<<

JHEP09(2011)072 X + νγ ± Springer e July 8, 2011 June 9, 2011 July 24, 2011 : : → : pp bosons decaying September 14, 2011 : Z Revised of data collected by Received 1 ) event candidates are Accepted with the 15 GeV separated from − and X 10.1007/JHEP09(2011)072 > + W T Published doi: γ E − TeV µ + µ 7 → Published for SISSA by = production in pp space. A total of 95 (97) ( s φ - X bosons with associated high energy photons η √ + Zγ Z γ − e 0.7 in and + e and > ) contributions. s W ) → = 7 TeV. The analysis uses 35 pb αα l, γ ( pp ( s O R √ W γ 1106.1592 ) and 25 (23) collisions at X Hadron-Hadron Scattering pp leptons (electrons or muons) and a photon with + We present studies of , Copyright CERN, T νγ p ± µ → pp Open Access for the benefit of the ATLAS collaboration ArXiv ePrint: selected. The kinematic distributionssections of are the measured. leptons and The photonsinclude data and next-to-leading-order are the found production to cross agree with Standard Model predictionsKeywords: that produced in the ATLAS experiment ininto 2010. high The eventthe selection lepton(s) requires by a distance( ∆ The ATLAS collaboration Abstract: proton-proton collisions at ATLAS detector Measurement of JHEP09(2011)072 × 13 16 Zγ L 13 6 and process is W γ W γ 5 Zγ Zγ and candidates 11 and 7 W γ Zγ 19 W γ 19 bosons with associated high energy photons and Z – 1 – W γ 10 9 and cross sections W 10 2 Zγ to 25 4 8 8 W γ 7 5 1 20 bosons, new vector bosons, and techni-mesons would enhance production cross Z signal and backgrounds gauge group of the electroweak sector. The triple gauge boson couplings in the and Y 8.4 Comparison to theoretical calculation 8.1 Fiducial cross8.2 section measurement for Production8.3 cross section measurement for The ratio of the 6.1 Trigger efficiency 6.2 Lepton identification6.3 efficiency Photon identification6.4 efficiency Photon isolation efficiency 5.1 Reconstruction of5.2 electrons, muons, photons Event and selection 5.3 missing transverse energy Kinematic distributions of event candidates Zγ W provide important tests of the Standarddirectly Model sensitive to (SM) the of triple particle gauge physics.U(1) boson The couplings predicted by the non-Abelianprocess SU(2) vanish in the SMof at tree level. Physics beyond the SM such as composite structure 1 Introduction Measurements of the production of 9 Summary The ATLAS collaboration 7 Background determination and signal8 yield Cross section measurements and comparison to theoretical calculations 5 Reconstruction and selection of 6 Efficiency estimation 3 The ATLAS detector 4 Data samples Contents 1 Introduction 2 Monte Carlo simulations of standard model predictions for the JHEP09(2011)072 ] γ 5 → [ − Zγ Zγ l W γ W γ + W l ). This and and ] provide collisions → generator 1 lνγ 0.5. pp W γ W γ Zγ production at 2). The distance > madgraph ] collaborations ) θ/ 3 X ( production: and l, γ signals and various + tan ( Z ] for gluon radiation γ . Events are selected R 6 νγ madgraph ln 1 [ − Zγ l ± − − l + and l ]. Both the = ] collaboration. for the case of ] and D0 [ 9 4 and events. The final state ra- η → 2 2 W → pythia Zγ pp and the notations W γ W γ 2 ∗ and and 10 GeV and ∆ Z/γ > X W γ T + is measured around the beam axis and the polar E 2 νγ φ φ ± l ). The data also include events with photons 85 GeV) are categorized as FSR. The remaining production using the high energy – 2 – + ∆ 15 GeV and separated from the closest electron plane is transverse to the beam direction. The positive final states are 1 → 2 ” refers to < y η final states. boson candidate along with an associated isolated > γ ) Z Zγ ∆ − pp − ll γ T l Z ( x p − + E l ] for photon radiation off the electron or muon in the l (figure m = or and 7 + [ l γ R − W signal processes, they are generated with a l and ) events are identified with a cut on the invariant mass of W γ 96 TeV and at LHC by the CMS [ + 1 and . l νγ Zγ Zγ 74 GeV ( ( 0.7. νγ ± = 1 → photos l ± < s l > − ) l and √ ) W γ + lν l ( l, γ ( W γ m → R space is defined as ∆ signal and backgrounds Z ], and the corresponding ATLAS MC tune 2009 [ illustrates the dominant sources of φ , samples are generated with photon 8 − 1 by ∆ νγ Zγ η l collisions at ± l ¯ p is the angle from the beam axis. The pseudorapidity is defined as denotes an off-shell photon. p θ ∗ → Figure Since next-to-leading-order (NLO) generators with parton shower simulation are not The sources of the Our studies use measurements of and ) events with in the = 7 TeV with an integrated luminosity of approximately 35 pb γ The nominal interaction point is defined as the origin of the coordinate system, while the anti-clockwise 2 1 ν s R Zγ ± beam direction defines thex-axis is z-axis defined and as pointing the is from defined the interaction as point pointing toangle the upwards. centre of The the azimuthal LHC∆ angle ring and the positive y-axis madgraph diation (FSR) from the lepton-neutrino (opposite charged di-lepton)( at the parton generator level. Those and hadronization, and W and Z decay.include The interference effects simulations between of amplitudes,matrix-element the and calculation signal effects uses from processes the boson using leading-orderCTEQ6L1 decay parton the widths. [ distribution The function (PDF) sets parisons of the data tobackgrounds. the theoretical In expectations this for section the the details of theavailable MC for event generators the are described. leading-order (LO) matrix-element generator interfaced to are used to denote the 2 Monte Carlo simulations of standardMonte model Carlo (MC) predictions event for samples with the full ATLAS detector simulation are used for com- l coming from hard fragmentation ofsource, a quark while or reduced gluon by (seeneglected figure the and photon is identification considered andThroughout as isolation this a requirements, document part cannot of the be the label signal “ process in the analysis presented here. by requiring the presencephoton of having a a transverseor energy muon production, as well as QED final state radiation from inclusive a new opportunity toprovided study by the Largehave Hadron been made Collider at (LHC). the Fermilab Previoususing Tevatron collider hadroproduction by measurements the CDF [ √ sections and alter the event kinematics. Data taken with the ATLAS detector [ JHEP09(2011)072 ) ¯ l ( ¯ ν ¯ ν l γ l γ γ l ) 2 ) Z ( ¯ ν z, Q ( W W q/γ D W (b) W (b) t-channel (d) s-channel ) processes when a photon emerges g ( q + ¯ q W ¯ q q q q boson decay process. (d) Feynman diagram Z q g q production in (a) u-channel (b) t-channel and (c) and – 3 – W l γ l Zγ l ) ) ¯ l 2 ( ) γ and ¯ l ¯ ν ( z, Q ¯ ¯ ν ν ( W γ γ g/γ D ) ) Z ( (a) Z W ( W (c) FSR W (a) u-channel ¯ q ¯ ¯ q q q q q q q q . Feynman diagrams of . Diagrams of the signal contributions from the production in the s-channel. W γ Figure 2 from the fragmentation of the final state parton. Figure 1 final state photon radiationof (FSR) from the JHEP09(2011)072 is )) ISR S and and k ] (see FSR αα events. ( k 12 W γ geant4 W γ O Zγ ISR events cone of 0.4 -factor production, ) and QCD k φ cross sections Zγ and − W γ Zγ η and W γ and boson production. To W γ . The backgrounds from ¯ t production using narrow t Z W W/W Z/ZZ W γ ] generator to simulate the 13 Zγ [ and ), and and W W γ W γ powheg ], a matrix element parton generator with 11 = 7 TeV, and then processed with a , – 4 – s 10 bosons. The NLO Baur calculations for is an isolation criterion at generation level. The √ h Z  NLO calculation with the assumption that inclusively (d)). The division of the generated LO events into FSR Z and (background for the / 1 ll W W ]. The MC samples are simulated with on average two primary used to model parton showers. All other background sources → 5, where . . For comparison to data, the cross sections for the background ) isolation cuts are applied to the photons selected in the 14 0 -factor calculation and for the theoretical cross section predictions Z k , ] consists of an inner tracking system (inner detector, or ID) sur- νγ < 1 ± l τν h pythia  pythia → vertex(see figure W ) is used for the definition of isolated photons, at the parton (particle) level p h  -factors. NLO predictions considering both QED and QCD vertices ( ( k h W W γ +jets,  for the case of 2 In comparing the data to SM signal predictions, the background processes considered There are significant modifications to the LO electroweak W/Z data and those from simulated quark/gluon fragmentation in the NLO generator. The di-boson production do not include FSR off the decay leptons. Therefore a production, with ¯ t rounded by a thin superconducting solenoid providing a 2 T axial magnetic field, elec- primary vertex multiplicity distribution observed in data. 3 The ATLAS detector The ATLAS detector [ t are simulated with processes are normalized tobackground the samples results were of generated highersimulation at of order the detector QCD [ calculations.interactions but All matched signal to and data-taking conditions by weighting each event to obtain the are estimated to contribute about 8% of the photonsare in the generated the production ofmulti-jets single-top, are direct found single to be photon, negligible. dibosons We ( use the variable and is defined as the ratiofrom of the the quark/gluon sum fragmentation of processes energies (excludingby carried the the by photon) the to fragmented partons the photon. (particles) energycentered emerging carried on The the isolation photon. criteria With are these isolation applied cuts using the an quark/gluon fragmentation photons leptons. To suppress photon signalfigure contributions from quark/gluon fragmentation [ Zγ events used for the NLO are generated with Zγ determined by comparing the BornLO level events and identified the as NLO ISR Baurdetermined as MC using described calculations, an above. is inclusive For applied theproduced to FSR bosons LO have event the weighting same a production dynamics as those with radiation off the decay due to QCDintroduce corrections, QCD as corrections, our inwith approach the NLO is case to weight ofare the determined inclusive fully using simulated the LOcomplete Baur MC program next-to-leading-logarithm events [ diagramswidth for approximations for the include those withfrom photon the radiation fromand initial ISR state categories quarks, isdescribed and needed below. for in order to apply the higher order perturbative corrections events are identified as initial state radiation events (ISR). The JHEP09(2011)072 2). . final 3 (33.9 7, and 1 . < 2 − Zγ | η < | | η < | 375 . 8 is used to correct for . 1 < | η candidates | 2.4. Zγ < | η | ]. and 16 , 52) is omitted for the detection of electrons . 15 W γ 1 – 5 – leptons and an isolated photon. Collision events 13 GeV (muons). Application of beam, detector, < | − > η µ | T + p < µ 475) and two end-cap components (1 . or 37 1 . − e < + | e η | direction, and the second collecting most of the electromagnetic final state consists of an isolated electron or muon, large missing η W γ 5, while the Transition Radiation Tracker (TRT) has an acceptance range of . 2 15 GeV (electrons) and < > | 0. The TRT provides identification information for electrons (and as a consequence T η . | 2 E ) for the events collected with the electron (muon) trigger. The uncertainty on the The ATLAS detector has a three-level trigger system. The first level trigger is largely 1 < − | η 5 Reconstruction and selectionIn of this analysis the transverse energy due tostate the contains undetected one neutrino, pair and of an isolated photon. The period where leptons reconstructed athave the third level of theand trigger data-quality system requirements were resulted required to inpb a total integrated luminosityabsolute of luminosity 35.1 determination pb is 3.4 % [ Events in this analysis weremuon selected by candidate. triggers requiring The at electrontaking least one and period identified muon in electron trigger order or by configurations to the changed keep LHC. during up The the with data strictest the trigger increasing instantaneous selection luminosity criteria delivered were applied in the last data taking value of approximately 75 kHz.and The look subsequent at two more trigger detectorto levels information a run with final on greater a data-taking precision. processor rate farm designed They to provide be the reduction approximately 2004 Hz. Data samples of three stations of chambersa for muon precise trigger tracking system measurements in which the extends range to the range based on custom builtto electronics decide that whether examine or a not subset to of record the each total event, detector reducing information the data rate to below the design the calorimeter and end-capand (1 photons in thistromagnetic analysis. calorimeter, The is hadronic based calorimetertiles system, on or which two LAr surrounds different as the the detectormaterial. elec- active technologies, The media, with MS and is scintillator with based either on steel, three copper, large superconducting or aircore tungsten toroid as magnets, the a absorber system radiation. The electromagneticdivided calorimeter into is one a barrelThe lead ( calorimeter liquid-argon consists (LAr) of detector threeest longitudinal that granularity layers is in with the theshower first energy. (strip) A having thin thethe presampler high- energy layer lost covering by the EM particles range upstream of the calorimeter. The transition region between ID is composed ofhighest three granularity) and subsystems. therange silicon The microstrip pixel (SCT) (closest detectors| to cover the the beam pseudorapidity also axis and for with photons the that convert to electron-positron pairs) by the detection of transition tromagnetic (EM) and hadronic calorimeters and by a muon spectrometer (MS). The JHEP09(2011)072 boson Z 4, and is measured . 2 T 15 GeV. As 20 GeV. For p and 20 GeV. The < > > | > W η T 47 and excluding T | . T E 2 E E < | η | measurement, the selected measured by the MS alone ]. T 20 GeV and Zγ 18 ]. For the “medium” selection, p 17 52) and with > . regions to maintain a high electron 1 T T p < E . The | T η p | events is 100%. The selection criteria for < Zγ of the tracks in a 0.4 radian cone around the measurement in the muon channel, at least one – 6 – 37 . T p and W γ W γ ]. The selection criteria for the photon are similar to 17 ]. For the 52, combines calorimeter and tracking information and pro- . 1 19 < ]. A set of cuts on these discriminating variables are identified to | 17 η ]. The combined track parameters of the muon candidates are derived | 17 < 37 (excluding the region 1 . 37 2 . < selection one “tight” electron is required in the event with | η | events requires two oppositely charged “medium” electrons with ergy The photon candidates use clustered energy deposits in the EM calorimeter in the The electron candidates are reconstructed from an electromagnetic calorimeter clus- W γ Zγ event is rejected if therethe is same an kinematic additional cuts. “medium” electron candidate present that passes range for electrons, the photon identification is based on discriminating variables computed from photon conversions [ maximize the background rejectioncuts while are determined keeping for different a pseudorapidityefficiency high and across electron the signal detector and efficiency.of over Such the electron transversethe energy range. The selection information about the shower shapetrack, and and width of the thecalorimeter cluster/track cluster, are the matching, used quality as of for the the wellof associated identification. cluster as energy The the to “tight” selection track energystricter momentum, uses deposited track the in quality particle in addition identification requirements the the potential ratio to hadronic of further the reject TRT and charged hadrons and electrons from ter associated with aalgorithm, reconstructed which charged only particle considers in electronthe the candidates ID. region in The 1 the electron range vides identification three reference sets ofstricter selections identification (“loose”, criteria “medium” and and stronger “tight”) jet with rejection progressively [ To ensure a highhits quality in track the ID of is themuon required candidate combined [ muon is candidate, requiredevents a in must have minimum the exactly number event, two of whereas oppositely charged for muon the candidates. is a combined trackisolated from by requiring the that primarymuon the vertex candidate summed with is lessmust be than greater 20% than ofindependently 10 in the GeV. the A muon ID quality and cut MS based is applied on to the improve difference the in purity of the the muon candidates. 5.1 Reconstruction of electrons, muons, photonsThe and muon missing candidates transverse aretracks reconstructed en- in by the associating ID the [ using muon a tracks statistical in approach the based on MS their to respective the errors. The selected muon candidate average beam spot positionreconstruct and the primary with vertex atelectrons, for least muons three and associated transverseinclusive energy tracks. cross follow closely section The those analysis efficiencythose used [ to used for for the the analysis of inclusive photon production [ are selected by requiring at least one reconstructed primary vertex consistent with the JHEP09(2011)072 ) φ > ) W γ W γ ), is (5.1) boson 175 in l, ν, γ l, γ . ( decays, ( 2 0

Z T R l, ν, γ η × ), and ∆ ( m φ T miss T and ~ E 125 m and . 0 W cos ∆ π ) + l ( − T isolated photon, . However the excess ~p (1 γ T analyses, a ∆ · T E between lepton and pho- direction that covers up E ) + ) follows the definition in Zγ γ is corrected for the leakage η R miss T ( E T iso miss T T · , ∆ ~p is the total transverse energy

and ) T E E l ( E − iso T T 2 E W γ p  2 ]. q miss T 20 E ) = + 2 ) decays. A set of cuts on these discriminating | l, ν lepton and one high ) ( η l – 7 – , ( T ) and the three body transverse mass 25 GeV and the transverse mass of the lepton- T 0 T p . The three body transverse mass, m π ~p > l, ν 3 ( T 5 GeV is applied. ) + miss T m γ ( < E ]. T ~p 18 | iso T ] E + candidates (95 in the electron and 97 in the muon channel) and 10 2 lγ 40 GeV, where )[ M candidates, the invariant mass of the two opposite charged leptons W γ > q 5.1 ) calculation is based on the energy deposits of calorimeter cells inside reconstruction, are removed [  Zγ l, ν ( miss miss T T ) = T 4 around the photon direction (excluding a small window of 0 . E E m is the invariant mass of the lepton-photon system. In the photon distribution = 0 l, ν, γ 4, provides a very effective discrimination between single photon and multiple- . ( space which contains the photon energy deposit). lγ R 2 a) the data show a slight excess over expectation at high 2 T event candidates. The distributions of the photon candidates are shown in figure φ ]. The ) is required to be greater than 40 GeV. In both M candidates (25 in the electron and 23 in the muon channel) pass all the requirements. 3 m < system − − l | 17 The reconstruction of the missing transverse energy ( Zγ η η + l Zγ | W γ miss T m defined in Equation ( where (figure The distributions of kinematicground variables expectations from using the the dataand combined are electron compared and to muon signalton, channels plus the for back- two the body selected transverseof mass ( 0.7 cut is applied todecays. suppress A the total of contributions 192 from48 FSR photons in the 5.3 Kinematic distributions of event candidates In addition to thecandidates presence are of required one to high E have is the azimuthal separation betweenenergy the directions vector. of For the lepton and the missing transverse material, out-of-cluster energy asplied. well as Events muon that momentum havecan for sporadic affect the the calorimeter muon noise channel and are non-collision ap- 5.2 backgrounds, which Event selection of the photon energy intopile-up the activities isolation cone in and the the event contributions [ from the underlying and ref. [ three-dimensional clusters. Corrections for hadronic to electromagnetic energy scale, dead former due to themagnetic opposite field. bending To of furtheran reduce the isolation the two requirement background legs of recorded due from in to the the photons conversion from calorimeterradius in (of ∆ the both solenoid electromagneticthe and hadronic systems) in a cone of particular the high granularityto of the first (strip)photon showers layer produced in in meson the (e.g. variables is identified for differentfor pseudorapidity regions. converted and The cuts unconverted are photons applied separately to account for the wider shower shapes of the calorimeter information which provides a good separation of signal from background. In JHEP09(2011)072 . 7 6 ) 300 γ )) (c) and

-1 -1 γ γ R (l, ) ) ) [GeV] )+ )+jet )+ )+jet l, ν ∆ ν ν γ ν ν ν ν , 5 analysis, are τ τ ( ν 250 20 GeV, with T data W(l W(l W( ttbar Z(ll) data W(l W(l W( ttbar Z(ll) (l, T m plus the various > m Ldt = 35pb Ldt = 35pb W γ 4 ∫ ∫ 200 T . The data points Zγ E 4 3 = 7TeV, = 7TeV, = 7TeV, 150 s s (d) (b) and and the two-dimensional γ 2 100 − W γ l 85 GeV and we expect about + l +jets for the > 1 m 50 W γ T ATLAS ATLAS E 0 0 5 0 5

30 25 20 15 10 25 20 15 10 50 45 40 35 45 40 35 30

candidate events. MC predictions for signal

Events GeV 10 / Events W γ – 8 – trigger has been measured with data and found T p candidates are shown in figure 200 200 ) -1 -1 )) (d) of the ν [GeV] 180 Zγ τ ) [GeV] γ γ T 180 ν ) E )+ )+jet ν W( ttbar Z(ll) ν ν τ (l, T 160 l, ν, γ data W(l W(l W( ttbar Z(ll) m 160 ( Ldt = 35pb Ldt = 35pb 140 T ∫ ∫ 140

for the m γ 120 )+ )+jet ν ν − 120 l = 7TeV, = 7TeV, = 7TeV, = 7TeV, data W(l W(l + 100 l s s (c) (a) 100 between lepton and photon (b), two body transverse mass ( m 80 80 R vs 60 60 γ 40 − l 40 + l +jets contribution, the shape of the background is taken from simulations while 20 1% efficient for both “medium” and “tight” electrons with . Distributions for the combined electron and muon decay channels of the photon trans- ATLAS ATLAS m ± 20 W 0 2 3 1 -1

10 60 50 40 30 20 70 10

10 10

10

Events / 10 GeV 10 / Events Events / 10 GeV 10 / Events The distributions of the three body invariant mass 6 Efficiency estimation 6.1 Trigger efficiency The performance of theto electron be high 99 background contributions. All backgrounds,estimated except from the simulation andFor the normalized with thethe predicted absolute NLO normalization is cross determined from section a values. data-driven method described in section is not significant as5 there events. are 9 observed events for plots of are compared to the sum of the NLO SM predictions for the Figure 3 verse energy (a), ∆ three body transverse mass ( and backgrounds are also shown. JHEP09(2011)072 vs eν 1%. 4%. and γ − → ± l ± + l 300 W γ W -1 m

[GeV] γ l l trigger. The m 250 and ]. The single Ldt = 35pb 3% for the lead- ee ∫ miss T events is 73 Data MC Z(ll)+ 19 ± electron efficiency , 200 E efficiency measure- → 17 2% respectively. The . = 7TeV, = 7TeV, W γ Z s 0 150 (b) ± data candidate events. MC in situ 5 in situ . 2% and 87 100 Zγ ± 50 recorded by the ATLAS 0 5% and 97 analyses is estimated to be 89 0 . miss T 50

0 200 150 100 300 250

γ l l l l E [GeV] m Zγ ± distribution for 2 . γ − and l – 9 – + l is defined as the probability of electrons in signal m candidate events are used to cross check the muon ]. The overall efficiencies to trigger on the W γ ID e efficiency measurements from 300 ε − 19 ]. The efficiency of the muon trigger is also measured µ -1 [GeV] events, the efficiency is 92

γ + 17 γ l l µ 250 m Zγ in situ ttbar data Z(ll)+ Z(ll)+jets → events [ calculated with the MC signal sample [ Ldt = 35pb ∫ 200 Z − candidate events, and from unbiased probe electrons in selected ID µ µ ε − + ]. The efficiency for the “tight” selection in e µ = 7TeV, = 7TeV, 150 + 17 s (a) dependence [ account for background contamination in the unbiased probe electron e → T ID e → Z 100 E ε Z data candidate events. The MC signal prediction is also shown. Both the electron and 50 η Zγ candidate events with large and isolated . (a) Three body invariant mass ATLAS 0 8 6 4 2

for 16 14 12 10 22 20 18 eν Events / 10 GeV 10 / Events Unbiased muons from − events, in the muon decay channel, are 86 l → + l are combined with weights proportional to their uncertainties. identification efficiency muon identification efficiency forThe muon the momentum scale and resolution are studied by comparing the mass distribution measured in data fromtag unbiased electron in probe electronsW selected together withuncertainties a on well identified sample, and the potentialment. bias The from results of tag the requirements two of the fication quality cuts [ For the “medium” selection in ing and sub-leading electron, respectively.events These with efficiencies scale are factors evaluatedare applied from to obtained signal MC correct by for comparing discrepancies the with electron data. efficiency in The MC scale to factors an electron trigger efficiency due to limited coverage of6.2 the trigger chambers. Lepton identification efficiency The electron identification efficiency events reconstructed within the kinematic and geometric requirements to pass the identi- negligible with data, using Zγ electron (muon) trigger efficiency is measuredwhich with has respect passed to an the electron offline (muon) candidate selection cuts. The muon trigger efficiency is lower than the Figure 4 predictions for signal andm backgrounds are alsoand shown. muon decay channels (b) are Two-dimensional included. plots of JHEP09(2011)072 ] ) ID γ 21 ε [ W γ W γ W γ Zγ ( cross Zγ W γ alpgen MC samples, sample (after and − e Zγ + W γ e photon produced in and T → ) to be 8%. Since there E Z 8). The main source of 1 . W γ 1 > | 8). Other sources of uncertainty η . | 1 8 ( > . | 1 η | < 8 ( | . η 1 | < | – 10 – η | , is defined as the probability of photons in signal ID γ 5%). ε . ]. The uncertainty in the acceptance of the 0 17 ∼ 3% ( 8). . . 0 1 data events (before the isolation requirement). The impact of the ∼ > 8. This separation is motivated by the significantly larger discrep- | . W γ η 1 | , of the photon isolation requirement is estimated with the signal > 8 ( . iso γ | 1 ε in data and MC [ η | < − | µ η | + MC samples where the discriminating variable distributions are corrected (by µ MC and cross checked with data using electrons from the 8 and . 1 → Zγ Zγ Taking into account all the contributions, the overall uncertainty on the photon recon- of 71% (67%) for photons in the range + 1 jet” fully simulated sample by selecting events with a high < Z | W ID γ η 6.4 Photon isolationThe efficiency efficiency, and taking into account the differencesphotons). between the electromagnetic The showering resulting of electrons photon and isolation efficiency, within its systematic uncertainty, is sections, a conservative error ofadditional 100% 3% is uncertainty considered on on the such photon an identification estimate efficiency. whichstruction leads and to identification an efficiency isthe then range estimated to be 10.2% (13.0%) for photons in the efficiency of the“ fragmentation photon component isthe calculated jet using fragmentation. an Thecross section fractional is contribution estimated of byis the fragmentation Baur a photons NLO large to generator uncertainty (see the on section total the fragmentation photon contribution to the is 6.3% (7.5%) for photonsarise in from the the range simplethe shift discriminating approximation variable for distribution the biasphoton data/simulation candidate due data corrections to sample (3%), background (4%), contamination from conversions and in (2%). from inefficiencies the Since in only the prompt reconstruction photons of photon are present in the ε systematic uncertainty comes fromsimulated the knowledge sample of that the includesthe upstream additional material. electromagnetic material calorimeter A in dedicated wasmaterial the used budget inner on to detector the assess and photon the in identification impact front efficiency. of of The a resulting different uncertainty on account of ancies observed in theof high the pseudorapidity calorimeter region is wherecomparing known the the less discriminating amount well. variable of distributions Thecandidate material for photons data/simulation in photons in corrections in front are signal determinedcorrections MC by on samples and the photon identification efficiency is -3% (-5%) resulting in an estimated events, reconstructed within theidentification kinematic requirements. and geometric The acceptanceand photon to identification pass efficiency the issimple photon shifts) determined to from account fortions observed for discrepancies each between data discriminating| and variable simulation. are Correc- calculated separately for photons in the range signal events due to theresolution uncertainties of in the the MC corrections is of the muon6.3 momentum scale and Photon identificationThe efficiency photon identification efficiency, of JHEP09(2011)072 ¯ t ) t − µ + µ ( alpgen − e + is 95% with e iso γ analysis will be ε → Z Zγ )+jets events where Z ( , and W ¯ t t , and the identification “qual- τν iso T +jets for the E → ). The signal yield of the selected Z 5 W analysis, due to the limited statistics, and analysis the amount of this background ¯ t t . This can be determined by studying the Zγ W γ A N – 11 – background” and their contribution is estimated from analysis, and ¯ t t W γ distribution between electrons and photons (0.6%), and the for the fragmentation components is obtained from an iso T iso γ E ε ]), and the poor knowledge of the quark to gluon ratio between jets ) for the 22 W γ spectrum between electrons and photons (1.5%). As for the photon iden- are due to the background contamination in the electron sample (1%), the T +jets MC simulations. For the ) is the same as in the sample passing the “low quality” identification criteria p events using a two-dimensional sideband method. This allows the extraction iso γ A W signal yield directly from data. Although currently limited in statistics, this ε N / ) pass the photon selection criteria. Since the fragmentation functions of quarks ). Finally the backgrounds in the control regions are taken directly from the num- W γ B C W γ γγ N N +jets events and generic inclusive jet production. +jets background in the signal region (see figure sample is extracted by simply subtracting from the number of candidate events the The two variables used for the sideband method are The background from mesons decaying to photons is determined directly from the / + 1 jet” fully simulated sample and an additional 3% uncertainty is quoted to account → D W W 0 W N background” (of the order of 10% in all three regions). teria ( ( ber of observed eventsthese in regions data. from signalpercent Corrections events in (estimated are region from applied B, MC and to to to subtract be be the around negligible contribution 10% in in region in D) region and C, the few contribution from “EW+ ity” of the photonof candidate. Three controlW γ regions are definedamount to of estimate background the in amount background the in signal the region threeratio control regions of isolated with to the non-isolated assumption events that in for the the sample background passing the the photon identification cri- jet trigger datainitiated samples jets because to of passorder the the of magnitude photon very [ identification differentin criteria probability (estimated for to gluon be and different by quark one MC simulation. selected of the method is preferred over use of average photon background estimates from high statistics is estimated from ATLASa data MC while based for estimationditional the is backgrounds from performed other and(misidentified processes, as a such large as uncertaintyreferred of to 100% collectively as is “EW+ assigned. Ad- The dominant sources ofphotons background from for the this decay analysisπ are products from of mesonsand gluons produced into by hadrons are the poorlymodeled constrained jet by by fragmentation experiments, these (mainly processes are not well for the uncertainty on thea fragmentation total photon contribution. estimated uncertainty The of overall 3.3%. 7 Background determination and signal yield tainties for shape differences of the differences in tification efficiency, the “ found to be consistent with the one derived from the signal MC. The systematic uncer- JHEP09(2011)072 3 7 4 3 . . . . 3 3 7 7 , of the ± ± ± ± P 8 8 3 2 . . . . 4 5 9 9 signal event signal signal ± ± ± ± 7 3 2 8 Extracted Extracted . . . . selected samples. +jets background W γ 19 21 68 67 X W + 4 3 . . γ 7 7 − l ± ± + l 3 3 . . 5 5 → +jets ± ± pp W signal yield as well as the total 9 9 . . background 3 7 ¯ t . . t 3 3 16 16 and Isolation Energy [GeV] W γ ± ± (Control Region) (Control Region) X 8 7 3 7 . . . . + EW+ 0 0 3 3 background ¯ t ± ± νγ t ± 8 9 l . . 6 0 0 – 12 – → ± ± EW+ analysis are shown. The effective purity, 9 3 pp . . 5 background 11 10 Zγ CD AB (Signal Region) (Isolated) (Non−isolated) (Control Region) 23 25 97 95

+jets background determination with the two-dimensional side-

events events Identification Identification

W Observed Observed Standard Photon Standard "Low Quality" Photon Quality" "Low ) ) ) background” contribution), is calculated to be around 80% (85%). ) γ γ ¯ t 1 GeV, probing different mixtures of background and − t νγ − νγ . In the same table the estimated µ e ± ± ± process the uncertainty on the MC based background estimate is 100%. + + e 1 µ e µ ). X → → +jets background contribution as estimated by this data-driven method is re- → 6 GeV. The “low quality photon identification” control regions (C and D) include pho- + → 5.1 γ W > . Sketch of the two-dimensional plane defining the 4 regions used in the sideband method. ) sample, defined as the fraction of signal in the selected events (after the subtrac- Process Process − W γ . Numbers of the total observed candidate events, estimated number of background and W γ Zγ l Zγ ( ( ( ( iso T + Zγ l E obs ( obs obs The accuracy of the The obs N → N N N been shifted by tion of the “EW+ band method has beencontrol carefully regions assessed. is The determined uncertaintynitions. related by to For studying the the the definition non-isolated impact of control of the regions possible (B and variations of D) the their lower defi- boundary of 6 GeV has ported in table background and signal yield forW γ the estimated number of signalWhere events for two the uncertainties areof quoted systematics. the Statistical first errorsof is in uncertainties MC statistical predictions on and arecontribution the the treated second is W+jets as represents estimated a background an systematic frompp and in estimate ATLAS the the data extracted propagation with signal. a two-dimensional The sideband method. For the Table 1 Figure 5 Region A is thewith signal region. The non-isolatedtons passing control all regions the (B identification and criteria(see except D) section the are strip defined layer discriminating for variable photons requirements JHEP09(2011)072 ) (b) and Zγ (8.1) ( Zγ X results 30 + W γ -1

6.3 γ 25 νγ ± l data Z(ll)+ Z(ll)+jets ttbar isolation [GeV] 20 Ldt = 35pb γ ∫ → (a) and in the 15 pp = 7TeV, = 7TeV, s (b) W γ 10 ) Zγ 5 Zγ ( ) 0 W γ and Zγ L ( · ATLAS ) -5 5 0 sig W γ W γ 20 15 10 35 30 25

Zγ Events / 2.5 GeV 2.5 / Events N ( background” estimation, the corresponding +jets background is taken from the data photon W γ ¯ t C t W signal events in the control regions is strongly = – 13 – ) γ W γ − l 30 + l ( -1

γ νγ 25 ) )+jet )+ ν distribution of photon candidate events in the ν ν ± τ l W(l W( ttbar Z(ll) data W(l → iso isolation [GeV] 20 T Ldt = 35pb γ fid pp ∫ E σ 15 = 7TeV, = 7TeV, s (a) 10 b), the 6 can be expressed as 5 a ( X 6 + 0 γ . Photon isolation distribution for photon candidates in the ATLAS − l +jets MC events. The corresponding purities are all found to be compatible with -5 + 20 80 60 40

l

W 120 100 Events / 2.5 GeV 2.5 / Events In figure → 8.1 Fiducial crossThe section measurements measurement for for thepp fiducial cross sections for the processes and the luminosity uncertainty (3.4%) are used. combined sample is shown along with the predicted contributions8 for the background. Cross section measurements and comparison to theoretical calculations events has been evaluated byfrom applying the same methodzero to and background samples their extracted valuesmethod, are estimated used to to be determine 3%.NLO the For theoretical the systematic cross “EW+ uncertainty section associated uncertainty (between to 6% the to 7% depending on the process) of the latter induces andistributions underestimate of of the the signal former).in MC Shifting an in the a impact discriminating way on variable on similar the the to effective assumption the purity that one estimation theenergy described of correlations in isolation the between section and the order two-dimension of the variables 3%. (namely photon the Finally, identification the quantities) accuracy are negligible for background contamination. For the “low quality”alternative photon choices identification of control strip regions layerof (C discriminating control region and variable definitions criteria D) lead are two tority tested. respectively estimate. a These 4% The changes and contamination acorrelated from 9% variation with of the the effective photon pu- identification efficiency in the signal region (an overestimate Figure 6 data events (points). The shapeisolation of distribution the predicted of eventsby in the two-dimensional the sideband control data-drivenbackgrounds regions method. and C-D from The the while predicted signal the contributions are from normalization taken the is from other MC. determined JHEP09(2011)072 (8.3) (8.2) 4 . γ γ 2 − − values for 40 GeV 40 GeV - < µ µ 20 GeV | + + sig > > µ > µ µ η N | µµ µµ µ T p m m ) to pass the final 2 37 . 4 . 2 2 Zγ reco νγ νγ < 40 GeV < 20 GeV 25 GeV α | ± ± | · W γ reco γ µ µ > µ channels. The > > η α | η · | iso γ T µ T ν T 7 7 ε . . < p p m · 0 0 Zγ iso γ ε 5 5 . . 52 . > > ID γ · . 0 0 ε ) ) 1 47 and · 15 GeV 15 GeV ID γ . < < . 37 ε 2 . l, γ l, γ · > > p h p h 1 ( ( Zγ trig 2   < γ γ ε γ γ W γ T T R R 37 or 1 | < · . − − W γ trig e E E 40 GeV 40 GeV - | ∆ ∆ 1 20 GeV e e 2 ε or η e ) | · + + η – 14 – > > < > | e e ID lep < | ID lep e T ee ee ε γ < ( ε η E 52 m m · · | 0 . include all trigger efficiencies, selection efficiencies and 1 < ) Fiducial phase space 0 W γ event Zγ event Zγ ε ε ( 47 . 37 is defined in section 2 = = . W γ 1 h p C <  Zγ | < W γ e νγ νγ C | 40 GeV processes are given in table 20 GeV 25 GeV C or η e ± ± | η e e Phase space for production cross section > > | > denote the number of background-subtracted signal events passing the are correction factors and denote the probability for events generated < denote the integrated luminosities for the channels of interest. Zγ T e T ν T < p E sig m 52 Zγ Zγ Zγ 0 . and 1 C N L and and W γ and ) l T . Definition of the fiducial phase space at the particle level, where the measurements are sig W γ W γ W γ p ( C within the fiducial regionselection of requirements. the phase-space (as defined in table N selection criteria of theboth analyses in the L l T The correction factors l ˆ ˆ ˆ E η Boson cut Photon Boson Photon reconstruction efficiencies of the photon and leptons. where Table 2 performed and thecross extended sections phase are space evaluated. (common to all measurements), wherewhere the production JHEP09(2011)072 . 6 and 5%). . . The 0 5 W γ ∼ and 3% ( 4 . 0 events. The EM ∼ . This uncertainty ]. Zγ Zγ 17 have been discussed in C and Zγ 3% [ ]. The uncertainty in the . and C are computed using 17 events to be recorded by the W γ W γ Zγ and is reported in table C C Zγ Zγ W γ ) of both electron and muon channels data driven calibration to correct for C C ) object. and and . γ Zγ / 3 e C W γ and ( C W γ in situ W γ W γ C C – 15 – ) signal events due to the uncertainties in the corrections of in data and MC simulations [ Zγ − ( µ + µ W γ denote event selection efficiencies (including efficiency of primary → account for all differences observed between the efficiencies of applying denote the probability of Z Zγ event Zγ reco ε Zγ trig ε α and and and denotes lepton identification efficiency. denotes photon isolation efficiency. denotes photon identification efficiency. . Other sources of uncertainties include: W γ reco 6 ID γ iso γ W γ event ID lep W γ trig to be considered inis the estimated systematics to uncertainty be of about 0.7% forThe a single ( experimentalbremsstrahlung photons uncertainty throughelectromagnetic calorimeter the arising is detector estimated to material from be less and than the the 0 response transport of the of low-energy acceptance of the the muon momentum scale and resolution of the MCThe simulations acceptance is loss from aevaluated few from inoperative the optical links signal of MC. the The calorimeter imperfect readout is modeling of this acceptance loss need energy scale uncertainty, after applying cluster energies of photonregion, and and 3% electron in clusters, the endcap is region. The quoted muon to momentum be scaletribution 1% and of resolution in are the studied barrel by comparing the mass dis- The impact of the EMenergy energy scale scale uncertainties uncertainty to is the evaluated by number propagating of the accepted EM values are not closed to 100% mainlyreconstruction due caused to by acceptance some loss of inoperativeter, the readouts electron reconstruction in and efficiencies photon the of electromagnetic theon calorime- leptons the and lepton photon, transverse and momenta/energies the and detector on resolution the missing transverse energy. ε ε α the kinematic and geometrical cuts at generator level and reconstruction level. Their electron or muon trigger. ε vertex requirement). ε ε The breakdown of the uncertainties on The central values of the correction factors signal MC samples, with scale factor corrections to account for discrepancies in trigger, ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ uncertainties related to the efficiencysection components of Zγ lepton and photon selectionThe efficiencies central values between of data the correction andtogether factors MC, with their as components described are in given section in table JHEP09(2011)072 ). (8.4) 7 and . 0 8.4 ), along > 8.1 ) l, γ γ ( − R µ response (e.g. from + µ . MC statistical un- 98% 88% 70% 96% 85% 43% 100% 7 miss T → Zγ E processes are determined. ) pp γ 15 GeV, ∆ − X l > and + ]. γ l ) + γ T − → 17 γ e Zγ E ( pp − + W γ ( l e + νγ W γ l 90% 70% 96% 53% 28% . 100% 100% ± → A l processes are defined for the full decay is 2% [ 5 → → pp . Using these numbers, the measured fidu- fid pp Zγ pp W γ and σ , which enter the calculation of the correction 6 C 4 = νγ reco and . A detailed summary of the various contributions are defined as the fraction of weighted events in and ) ± α – 16 – γ µ 6 − X l Zγ 86% 89% 71% 96% 87% 46% + W γ 100% → l A boson) for both lepton channels. The trigger efficiencies + and also illustrated in figure → Z pp 7 νγ pp ( and ± or l νγ is given in table ± νγ l W γ W → ± bosons and for photons with A → e V γ pp pp Z C 99% 73% 70% 95% 75% 36% σ → 100% and pp denotes V W V γ ID γ iso γ ID lep reco LO MC sample, generated within the phase space of the production cross event event trig ε ε ε C α ε ε γ (where ) + V γ . Efficiency factors per lepton and Z C 5. These cross sections can be derived from fiducial cross sections by extrapolation ( . from a variation ofuncertainty, namely the the response imperfect modelling oflow of energy cells the hadrons) in overall and topologicalalso resolution, considered. clusters. of The the overall Other underlying impact sources event on and of pile-up effects are The main uncertainty on the scale of the missing transverse energy is determined 0 The acceptance factors All the quantities needed to calculate the cross sections defined in Equation ( W ˆ < p h the section, that satisfy the geometrical and kinematic constraints of the fiducial cross section phase space of the  from the fiducial phase spaceare to defined. the extended The phase definition space, of where the production production cross cross sections sections is shown in Equation ( systematic uncertainties in boththe measurements arise efficiencies from of photon the identification background and estimation isolation. and 8.2 Production cross sectionThe measurement production for cross sections for the with their uncertainties, are tabulatedcial in cross table sections forThe the results are presentedcertainties in are table included as part of the cross sections systematics. The most significant are measured from data.validated The with other data, efficiencies are asentering determined described the from uncertainty in MC on simulation section and have been Table 3 factors JHEP09(2011)072 - k for the for the Zγ Zγ C C and and Zγ W γ C C Zγ W γ / C C W γ W γ ) - - - / C C 1% 1% 2% ) - - 0.6% 0.5% 0.2% 0.3% 2.6% Zγ Muon W γ 2% 1% C C 5.3% 0.3% 0.7% 1.5% 4.5% Zγ W γ ( C C Electron δ ( δ γ − γ Zγ - Zγ µ − 1% 2% 3% Zγ C - Zγ δC + e 0.2% 0.5% 0.7% 0.3% 3.3% 10.1% 11.2% C µ δC + 3.3% 0.3% 2.1% 4.5% 4.5% 12.5% 10.1% 0.02% e νγ W γ W γ νγ ± W γ 1% 4% 2% W γ C δC 0.6% 0.5% 0.3% 0.7% 0.3% 3.3% µ ± 2% 3% 1% 10.1% 11.6% C δC 3.3% 0.3% 1.4% 4.5% e 12.1% 10.1% – 17 – Channel Channel Parameter Parameter scale and resolution scale and resolution Muon efficiency Trigger efficiency Photon efficiency Trigger efficiency Photon efficiency Total uncertainty . The weight of the LO MC events is from QCD NLO correction Total uncertainty Electron efficiency 2 miss miss T T EM scale and resolution EM scale and resolution Muon isolation efficiency E E Photon isolation efficiency Photon isolation efficiency Photon simulation modeling Photon simulation modeling Inoperative readout modeling Inoperative readout modeling Momentum scale and resolution . . Summary of the different terms contributing to the uncertainty on . Summary of the different terms contributing to the uncertainty on 2 section muon final state.contributions The are decomposition negligible. has been made such that correlations betweenas the shown various in table factors, which also include contributions from fragmentation components as described in Table 5 contributions are negligible. Table 4 electron final state. The decomposition has been made such that correlations between the various JHEP09(2011)072 , X W γ and A + ), and W γ νγ 8.2 ± µ ] and MRST . ratio is 4%. → 7 23 fiducial and pro- Zγ pp Zγ , /A (see section ------1.2 1.2 1.2 1.2 ) X W γ and Zγ + ( A Luminosity uncertainty W γ νγ W γ A ± e → γ ], HERAPDF1.0 [ γ - - - - 8 − 7.3 3.7 7.4 3.3 − νγ νγ 0.043 0.006 0.035 0.015 0.053 0.006 0.048 0.016 e µ pp ± ± + + e µ e Systematic µ uncertainty → → → → pp pp pp pp - - - - – 18 – 9.2 5.8 9.3 4.8 processes are summarized in table 0.010 0.001 0.010 0.002 0.010 0.001 0.010 0.002 , the acceptance factors ) X Statistical uncertainty Zγ ( + γ W γ − C µ + 67.8 35.1 21.3 35.1 68.2 33.9 19.7 33.9 , the statistical uncertainty reflects the limited statistic of the signal µ value 0.359 0.131 0.280 0.220 0.455 0.134 0.429 0.242 ) Central Zγ → ( ] ] ] ] 1 1 1 1 pp W γ − − − − A sig sig Zγ Zγ sig sig Zγ Zγ Zγ Zγ W γ W γ W γ W γ W γ W γ [pb [pb [pb [pb and C C A A N N C C A A and N N Zγ Zγ ) W γ W γ X L L L L Zγ + ( γ W γ − e C . Summary of input quantities for the calculation of the ]). Other contributions are the uncertainties due to the NLO correction of + e 24 ) is 4.5% (6.7%), the relative systematic uncertainty for the The measured production cross sections for the The systematic uncertainties on the acceptances are dominated by the limited knowl- production, which is derived from the difference between the Born level acceptance and → Zγ A Zγ acceptance in Baur NLO simulations.( The overall relative systematic uncertainty on pp edge of the protonby adopting PDFs. different These PDFLO* sets are [ (including evaluated CTEQ6L1 by [ comparing the acceptances obtained Table 6 duction cross sections. Forsubtraction, each the channel, correction factors thethe observed numbers integrated of luminosities signal areties. events given, after For with background their statistical,MC systematic, samples. and luminosity uncertain- JHEP09(2011)072 7 (8.6) (8.5) . The 8.2 triple gauge W W γ processes using the ), can be measured X 8.5 . The uncertainties on and plotted in figure + 7 5 γ . is evaluated separately for − 8 l Zγ + W γ l and C C 4 → in the range from 0.1145 to 0.1176. s Zγ W γ pp α fiducial and production cross sections A A , are considered as uncorrelated in the -boson decays, the measured cross sec- γ · 1 − νγ . . The uncertainty on the cross section Z l Zγ and ± γ + l l ) 7 Zγ W γ X → Z → in the fiducial phase space and in the total C C and ( and pp + pp · σ R σ W – 19 – W have already been discussed in section νγ sig W γ Zγ sig W γ = ± l N N Zγ R W γ cross sections A A → = for the Zγ R and also illustrated in figure pp , as shown in table 8 FSR to k sig Zγ cross sections, as defined in Equation ( ) are given in table N W γ Zγ and -factor 8.1 to k sig W γ W γ N ] at the 90% C.L. limit, and variations of inclusive 25 Renormalisation and factorisation scaleby varying uncertainty: the renormalisation thisnominal and uncertainty scales. factorisation is scale estimated by factors of twoAn around additional the 3% errorW/Z is included to account for the approximation of using the The PDF uncertainty istors estimated [ using the MSTW 08 NLO PDF error eigenvec- The uncertainty on the ratio of the correction factors Assuming lepton universality for the ˆ ˆ ˆ (as defined inpredictions section includes the following: ratio measurement. Thephase measured space ratios are shown in table 8.4 Comparison toThe theoretical Standard calculation Model predictions for the the electron and thethe ratio muon of channels, the as acceptanceuncertainties shown on factors in table In terms of the experimentalwritten quantities as: defined in the previous sections, the ratio R can be The ratio of the with a higher relative precisionand than theoretical uncertainties the partially individual cancel. crosscoupling This sections predicted ratio since by is both the a experimental SM. test of the lepton efficiencies (i.e. triggerresulting and total lepton cross identification sections efficiencies) for combined are electron uncorrelated. and The muonwith channels a are comparison summarized to in SM table predictions. 8.3 The ratio of the tions in the two channels cannation be of combined electron to and reduce muon the channelson statistical in the uncertainty. the The assumption production combi- cross that sectioncorrection the measurement factors, uncertainties is on based on the thecation, integrated background and luminosity, estimation, isolation on and efficiency the on are acceptance photon fully correlated. reconstruction, identifi- All systematic uncertainties related to JHEP09(2011)072 . + 8 = 7 νγ s ± l √ → and table pp 7 ) is used in the p h  80 20 [pb] [pb] γ γ 18 have been studied at Z W 70 σ σ X -1 TeV) = 7 -1 TeV) = 7 16 s s + γ Electron channel Muon channel Combined Electron channel Muon channel Combined − 60 ATLAS ATLAS l 14 + l L dt = 35 pbL dt = 35 pbL ∫ Data 2010 ( ∫ Data 2010 ( 12 → 50 pp production cross sections together with SM pre- 10 – 20 – Zγ and 40 8 X and + 6 30 νγ W γ ) ± ) l γ γ

- 4 l ν + → l l 20 → → 2 pp Theory (NLO) Theory (NLO) (pp (pp processes together with their ratio are shown in table σ σ of data collected with the ATLAS detector. The measured fiducial 0 ), which is implemented in the Baur NLO program as introduced in 10 X 1 h  − + γ − parameter. l , is used in the calculation of the Standard Model production cross section + 35 pb h l 4  ∼ → . The measured inclusive pp predictions. The photonacceptance isolation calculation. criteria atimpact This on the uncertainty the particle cross is section level predictedof estimated ( by the the to Baur NLO be generator 4% of a by 100% variation studying the Another source ofphoton uncertainty isolation accounts at the for particleparton the level level and possible ( at the discrepancysection parton between level. Photon the isolation at the The measured and predicted fiducial and production cross sections of the ˆ and TeV using X 9 Summary The production processes Figure 7 diction. Results are shownThe for inner the error electron bar andcertainties represents muon (statistical, final the systematic states and statistical luminosity). asone uncertainties well All standard and as uncertainties deviation the are for uncertainty outer added in their represents in the combination. quadrature. the SM total prediction The is un- represented by the vertical band. JHEP09(2011)072 5, . 0 < 7, and process . p h 0  X > + ) llγ 7 and . l, γ 0 ( → , together with SM > 3 3 3 R 3 3 1 1 5 5 5 . . . pp ...... ) Zγ 2 2 2 0 0 0 0 0 0 0

γ [pb] ± ± ± l, γ Z ± ± ± ± ± ± ± [pb] ( and 0 0 0 and fid σ 7 9 5 7 9 9 9 14 σ . . . R / ...... σ γ X 4 4 1 1 6 6 6 36 36 36 W + W γ σ SM prediction 15 GeV, ∆ -1 TeV) = 7 νγ 12 s > ± l Electron channel Muon channel Combined γ T 15 GeV, ∆ ATLAS → 4 1 2 E 2 2 1 1 3 2 2 ...... > 10 1 1 1 0 0 0 0 0 0 0 L dt = 35 pbL pp ) ∫ Data 2010 ( ± ± ± γ ± ± ± ± ± ± ± ( 1 5 2 7 5 3 3 2 7 9 . . . T ...... p 7 5 6 8 0 0 0 2 1 1 0 . For the measurements, the first uncertainty is [pb] ± ± ± ± ± ± ± ± ± ± [pb] 8 7 6 6 fid – 21 – 6 6 3 7 4 2 7 σ ...... σ 5 4 3 0 0 0 0 2 1 1 6 ± ± ± ± ± ± ± ± ± ± 1 0 0 4 2 4 9 6 5 4 ...... 4 2 1 9 5 6 5 41 33 36 4 ) ) Experimental measurement γ γ

- l ν + l l γ γ 2 γ γ γ → → − − − − νγ νγ − νγ νγ νγ e µ e µ l Theory (NLO) (pp (pp ± ± ± ± ± + + + + + σ σ l e e µ µ l e e µ µ 0 → → → → → → → → → → pp pp pp pp pp pp pp pp pp pp . The measured ratio of the production cross sections of . Fiducial and production cross sections of the 5) for the individual electron, muon and combined decay channels, are presented. . = 7 TeV. Both the experimental measurements and the SM NLO predictions are given. 0 s < √ p h SM prediction is systematic. cross sections (defined in theand phase-space the region extrapolated where production the detector cross has sections good (for acceptance) Table 7 at The production cross sectionsthe are fiducial measured cross with sectionstatistical, the is second defined is in systematic section and the third is from the luminosity. The uncertainty in the Figure 8 prediction. Results are shown forThe the error electron and bars muon represent finalquadrature. states the as statistical well The and as for one the theirvertical total standard combination. band. uncertainties. deviation All uncertainty uncertainties in are the added SM in prediction is represented by the JHEP09(2011)072 ] are 26 ) as shown s measurement. αα X ( ), which directly + O = 7 TeV. Both the γ 8 − s l + √ 3 3 2 2 2 l . . . . . 0 0 0 0 0 → ± ± ± ± ± 1 9 2 2 2 pp . . . . . 3 2 5 5 5 process at SM prediction X 5 6 9 2 0 5, and the fiducial cross section is defined . . . . . + . 0 0 0 1 1 0 γ cross sections (figure − < ± ± ± ± ± l 8 6 1 8 3 0 9 4 0 8 p h + ......  l 0 0 1 1 0 +0 − +1 − +1 − +1 − +1 − 5 1 2 9 8 → . . . . . 2 3 4 5 4 – 22 – measurement Experimental 7 and W γ/Zγ . pp 0 to γ γ > γ γ γ − − − − ) − µ µ e e l X Fiducial phase space + + + + + l l, γ e e µ µ + ( → → → → → R νγ pp fid pp pp fid pp pp ) are consistent with the predictions from the SM in a new ± l /σ /σ /σ 4 /σ /σ ratio νγ νγ νγ νγ νγ → Phase space for production cross section ± ± ± ± ± . While the current measurements are not strongly sensitive to l e e µ µ and pp Cross section → 15 GeV, ∆ 7 → → → → 3 pp fid pp pp fid > pp pp σ σ σ σ σ ) γ ( T p and figure . The first uncertainty in the experimental measurement is statistical and the second . The ratio of 7 2 We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Aus- AvH Foundation, Germany; GSRT, Greece; ISF,ter, MINERVA, GIF, Israel; DIP and INFN, Benoziyo Italy;Netherlands; Cen- MEXT RCN, and ; JSPS,(MECTS), MNiSW, Romania; Japan; MES CNRST, Poland; of Morocco;Serbia; Russia GRICES MSSR, and FOM and Slovakia; ROSATOM, and ARRS Russian FCT, and NWO, Federation; JINR; MVZT, Portugal; Slovenia; MSTD, DST/NRF, MERYS South Africa; MICINN, tralia; BMWF, Austria; ANAS,NSERC, Azerbaijan; NRC SSTC, and Belarus; CNPqChina; CFI, and COLCIENCIAS, Canada; FAPESP, Brazil; Colombia; CERN;lic; MSMT CONICYT, CR, DNRF, Chile; MPO DNSRC and CAS, CRIN2P3-CNRS, Lundbeck CEA-DSM/IRFU, and MOST France; Foundation, VSC GNAS, and Denmark; CR, Georgia; NSFC, ARTEMIS, BMBF, Czech DFG, European Repub- HGF, Union; MPG and We gratefully acknowledgetions the used contributions in Ulrich thisas Baur study. well made We as thank tooperated CERN the the efficiently. for support the theory staff very calcula- from successful operation our of institutions the without LHC, whom ATLAS could not be and photons (figures kinematic regime, as isdepends the upon the ratio values of of the the triple-gauge-couplings in theAcknowledgments Standard Model. The uncertainty in the SM prediction is systematic. The measurements are inin agreement with table the predictionspossible of new the physics, SM the distributions at of kinematic variables determined from the leptons Table 8 experimental measurement and the SM NLOmeasured prediction with are given. The productionin cross table sections are uncertainty is systematic. Asymmetric errorsquoted calculated for from Clopper the and statistical Pearson uncertainty, due intervals [ to the low statistics in the JHEP09(2011)072 ] Z 100 ]. ]. pp ]. W γ 05 D 47 SPIRES SPIRES ][ (2007) 028 collisions at JHEP ]. ][ SPIRES , ¯ p ][ hep-ph/0602133 09 p ]. [ Phys. Rev. Lett. Phy. Rev. production in , , production with SPIRES Zγ A new critical study of JHEP ][ TeV , SPIRES W γ 96 . and ][ ATL-PHYS-PUB-2010-002 hep-ph/9305314 production production in = 1 [ (2006) 094007 arXiv:0709.2092 W γ 09, ]. s [ arXiv:1105.2758 Zγ Zγ √ physics and manual [ 4 MC . D 73 6 and SPIRES arXiv:1004.1140 ][ (1993) 5140 [ W γ (2007) 070 hep-ph/0506026 [ (2011) 535 couplings at 11 ]. PYTHIA Measurement of D 48 Phys. Rev. ]. : the new web generation – 23 – , 4 Measurement of ]. First study of the radiation-amplitude zero in v The ATLAS experiment at the CERN Large Hadron B 701 Matching NLO QCD computations with Parton Shower JHEP W W γ (2006) 97 SPIRES , QCD corrections to hadronic (2010) 031103 ][ SPIRES hep-ph/0201195 [ SPIRES Phys. Rev. [ C 45 , ]. ][ D 82 Phys. Lett. PHOTOS Monte Carlo: a precision tool for QED corrections in S08003 , calculations of hadronic ATLAS Monte Carlo tunes for 3 s SPIRES TeV couplings ]. α (2002) 012 ][ New generation of parton distributions with uncertainties from global QCD = 7 07 MadGraph/MadEvent Phys. Rev. Eur. Phys. J. arXiv:0803.0030 JINST , This article is distributed under the terms of the Creative Commons s , [ Order- W W γ √ SPIRES hep-ph/0603175 [ [ TeV JHEP collaboration, G. Aad et al., ]. 2008 , , 96 decays . collaboration, S. Chatrchyan et al., collaboration, T. Aaltonen et al., W collaboration, V.M. Abazov et al., = 1 s SPIRES arXiv:0706.2334 photon production in hadronic collisions [ simulations: the POWHEG method (2010). nonstandard (1993) 940 and analysis collisions at [ (2006) 026 D0 production and limits on anomalous CMS √ (2008) 241805 ATLAS Collider CDF The crucial computing support from all WLCG partners is acknowledged gratefully, P. Aurenche, M. Fontannaz, J.-P. Guillet, E. Pilon and M. Werlen, S. Frixione, P. Nason and C. Oleari, U. Baur, T. Han and J. Ohnemus, J. Ohnemus, P. Golonka and Z. Was, J. Pumplin et al., ATLAS collaboration, J. Alwall et al., T. Sj¨ostrand,S. Mrenna and P.Z. Skands, [7] [8] [9] [5] [6] [3] [4] [1] [2] [12] [13] [10] [11] References (Italy), NL-T1 (Netherlands), PIC (Spain),and ASGC in (Taiwan), the RAL Tier-2 (UK) facilities and worldwide. BNLOpen (USA) Access. Attribution Noncommercial License whichand permits reproduction any in any noncommercial medium, use, provided distribution, the original author(s) and source are credited. Geneva, Switzerland; NSC, Taiwan; TAEK,hulme Turkey; Trust, STFC, United the Kingdom; Royal DOE Society and and NSF, Lever- United Statesin of particular America. from CERN(Denmark, and Norway, Sweden), the CC-IN2P3 ATLAS (France), Tier-1 KIT/GridKA (Germany), facilities INFN-CNAF at TRIUMF (Canada), NDGF Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and JHEP09(2011)072 ] C , 12 , C 55 TeV JHEP production D 83 , ll = 7 s → Eur. Phys. J. √ ∗ hep-ph/0206293 , [ (2011) 1630 Comput. Stat. Data Eur. Phys. J. Z/γ , Phys. Rev. collisions at , , ALPGEN, a generator pp and C 71 (2010) 109 lν (2003) 001 collisions at (2010). → 01 ]. 07 TeV with the ATLAS detector pp ]. W = 7 Parton distributions for the LHC s JHEP JHEP , √ SPIRES Eur. Phys. J. , (2011). TeV with the ATLAS detector SPIRES , ][ Combined measurement and QCD analysis ][ = 7 s √ ]. ]. – 24 – ]. ]. collisions at TeV with the ATLAS detector Luminosity determination in Measurement of the Measurement of the inclusive isolated prompt photon Measurement of the production cross section for The ATLAS simulation infrastructure ATLAS-CONF-2010-038 , pp = 7 SPIRES SPIRES s ][ ][ TeV arXiv:0901.0002 √ SPIRES SPIRES (2008). Parton distributions for LO generators arXiv:1012.5382 [ ][ ][ Estimating the ratio of two Poisson rates [ ]. ]. = 7 s ATLAS-CONF-2011-011 , √ Data-quality requirements and event cleaning for jets and missing Expected performance of the ATLAS experiment: detector, trigger and Updated luminosity determination in SPIRES SPIRES (2009) 189 collisions at (2011) 325 scattering cross sections at HERA ][ ][ . collaboration, F.D. Aaron et al., pp ep arXiv:1012.4389 arXiv:1005.4568 C 63 [ [ arXiv:0711.2473 arXiv:1010.2130 B 698 [ [ collaboration, G. Aad et al., collaboration, G. Aad et al., collaboration, G. Aad et al., collaboration, G. Aad et al., collaboration, G. Aad et al., ]. (2000) 345 CERN-OPEN-2008-020 TeV using the ATLAS detector at the LHC , 34 = 7 (2010) 823 s SPIRES arXiv:0911.0884 arXiv:1101.2185 An. (2008) 553 Eur. Phys. J. physics H1 and ZEUS of the inclusive [ for hard multiparton processes in[ hadronic collisions ATLAS cross sections in proton-proton collisions at [ using the ATLAS detector transverse energy re-construction with thecenter-of-mass ATLAS energy detector of in proton-proton collisions at a (2011) 052005 ATLAS W-bosons in association withPhys. jets Lett. in (2010) 060 ATLAS cross section in 70 ATLAS √ ATLAS A. Sherstnev and R.S. Thorne, A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, R.M. Price and D.G. Bonett, ATLAS collaboration, M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ATLAS collaboration, ATLAS collaboration, [24] [25] [26] [22] [23] [21] [19] [20] [17] [18] [15] [16] [14] JHEP09(2011)072 , , , , , , , , , 71 48 174 , , 79 87 164b 34 143 155 , , 136 , , , 169 , , , , 49 10 8 , 118 115 , , , 164a 127 , , , 155 24 , , 75 79 49 , , 132b 44 , 16 83 , , , 93 24 , , , , , , F. Ahles 98 , , 29 ,e , 57 , 5 , 10 55 78 , , 86 21 , 130 49 93 , A. Alonso 132a 89b , K.H. Becks 171 , 175 , A.E. Barton 153 169 , T. Andeen 165 , P.J. Bell 48 128 , T. Barklow , S. Binet 171 , S. Asai , G. Akimoto , A. Astbury 89a , A.J. Barr 143 , H. Bachacou 115 166 20 , M. Begel 79 24 174 , O. Abdinov 19b , S. Aoun 49 , 14 , A. Antonaki , K. Augsten 83 , A.J. Armbruster , A. Blondel , P. Adragna 47 , B.S. Acharya 118 , O. Biebel , T. Beau 19a , C. Bernius , M. Aleksa 115 132a , A. Belloni 38 , P. Banerjee , A.T.H. Arce , A. Battaglia , M. Aliyev 98 18a , R.E. Blair 48 , L. Barak 158 89b 55 72b , S.P. Ahlen , S.S. Bocchetta 38 , , 66 27 , G. Azuelos 21 , R. Alon , P. Bagnaia 120 17 ˚ Akesson 119a 81 , O. Benary , K. Benslama 54 , O.K. Baker 107 , E.L. Barberio , G. Alexandre 89a 72a , N. Benekos , M-L. Andrieux 25a , F. Berghaus 22 102b , N. Andari 152 27 4 , 129 , M.I. Besana , C.P. Bee 153 163 , G. Barone 29 58a , R. Bartoldus , D. Arutinov , A.M. Bach , E. Auge , V.V. Ammosov 65 , M. Beckingham , M. Bindi , M. Arik , M. Barisonzi , J. Blocki , A. Annovi , F. Anulli 102a ∗ , Y. Arai 122b 22 16 47 , K. Assamagan , 115 , B. Beare , , C. Ay 134a 99 175 22 , E. Banas , T.P.A. 5 132b 134b , S. Adomeit , , ,f , J. Alison , S. Albrand 143 124a 144b 29 18a 168 , J.R. Batley 99 , A. Abdesselam , R. Bernhard 18a 122a , K.M. Black , E. Acerbi 76 , H.S. Bansil 143 89a , M. Bianco , M. Bellomo 132a 134a 49 77 48 , N. Berger , T. Barber , E. Badescu 29 29 115 169 144a , S. Ben Ami , V. Andrei 41 14 , J.T. Baines 20 , M. Aharrouche , C. Belanger-Champagne 29 ,a , A. Aloisio , J.R. Bensinger , G. Alexander 89b , H.P. Beck 158 99 , E. Arik , , B.H. Benedict , H. Bilokon 82 , V.B. Bobrovnikov , J. Antos , C. Blocker , N. Anjos , D. Axen , P. Barrillon , T. Barillari , L. Asquith 41 , C. Amelung 115 14 81 25a 9 124b , I. Aracena 96 89a , B. Auerbach 29 , A. Baroncelli , C. Anastopoulos 57 65 29 105 , C. Bacci 4 – 25 – , V.A. Bednyakov 134b 88 144a , G. Artoni , P. Bernat , , H.S. Bawa 14 , U. Bitenc , M.A. Alam 146b , T. Akdogan , M. Aderholz , 153 , H. Abreu 1 89a , G. Alimonti , F. Bertolucci , F. Bellina 95 83 175 , V. Bansal 136 , L. Batkova 177 15 134a 29 175 , T. Bain 153 133b 19a 146a 137 , 53 , R.M. Bianchi , A.A. Abdelalim , M. Backhaus 158 45 , C. Alexa , J. Almond 11 , P. Bechtle , M. Benoit 49 133a , M. Bendel , O. Beltramello 53 , M. Beimforde 89a , J-F. Arguin , P. Amaral 44 , B. Aubert , T. Blazek 83 , A. Antonov 50a 96 ˚ Asman ,d 63 66 , D.Y. Bardin 29 , F. Anghinolfi , A. Andreazza , A. Barbaro Galtieri , R. Avramidou , F. Bauer , G. Arabidze , N. Amram 175 , G.J. Bobbink , M.S. Alam , M. Aliev 29 19b 20 , ,c 34 , S. Bedikian 30 65 73 , R.M. Barnett 54 67 20 , C. Biscarat 89a , B. 167 , K. Bernardet , E. Bergeaas Kuutmann , M. Biglietti , J. Adelman 19a , R.L. Bates , F. Bertinelli , A. Bangert 18c 118 , G. Baccaglioni , A. Artamonov 129 27 14 29 , G. Aielli 14 56 , W. Bhimji 29 , F. Baltasar Dos Santos Pedrosa 29 132b , D.C. Bailey 149 , M. Backes 19b , 40 115 , L. Bellagamba , , H. Abramowicz 99 , J.A. Aguilar-Saavedra , J. Abdallah 77 29 32a 88 22 153 19a , K. Amako 132a 111 , G. Atoian , R. Beccherle , C. Benchouk , K. Belotskiy , S. Arfaoui , P.K. Behera , S. Ask , F. Alessandria , N. Austin , G. Blanchot , D.P. Benjamin 52 , M. Barbero 28 102b 118 65 107 , 152 , G. Amor´os , R. Apolle , D. Berge , M. Alhroob 172 135a , A. Akiyama , A. Angerami , D. Banfi 115 153 4 , A. Beddall 9 ,b 145a , A. Barashkou 50b , S. Antonelli , , G. Battistoni , Y. Bai , K.J. Anderson , T.N. Addy , J. Beringer , J. Biesiada 94 70 , S.E. Allwood-Spiers , S. Baker 105 , M. Ahsan 2 , J. Barreiro Guimar˜aesda Costa 102a 94 , M.A. Baak 169 , S. Bethke , V. Bartsch 47 18c , C. Bini 29 20 , C. Arnault , G. Bachy 24 49 , B.M. Barnett 77 73 , G. Bella 24 50a 124a 80 , U. Blumenschein , S. Aefsky 20 , A. Bertin 148 81 29 155 27 49 136 18c , M. Abolins , B. Abbott 81 76 129 48 112 T. Berry N. Besson S.P. Bieniek A. Bingul J.-B. Blanchard W. Blum W.H. Bell O. Beloborodova D. Benchekroun Y. Benhammou S. Bentvelsen E. Berglund F. Barreiro D. Bartsch M. Battistin P.H. Beauchemin A.J. Beddall S. Behar Harpaz S. Bahinipati M.D. Baker Sw. Banerjee S.P. Baranov D. Barberis N. Barlow O. Arnaez R. Asfandiyarov A. Astvatsatourov M. Aurousseau Y. Azuma K. Bachas C.F. Anders X.S. Anduaga M. Antonelli L. Aperio Bella J.P. Archambault A.V. Akimov I.N. Aleksandrov T. Alexopoulos P.P. Allport M.G. Alviggi A. Amorim G. Aad B. Abi D.L. Adams T. Adye A. Ahmad The ATLAS collaboration JHEP09(2011)072 , , , , , , , , , , 85 29 29 118 , 30 47 , , 53 14 , 174 129 , 6 , 77 123 , , , , , , , , 25a 49 , , 30 48 33 25a 57 115 , 143 , 19a , , , 119b 104 ,j , , , 108 , , , 2 42 , 85 12a , 122b , , , 125 137 , 119b 128 , 58a 119a , , , F. Canelli , 65 , , E. Cheu 53 , F. Cerutti 172 , P. Bussey , F. Cataneo , , 76 89a , B. Chapleau 74 82 24 , 105 75 122a 33 , A. Clark 2 , R.W. Clifft 32a , E. Coniavitis , J.A. Bogaerts , P. Calafiura 88 , H.M. Braun 119a 72a , V. Boldea , S. Caron 102b 118 , , D. Calvet 77 , I. Caprini 3a 25a ,g , A. Bruni 25a 114 , C. Collard 146b 124a 29 , E. Brubaker , , J.G. Cogan 61 159a 102a 163 7 , M. Bunse , D. Casadei 132b 105 , , C. Boulahouache , J.M. Butterworth 118 96 ,h 146a 71 , J. Chudoba 53 , F. Corriveau , F. Broggi , D. Britton , I. Borjanovic , K. Chan , N.I. Bozhko 132a , S. Cheng , V. Cindro , N.J. Buchanan , S. Chouridou , L. Cerrito , E. Busato 124a , C. Conta , V. Chavda , J.T. Childers 71 , S. B¨oser , G.W. Brandenburg 151 65 , I.A. Budagov 19a , G. Boorman , O. Cakir 153 115 33 , M.A. Chelstowska , M. Cambiaghi 106 , G. Cataldi 30 29 172 17 51 118 35 , V. Cavasinni 129 25a , S. Caughron , T. Bold 65 , J.E. Brau 25a 136 , V. Chernyatin 19b , B. Caron , P. Coe , S. Brunet 134a , 11 , H. Brown 76 84 133b 124a , V. Canale , 64 48 , H. Boterenbrood , C. Caramarcu 133b 89b , M. Ciubancan 82 19a 77 , , , A.P. Colijn 135e 11 , R. Caloi 4 , O. Bulekov 87 133a , C. Clement 148 89a , P. Conde Mui˜no 133a , A. Cerri 23a 55 , D. Cinca , A.M. Cooper-Sarkar 118 , M.L. Chu , X. Chen , C.M. Buttar 84 , E. Brodet , D. Breton , S. Burke , I.R. Boyko , J. Carvalho , G. Borissov , M. Corradi 3a 77 29 21 23a 71 , S.I. Buda 32c , B. Brau 13 29 27 152 , N. Boelaert , A.M. Castaneda Hernandez , J. Buchanan 128 , L. Chikovani 50b 45 ∗ , , 156 , V. Boisvert , D.G. Charlton 49 , J. Colas , G. Brown , G.A. Chelkov , P. Branchini 174 , J. Cochran , G. Choudalakis , N.F. Castro , D. Chakraborty , D. Caforio , M. Cirilli 50a , M.D.M. Capeans Garrido 78 28 102b 50b 29 , M. Boonekamp 65 , , , R. Bruneliere 31b , M. Bosman 50b , R. Caputo 167 14 146a , E.V. Bouhova-Thacker , , P. Camarri 159a 167 , S. Constantinescu 96 135a – 26 – , G. Colon , G. Cattani , M. Cavalli-Sforza 50a , R. Ciftci , M. Campanelli 102b 78 , J. Boyd 48 , T. Chen 19a , B. Clement , 102a 36b , L.P. Caloba 50a , L. Carminati 123 55 144b , 29 3a 29 30 89a 83 , T. Burgess , J.M. Butler 32c , J. Boek , S. Bressler 106 , B.D. Cooper 36a , J.R. Carter , F. Bucci 102a , D. Buira-Clark , A. Borisov 102a 73 41 14 75 143 13 , T.J. Brodbeck , U. Bratzler 16 166 , A.S. Cerqueira 117 , A.G. Buckley , A. Braem 88 54 , C. Bohm , A. Ciocio , C. Caso ∗ 17 , E. Chareyre , R. Cherkaoui El Moursli , 118 , A. Chafaq 134b , , J. Collot 19b 87 , T. Cornelissen 65 90 , W.K. Brooks , , M.V. Chizhov , C.D. Cojocaru , A. Cattai , S. Chen , A. Camard 122b 53 , G. Chiefari , A. Boveia , , V. Consorti 2 , A. Coccaro 34 , D. Cavalli 34 , D. Bruncko , A.K. Ciftci 102b 71 , D. Chromek-Burckhart , J. Boudreau 33 134a , 19a 72a , S.V. Chekulaev 177 83 , M. Capua , S. Campana , D. Boscherini , R. Calkins 78 38 136 37 , S. Burdin 5 104 , C. Borer 48 93 , L. Capasso , G. Carlino , B. Butler , M. Cooke 122a , J.C. Clemens 164c 99 20 , S. Cabrera Urb´an , V.G. Bondarenko 98 , L. Bugge , , T. Buanes 29 , M. Boehler 105 78 102a 80 29 , R. Brock 29 29 , R. Brenner , A.A. Carter , V. Castillo Gimenez 77 75 81 , O. Brandt 123 20 19a 29 118 164a , J. Bracinik 15 172 172 , L. Chen , K. Copic 12b 24 , A. Bogouch , K. Ciba 76 , C. Ciocca , K. Bos , F. Ceradini 107 , J. Cook , N. Bousson , T. Carli , G. Chiodini , J.W. Chapman , F. Butin , E. Cogneras , P. Cavalleri 163 , J.R. Catmore 132b ,i , V.F. Chepurnov , T. Byatt , A. Christov , M. Bona , L. Chevalier , , J. Cammin , S. Chekanov , G. Brooijmans , R.M. Buckingham , I. Brock , M. Cascella 71 27 132b 72b , S. Bordoni , J. Cantero , J. Bouchami , M. Consonni , P. Calfayan 115 , , , D. Capriotti , C. Collins-Tooth 29 65 , F. Cevenini 27 77 166 165 133a 85 88 , V. B¨uscher 27 11 , M. Cobal , J. Bremer 136 164c 11 158 78 117 , H. Burckhart , W. Cleland 141 , 17 102a , M. Bruschi 139 129 132a , G. Brandt 72a , R. Camacho Toro 25a 83 159a , C.R. Boddy 18b 132a 7 , H. Chen 45 108 158 117 33 19a 44 64 164a J. Coggeshall N.J. Collins M.C. Conidi F. Conventi N.J. Cooper-Smith A. Chilingarov I.A. Christidi G. Ciapetti M.D. Ciobotaru P.J. Clark Y. Coadou S.A. Cetin J.D. Chapman S. Cheatham C. Chen A. Cheplakov S.L. Cheung G.D. Carrillo Montoya M.P. Casado E. Castaneda-Miranda A. Catinaccio D. Cauz A. Cazzato G. Calderini S. Calvet D. Cameron A. Canepa M. Caprini R. Cardarelli G. Bruni P. Buchholz B. Budick T. Buran C.P. Buszello W. Buttinger I. Bozovic-Jelisavcic A. Brandt B. Brelier F.M. Brochu C. Bromberg P.A. Bruckman de Renstrom A. Bogdanchikov N.M. Bolnet C.N. Booth S. Borroni D. Botterill C. Bourdarios A. Bocci JHEP09(2011)072 , , , , , , , 81 , , , , 115 , , , 165 , 48 30 , 74 ,i , 29 55 7 , , 37 , 77 , 84 82 134b 49 19b , , , 55 , , , , , , 139 58a 102a , , , 166 , 29 83 120 29 , , 19a , 29 134a 117 , 128 126 , 72b , , , , 82 , 124a , 164c , , 128 14 , 148 , 163 41 70 , S. Diglio , ,l 55 54 36b , S. Errede 72a , I. Dolenc , S. Dean , V. Dao , , T. Costin 102a , , J. Donini , 24 , A. Farbin , S. Eckweiler 164a 58a 23a 164c 99 14 165 , 126 98 115 36a 48 139 120 , P. Fassnacht 89b , T. Eifert , M. Dwuznik , M. Ellert , , C. Fabre 29 , R. Ely 99 , F. Dittus 164a , F. Etienne , I.P. Duerdoth 139 89a , B.E. Cox , Y. Davygora , R. Di Sipio , C. Dallapiccola 29 135c 19b , S. Di Luise 47 29 , , T. Davidek , Z. Czyczula 25a 27 77 , S.P. Denisov 87 29 , R. Crupi , P. de Saintignon , V. Ferrara 86 , M. Della Pietra , M. Fehling-Kaschek , N. Dressnandt , E. Devetak , M.T. Dova , M. Dobson 19a 133b 141 , A.B. Fenyuk , S. Dube , 53 , S. Fazio 88 163 20 29 36b , P.A. Delsart , J. Erdmann 89b , J. Dolejsi 174 , , S. Eckert 30 , D. Errede 132a , ∗ 137 122b 29 87 , , B. De Lotto 115 , 98 , J. de Graat 133a , M. Donega , R. Dhullipudi 36a 136 89a , T.A. Dietzsch , D. Costanzo , D. Dannheim 66 80 , T. Ehrich , M. Fanti , S. Dita 78 , T. Dai , R. de Asmundis 7 158 23b , M. Elsing 41 29 122a 41 , A. Do Valle Wemans 48 167 , P. Farthouat , C. Del Papa , R. Duxfield 172 25a , T. Cuhadar Donszelmann 98 , H. Czirr , B. Esposito , J. Deng , C. Cowden , W. Davey 98 , L. Fabbri 3b 23a 118 , M. El Kacimi , J. Drees 61 , K. Desch 11 175 , M. D¨uhrssen ,k 76 29 61 , A.R. Davison , J. Ebke , E.J. Feng , E. Dobson , Y. Doi 73 , J. Ferrando 64 , A. Eppig 11 , W. Fedorko , T. Dubbs 166 126 , K. De , L. Fayard 93 44 42 , B. Di Girolamo 53 53 62 , D. De Pedis 29 99 32d , J.B. De Vivie De Regie 39 , N. Delruelle , A. Dotti , J. Ernwein 29 , G. Crosetti , P. Dita 89b 29 , Y. Fang , , L. Dell’Asta 83 149 11 , A. Di Simone 24 20 , J. Dietrich , S. De Cecco , S. Dhaliwal , M. Deile , A. Da Rocha Gesualdi Mello 29 , M.J. Costa 89a 115 , A. Dahlhoff 132b 99 24 , H. De la Torre , M. Donadelli , , W. Ehrenfeld , H. Evans 148 133b 37 118 , G. Cowan 89a , 53 , B. Epp 132b 115 155 , J. Elmsheuser 54 , T. Ekelof , , P. Dervan , H.O. Danielsson , Z. Drasal , C. Feng 132a – 27 – , D. Dobos , S. Ferrag , P. Cwetanski 98 , M. Davies 169 , F. Dudziak 29 75 78 ∗ 53 86 133a , I. Fedorko , ,c , B. Demirkoz 137 , M.A.B. do Vale , H. Duran Yildiz , T. Doherty 17 29 , J. Dubbert 132a , R.K. Daya , S.M. Farrington 109 , M. Dosil 9 29 , J.P. Dauvergne ∗ , M. Ernst 65 51 29 , 121 118 1 , H. Dietl , X. Espinal Curull 118 5 158 172 , P. Delpierre , W.L. Ebenstein 105 87 , A. De Santo , C. Cuenca Almenar , A.C. Falou 167 , G. Costa 29 , A. Favareto 52 , A. Di Girolamo 4 , A. Engl , N. Ellis , M. Cristinziani 99 25a , B. DeWilde , A. Dell’Acqua , M. Dehchar 164c 158 , , C. Dionisi 132a , F. Derue , T. Dohmae 75 148 ∗ , M. Dris , W. Dabrowski 20 , 129 120 , A.T. Doyle 122b , N.C. Edwards 122b , J. Ernst , 35 164a , , C.J. Curtis 82 96 135d , R. Di Nardo , L. Courneyea , C. De La Taille , A. Dudarev , E. Davies 76 , M. De Oliveira Branco , D. Evangelakou , A. D’Orazio 105 , O.L. Fedin , T. Djobava 47 , D.S. Damiani , C. Daum 29 , M. Dunford 98 , W. Fernando 71 , C.U. Felzmann , C. Doglioni 122a 146a 73 23a , E. Eisenhandler , R. Dobinson 105 122a , M. Demichev 5 , E.B. Diehl 105 153 ∗ 85 , M. D¨uren , T. Farooque 108 , 93 50b 25b , J.W. Dawson 14 85 , C. Escobar 144a , , K. Ellis , A. Dos Anjos 55 175 18c 148 18a 81 139 115 50a , M. Delmastro , G. Cortiana , S. Falciano , L. Di Ciaccio 102a , C.-M. Cuciuc 165 128 , C. Da Via , P.E. De Castro Faria Salgado 55 102b , A. Dewhurst , J. Dingfelder , 133b , R. Engelmann , C. Driouichi , , J. Degenhardt 39 23a 19b , E. Etzion , U. De Sanctis , B. Fatholahzadeh , 158 29 , P. de Jong , J.E. Derkaoui , M. Curatolo , G. Duckeck , B. Di Micco , F. Crescioli 129 65 8 , J. Ferland , D. Eriksson , C.A. Edwards , R. Davidson 102a , M. Dobbs , P. Federic , A.D. Doxiadis , L. De Nooij 133a 38 , J. Farley , F. Diblen , T. Del Prete , D. Fellmann 4 88 136 , B.A. Dolgoshein 19a , S. Demers , M. D’Onofrio 104 16 81 171 86 , G.L. Darlea 50b , D. Dzahini 33 , M-A. Dufour 132a 108 , 17 71 , R. Djilkibaev 80 83 , I. Dawson , A. Doria , K. Einsweiler 144b 53 31a 29 , M. Dameri 126 , O.B. Dogan , M. Escalier 148 , R. Coura Torres 83 134a 50a 115 50a 29 13 , F. Ellinghaus 142 35 34 81 29 4 A. Farilla D. Fassouliotis R. Febbraro L. Feligioni J. Ferencei S. Elles D. Emeliyanov A. Ereditato E. Ertel A.I. Etienvre R.M. Fakhrutdinov H. Drevermann E. Duchovni L. Duflot F. Dydak K. Edmonds G. Eigen F. Djama T.K.O. Doan J. Dodd Z. Dolezal J. Dopke J.D. Dowell D. Derendarz P.O. Deviveiros A. Di Ciaccio A. Di Mattia M.A. Diaz K. Dindar Yagci L. De Mora A. De Salvo D.V. Dedovich J. Del Peso D. della Volpe C. Deluca M. Dam G. Darbo N. Davidson E. Dawe S. De Castro N. De Groot D. Cˆot´e K. Cranmer S. Cr´ep´e-Renaudin S. Cuneo S. D’Auria P.V.M. Da Silva A. Cortes-Gonzalez JHEP09(2011)072 , , , , , , , , , , 81 , , , 29 87 20 , 136 27 117 129 54 104 , 129 72b , , , , , , 132b , 148 , , 33 , 30 53 , , 21 , 121 , 20 , 72a ,b , , , , , , 153 159a 14 , , 24 132a 29 118 , 143 42 65 , 56 58a 173 158 105 , S. Franz , 124a , , 29 135c 38 , , C. Handel , , 57 , C. Ferretti , 171 , J.A. Frost 105 113 , P. Fischer , 15 , 49 176 120 143 , C.N.P. Gee , Ph. Gris , L. Gauthier , F. Filthaut 29 , V. Grassi 109 41 71 9 , A. Gupta 11 , B.K. Gjelsten , , A. Guida 153 15 32d 141 , A.R. Gillman , F. Hahn 34 , L. Gonella , D. Fortin , S. Giagu , A. Gemmell 26 33 28 19a , S. Haas 99 41 82 , A. Gershon , E.J. Gallas 19a , A. Harvey , J. Grosse-Knetter , A. Gibson , P. Hansson 50a , A. Gomes , C. G¨ossling , G.L. Glonti , F. F¨ohlisch , H.A. Gordon 143 98 174 66 24 35 , R.D. Harrington , H. Fox 81 171 , O.G. Grebenyuk , P. Hamal 99 , E. Gornicki , P. Ge 95 128 174 , M. Franklin 9 , M. Hance 87 , D. Goujdami , O. Gabizon , D. Ferrere , P. Grenier , J. Guo 74 , K.K. Gan , P. Fleischmann 137 , V. Grabski , F.M. Giorgi 174 , B. Gaur , G. Fischer , M. Garcia-Sciveres 29 47 134a , M. Gosselink 171 41 ,g 116 , A. Filippas 40 81 , H. Garitaonandia 5 158 49 39 , A. Forti 135a , S. Grinstein , P. Giusti 74 175 , D. Froidevaux , N. Guttman 29 102b 163 , , P. Haefner , A. Haas 136 , D. Gillberg 29 137 , C. Galea 111 , C. Gemme 17 , S. Grancagnolo , C. Guicheney 132b 73 , E. Gross 91 , , B. Giacobbe 61 , P. Gerlach 102a 99 , B. Gibbard 72a 175 33 76 , D. Harper , P.H. Hansen 146b , E.N. Gazis , K. Fowler , B. Guo , T. Haruyama 29 , , C. Goeringer 132a , T. Frank , A. Goriˇsek , K.W. Glitza 90 , A. Firan 35 29 44 , S.N. Golovnia 43 29 , M.L. Gonzalez Silva 125 41 , E. Graziani 105 , M.L. Ferrer , E. Galyaev , J. Fleckner , I.M. Gregor 72b , M.J. Flowerdew 146a , K. Hamacher , O. Gaumer , , C. Gabaldon 167 , P.A. Gorbounov , N. Garelli , A. Filipˇciˇc , K. Hanagaki ,l 175 , M. Gouighri 167 , A.T. Goshaw 148 54 167 125 141 29 30 81 172 24 72a 167 , A. Formica , R. Froeschl , F. Garberson 32b , A.A. Grillo 119a 41 , M. Groh 163 , P. Gagnon , D. Guest 27 14 , P. Gutierrez 65 , D.R. Hadley 138 , V. Gilewsky 29 , S. George 5 , R. Giordano 93 39 , C.B. Gwilliam 14 50b 8 54 – 28 – , M. Giunta , , F. Gianotti , I. Grabowska-Bold , N. Ghodbane , D. Francis , A. Glazov , T. G¨opfert 4 , J-C. Gayde , F. Hartjes , A.J. Fowler 4 118 , S. Harkusha , I. Fleck 89a , J.D. Hansen , J. Gunther , L. Fiorini 50a , F. Grancagnolo , L. Han , J. Haller 48 41 , A. Ferrer , P. Gallus 20 48 , T. Golling 29 122b ,h 48 35 , J.A. Gray , J. Fuster , ,m , E. Gorini , F. Fiedler 174 41 119b , 39 32a 176 29 29 129 85 , K. Gellerstedt 29 30 , G. Gaudio , L. Goossens , B. Gosdzik 119a 124a 122a 20 , J. Goncalves Pinto Firmino Da Costa 47 , R.W. Gardner 119a , S.T. French 148 , J. Grognuz 128 , C. Goy 76 49 , M. George , P. Ghez , Z.D. Greenwood , N. Giokaris , V.J. Guarino , D.A. Forbush , A. Gaponenko 120 , A. Gutierrez 115 138 , D. Giugni 73 , M. Gilchriese , N. Grigalashvili 16 , H. Han , J. Glatzer 153 141 , L.R. Flores Castillo , M. Flechl , I. Gough Eschrich 132b 135b , J. Hartert , C. Gwenlan 128 128 , M. Goebel , , H.K. Hadavand , A. Foussat 4 , S. Gonz´alezde la Hoz , G. Gagliardi 136 , H. Guler 118 138 80 , G. Gaycken 17 , D. Goldin 29 161 , B. Gorini , J.B. Hansen 174 129 , K-J. Grahn 24 136 49 , C. Gatti , H.M. Gray 54 , R. Ferrari 115 172 87 132a , B.J. Gallop 168 35 , T. Harenberg , H. Hakobyan 174 , M. Fiascaris 17 34 174 16 105 38 137 , R. Gon¸calo 50b , S. Franchino , S. Fratina , , V. Giangiobbe , J.J. Goodson 41 8 , M.C.N. Fiolhais , J.-F. Grivaz 49 , K. Grybel 50a , T. Flick 122b , V.N. Goryachev 119b , , Ch. Geich-Gimbel 97 169 , C. Gay , J. Ginzburg , , C. Guyot , H. Ghazlane , T. Greenshaw , J. Griffiths , A.G. Goussiou 171 , E. Fullana Torregrosa , P.F. Giraud ,e , C. Glasman 174 , N. Grau 94 , C. Grah , K. Harrison 128 , M. Gouan`ere , S. Gentile 2 , S. Hamilton , S.M. Fisher 105 , L.M. Gilbert 46 49 , V. Gallo , S. Guindon 122a , V.A. Gapienko 172 , V.N. Gushchin , J. Garvey 99 , J. Godlewski 58a , D. Fournier 129 119a 97 , S. Goldfarb , S. Gonzalez 29 4 , G. Gorfine , S. Gadomski 156 65 , P. Ferrari 98 , J.E. Garc´ıaNavarro 49 29 121 29 138 ,f , J.R. Hansen 65 29 109 82 , Z. Hajduk 99 29 , T. Fonseca Martin , R. Hackenburg , G.A. Hare 24 142 9 103 166 167 29 14 143 58a 160 S. Haider A. Hamilton P. Hanke K. Hara O.M. Harris Y.V. Grishkevich J. Groth-Jensen T. Guillemin Y. Gusakov O. Gutzwiller C. Haber M.I. Gostkin M.P. Goulette P. Grafstr¨om V. Gratchev D. Greenfield E. Griesmayer T. G¨ottfert L.S. Gomez Fajardo A. Gonidec S. Gonzalez-Sevilla I. Gorelov S.A. Gorokhov V. Giakoumopoulou S.M. Gibson D.M. Gingrich P. Giovannini L.K. Gladilin J. Godfrey C. Garc´ıa V. Garonne I.L. Gavrilenko D.A.A. Geerts M.H. Genest C. Geweniger P. Francavilla M. Fraternali C. Fukunaga T. Gadfort M.V. Gallas Y.S. Gao A. Ferretto Parodi M. Fincke-Keeler M.J. Fisher S. Fleischmann M. Fokitis J.M. Foster A. Ferrari JHEP09(2011)072 , , , , , , , , , 71 , , 83 , 20 105 , 35 103 98 , 85 29 , , 4 13 115 5 , , , , , 165 , , , , 22 , 39 , 62 65 , 167 115 21 146a , 170 118 73 , 41 174 102a , 88 , , , , , 99 , , 108 , 67 , 66 , , S. Hillert , 151 , F. Hubaut , K. Karr , 65 , 58a 174 82 , 105 67 174 41 67 , D. Joffe 41 48 , N.P. Hessey 95 , J. Kennedy , A. Jeremie , J. Hrivnac 16 , 127 , P. Jussel , M. Klemetti 4 35 , M. Kado 29 , V. Izzo , A. Kastanas , E. Hazen 82 29 41 , L.E. Kirsch 81 , C. Issever 125 , S. Heisterkamp , R.J. Hawkings 35 40 , T.J. Jones , N. Kimura , 109 129 , S. Johnert , S. Kersten , J. Huston 39 , S. Hou 14 17 118 , , H. Khandanyan 77 , R.C.W. Henderson , M.R. Hoeferkamp 74 ,n 160 55 115 , A. Jantsch 10 139 , S.O. Holmgren 11 29 32b , J. Kanzaki 65 , R. Ichimiya 77 , S. Haug , L.V. Kalinovskaya 96 118 , K. Jakobs , K.H. Hiller , A. Khomich 99 , P. Jenni , O. Igonkina 141 , M. Kelly 5 , K. Kawagoe , L. Hervas 61 174 , H. Kiyamura , Z. Hubacek , G. Ionescu 6 30 , M. Imhaeuser 65 128 , D. Hirschbuehl 98 , J.M. Izen , I. Hristova , Y. Hern´andezJim´enez , M.Y. Kazarinov 102b , M. Karnevskiy 78 , V. Juranek 128 , V. Khovanskiy 111 , 7 , R.D. Kass 42 , P. Kadlecik 66 134a 118 , S.H. Kim 65 107 39 38 , Y. Jiang , G.P. Kirsch 118 , R.E. Hughes-Jones 130 , T.W. Jones , K. Kleinknecht , M.D. Joergensen , C. Helsens 102a , S.J. Haywood , C.M. Hawkes , N. Hill 71 , E. Jansen 143 , A. Hoecker 71 , B. Heinemann 148 129 73 , V. Jain , D. Hauff 73 , P. Johansson 27 157 , B.P. Kerˇsevan , A. Holmes , J-Y. Hostachy 118 88 , N. Huseynov , L. Hooft van Huysduynen , F. Khalil-zada 158 139 29 29 146b , 29 , S. Kalinin 41 141 28 , R. Ishmukhametov , X. Ju , I. Ibragimov 118 146a 120 , V. Kaushik , S. Henrot-Versille , F. Hirsch 152 66 , V.A. Kantserov 14 82 146a , M. Iodice , D. Imbault 41 , J. Jia , H. Iwasaki 29 , A.M. Kiver , A. Kasmi 8 , G.S. Huang , P. Iengo 116 , J. Kirk 81 38 157 , G.D. Kekelidze 154 , D.F. Howell 14 , I. Jen-La Plante , U. Klein 37 , P.C. Kim 123 , M. Karagoz , R. Hertenberger 172 , J.C. Hill , S. Heim 2 , G. Hughes 54 118 82 37 , A.G. Kholodenko , V.A. Kazanin ∗ 73 7 43 , 48 , N. Khovanskiy , C.M. Hernandez 34 , M. Hatch 5 , A. Kaczmarska 96 – 29 – , R.W.L. Jones 105 , P. Hodgson , B.M. Hawes , O. Jinnouchi 174 174 , M.R. Jaekel , M. Holder , W. Ji , H.S. Hayward 136 , K. Horton 167 82 , E. Jankowski , N. Kerschen , J. Katzy , J. Joseph 20 , M. Ishino , T.M. Hong 81 , M. Khakzad 76 139 9 48 32a 143 ,b 172 , U. Husemann , S. Hellman 67 67 111 125 , M. Hirose , M. Idzik , P. Ioannou , M. Ibbotson , M. Keil , T. Kanno , D. Iliadis 158 14 , D. Kar , S.-C. Hsu 9 , L. Kashif , K. Jelen , K.E. Johansson , D. Hill , W. Iwanski 115 29 , E. Kajomovitz 39 29 , M.S. Kim , M. Klein 39 124a 120 29 115 , L. Heelan 7 57 175 , G. Herten 99 128 42 , J. Howarth 167 128 , R.S.B. King , H. Ji 79 , T. Henß , S. Jin 146b , M. Kaci , , T. Kittelmann , M.S. Kayl , G. Jones 152 67 54 , E.W. Hughes , S. Hassani 16 19a 37 135a , A. Khodinov 81 32b , S. Horner , D Hayden 146a 65 , P. Jackson 146b , O. Kepka 118 140 , M. Hohlfeld , , J. Keung 67 , D.K. Jana , Y. Homma , M. Havranek , E. Katsoufis 143 , A. Khoroshilov , H. Kim , A. Ishikawa 73 53 , A.M. Henriques Correia , E. Hines , M. Heller 83 , R. Kehoe 48 88 88 , P.J. Hsu , M. Hurwitz , J. Kaplon 20 51 66 127 , L. Jeanty , S. Kaiser 155 54 14 48 , P.M. Jorge 4 , G. Iakovidis 146a , M. Kaneda , Y. Ilchenko , J. Idarraga 57 169 30 , G. Jin 79 57 29 49 , M. King , M.C. Hodgkinson 66 155 , J. Inigo-Golfin 41 , V. Hedberg 115 , C. Hensel 73 , A.V. Ivashin , M.K. Jha , S. Kabana 153 4 20 17 83 , C. Horn 101 , A.N. Karyukhin 128 , K. Ishii , G. Kawamura 71 , M. Johansen , D. Kisielewska , A. Hoummada 127 , M. Kenyon , Y. Hasegawa , R. Hauser , P. Hurst , J. Klaiber-Lodewigs , T. Hayakawa 13 , E. Hig´on-Rodriguez 167 99 , C. Ketterer , J. Khubua , T.B. Huffman 73 , A.D. Hershenhorn 155 , D. Kharchenko , J. Jakubek , J.N. Jackson , R. Keeler 29 , A. Kapliy , D. Hoffmann , C. Joram , M. Ikeno , Y. Kataoka 29 , I. Hinchliffe , A. Henrichs , M. Kagan 143 101 , K. Jon-And 65 20 , G. Khoriauli , T. Hryn’ova 15 4 , T. Ince 35 , N. Hod 82 163 155 6 , G. Jarlskog 39 29 66 112 120 146a 17 144b , J.L. Holzbauer , N. Kanaya , M. Heldmann 27 175 , B.T. King , Y. Itoh , G. Iacobucci 58a 109 4 125 20 , S.J. Head 155 148 39 15 , S. J´ez´equel 127 57 18a 32d 35 T.J. Khoo E. Khramov O. Kind A.E. Kiryunin E. Kladiva M. Kataoka T. Kawamoto J.R. Keates C.J. Kenney K. Kessoku A. Khanov O. Jonsson V.V. Kabachenko H. Kagan S. Kama B. Kaplan V. Kartvelishvili S. Jakobsen M. Janus P. Jeˇz M. Jimenez Belenguer L.G. Johansen K.A. Johns L. Iconomidou-Fayard Y. Ikegami M. Imori A. Irles Quiles S. Istin B. Jackson T. Horazdovsky M.A. Houlden I. Hruska F. Huegging M. Huhtinen J. Huth R. Herrberg A. Hidvegi S.J. Hillier J. Hobbs J. Hoffman T. Holy M. Hauschild D. Hawkins M. He L. Helary M. Henke F. Henry-Couannier S. Hasegawa JHEP09(2011)072 , , , , , , , , 6 , , 171 104 , 98 ,p , 62 28 , , 29 , 48 , , 174 , 153 55 15 6 , 108 65 126 , , , 154 128 , , , , 4 , , 167 , , 29 , , , , 4 , , 65 41 , 21 99 20 119b , P. Loch , 29 , C. Liu , , , 120 125 , 127 118 65 175 150 143 41 , , , D. Kuhn , P.F. Klok , , F. Legger 136 , T. Lenz , , 137 169 169 15 , D. Lumb 119a 20 29 146b 16 , 94 97 , 174 , A. Kreisel 120 , W. Lampl , M. Leyton , L.J. Levinson , A. Lucotte 81 , J. Knobloch 105 145b , R. Leitner , 6 88 , J. Love , K. Kordas 20 87 62 , V.M. Kotov 146a 14 , C. Lange , V. Kus , R. Lafaye , R. Konoplich , C. Lacasta , P. Lichard 23b 38 , H. Kroha 132b 162 99 , 82 90 65 48 , C. Lapoire , E. Lipeles 54 , N. Kundu , M. Lassnig , V.A. Korotkov , Z. Kohout , J.S.H. Lee , M. Kocian , A. Loginov 135a 78 133a , R. Kwee 88 , V.P. Lombardo , V. Kolesnikov 78 29 , M. Livan 132a 54 , T. Kuhl 43 , A.M. Litke 82 139 , A.B. Lazarev 29 105 15 , T. Kruker 118 , L. K¨opke , C. Limbach , J. Kraus 32b 49 73 58c , J-R. Lessard 20 , D. Levin , E. Lobodzinska , A.A. Komar , G. Luijckx 81 17 , E. Le Menedeu , R. Kowalewski 4 93 , B.C. LeGeyt 108 75 82 61 , S. Kotov , K. Korcyl , K.J.C. Leney , A.M. Leyko 49 , C.L. Lampen , J.L. Lane 158 105 , J. Lundberg , P. Loscutoff 29 , E. Kneringer , C. Luci , E. Ladygin , H. Lee , T. Klioutchnikova 29 , V.A. Kramarenko 128 , M.A.L. Leite 58a 79 108 , F. Kohn , S. Lablak , M. Kuna , B. Liberti 99 152 , Y. Liu 6 , S. Laplace , J. Kvita 162 4 , K.F. Loureiro 55 35 138 , M. Kobel 2 , A.I. Kononov ∗ , C. Lasseur ,q 98 167 , 127 105 , J. Loken , A. Lister ,o , K. Kroeninger , A. Kugel 125 115 , Y.A. Kurochkin 155 118 118 24 , H. Kr¨uger , C. Leroy 128 41 , P. Laycock 48 , S. Koenig , H. Kolanoski 125 158 9 , J.N. Lilley 160 , J.T. Linnemann 65 , A. Leger , J. Levˆeque 14 , F.K. Loebinger , E.V. Korolkova , S.L. Lloyd , X. Lei , S.D. Kolya 104 107 , S. Liu , F. Luehring 152 20 11 80 105 136 172 29 , S. Kluth 48 , J. Labbe 48 , V. Kral , C. Le Maner 32b , G.H. Lewis , A. Koutsman , M. Losada 80 105 , M. Lamanna 83 , B. Lundberg ,t 128 , S.V. Kopikov , Z. Liang , M.J. Kotam¨aki , A. Krasznahorkay , T. Kono , A. Lounis 118 , H. Landsman , C. Kummer 154 , H.J. Lubatti 55 , E.B. Klinkby , A. Larner , S. Kuehn 34 – 30 – 37 39 , E. Koffeman 147 20 , V. Lendermann 78 66 40 75 39 , V.R. Lacuesta 42 , P. Krieger , D. Lissauer , V.V. Lapin 86 , O. Kvasnicka 31b 29 34 128 , M. Kurata , T. Kobayashi 78 , F. Linde 54 29 91 , M. Liu , S. Leontsinis , M. Lokajicek 165 67 , F. Ledroit-Guillon ,r 44 , R. Lifshitz , A.C. K¨onig , W. Lavrijsen 5 44 43 , I. Korolkov 48 , U. Kruchonak , P. Kluit , J. Ludwig 13 29 , M. Legendre 151 118 , L. Lu 73 48 107 , G.M. Kolachev , M. Kollefrath 12a , A. Lewis , L. Labarga , X. Lou , E. Laisne , Z. Liang 169 20 29 32a 21 , A.S. Kozhin , T. Kondo 48 87 36b , T. Loddenkoetter , S. Koperny , 159a , T. Koffas , E. Le Guirriec , J. Llorente Merino , M Liu , T. Kubota , V. Kouskoura 136 155 , B.R. Ko , D. Lacour , P. Kuzhir 20 175 78 , S. Kuleshov , N. Krieger 8 36a 55 , G. Lehmann Miotto , T.M. Liss 87 174 20 , M.W. Krasny 54 15 , K. Lantzsch , M. Leltchouk 90 , M.P.J. Landon 73 20 13 , B. Lund-Jensen , S.C. Lin 42 157 , F. Lu , R. Klingenberg , D. Lopez Mateos , A. Leung Fook Cheong , W. Liebig , T. Kluge , X. Li , V.V. Kostyukhin 24 , A.V. Larionov , A. Korol 78 , K. K¨oneke 48 , J. Krstic , H. Kurashige , S. Lai , I. Ludwig 63 ,b ,f 24 ,d 27 117 , T. LeCompte 99 , K. Lohwasser 14 , K. Leonhardt 20 80 165 58a 41 , A. Lavorato 89a , D. Kollar 126 125 , T. Kokott 93 143 15 29 32b 47 124a 88 , M. Lefebvre , J.B. Liu 143 , M.J. Losty , A. Lleres , A. Kootz , A. Kruth , A. Knue , Y. Komori 175 87 , M. Kuze , H. Lacker 77 , S. Lockwitz 65 83 , O. Le Dortz , O. Krasel 118 , K. Lie , F. Lanni 132b , S. Li 142 , M. Lewandowska , , W. Kozanecki , E. Lund , P. Koevesarki , T. Lari , A. Korn 74 138 98 137 , J. Lellouch , A. Lipniacka 89b , L. La Rotonda , M. Limper 37 163 132b , J. Koll , 172 , , C. Lebel 128 , Y. Kulchitsky , P. Kodys , U. Landgraf , B. Lenzi , S. Kortner 104 , T. Lohse , A. Kupco 136 , T. Koi , M. Lehmacher , C.G. Lester 132a , D. Ludwig , T. Lagouri 128 , L. Lopes 86 , C. Kourkoumelis 132a , J. Kretzschmar , A.J. Lowe 171 64 125 65 172 , L. Lee , E.-E. Kluge 99 89a , A. Klimentov 89a , H. Liu 66 14 43 , J. Kroseberg 78 , P. Laurelli 113 71 136 44 174 168 71 132a 120 ,s 127 146a 151 105 171 120 118 , H. Li 151 83 R.E. Long F. Lo Sterzo P.A. Love A. Ludwig L. Luminari A. Limosani L. Lipinsky D. Liu S.S.A. Livermore W.S. Lockman C.W. Loh D. Lellouch G. Lenzen J. Lesser M.S. Levitski B. Li M. Lichtnecker J.F. Laporte W. Lau A. Lazzaro A. Lebedev S.C. Lee C. Leggett W. Kuykendall A. La Rosa F. Lacava B. Laforge E. Lancon A.J. Lankford G. Kramberger F. Krejci J. Kroll Z.V. Krumshteyn V. Kukhtin J. Kunkle J.R. Komaragiri N. Konstantinidis V. Koreshev O. Kortner A. Kotwal T.Z. Kowalski S. Klous E.B.F.G. Knoops A. Kocnar F. Koetsveld T. Kohriki I. Koletsou A. Klier JHEP09(2011)072 , , , , , , ∗ , 35 , , , , , , 172 29 , 29 , , , 9 29 29 , , 65 , 132b , 54 89a , 11 128 84 120 , 36b , , 79 , 99 54 , , , , 42 137 , , 20 , 49 , , , 132a , 36a 162 , 29 , , , , 143 171 74 , 66 43 , 81 , 29 41 6 29 111 122b 107 129 , , P. Miele 105 49 , 105 , , , ,h 129 , A. Mann , S. Mehlhase , , E. Meoni 11 , Z. Marshall 122a , , A. Messina 155 , J. Meyer , M. Mineev , S. Maltezos , M. Maß 89b 65 , , E. Lytken 93 67 29 82 5 , L. Mandelli 78 30 124a 37 , F.F. Martin , P. Mal , H.G. Moser 173 14 107 66 , G. Nanava , C. Maiani 89a 88 , E.J.W. Moyse , B. Maˇcek , J. Mitrevski , A.M. Moisseev , G. Navarro , K. M¨onig 115 17 101 , D. Milstein , K. Nagano 94 , D. Moreno 99 , A. Mapelli 110 , A.K. Morley , A. Marzin , D.W. Miller 76 99 41 , D. Muenstermann 27 , W.F. Mader , I. Mussche , S. Nektarijevic , B.R. Mellado Garcia 99 66 74 160 98 36b 14 , 146b 29 30 , 132a , J. Lys , J. Mechnich , R.A. McLaren 129 , D.A. Maximov , C. Menot , D. Malon , E. Mazzoni 24 84 36a 51 , J. Meyer , N.A. McCubbin , M. Martinez 73 , A. Mastroberardino , B. Mindur 99 146a , C. Mora Herrera 63 , R. Marshall , K. Miyazaki 28 89a 49 , R. Mehdiyev , F.S. Merritt , R.P. Middleton , B. Martin , H. Matsunaga 136 , G. Marchiori 86 , A. Manabe 82 108 , L. Morvaj 23a 29 , I. Nakano 132b , G. Mahout , 116 , I.D. Manjavidze 89a 25a , A. Manz 155 , S. Montesano , N. Makovec 12b 75 , K. Nagai , V. Moeller , M. Mikuˇz , A. Misiejuk , Y. Morita 133b 48 , G. Negri 88 155 , 83 66 , A. Macchiolo 11 , T. Naumann 136 57 11 75 132a , D. Lynn , A.L. Maslennikov , T.A. M¨uller 125 47 20 , S.V. Mouraviev , F. Marzano , A. Meade 119b 133a 99 82 20 , R.J. Madaras , , S. Menke , G. Morello , U. Mallik ,j , W.J. Murray 82 136 35 , C. Melachrinos 54 55 , P.J. Magalhaes Martins 66 19b , L. Micu , S. Mohrdieck-M¨ock 169 , S.J. Maxfield , 119a , J-P. Meyer , G. Mchedlidze 79 , B. Martin 41 , M. Mazzanti , D.A. Milstead 29 48 , A.I. Mincer , C. Meroni 29 81 , T. Meguro 53 19a , J. Nadal , S. Moed 20 65 175 , J. Morin , J.D. Morris , J. Mamuzic , T.G. McCarthy 171 , Y. Makida , P.S. Miyagawa , G.F. Moorhead , F. Marroquim 111 , E. Monnier , G. Lutz 57 102b 2 125 96 138 98 , J. Masik , , H. Matsumoto 24 66 , K. Mahboubi 148 61 77 , K. Nakamura – 31 – , M. Marx , B. Mansoulie 94 , P.S. Mangeard , J. Morel , K. Mueller 8 115 29 122b , F. Malek 153 82 , F. Marchese , B. Martin dit Latour , 102a , A. Negri , P. Mastrandrea , G. Maccarrone 136 , M. Mikestikova 123 29 17 4 , T. Nattermann , S. M¨attig 94 124a , W. Mohr 121 , L. Miralles Verge , S. Michal , B. Meirose , C. Meyer 93 122a 21 , E. Mountricha , K. Murakami 13 171 , M. Mazur 48 , A. Milov 20 174 , R. Mackeprang 32d , H. McGlone , M. Morii 132a 57 143 153 , J. Monk , A.J. Martin 49 , S. Mitsui , M. Myska 151 , J.M. Maugain , A. Mengarelli , R.A. McPherson , P. Mockett 139 50a 29 ,c ,s , R.W. Moore 167 , I.A. Minashvili 167 128 , S. Majewski , C.P. Marino 129 , S.V. Morozov , L. Merola ∗ ,b 118 , R. Mameghani 146b , 151 , P. Matricon , A. Lupi 19b , 167 49 , N. Massol , J. Mueller , , R. Meera-Lebbai , R.L. McCarthy , Y. Mahalalel 118 29 21 , Y. Nakahama , J. Maneira , B. Mohn , J. Miao 20 81 , N. Morange , R. Mashinistov 41 , T.A. Martin 124a , P. M¨attig 54 , C. Mills 105 , V.P. Maleev 58a 19a ,b , S. Meuser 29 15 64 146a 165 , A.C. Martyniuk 148 55 , N.R. Nation 155 24 , J.F. Marchand 38 , R. Mount 64 , R. Mazini 168 ,c , D. Macina 57 , J. Meinhardt , P.Yu. Nechaeva , G. Mikenberg , Y. Munwes , G. Mirabelli 80 124a 77 109 80 41 139 11 58a , Z. Meng 168 , P. Morettini 124a , J.A. Macana Goia , V.A. Mitsou , A. Marin , J.A. Mcfayden 162 , A. Maio , T. Moa , M. Mi˜nano 167 172 , J. Molina-Perez , A.G. Myagkov , A. Manousakis-Katsikakis , P. Mermod , M. Mathes 56 , S.J. McMahon 128 , S. Marti-Garcia 79 , C. Mattravers 125 , M-C. Morone , F. Mueller 23a , S. Malyukov 128 57 , S. Monzani 17 , M. Lungwitz , G. Massaro , T. Maeno 167 , A.M. Nairz 137 , A. McCarn 67 , M. Medinnis , A.S. Mete 155 , P. Malecki 29 158 , J. Moss , E. Magradze 102b , W.T. Meyer , Ph. Martin , 70 , W.J. Mills 35 , M. Nash 107 12b 60 87 , T. Mashimo , L. March , A. Morais , E. Nebot 58c 38 19b , R. Mandrysch 51 , A. Muir 29 29 93 , K. Meier 174 , , L.M. Mir , S. Mohapatra 103 88 , A. Mayne , L. Mijovi´c 81 29 53 87 161 5 74 73 102a 20 105 73 19a , L.L. Ma 130 24 A. Muijs E. Musto Y. Nagasaka A. Napier H.A. Neal F. Monticelli A. Moraes M. Moreno Ll´acer G. Mornacchi M. Mosidze M. Mudrinic A.A. Minaenko Y. Ming G.Y. Mitrofanov J.U. Mj¨ornmark N. M¨oser R. Moles-Valls L. Mendoza Navas K.M. Mercurio J. Metcalfe T.C. Meyer S. Migas R.J. Miller E.N. May S.P. Mc Kee K.W. McFarlane T. Mclaughlan M. Mechtel A. Mehta J.P. Martin V. Martinez Outschoorn L. Masetti I. Massa T. Masubuchi T. Matsushita V. Malyshev I. Mandi´c P.M. Manning L. Mapelli M. Marcisovsky F.K. Martens H. Ma J. Machado Miguens R. Maenner L. Magnoni C. Maidantchik Pa. Malecki J. Lundquist JHEP09(2011)072 , , , , , , 2 , , , , 61 28 41 66 , , , , , 153 , , , , 65 , , , 24 82 , 158 98 , 23a , 11 114 31b , 29 , 119b 41 33 , 48 120 24 , , , 159a 29 132a , 134b , , , 72a 83 26 99 , , , , 119a , , 155 58b 169 53 83 9 , , , 134a 129 138 , 5 , , , , J. Penwell , Z. Qin 24 144a , R.S. Orr , J.L. Pinfold 50a 29 , M. Noˇziˇcka , M. Owen 26 , , T.K. Ohska ,x 29 34 83 53 , E. Ptacek ,b 66 , S. Panitkin , K. Nikolaev 49 118 , P. Nevski 32a 140 , D. Olivito , J. Petersen , A. Nisati , J. Odier 20 87 , F. Podlyski , C.J. Oram , F. Prokoshin , U. Parzefall 128 29 66 124a , K. Pomm`es , R. Perrino 108 , R. Piegaia 167 , T. Nunnemann 155 30 , I.N. Potrap 34 58a 22 29 41 108 20 , V. O’Shea , H. Nomoto , K. Randrianarivony , E. Reinherz-Aronis , V. Radescu , L.E. Price , D. Rahm , A.A. Nepomuceno 127 , M. Pecsy , C. Padilla Aranda , F. Petrucci , Z. Qian , D.M. Rebuzzi 142 , M. Olcese , M.T. P´erez , P. Pralavorio 154 61 105 29 11 104 87 , P.W. Phillips 146b , A. Penson 109 108 , M. Plamondon , , A. Policicchio 11 77 117 , M. Nozaki , A. Pinder 132a 155 27 29 , A. Poppleton 41 , G. P´asztor , Q. Ouyang , H. Ohshita , S. Odaka , B. Nicquevert , A. Palma 126 146a 119a 29 164c , S. Psoroulas 12a , 136 33 4 101 , S. Poddar , R.M. Neves , S.M. Piec 155 139 , Th.D. Papadopoulou , N. Panikashvili , G. Otero y Garzon 24 , V. Nikolaenko , B.A. Petersen 81 53 , J. Qian , D. Pomeroy , J.A. Parsons , D. Price , Y. Ninomiya , S. Pospisil 164a , P.U.E. Onyisi , M. Raas , K. Prokofiev , T. Pauly , H. Pernegger 7 11 15 , C. Oropeza Barrera 146a , I. Nomidis 29 ,v 31a 99 105 117 136 50b , E. Oliver Garcia , D.C. O’Neil 31a , 72a , A. Reichold , R. Prabhu , R. Pengo 89b , A.L. Read , E. Petrolo ∗ , 107 , P. Nemethy 102b 116 24 , , 40 124a 29 , A.M. Rahimi , S. Oda 50a 172 172 17 , T. Okuyama 154 89a 125 , D. Pallin , R. Placakyte 67 , A.W. Phillips , Fr. Pastore , J. Novakova 177 102a , G. Polesello , G. Nunes Hanninger , A. Ouraou , L. Nicolas 29 , A. Pacheco Pages , E. Perez Codina 101 86 , M. Ramstedt , T. Ohshima , D.S. Popovic 7 55 89b 20 , 129 41 117 136 , C. Osuna , L. Pribyl , B. Panes 134b , A. Pickford , P. Nilsson , A. Neusiedl 141 , , O. Peters 9 25a , I. Orlov 89a , H. Przysiezniak , A. Poblaguev 16 146b 48 , 120 65 , A. Nikiforov 165 19b , M. Pinamonti , A. Papadelis , , H. Peng 43 – 32 – 134a , K. Reeves , F. Quinonez ,b , A. Ochi , F. Parodi 29 128 , A. Onofre , L. Perini 134b , J. Poveda , G.E. Pospelov , , M. Nomachi 146a , M. Primavera 123 19a 107 78 27 67 , G. Rahal 20 5 120 29 , D.M. Pomarede 21 , Y. Pylypchenko , A. Phan 172 , C. Petridou , F. Polci , M. Raymond , S. Nemecek 124a 123 24 134a , S.W. O’Neale , S. Patricelli 49 , S. Palestini 89b 99 , N. Ozturk 115 , 31b 154 143 , C. Pizio , Y. Okumura 45 82 , K. Pretzl 117 , P.R. Norton , H. Nilsen 18a 89a 29 , M. Rammes 163 , D. Oliveira Damazio 64 24 , R. Nicolaidou , F. Ould-Saada , I. Peric , R. Ospanov 48 , F. Pastore ,h , X. Prudent 146b , J. Pina , , J. Ocariz 5 , R. Reece 34 , C. Posch 118 , C.C. Ohm , G.A. Popeneciu , V. Paolone 50b , C. Omachi 82 99 , M. Pohl , T. Niinikoski , 135d , P. Puzo , M.S. Neubauer 24 , G. Poulard 134a 44 124a , M. Piccinini , D. Prieur , A.V. Pleskach 88 , T. Perez Cavalcanti 163 , M.A. Parker , A.-E. Nuncio-Quiroz , R. Pezoa 146a 38 20 , E. Rauter ,w 125 ,t , L. Nodulman 75 73 , W.B. Quayle 137 50a 24 , E. Panagiotopoulou 121 ,w , V.D. Peshekhonov 114 , A. Petridis , D. Orestano 98 , J.R. Pater , S. Prell 24 142 34 99 14 7 159a , T.K. Nelson 24 3a , K. Pajchel 83 , F. Ragusa , O. Pirotte 172 , H. Okawa , S.V. Peleganchuk , B.J. O’Brien , V.E. Ozcan 153 150 ,b 24 143 67 29 18a 13 , V. Polychronakos 172 , S.H. Oh 124a 75 82 , R. Porter , A. Passeri , J. Proudfoot , M. Ouchrif , B.G. Pope , K. Nikolopoulos , H. Oberlack , M. Rammensee , M. Oliveira , J. Nielsen 48 24 , G. Redlinger , E. Piccaro , K. Perez , V. Perez Reale , E. Petit , R.B. Nickerson ,e 78 , R. Nisius , W. Park 24 65 105 , B. Osculati , B. Nordkvist , J. Olszowska 132a , Y. Oren 5 29 , M. Petteni , C.T. Potter , N. Patel , Y.B. Pan 132a , M.-A. Pleier 35 , M. Purohit 17 28 115 , T. Poghosyan , A.D. Pilkington 67 , F. Paige 173 , F. Rauscher 23a 167 , M. Panuskova 29 38 30 , P.M. Prichard , S.Y. Nesterov 130 41 17 , S. Okada 82 87 , J. Poll , I.M. Nugent , S. Nelson , S. Persembe 30 , T. Rador , R. Pravahan , D.R. Quarrie 71 149 , O.K. Øye 172 , A. Oh 115 , T. Nyman 139 4 ,u 29 59 25a , B. Pinto 64 20 57 54 61 19a 113 77 29 139 32c A. Quadt B. Radics S. Rajagopalan P.N. Ratoff A. Redelbach X. Portell Bueso C.J. Potter S. Prasad M.J. Price S. Protopopescu J. Purdham J.E. Pilcher J. Ping W.G. Plano L. Poggioli A. Polini L. Pontecorvo M. Perantoni Garc´ıa-Esta˜n P. Perrodo T.C. Petersen D. Petschull G. Piacquadio J.D. Palmer D. Pantea A. Paramonov E. Pasqualucci S. Pataraia M.I. Pedraza Morales A. Olszewski M.J. Oreglia E.O. Ortega J.P Ottersbach S. Owen E. Paganis L. Nozka E. Nurse F.G. Oakham H. Ogren T. Ohsugi A.G. Olchevski M. Nessi P.R. Newman F. Niedercorn I. Nikolic-Audit T. Nishiyama M. Nordberg A. Nelson JHEP09(2011)072 , , , , , , , 48 39 , , , 29 20 , 137 68 , , 23a 98 , , 27 , 89b 86 , , , , 27 29 153 143 , 79 , , , , 29 , 89a 115 , 76 , , , , 122b 85 , , 126 , 29 , , , , , S. Roe 158 , , 133a , 81 41 , 138 , , 132b 54 , K. Runge 134b 14 175 , P. Renkel 20 , , 154 , 105 , 56 19b 107 , N. Sasao 161 , 129 122a , 11 ∗ , 86 , 6 , 65 , , S. Schaepe 26 , J. Schieck 66 5 115 , J.M. Seixas , Y. Silver 19a 132a 134a 172 81 175 , T. Sandoval , S. Schuh , D.O. Savu ,b 50b 144b , M. Rose 43 , M.E. Sevior , , S. Simion , D. Robinson 49 174 , O. Smirnova 58c 123 , A. Roe , M. Rybar 111 50a , M. Schott 124a 49 , T. Shin 12a , G. Rivoltella 97 15 , R. Rezvani 88 , K. Sliwa , C. Roda , A. Salamon , G. Siragusa , A. Schwartzman 11 , H.F-W. Sadrozinski 58b 98 , J. Rothberg , I. Rubinskiy 100 75 , Q.T. Shao , D. Sherman , T. Sasaki 82 127 106 , M. Rijpstra , W.G. Scott , V. Rossetti , G. Romeo 141 , A. Sidoti 153 , L.A. Skinnari 171 21 115 , A. Renaud , A. Sbrizzi 66 81 49 65 , U. Sch¨afer , T. Sarangi , F. Seifert 136 , A.G. Schamov , F. Ruggieri 13 , M. Seman 164c 125 , D. Sampsonidis , ,b , J. Silva 6 99 151 19b , L. Rumyantsev , , I. Riu 73 , J.W. Schumacher 29 , C. Santamarina Rios 137 148 ∗ , P. Ryan , M.P. Schmidt , , Lj. Simic , N. Schroer , J.P. Rutherfoord , C. Schiavi , V. Savinov , K. Rosbach 171 39 , H. Severini 15 47 164a 19a 124a , M. Sandhoff 48 91 ,e 81 61 14 128 136 99 98 , I. Roth , I. Sadeh 132b 158 , V. Sipica , , S. Rieke , X. Ruan , P. Reznicek , A. Sch¨oning , L.N. Smirnova , T. Slavicek , O. Sasaki 25a , P. Sicho 78 150 20 , F. R¨uhr , J.T. Shank 96 6 114 152 17 , M. Shimojima 136 , Z.L. Ren , L. Rosselet 132a , G. Salamanna 174 62 , B.M. Salvachua Ferrando , P. Schacht 29 , G. Sellers 29 13 , A. Seiden 32a , T.B. Sjursen , K. Shaw 155 , O. Silbert , H. Schulz , R.R. Rios , Y. Rodriguez Garcia , J. Schwindling 167 , C. Sbarra , V.M. Romanov 115 53 103 , A. Sansoni , D.R. Rust 146a , C. Schwanenberger , A. Salzburger 43 , E. Schmidt 33 96 , O. Simard , R. Seuster 12a 58a 146b 19a , J.G. Rocha de Lima 162 , J.G. Saraiva , 5 65 , A. Robichaud-Veronneau , P. Savard 129 , C. Schroeder 136 , M.I. Scherzer 53 ,j , M. Ridel 104 127 115 , M.P. Sanders 85 , V. Rumiantsev , M. Rotaru 115 , Y. Rozen , M. Slater ,y , V. Ryadovikov 87 124a – 33 – , S. Rosati 146a , R.D. Schamberger 85 , N.B. Sinev 81 , M. Schmitz 37 , J. Salt 83 22 38 , B. Resende 98 , M.A. Shupe 89b 121 167 , L.Y. Shan , , S. Shimizu , G. Rudolph , A.F. Saavedra 158 , C. Shaw 58b , G. Sartisohn 143 , C. Rembser , S.Yu. Smirnov 89a 6 118 97 10 89a 114 101 , L.P. Says , B. Sellden , S.C. Seidel , H. Sakamoto 12a 171 , L. Rinaldi , Dj. Sijacki , P.L. Rosendahl , L. Serin 122b 53 11 , R. Schwierz , , V. Simak 121 14 , J. Sj¨olin 64 98 , A. Robson , Ph. Schune 88 132b , D. Rodriguez , A. Salvucci , E. Ros , H. Santos , 119b , A. Romaniouk , M. Schram 97 , J.L. Schlereth , 122a , J. Schaarschmidt 80 114 146a 78 , J.B. Sauvan , D.P.C. Sankey 137 , D. Scheirich , D. Schaile 29 149 4 161 125 , A. Rozanov , N.A. Rusakovich 132a , H.G. Sander 133b , D. Short 163 , L. Rossi , P. Sinervo , 119a , V.I. Rud , L. Shaver , S. Schmitt 174 121 , S. Resconi 115 , H. Shichi 48 , S.H. Robertson , S. Rzaeva 13 30 , Y.F. Ryabov , A. Salnikov 35 , D. Reljic 136 95 , N. Skvorodnev 81 50a , E. Richter-Was 105 , H.-C. Schultz-Coulon 75 , M. Shamim 99 133a 108 42 , E. Segura 118 125 132a 99 , C. Serfon 111 54 , J. Siegrist , D.H. Saxon 174 , F. Sarri , V. Smakhtin , L. Roos 121 ,l 7 48 , S. Rolli 29 19b , S. Rodier , 1 24 31a 29 , E.I. Rosenberg , E. Rulikowska-Zarebska , G. Sauvage 19a , M. Robinson , D.M. Seliverstov , S. Schlenker , F. Salvatore , A. Rimoldi , R. Schwienhorst , E. Rizvi 64 , B.A. Schumm 90 158 77 , S. Sandvoss , S.B. Silverstein , L.P. Rossi , S.Yu. Sivoklokov , Z. Rurikova 78 36b , C. Schmitt 36b 48 , H. Sandaker , C.R. Royon , 148 , , J. Schovancova 102a 99 , A.C. Schaffer 112 , A. Shibata , M.J. Shochet , P. Skubic 65 , P. Ruzicka 20 , M. Simonyan , R. Richter 20 , I. Reisinger 143 , F. Safai Tehrani , D. Salihagic , N.C. Ryder , P.B. Shatalov , N. Ruckstuhl , R. Santonico 117 77 115 94 36a , V. Rojo 102b , J. Schultes 36a , J. Sloper 142 , D.A. Scannicchio , V.A. Schegelsky 14 77 , M. Rescigno , E. Sedykh 58b , F. Siegert , 77 107 65 14 , E. Shabalina 98 114 33 111 115 29 , L. Sawyer 71 93 35 117 58a 9 114 174 29 102a D. Silverstein B. Simmons A.N. Sisakyan K. Skovpen T.J. Sloan N. Semprini-Cesari A. Sfyrla M. Shapiro P. Sherwood A. Shmeleva A. Siebel D. Schouten G. Schuler M. Schumacher Ph. Schwemling J. Searcy G. Sekhniaidze P. Savva O. Scallon S. Schaetzel V. Scharf M. Schioppa K. Schmieden D. Salvatore B.H. Samset R. Sandstroem C. Santoni E. Sarkisyan-Grinbaum I. Satsounkevitch A. Ruiz-Martinez O. Runolfsson C. Ruwiedel G. Rybkin R. Sadykov M. Saleem O. Røhne D. Romero Maltrana G.A. Rosenbaum E. Rossi D. Rousseau B. Ruckert B. Rensch A. Richards M. Rijssenbeek F. Rizatdinova J.E.M. Robinson D. Roda Dos Santos A. Reinsch JHEP09(2011)072 , , , , , , , , 2 29 29 , , 167 126 105 66 8 , 105 94 , , , , , , , , , , , , 83 75 , 55 , , 159a 163 78 , 53 , 72b 94 , 89a , , 43 , 140 105 159b 58a , , N. Soni 19b , , , , 175 29 89b 139 , 72a , , 101 , 55 24 , 81 , , 131 101 , , 19a 29 , 54 , , Y. Suzuki 89a , 158 , I. Torchiani 125 29 51 ,j 143 , M. Spousta , , B. Van Eijk , U. Soldevila 174 , J. Stark 66 65 117 149 , G. Tzanakos 29 , , M.C. Stockton 47 29 96 169 , G. Steele ∗ 29 , 128 , D. Traynor 20 , A. Tua , X. Sun , L. Vacavant 14 , W. Taylor 76 , C. Troncon , R. Stamen 29 , B. Toggerson , B. Szeless 139 , H. van der Graaf , M. Thioye 148 , M. Tsiakiris 86 , V.O. Tikhomirov , T. Takeshita 55 , A. Straessner , A.A. Snesarev 119b , S. Tanaka 78 , R. Turra , S. Spagnolo , 120 7 161 126 67 167 118 , M. Tomoto , T. Sugimoto 125 , Y. Unno , A. Taga , P. Sturm 127 , E. Strauss , S. Tapprogge 115 , O. Stelzer-Chilton , S. Trincaz-Duvoid , J. Sondericker 105 107 88 , R. Sobie , M. Testa 119a 116 , M. Tasevsky , H. Ten Kate 29 41 , S. Valentinetti 163 148 ,o , R. Spiwoks 109 , M. Uhrmacher 159a 128 , N.D. Topilin 48 , E. Soldatov 159a , M.R. Sutton 126 41 , P.D. Thompson 124a 20 16 132a 134a 17 , T. Tic 127 , E.G. Tskhadadze , H. Tyrvainen , J.A. Strong 36b , T. Sumida , , D. van der Ster , D.R. Tovey , B. Trocm´e 87 48 3d , T. Stockmanns , G.N. Taylor , T. Sykora 129 , H. Takeda 114 , E.A. Starchenko 83 ,w 36a 105 , D. Tsybychev , G. Stavropoulos 20 92 , J. Stahlman , E. Turlay , G. Unel , K. Smolek , F.J. Tique Aires Viegas 69 , R. Tanaka , P. Tas 24 117 66 , J.C-L. Tseng , Y. Sugaya 144a 3e , J. Stupak 24 71 , A.R. Stradling 141 , K. Tollefson , M. Strang ∗ 175 , J. Solc 155 144a , M. Uslenghi 29 , 11 89a , H.J. Stelzer , A. Soukharev , R. Tafirout 7 66 , M. Soares , C. Topfel , J.A. Valls Ferrer 7 126 24 , G.P. Tappern , E. Spiriti 117 , S. Todorova-Nova , M. Terwort 127 , P. Valente , I.M. Trigger 24 13 142 4 163 83 152 80 29 , K.K. Temming 125 , R.P. Thun , T. Theveneaux-Pelzer 132b , M. Uhlenbrock , O.V. Solovyanov , , M. Tyndel 76 27 , G. Susinno 20 , S. Sultansoy , S. Tsuno 13 , D.M. Strom , I. Sykora , T. Stahl , F. Touchard , P.D. Thompson , A. Trivedi , F.E. Taylor 128 , V. Tsiskaridze , S. Stapnes 11 – 34 – , G. Usai 94 20 132a , A. Undrus 9 146b ,x , J.A. Stillings , P. Tipton 53 84 , 77 , J. Tanaka 173 5 168 , P. Stavina 158 , R. Takashima 83 29 , M. Solar , E. van der Poel 31a , I. Stumer 24 , I. Turk Cakir , A. Succurro 104 98 134a , M. Smizanska , S. Snyder 24 , M. Sosebee , B. Stelzer 2 146a 13 , J. Terron 167 , P. Strachota , A. Taffard 105 , A. Tricoli , C. Tsarouchas 53 , A. Strandlie 127 , A. Tonoyan , T. Todorov , G.F. Tartarelli , K. Tokushuku 105 , J. Valenta 89b 127 41 99 29 , 38 155 37 24 , N. Tannoury , S. Vallecorsa 67 32a 14 , F. Spila 146b 67 , , M. Ugland 89a 167 , J. Toth 29 , J. Therhaag , M. Thomson , V.V. Sulin , C. Taylor , S. Sushkov 28 , S. Swedish 14 146a , H. Takai 167 , J.-W. Tsung 174 , P. Teixeira-Dias , G. Tsipolitis 120 126 139 , A. Staude , R. Str¨ohmer , P. Urrejola , B. Stugu , A.A. Solodkov , W. Trischuk 4 , I. Stekl 75 128 , R.D. St. Denis , C. Stanescu 91 101 123 , G.A. Stewart , M. Tylmad 70 7 24 5 153 129 , E.N. Thompson , C.A. Solans , D. Turecek , M.C. Tamsett , G. Tong 144b , S. Stonjek 75 132b , K.M. Smith , K. Tani 74 , B. Toczek , , D.G. Underwood , K. Terashi 17 , S. Vahsen , F. Tarrade 38 , A. Trzupek , M. Sorbi , J. Snuverink , L. Tremblet 153 107 103 48 , G. Spigo 29 66 25a 143 , R. Ueno 100 85 , HS. Subramania , K. Tackmann 20 , K. Tokunaga 152 142 132a , M. Suk 127 111 19a 155 143 105 67 , R. Van Der Leeuw , K. Suruliz 144a , J. Thadome , C.J.W.P. Timmermans , D. Tsionou , E. Thomson 105 48 , J. Strube , V. Tsulaia , S. Strandberg ,j 90 53 39 107 95 , B. Spurlock , G. Unal , E. Torr´oPastor , K. Toms , A. Soffer , P. Steinberg , Y. Takahashi , M. Tatarkhanov , E. Urkovsky , J. Treis , M. Turala , J. Tobias 147 158 , R.W. Stanek , P. Strizenec , D. Su , P. Starovoitov , D. Ta , D. Smith , S. Terada , M.F. Tripiana , J. Snow , Yu.M. Sviridov 14 43 , G. Stoicea , K. Stevenson 34 , I. Ueda , S. Tarem ,q 30 , A. Tykhonov 158 , E. Valladolid Gallego , B. Sopko 83 , B. Vachon , Y. Tanaka 160 , J.P. Thomas 29 114 127 153 57 36b 173 , A. Talyshev 78 82 , R. Spighi 111 , , K. Suita 125 167 48 52 20 151 34 125 66 48 158 151 83 126 , S. Tok´ar 127 127 34 36a 106 66 F. Ukegawa D. Urbaniec V. Vacek S. Valkar E. van der Kraaij M. Trottier-McDonald P.V. Tsiareshka I.I. Tsukerman J.M. Tuggle P.M. Tuts K. Uchida S. Tisserant J. Tojo L. Tompkins E. Torrence T. Trefzger T.N. Trinh M. Teixeira Dias Castanheira P.K. Teng R.J. Teuscher S. Thoma A.S. Thompson Y.A. Tikhonov J. S´anchez N. Taiblum M. Talby S. Tanaka D. Tardif E. Tassi M. Strauss R. Stroynowski D.A. Soh C. Suhr J.E. Sundermann M. Svatos E. Stanecka P. Staroba P. Steinbach H. Stenzel K. Stoerig J. Strandberg S.W. Snow J. Sodomka E. Solfaroli Camillocci V. Sopko F. Span`o T. Spreitzer B.C. Smith JHEP09(2011)072 , , , , , , , , ,q 9 29 , 73 , 64 , 29 , , , ,ad , , 17 , 58a , , 151 , , , , 106 , 121 165 , 86 101 32a 32a ,ab 21 , 132a 174 14 , 126 119a 123 103 33 , , , , 38 54 32b , , , 75 5 32a 167 89a , 56 29 , , , , , , , P. Waller , 17 , , 81 , S. Vlachos 73 42 , Z. Weng 29 14 ∗ 172 , Z. Yan , 20 175 29 11 , R. Vari , L. Yuan , V. Zutshi , I. Vichou , M. Wessels , H.G. Wilkens , S. Zheng 67 123 , S. Viret , J. Wotschack 29 , Y. Wu , D. Wicke 128 15 ,e , R. Wang ∗ , K. Yamamoto , A.T. Watson ,ac , 65 , M.J. White , Y. Xie , W-M. Yao , V. Vercesi 163 , A. Zemla 38 49 126 , V. Vorobel 7 , Yo.K. Zalite 66 17 115 48 , J. Zhang 91 142 138 16 32c 20 136 29 175 88 , G. Volpini , J. Wakabayashi , S. Zenz , Y. Zhu , J. Weber , R. Wall , J. Weingarten 11 , R. Yoosoofmiya , W. Vandelli 41 174 , T. Vu Anh 77 , J.A. Wilson 99 , R. Veness 3c 122b , 141 , X. Wu , C. Wiglesworth 105 , J. Yu , S. Xie 84 105 7 , S. Wendler 20 , J.H. Vossebeld , F. Winklmeier 35 172 124a , M. Werth , A. White , F. Wicek 122a , Y. Yamazaki 24 , I. Wilhelm 48 , F. Vives Vaque , S. Yanush , M. Villaplana Perez 29 , S. Zimmermann 21 174 , M. Zeller , J.C. Wang , N. Venturi 61 ,o , V.I. Vassilakopoulos , B.K. Wosiek , H. Zhu , H. Zhang 155 48 , M. zur Nedden 20 48 , M. Volpi , V.V. Zmouchko , Z. Zajacova 41 , P.M. Watkins 19b , A. Yamamoto , M.C. Vetterli , M. Virchaux , J. Yu 174 , A. Zhemchugov 32d , 150 146b 118 ,aa 29 32d , 47 34 , E. von Toerne 48 66 43 65 24 , H. Wahlen 128 , P. Weigell 19a , M. Yilmaz 32b 48 , F. Varela Rodriguez 32b , S. Xella , S.L. Wu , S. Willocq 146a 9 , B.M. Waugh 24 120 118 78 , F. Veloso 73 8 34 , I. van Vulpen , M. Vreeswijk 150 , W. Walkowiak , Z. Zenonos , T. Wenaus , P. Werner , T.T. Voss , D. Yu ˇ Zivkovi´c 98 47 , P. Wienemann , J. Wang 105 48 29 125 , I. Vivarelli , A. Vest , G. Volpi 21 , A. Zsenei , M. Venturi , C.G. Zhu , S. Ye 144a , C. Zeitnitz , Z. Zhao , S.P. Whitaker 4 41 , M.A. Wildt , T. Yamazaki , M. Villa 129 151 , S. Winkelmann , G. Wooden 39 105 , L. 127 , Z. Yang 4 , K.E. Varvell , D. Whittington , D. Zhang 138 151 44 , M. Yamada 4 ,h 107 138 163 7 167 168 – 35 – ˇ , R. Zimmermann , A.M. Zaitsev Zeniˇs , M. Warsinsky 32a , P. Wagner 163 , B. Wrona 32d , W. Willis 150 , C. Vellidis 61 63 27 , F. Vannucci 124a 53 , M. Wen , R. Voss 174 , V. Vrba , J. Ye , V.B. Vinogradov 120 , L. Xaplanteris 41 115 29 , R. Walker , T. , M. Viti , A.T. Waugh , A.R. Weidberg 167 29 , M. Werner , J. Wang 45 12a , S. Youssef 130 71 , H. von Radziewski 82 54 , S. Viel , P. Vokac , Y. Zhou 128 171 20 , T. Zhao , M. Wielers ,aa 99 143 20 , R. Zitoun , Y. Yang 118 , Z. Zhan 163 , D. Ventura , Z. van Kesteren , A. Zaytsev 108 , J. Yamaoka 172 32b 5 61 57 141 , A. Wildauer 39 , Y. Zolnierowski , B. Yabsley 72b , R. Zaidan , , J.C. Vermeulen 155 , M. Vos , C. Wright , C.P. Ward , H. Wolters 77 , D. Whiteson , A. Vartapetian , P. Vankov , E. Vinek 19b 11 53 , W. Wagner , P.S. Wells 85 32a 128 , 38 , I. Wingerter-Seez 72a , D. Zieminska , J.J. Veillet 105 5 14 , S. Watts 118 , P. Weber , J. Walder , O. Zenin 28 , S.J. Wheeler-Ellis 22 87 99 , O. Vitells 115 19a , A. Vogel 16 , H.H. Williams 89b 87 28 , C. Young 138 , N. Zhou , L. Zhao , , N. Wermes , B.M. Wynne 128 5 20 , Y. Yang 34 19b , H. Wang 87 , 29 42 115 89a 82 , G. Xu , J. von Loeben 172 19a , G.V. Ybeles Smit 99 139 66 , P. Zarzhitsky , M. Ziolkowski , K. Wraight , V. Vorwerk , A. Ventura , T. Yamamura , V.G. Zaets 48 , W. Wiedenmann , A. Wilson , S. Walch , I. Vukotic , G.H.A. Viehhauser , G. Watts , W. Verkerke 84 , A. Zoccoli , P.A. Wijeratne , P. van Gemmeren , M.W. Wolter 132b . , B. Zhou , A. Warburton 128 , D. Varouchas , 42 ,z 29 155 , K. Whalen , M. Vranjes Milosavljevic , A. Vaniachine 148 17 , S. Wenig , N. Vlasov , M.G. Vincter 129 , G. Zevi della Porta 143 , M.S. Weber 48 132a 6 84 , A.V. Zenin , V. Zhuravlov , G. Vegni , Z. Zhang , R. Yoshida 29 138 172 143 ,ae , H. Wellenstein 55 29 , D. Xu 29 151 47 , E. Williams , S.R. Whitehead , H. Wang 12a 20 98 33 127 , U.K. Yang 115 132a 129 145b 48 , R. Wunstorf 170 , A. Vitale 32d ,ac , Y. Yasu 98 24 151 44 87 34 14 14 32b G. Zobernig L. Zwalinski at Albany, Albany NY,Department United of States Physics, of University America of Alberta, Edmonton AB, Canada C. Zendler D. Zerwas X. Zhang J. Zhong X. Zhuang S. Zimmermann S. Yamamoto H. Yang Y. Yao K. Yorita A. Yurkewicz L. Zanello J.Z. Will M.G. Wilson M. Wittgen M.J. Woudstra E. Wulf C. Xu C. Weiser T. Wengler C. Weydert S. White F.J. Wickens L.A.M. Wiik R. Vuillermet J. Walbersloh C. Wang S.M. Wang M.F. Watson M. Weber E. Vilucchi J. Virzi M. Vlasak H. von der Schmitt A.P. Vorobiev N. Vranjes G. Vandoni E.W. Varnes F. Vazeille S. Veneziano M. Verducci T. Vickey N. van Eldik 1 2 JHEP09(2011)072 Department ) d ( Departamento ) b ( Instituto de Fisica, Department of ) ) b b ( Division of Physics, ( ) Department of Physics, ) d ( c ( University Politehnica ) b ( Turkish Atomic Energy Authority, Vinca Institute of Nuclear Sciences, ) Division of Physics, Dogus University, ) e ) ( b b ( Department of Physics, Dumlupinar ( ) b ( – 36 – Dipartimento di Fisica, Universit`adi Bologna, Bologna, Italy High Energy Physics Group, Shandong University, Shandong, ) ) b d ( ( West University in Timisoara, Timisoara, Romania ) Department of Physics, Gazi University, Ankara; c ) ( c ( Department of Physics Engineering, Gaziantep University, Gaziantep; ) c ( Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; Departamento de Fisica, Pontificia Universidad Cat´olicade Chile, Santiago; Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; National Institute of Physics and Nuclear Engineering, Bucharest; INFN Sezione di Bologna; Department of Physics, Bogazici University, Istanbul; Institute of Physics, University of Belgrade, Belgrade; Department of Physics, Ankara University, Ankara; ) ) ) ) ) ) ) ) a a a a a a a a Modern Physics, University of ScienceNanjing and University, Jiangsu; Technology of China,China Anhui; Laboratoire de Physique Corpusculaire, Clermont Universit´eand Universit´eBlaise Pascal and Cavendish Laboratory, University of Cambridge,Department Cambridge, of United Physics, Kingdom Carleton University,CERN, Ottawa Geneva, ON, Switzerland Canada Enrico Fermi Institute, University of Chicago, Chicago IL, Unitedde States F´ısica,Universidad T´ecnicaFederico of Santa Mar´ıa,Valpara´ıso,Chile America Universidade de Sao Paulo, SaoPhysics Paulo, Department, Brazil Brookhaven National Laboratory, Upton NY, United StatesBucharest, of Bucharest; America Departamento de F´ısica,Universidad de Buenos Aires, Buenos Aires, Argentina Istanbul; of Physics, Istanbul Technical University, Istanbul, Turkey Physikalisches Institut, University of Bonn,Department Bonn, of Germany Physics, Boston University,Department Boston of MA, Physics, United Brandeis States University, Waltham of MA, America United States of America CA, United States ofDepartment America of Physics, Humboldt University,Albert Berlin, Einstein Germany Center forUniversity Fundamental Physics of and Bern, Laboratory Bern, for Switzerland School High of Energy Physics Physics, and Astronomy, University of Birmingham, Birmingham, United Kingdom Institut de F´ısicad’Altes Energies andBarcelona, Universitat Spain Aut`onomade Barcelona and ICREA, Belgrade, Serbia Department for Physics and Technology,Physics University Division, of Lawrence , Berkeley Bergen, National Norway Laboratory and University of California, Berkeley Department of Physics, University ofDepartment Arizona, of Tucson Physics, AZ, The United UniversityAmerica States of of Texas at America Arlington,Physics Arlington Department, TX, University United of States Athens,Physics of Athens, Department, Greece National Technical UniversityInstitute of of Athens, Physics, Zografou, Azerbaijan Greece Academy of Sciences, Baku, Azerbaijan University, Kutahya; TOBB University of Economics andAnkara, Turkey Technology, Ankara; LAPP, CNRS/IN2P3 and Universit´ede Savoie,High Annecy-le-Vieux, Energy France Physics Division, ArgonneAmerica National Laboratory, Argonne IL, United States of 7 8 9 4 5 6 3 ( 32 ( 33 27 28 29 30 31 ( 23 ( 24 25 ( 26 19 ( 20 21 22 15 16 17 18 ( 11 12 ( 13 14 10 JHEP09(2011)072 ZITI Institut f¨ur ) c ( – 37 – Dipartimento di Fisica, Universit`adella Calabria, ) b ( Dipartimento di Fisica, Universit`adi Genova, Genova, Italy ) b ( Kirchhoff-Institut f¨urPhysik, Ruprecht-Karls-Universit¨atHeidelberg, Heidelberg; INFN Sezione di Genova; INFN Gruppo Collegato di Cosenza; Physikalisches Institut, Ruprecht-Karls-Universit¨atHeidelberg, Heidelberg; ) ) ) ) a b a a Faculty of Science, Kyoto University,Kyoto Kyoto, University Japan of Education, Kyoto,Instituto Japan de F´ısicaLa Plata, UniversidadArgentina Nacional de La PlataPhysics and Department, CONICET, Lancaster La University, Lancaster, Plata, United Kingdom Institut f¨urAstro- und Teilchenphysik, Leopold-Franzens-Universit¨at,Innsbruck, Austria University of Iowa, Iowa CityDepartment IA, of United Physics States and of Astronomy,Joint Iowa America Institute State for University, Ames Nuclear IA, Research,KEK, United JINR High States Dubna, Energy of Dubna, Accelerator America Russia Graduate Research Organization, School Tsukuba, of Japan Science, Kobe University, Kobe, Japan ( technische Informatik, Ruprecht-Karls-Universit¨atHeidelberg, Mannheim, Germany Faculty of Science, Hiroshima University,Faculty Hiroshima, of Japan Applied Information Science,Department Hiroshima of Institute Physics, of Indiana Technology, University, Hiroshima, Bloomington Japan IN, United States of America II Physikalisches Institut, Georg-August-Universit¨at,G¨ottingen,Germany Laboratoire de Physique SubatomiqueCNRS/IN2P3 et and de Institut Cosmologie, National Universit´eJoseph FourierDepartment Polytechnique and de of Grenoble, Physics, Hampton Grenoble, University, France Laboratory Hampton for VA, Particle United Physics States andStates of Cosmology, of America Harvard America University, Cambridge MA, United Section de Physique, Geneva, Universit´ede Gen`eve, Switzerland Institute of Physics and HEPUniversity, Tbilisi, Institute, Georgia Georgian Academy ofII Sciences Physikalisches Institut, and Justus-Liebig-Universit¨atGiessen, Tbilisi Giessen, State SUPA Germany - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom Institut f¨urKern- und Teilchenphysik, Technical UniversityDepartment Dresden, of Dresden, Physics, Germany Duke University,SUPA Durham - NC, School United of States PhysicsFachhochschule of Wiener and America Neustadt, Astronomy, University Johannes of GutenbergstrasseINFN Edinburgh, 3 Laboratori Edinburgh, 2700 United Nazionali Wiener Kingdom di Neustadt, undFakult¨atf¨urMathematik Frascati, Austria Physik, Frascati, Italy Albert-Ludwigs-Universit¨at,Freiburg i.Br., Germany The Henryk Niewodniczanski InstitutePoland of Nuclear Physics, Polish AcademyPhysics of Department, Sciences, Southern Krakow, Methodist University,Physics Dallas Department, TX, University United of States TexasDESY, at of Hamburg Dallas, America and Richardson Zeuthen, TX, Germany Institut United f¨urExperimentelle States Physik of IV, America Technische Universit¨atDortmund, Dortmund, Germany Nevis Laboratory, Columbia University, IrvingtonNiels NY, Bohr United Institute, States University of of America Copenhagen, Kobenhavn, Denmark Arcavata di Rende, Italy Faculty of Physics and AppliedKrakow, Computer Poland Science, AGH-University of Science and Technology, CNRS/IN2P3, Aubiere Cedex, France 68 69 70 71 62 63 64 65 66 67 58 ( 59 60 61 54 55 56 57 49 50 ( 51 52 53 43 44 45 46 47 48 39 40 41 42 35 36 ( 37 38 34 JHEP09(2011)072 – 38 – Dipartimento di Fisica, Universit`adi Milano, Milano, Italy Dipartimento di Scienze Fisiche, Universit`adi Napoli, Napoli, Italy ) ) Dipartimento di Fisica, Universit`adel Salento, Lecce, Italy b b ) ( ( b ( INFN Sezione di Napoli; INFN Sezione di Milano; INFN Sezione di Lecce; ) ) ) Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia a a a United States of America Department of Physics, New YorkOhio University, State New University, York Columbus NY, OH, UnitedFaculty United of States States Science, of of Okayama America University, America Okayama,Homer Japan L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, States of America Institute for Mathematics, Astrophysics andNijmegen/Nikhef, Particle Nijmegen, Physics, Netherlands Radboud University Nikhef National Institute forNetherlands Subatomic Physics and University ofDepartment Amsterdam, of Amsterdam, Physics, Northern Illinois University, DeKalb IL, United States of America autafuPyi,Ldi-aiiin-nvri¨t¨nhn ¨nhn Germany M¨unchen, Ludwig-Maximilians-Universit¨atM¨unchen, Fakult¨atf¨urPhysik, Max-Planck-Institut f¨urPhysik (Werner-Heisenberg-Institut), Germany M¨unchen, Nagasaki Institute of AppliedGraduate Science, School Nagasaki, of Japan Science, Nagoya University, Nagoya, Japan Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United America Group of Particle Physics, UniversityP.N. of Lebedev Montreal, Institute Montreal of QC, Physics,Institute Canada Academy for of Theoretical Sciences, and Moscow,Moscow Experimental Russia Engineering Physics and (ITEP), Physics Moscow, Institute Russia Skobeltsyn (MEPhI), Institute Moscow, of Russia Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia B.I. Stepanov Institute of Physics,Belarus National Academy of SciencesNational of Scientific Belarus, and Minsk, Educational Centre Republicof for of Belarus Particle and HighDepartment Energy of Physics, Physics, Minsk, Massachusetts Republic Institute of Technology, Cambridge MA, United States of Department of Physics, University ofDepartment Massachusetts, of Amherst Physics, MA, McGill United University,School Montreal States of QC, of Physics, Canada America University ofDepartment Melbourne, of Victoria, Physics, The Australia UniversityDepartment of of Michigan, Physics Ann and Arbor Astronomy,States Michigan MI, of State United America University, States East of Lansing America MI, United and CNRS/IN2P3, Paris, France Fysiska institutionen, Lunds universitet, Lund,Departamento Sweden de Fisica Teorica C-15,Institut Universidad f¨urPhysik, Universit¨atMainz, Autonoma Mainz, de Germany Madrid,School Madrid, of Spain Physics and Astronomy,CPPM, University Aix-Marseille of Universit´eand CNRS/IN2P3, Manchester, Manchester, Marseille, United France Kingdom Oliver Lodge Laboratory, University ofDepartment Liverpool, of Liverpool, Physics, Stefan Joˇzef United Institute Kingdom Department and of University Physics, of Queen Ljubljana, MaryDepartment Ljubljana, University of Slovenia of Physics, London, Royal Holloway London,Department University United of of Kingdom Physics London, and Surrey, Astronomy,Laboratoire United University Kingdom de College Physique London, Nucl´eaireet London, de United Hautes Kingdom Energies, UPMC and Universit´eParis-Diderot 98 99 93 94 95 96 97 89 ( 90 91 92 84 85 86 87 88 79 80 81 82 83 74 75 76 77 78 72 ( 73 107 108 109 110 111 104 105 106 100 101 102 ( 103 JHEP09(2011)072 School of Physics, ) b ( – 39 – Dipartimento di Fisica, Universit`adi Roma Tor Facult´edes Sciences, Universit´eMohamed Premier and ) ) b d ( ( Centre National de l’Energie des Sciences Techniques ) b ( Dipartimento di Fisica, Universit`aRoma Tre, Roma, Italy ) b ( Dipartimento di Fisica, Universit`aLa Sapienza, Roma, Italy ) b Dipartimento di Fisica Nucleare e Teorica, Universit`adi Pavia, ( ) Dipartimento di Fisica E. Fermi, Universit`adi Pisa, Pisa, Italy b ) ( b ( Universit´eCadi Ayyad, Facult´edes sciences Semlalia de D´epartement ) c Facult´edes Sciences, Universit´eMohammed V, Rabat, Morocco ( ) e ( Faculty of Mathematics, Physics & Informatics, , Bratislava; Department of Physics, University of Johannesburg, Johannesburg; INFN Sezione di Roma Tor Vergata; INFN Sezione di RomaFacult´edes Tre; Sciences Ain Chock, Universitaire R´eseau de Physique des Hautes Energies - INFN Sezione di Roma I; Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; INFN Sezione di Pavia; INFN Sezione di Pisa; Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, ) ) ) ) ) ) ) ) ) ) ) a b a a a a a a b a a ( Sciences, Kosice, Slovak Republic University of the Witwatersrand, Johannesburg, South Africa Department of Physics, University ofDepartment Washington, of Seattle Physics WA, and United Astronomy,Department States University of of of Physics, America Sheffield, Shinshu Sheffield, University,Fachbereich Nagano, United Physik, Japan Kingdom Universit¨atSiegen, Siegen, Germany Department of Physics, Simon FraserSLAC University, National Burnaby Accelerator BC, Laboratory, Canada Stanford CA, United States of America Physique, B.P. 2390 Marrakech 40000; LPTPM, Oujda; DSM/IRFU (Institut de Recherches sur(Commissariat les a Lois l’Energie Fondamentales Atomique), de Gif-sur-Yvette,Santa l’Univers), France Cruz CEA Institute Saclay for ParticleUnited Physics, States University of of America California Santa Cruz, Santa Cruz CA, Vergata, Roma, Italy Universit´eHassan II, Casablanca; Nucleaires, Rabat; Czech Technical University in Prague,State Praha, Research Czech Center Republic Institute forParticle High Physics Department, Energy Rutherford Physics, Appleton Protvino,Physics Laboratory, Russia Department, Didcot, University United of Kingdom Regina,Ritsumeikan Regina University, Kusatsu, SK, Shiga, Canada Japan America ( Spain Institute of Physics, Academy ofFaculty of Sciences Mathematics of and the Physics, Czech Charles Republic, University Praha, in Czech Prague, Republic Praha, Czech Republic Pavia, Italy Department of Physics, University ofPetersburg Pennsylvania, Nuclear Philadelphia Physics PA, Institute, United Gatchina, States Russia of America Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of aakynvriy RCPTM,Palack´yUniversity, Olomouc, Czech Republic Center for High Energy Physics,LAL, University Univ. of Paris-Sud Oregon, and EugeneGraduate CNRS/IN2P3, OR, School Orsay, United France of States Science, ofDepartment Osaka America University, of Osaka, Physics, Japan University ofDepartment Oslo, of Oslo, Physics, Norway Oxford University, Oxford, United Kingdom Department of Physics, Oklahoma State University, Stillwater OK, United States of America 144 ( 145 ( 138 139 140 141 142 143 136 137 133 ( 134 ( 135 ( 127 128 129 130 131 132 ( 124 ( 125 126 120 121 122 ( 123 114 115 116 117 118 119 ( 112 113 JHEP09(2011)072 Dipartimento di Fisica, Universit`adi ) c ( The Oskar Klein Centre, Stockholm, Sweden ) b ( – 40 – ICTP, Trieste; ) b ( Department of Physics and Astronomy, York University, Toronto ) b ( INFN Gruppo Collegato di Udine; TRIUMF, Vancouver BC; Department of Physics, Stockholm University; ) ) ) a a a Also at Particle Physics Department,Also Rutherford at Appleton CPPM, Laboratory, Aix-Marseille Didcot,Also Universit´eand CNRS/IN2P3, United at Marseille, Kingdom TRIUMF, France Vancouver BC,Also Canada at Department of Physics,Also California at State Faculty of University, Fresno PhysicsTechnology, CA, Krakow, and United Poland Applied States Computer of Science, America AGH-University of Science and Department of Physics, Yale University,Yerevan New Physics Haven Institute, CT, Yerevan, United Armenia Domaine States scientifique of de America la Doua, Centre deAlso Calcul at CNRS/IN2P3, Laboratorio Villeurbanne de Cedex, InstrumentacaoAlso e France at Fisica Faculdade Experimental de de Ciencias Particulas and - CFNUL, LIP, Lisboa, Universidade Portugal de Lisboa, Lisboa, Portugal Department of Physics and Astronomy,Waseda University University, Tokyo, of Japan Victoria, VictoriaDepartment BC, of Canada Particle Physics, TheDepartment Weizmann of Institute Physics, of University Science, und ofFakult¨atf¨urPhysik Rehovot, Germany Astronomie, Wisconsin, Israel Julius-Maximilians-Universit¨at,W¨urzburg, Madison WI, UnitedFachbereich C States Physik, of Bergische America Universit¨atWuppertal, Wuppertal, Germany Department of Physics, University ofDepartment Illinois, of Urbana Physics IL, and United Astronomy,Instituto University States de of of F´ısicaCorpuscular Uppsala, (IFIC) America Uppsala, andand Sweden Departamento Departamento de de y F´ısicaAt´omica,Molecular Instituto Ingenier´aElectr´onicaand Nuclear de(IMB-CNM), de Microelectr´onica University Barcelona of Valencia andDepartment CSIC, of Valencia, Physics, Spain University of British Columbia, Vancouver BC, Canada Science and Technology Center, TuftsCentro University, de Medford Investigaciones, MA, Universidad United Antonio StatesDepartment Narino, of of Bogota, Physics America Colombia and Astronomy,of University America of California Irvine, Irvine CA, United States Udine, Udine, Italy Graduate School of ScienceDepartment and of Technology, Tokyo Physics, Metropolitan Tokyo University, Institute Tokyo,Department Japan of of Technology, Physics, Tokyo, Japan University of Toronto, Toronto ON, Canada ON, Canada Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan Department of Physics, Technion: IsraelRaymond Inst. and Beverly of Sackler Technology, Haifa, SchoolIsrael Israel of Physics and Astronomy,Department Tel of Aviv Physics, University, Tel Aristotle Aviv, UniversityInternational of Center Thessaloniki, for Thessaloniki, Elementary Greece Particleof Physics Tokyo, and Tokyo, Japan Department of Physics, The University Physics Department, Royal Institute ofDepartment Technology, of Stockholm, Physics Sweden and Astronomy,of Stony America Brook University, StonyDepartment Brook of NY, Physics United and States Astronomy,School University of of Physics, Sussex, University Brighton, ofInstitute United Sydney, of Kingdom Sydney, Physics, Australia , Taipei, Taiwan b c e g d a f 175 176 177 169 170 171 172 173 174 165 166 167 168 161 162 163 164 ( 156 157 158 159 ( 160 153 154 155 148 149 150 151 152 146 ( 147 JHEP09(2011)072 – 41 – Also at Laboratoire deParis-Diderot Physique and Nucl´eaireet de CNRS/IN2P3, Hautes Paris, Energies, France Also UPMC at and Department Universit´e of Physics,Deceased , Jiangsu, China Also at Department of Physics,Also Oxford at University, Institute Oxford, of UnitedAlso Physics, Kingdom Academia at Sinica, Department of Taipei, Taiwan Physics,America The University of Michigan,Also Ann at Arbor DSM/IRFU MI, (Institut United de(Commissariat States Recherches a sur of l’Energie les Atomique), Lois Gif-sur-Yvette, Fondamentales France de l’Univers), CEA Saclay Also at section deAlso Physique, Geneva, Universit´ede at Gen`eve, Switzerland Departamento de Fisica,Also Universidade at de Department Minho, of Braga, PhysicsUnited and Portugal States Astronomy, of University America ofAlso South at Carolina, KFKI Columbia Research SC, InstituteAlso for at Particle Institute and of Nuclear Physics, Physics, Jagiellonian Budapest, University, Krakow, Hungary Poland Also at Institut f¨urExperimentalphysik, Universit¨atHamburg, Hamburg,Also Germany at Manhattan College,Also New at York NY, School United of StatesAlso Physics of and at America Engineering, Academia Sun Sinica Yat-senAlso Grid University, at Computing, Guanzhou, High Institute China Energy ofAlso Physics Physics, Group, Academia at Shandong Sinica, California University, Taipei, Institute Shandong, Taiwan of China Technology, Pasadena CA, United States of America Also at Universit`adi Napoli Parthenope,Also Napoli, at Italy Institute ofAlso Particle Physics at (IPP), Department Canada of Physics,Also Middle at East Louisiana Technical Tech University, University,Also Ankara, Ruston Turkey at LA, Group United of StatesAlso Particle of Physics, at America University Institute of of Montreal, Physics, Montreal Azerbaijan QC, Academy Canada of Sciences, Baku, Azerbaijan Also at Department of Physics, , Coimbra, Portugal l i t j s q r o ∗ z p v y k x h u n w m ab ac ae ad aa