobile Comms. 378 520 673 859 1,077 1,215 1,440 LAN 140 184 248 316 348 392 446 Premises and CO Line Card 167 161 188 201 199 204 219 Broadband Remote Access 918 1,313 1,617 1,793 1,717 1,837 1,978 Public Infrastructure 304 360 481 607 667 810 934 Other Wired Comms. 428 568 811 1,128 1,175 1,365 1,515 Total Communications 10,278 13,246 17,488 21,313 22,326 24,442 27,160 Source: Dataquest (2004/06) 5 Example1: Siemens C35i Phone 13 1. Infineon E-GOLD PMB2851E, GSM Baseband controller and DSP.
    [Show full text]
  • FC-PBGA, Flip Chip Plastic Ball Grid Array
    TM Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, t he Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorIQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, Kinetis, MXC, Platform in a Package, Processor Expert, QorIQ Qonverge, Qorivva, QUICC Engine, SMARTMOS, TurboLink, VortiQa and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2011 Freescale Semiconductor, Inc. Table of Contents Slide 1. FC-PBGA Package Configurations 3 2. Printed Circuit Board Design for FC-PBGA 11 3. Surface Mount Assembly 16 4. Component Level Qualification 29 5. Board-Level Reliability 31 6. Thermal Performance 38 Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, the Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorIQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, Kinetis, MXC, Platform in a TM 2 Package, Processor Expert, QorIQ Qonverge, Qorivva, QUICC Engine, SMARTMOS, TurboLink, VortiQa and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2011 Freescale Semiconductor, Inc. TM FC-PBGA Package Configurations Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, t he Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorIQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, Kinetis, MXC, Platform in a Package, Processor Expert, QorIQ Qonverge, Qorivva, QUICC Engine, SMARTMOS, TurboLink, VortiQa and Xtrinsic are trademarks of Freescale Semiconductor, Inc.
    [Show full text]
  • Chapter 9 Chip Bonding At
    9 CHIP BONDING AT THE FIRST LEVEL The I/O interface to the die primarily interconnects electrical power, ground and signals. It must provide for low impedance for the power distribution system, so as to keep switching noise within specification, and controlled impedance for the signal leads to allow adequate signal integrity. In addition it must accommodate all the I/O and power and ground leads required, and at the same time, minimize the cost for high volume assembly. The secondary role of chip bonding is to be mechanically robust, not interfere with thermal man- agement and be the geometrical transformer from the die features to the next level of packaging features. There are many options for the next level of interconnect, including: ¥ leadframe in a single chip package ¥ ceramic substrate in a single chip package ¥ laminate substrate in a single chip package ¥ ceramic substrate in a multichip module ¥ laminate substrate in a multichip module ¥ glass substrate, such as an LCD (liquid crystal display) ¥ laminate substrate, such as a circuit board ¥ ceramic substrate, such as a circuit board For all of these first level interfaces, the chip bonding options are the same. Illustrated in Figure 9-1, they are: ¥ wirebond ¥ TAB (tape automated bonding) ¥ flip chip; either with a solder interface, a polymer adhesive or a welded joint Because of the parallel efforts in widely separated applications involving similar, but slightly dif- ferent variations of chip attach techniques, seemingly confusing names have historically evolved to describe some of the attach technologies. COG (chip on glass) refers to assembly of bare die onto LCD panels.
    [Show full text]
  • Quad Flat No-Lead (QFN) Evauation Test
    National Aeronautics and Space Administration Quad Flat No-Lead (QFN) Evaluation Testing Reza Ghaffarian, Ph.D. Jet Propulsion Laboratory Pasadena, California Jet Propulsion Laboratory California Institute of Technology Pasadena, California 6/17 National Aeronautics and Space Administration Quad Flat No-Lead (QFN) Evaluation Testing NASA Electronic Parts and Packaging (NEPP) Program Office of Safety and Mission Success Reza Ghaffarian, Ph.D. Jet Propulsion Laboratory Pasadena, California NASA WBS: 724297.40.43 JPL Project Number: 104593 Task Number: 40.49.02.35 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91109 http://nepp.nasa.gov 6/17 This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the National Aeronautics and Space Administration Electronic Parts and Packaging (NEPP) Program. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. Copyright 2017. California Institute of Technology. Government sponsorship acknowledged. Acknowledgments The author would like to acknowledge many people from industry and the Jet Propulsion Laboratory (JPL) who were critical to the progress of this activity including the Rochester Institute of Technology (RIT). The author extends his appreciation to program managers of the National Aeronautics and Space
    [Show full text]
  • AN1902: Assembly Guidelines for QFN and SON Packages
    AN1902 Assembly guidelines for QFN (quad flat no-lead) and SON (small outline no-lead) packages Rev. 9 — 28 April 2021 Application note Document information Information Content Keywords QFN, SON, PCB, Assembly, Soldering Abstract This document provides guidelines for the handling and board mounting of QFN and SON packages including recommendations for printed-circuit board (PCB) design, soldering, and rework. NXP Semiconductors AN1902 Assembly guidelines for QFN (quad flat no-lead) and SON (small outline no-lead) packages Revision history Rev Date Description v.9 20210428 Updated description in Section 7.1 and Section 7.2 v.8 20180206 Rewrote to combine Freescale AN1902 and NXP AN10365 application notes into a single document. AN1902 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved. Application note Rev. 9 — 28 April 2021 2 / 50 NXP Semiconductors AN1902 Assembly guidelines for QFN (quad flat no-lead) and SON (small outline no-lead) packages 1 Introduction This application note provides guidelines for the handling and board mounting of NXP's QFN and SON packages including recommendations for printed-circuit board (PCB) design, board mounting, and rework. Generic information of package properties such as moisture sensitivity level (MSL) rating, board level reliability, mechanical and thermal resistance data are also provided. Semiconductor components are electrical (ESD) and mechanical sensitive devices. Proper precautions for handling, packing and processing are described. 2 Scope This application note contains generic information about various QFN and SON packages assembled at NXP and NXP's assembly and test vendors. Refer to Section 9 "Downloading package information from NXP website" of this application note for step by step instructions for retrieving package information.
    [Show full text]
  • Fpga Hardware
    L2: FPGA HARDWARE 18-545: ADVANCED DIGITAL DESIGN PROJECT FALL 2011 BILL NACE Administrivia Team assignments are done Lab 1 is due Monday Project Proposals happen on Monday Reading Assignment #1 due today 13/14 students got it in to Blackboard on time David's attempt didn't get saved (?) Submit a PDF, don't fill in the web form 18-545: FALL 2011 2 Game Plan Overview Why use FPGAs? FPGA Internals Caveat: I will use Xilinx specific terminology since that’s the FPGA company you will be using. Beware that other companies use different terms 18-545: FALL 2011 3 FPGA Overview Field Programmable Gate Array Array of generic logic gates Gates where logic function can be programmed Programmable interconnection between gates Fielded systems can be programmed i.e. post-fabrication Xilinx Virtex-5 FPGA 18-545: FALL 2011 5 Design Platform Virtex-5 Development System Xilinx XC5VLX110T FPGA 17280 slices of CLB goodness 256MB DDR2 (SODIMM) DVI Video port VGA port is for input 10/100/1000 Ethernet port Audio Codec (AC97) USB2 port 16x2 LCD, RS-232 Compact Flash card slot Expansion connectors 18-545: FALL 2011 6 Game Plan Overview Why use FPGAs? FPGA Internals 18-545: FALL 2011 7 Why use FPGAs? System designers have a Goldilocks problem Off-the-shelf parts are not efficient enough Custom ASICs cost too much Need a “just right” solution ASIC Design Difficult to design Large and complex Issues in advanced processes Interconnect delay Device leakage Power density constraints Expensive to design / fabricate Mask set costs Non-recurring engineering costs Need a high-volume, high-profit market to justify costs! Energy Efficiency (MOPS/mW) Area Efficiency (MOPS/mm2) 10000 1000 Microprocessors 100 10 1 0.1 DSPs ASICs 0.01 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Efficiency View An efficiency gap exists between ASICs and CPUs N.
    [Show full text]
  • Integrated Circuit Package Types
    APPENDIX C Integrated Circuit Package Types Overview With the ever-increasing levels of integration, packing more circuitry into ever smaller packages, electronic systems now rely on semiconductor devices. Anything from a few circuit components (transistors, resistors, and capacitors) to complete computer systems can be placed on a single silicon die. An integrated circuit is a package containing a single silicon (silicon germanium for RF circuits, or gallium arsenide for microwave frequency circuits) that forms either part of a larger electronic circuit or system or is a complete electronic system in its own right. When the IC forms a complete electronic system, it is commonly referred to as a system on a chip (SoC). Modern communications ICs are SoC designs. An extension to the IC is the multichip module (MCM), which contains multiple dies; for example, when sensors and circuits are to be housed in a single package but which cannot be fabricated on a single die. Originally referred to as a hybrid circuit, the MCM consists of two or more ICs and passive components on a common circuit base that are interconnected by conductors fabricated within that base. The MCM helps with size reduction problem and helps alleviate signal degradation. An extension to the MCM is the system in a package (SiP), on which devices are stacked vertically. Wire bonding to the substrate is common. An extension to the SiP is the package on a package (PoP). www.newnespress.com 2 Appendix C IC Package Types The package that the IC uses is either a through-hole package or a surface mount package, made of either plastic or ceramic.
    [Show full text]
  • Ball Grid Array and Chip Scale Packaging
    Technology Readiness Overview: BGA and CSP Packaging NEPP Program Document Technology Readiness Overview: Ball Grid Array and Chip Scale Packaging Reza Ghaffarian, Ph.D. NASA Electronic Parts and Packaging Program (NEPP) Tel: (818) 354-2059, [email protected] http://nepp.nasa.gov 256 I/O Quad Flat Pack (QFP) 256 I/O Ball Grid Array (BGA) 275 I/O Chip Scale Pkg. (CSP) 1992 1995 1999 January 2003 1 Technology Readiness Overview: BGA and CSP Packaging NEPP Program Document Overview of BGA and CSP Packaging Technology for Spaceflight Missions This document provides an overview for designing, manufacturing, and testing printed wiring assemblies populated with ball grid arrays (BGA) and chip scale packages (CSPs). NASA Headquarters, Code AE and Code Q, has funded numerous tasks for the last several years to investigate the use of BGAs and CSPs for potential spaceflight missions. The objectives of the NEPP (NASA Electronic Parts and Packaging) Program area array (BGA and CSP) projects were to evaluate the quality and reliability of these technologies and to assist in the development of the rapidly growing associated industrial infrastructure. This was successfully accomplished by organizing industry-wide consortia, led by the NEPP Program to address many issues with this technology. The principal investigator, as chairperson and in collaboration with industry, released findings in 2002 as industry qualification specification, IPC 9701, ”Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments”. This was published by IPC, Association Connecting Electronics Industries. CSPs QFP BGA Figure 1 Miniaturization trends in surface mount electronics packaging, from quad flat pack (QFP) to ball grid array (BGA) and chip scale package (CSP) Figure 1 compares a conventional leaded package with BGA and smaller configuration CSPs.
    [Show full text]
  • 3-D Packaging: a Technology Review
    3-D Packaging: A Technology Review R. Wayne Johnson Auburn University 162 Broun Hall/ECE Dept. Auburn, AL 36849 334-844-1880 [email protected] Mark Strickland NASA/MSFC Huntsville, AL David Gerke NASA/JPL Pasadena, CA June 23, 2005 3-D PACKAGING A TECHNOLOGY REVIEW Table of Contents 2 INTRODUCTION 3 Package Stacking 8 Benefits of Package Stacking 14 Limitations of Package Stacking 14 Reliability 15 Technology Readiness Level Assessment 17 Die Stacking 17 Benefits of Die Stacking 33 Limitations of Die Stacking 34 Reliability 35 Technology Readiness Level Assessment 36 3-D Multichip Modules 37 Benefits of 3-D Multichip Modules 54 Limitations of 3-D Multichip Modules 54 Reliability 54 Technology Readiness Level Assessment 55 Wafer Stacking 56 Benefits of Wafer Stacking 60 Limitations of Wafer Stacking 60 Technology Readiness Level Assessment 63 Conclusions and Recommendations 64 References 65 2 3-D Packaging A Technology Review Introduction Traditional electronics are assembled as a planar arrangement of components on a printed circuit board (PCB) or other type of substrate. These planar assemblies may then be ‘plugged’ into a motherboard or card cage creating a ‘volume’ of electronics. This architecture is common in many military and space electronic systems as well as large computer and telecommunications systems and industrial electronics. The individual PCB assemblies can be replaced if defective or for system upgrade. Some applications are constrained by the volume or the shape of the system and are not compatible with the motherboard or card cage architecture. Examples include missiles, camcorders, and digital cameras. In these systems, planar rigid-flex substrates are folded to create complex 3-D shapes.
    [Show full text]
  • Ball Grid Array (BGA) Packaging 14
    Ball Grid Array (BGA) Packaging 14 14.1 Introduction The plastic ball grid array (PBGA) has become one of the most popular packaging alternatives for high I/O devices in the industry. Its advantages over other high leadcount (greater than ~208 leads) packages are many. Having no leads to bend, the PBGA has greatly reduced coplanarity problems and minimized handling issues. During reflow the solder balls are self-centering (up to 50% off the pad), thus reducing placement problems during surface mount. Normally, because of the larger ball pitch (typically 1.27 mm) of a BGA over a QFP or PQFP, the overall package and board assembly yields can be better. From a performance perspective, the thermal and electrical characteristics can be better than that of conventional QFPs or PQFPs. The PBGA has an improved design-to-produc- tion cycle time and can also be used in few-chip-package (FCPs) and multi-chip modules (MCMs) configurations. BGAs are available in a variety of types, ranging from plastic overmolded BGAs called PBGAs, to flex tape BGAs (TBGAs), high thermal metal top BGAs with low profiles (HL- PBGAs), and high thermal BGAs (H-PBGAs). The H-PBGA family includes Intel's latest packaging technology - the Flip Chip (FC)-style, H-PB- GA. The FC-style, H-PBGA component uses a Controlled Collapse Chip Connect die packaged in an Organic Land Grid Array (OLGA) substrate. In addition to the typical advantages of PBGA pack- ages, the FC-style H-PBGA provides multiple, low-inductance connections from chip to package, as well as, die size and cost benefits.
    [Show full text]
  • For Your System in a Package
    Unify ASICs for your System in a Package with TEKMOS Introducing Unify ASICs Applications for System in a Package are driven by the requirements of space, power, and development time. The total solution needs to be small. It typically runs off of a battery. And it needs a quick time-to-market. The major semiconductor suppliers have developed a number of cost effective blocks that can meet 90% of the requirements of an application. It is the last 10% that is the problem. Developers typically face two approaches for the last 10%. You can build what you need out of discrete components. This is inexpensive, but Picture of Stacked Die. requires a lot of board space. Or you can take a SOC (System on a Chip) approach. This will work, BGA packages, die can be stacked side by side as but can be very expensive, since the presence of well as on top of each other. And in some cases, we wireless interfaces and ARM processors requires can also include components that we cannot put on advanced processing to accommodate the diverse the ASIC such as large capacitors, and crystals. No requirements of diverse technologies as well as matter what package we use, the customer wins by expensive NREs. And such solutions require more having a single, highly integrated device for their development time because of the chip complexity. system. Tekmos has a third approach. We create a cost Technology effective ASIC using an appropriate technology to It is a fact that the NRE costs roughly double for implement the missing 10%.
    [Show full text]