<<

JHEP01(2015)069 ± → 52 . W = 0 ). Springer . µ in the same b ¯ b January 14, 2015 = 7 and 8 TeV, : November 11, 2014 November 21, 2014 September 23, 2014 s 14 (syst → . : : : √ 0 Z ± ) . 10.1007/JHEP01(2015)069 production, where Revised Published Received Accepted doi: H ) 09 (stat collisions at . 0 W/Z pp ± production with 74 . Published for SISSA by production with the Z from ) 1 − H W/Z ) W/Z ( decay of the Standard Model Higgs boson is performed . The observed (expected) deviation from the background- b ¯ b decay of the Standard Model Higgs νν b ¯ → b Z ) for a Higgs boson mass of 125.36 GeV. The analysis procedure is . . 3 and 1409.6212 24 (syst . Hadron-Hadron Scattering 0 ee/µµ A search for the , Copyright CERN, ± [email protected] → ) . Z , 32 (stat E-mail: . Article funded by SCOAP Open Access for the benefit of the ATLAS Collaboration. ArXiv ePrint: 0 validated by a measurement offinal the states as yield for of the ( to Higgs the boson Standard search, Model from expectation which the is ratio found of to the beKeywords: observed 0 signal yield integrated luminosities used are 4.7respectively. and The 20.3 fb processeseν/µν considered are associated ( only hypothesis corresponds to aof significance the of measured 1.4 signal (2.6) yield standard to deviations and the the Standard ratio Model expectation is found to be Abstract: with the ATLAS experiment using the full dataset recorded at the LHC in Run 1. The The ATLAS collaboration ATLAS detector Search for the boson in associated JHEP01(2015)069 53 36 35 29 21 55 50 25 46 58 40 – i – 23 3 34 50 51 34 50 51 21 6 3 14 42 44 42 53 50 8 1 60 11.1 Nominal results 11.2 Cross-check with the11.3 dijet-mass analysis Cross-check with the diboson analysis 10.2 Event selection 10.3 Background composition and10.4 modelling Systematic uncertainties 10.5 Statistical procedure 9.2 Technical details 9.3 Cross checks using diboson production 10.1 Object reconstruction 8.3 Uncertainties on8.4 the modelling of Uncertainties the on simulated the backgrounds signal modelling 9.1 General aspects 7.3 Distributions in7.4 the dijet-mass analysis Distributions in the multivariate analysis 8.1 Experimental uncertainties 8.2 Uncertainties on the multijet backgrounds 7.1 Multijet background 7.2 Corrections to the simulation 12 Summary 11 Results 10 Analysis of the 7 TeV data 9 Statistical procedure 8 Systematic uncertainties 6 Multivariate analysis 7 Background composition and modelling 3 Data and simulated samples 4 Object reconstruction 5 Event selection Contents 1 Introduction 2 The ATLAS detector JHEP01(2015)069 , ]. is 9 for `ν b – b 7 σ decay → b → b W H → ) collisions at H pp ]. 10 ). It is also essential to verify ]. In addition to the increase in ]. Recently, the CMS experiment production in the 18 16 WW production of the SM Higgs boson H from proton-proton ( ) 1 H → = 125 GeV [ − ) ]. Since then, more precise measurements H W/Z H 6 , m decay mode with a significance of 2.1 decays is therefore crucial for constraining, 5 W/Z decay mode of the Higgs boson at a level of b b b b = 125 GeV [ – 1 – , and ττ ) for H → → σ m ZZ H H ], the overall Higgs boson decay width and, in a global for → ] of the Standard Model (SM) remained an unconfirmed , can be efficiently used for triggering and background 12 σ 4 H – νν 1 , 71 61 → γγ ]. The CDF and D0 experiments at the Tevatron reported an Z → 15 ]. Accessing , H 11 14 ]. decay mode is predicted in the SM to have a branching ratio of 58% ), and b 17 b e, µ → = ], offers a viable alternative because leptonic decays of the vector boson, decay mode is presented, using the full integrated luminosity accumulated by ` H ( 13 = 125 GeV [ b [ b `` H Z = 125 GeV [ In this paper, a search for associated ( The m or → H 7 TeV dataset has alreadythe been amount published of by data ATLASanalysis analysed, [ improvements. the Some update of presentedare the in available improvements this only to for paper the the benefitstwo object 8 datasets. from TeV reconstruction, dataset, numerous however, which leads to separate analysis strategies for the reported an excess ofm events in the in the ATLAS during Run 1 ofcentre-of-mass the energies LHC: of 4.7 7 and and 20.3 8 fb TeV in 2011 and 2012, respectively. An analysis of the W Z reduction purposes [ excess of events inmode their at search a significance for level associated of ( 2.8 fit to all accessiblefor combinations measurements of of absolute Higgsnot Higgs boson feasible boson production at couplings. andproduction. hadron decay An colliders In modes, inclusive because spite search todominant of for of gluon-fusion allow process, a the associated cross overwhelming production section of background a more from Higgs boson than multijet with an a vector order boson, of magnitude lower than the Collaboration reported evidence forsignificance the of 3.4 standard deviations ( for under fairly general assumptions [ with those expected for thehave SM strengthened Higgs boson the [ These hypothesis measurements, that however, the haveof new been the mainly particle new performed is particle inwhether indeed ( it the a decays bosonic into Higgs decay fermions boson modes as [ predicted by the Standard Model. Recently, the CMS 1 Introduction For decades, the Higgs bosonprediction. [ In Julyobservation of 2012, a the new particle ATLAS with and a mass CMS of experiments about 125 at GeV and the with LHC properties consistent reported the The ATLAS collaboration A Tables of event yields JHEP01(2015)069 , 11 . The 8 replaced b b production is → Z . For the 7 TeV ) H 9 W/Z decay modes of the vector `` → Z , or explains the construction of the final 6 `ν . ) production, with normalisations taken -tagging algorithm is used to identify the b decay. To improve the sensitivity, the three → 12 decays when the lepton is produced outside details the event selections applied to the b ZZ discusses the background composition in the b W production. The normalisations of these back- 5 decays, the 0-lepton channel has a smaller but W 7 , -tagging requirements, constrain the contribu- t – 2 – → b t and -tagged jets. Topological and kinematic selection νν νν -tagging information, provides the final discrimi- b b H → → WZ Z Z . The results are presented and discussed in section . Section 4 10 . This is followed by sections describing the dijet-mass and multivariate 3 . Details of the data and simulated samples used in this analysis are 2 -tagged jets is the final discriminating variable used in the statistical analysis; . b b b )+heavy-flavour-jet production and → This paper is organised as follows. A brief description of the ATLAS detector is A binned maximum likelihood fit is used to extract the signal yield and the background The analysis is performed for events containing zero, one, or two charged leptons Z W/Z various analysis regions, while thestatistical systematic uncertainties procedure are used addressed in todata, section extract only the a results dijet-massanalysis is are analysis described specified is in in used, section and section and a summary differences of with the respect paper is to given the in 8 section TeV data given in section provided in section analyses applied to theand 8 TeV jets data. is The reconstruction addresseddijet-mass of and in physics multivariate section analyses, objects while suchdiscriminating section as variable of leptons the MVA. Section 8 TeV dataset to extractthe dijet-mass the and final MVA approaches, results.performed a in measurement To the of same validate the final the yield statesby of analysis and ( with procedures, the same both event selection, for with ( grounds are fully determinedare by single-top-quark the and likelihood dibosonfrom fit. theory, ( as Other well as significant multijetSince background events, the sources normalised MVA using has multijet-enriched higher control expected samples. sensitivity, it is chosen as the nominal analysis for the addition to the dijetnating mass, variable. as Because well7 the TeV as dataset, latter the information MVAcontrol is is samples, not used available typically only in with fortions similar loosened of the the detail 8 TeV dominant for dataset. background the processes. In The both most analyses, significant dedicated background sources are that are varied inthe the likelihood, fit. associated with Eachin its nuisance uncertainty. this parameter Two paper: is versionssystem of constrained in of the by the analysis a are first, penaltyin presented referred term the to in other, as a multivariate the analysis dijet-mass (MVA) analysis, incorporating the various kinematic mass variables of in the dijet channels are each split according tojets the (two vector-boson or transverse three), momentum, thecriteria and number are the of applied number within of each of the resulting categories. normalisations. Systematic uncertainties onplemented the as signal deviations and in background their modelling respective are im- models in the form of “nuisance” parameters (electrons or muons), targeting the boson, respectively. In additionnot to insignificant contribution from leptonic of the detector acceptancejets or consistent not with identified. originating from A an JHEP01(2015)069 , θ of sin miss E T recon- , is also 2 E ) = η T ) are used in miss T E φ , E 475), endcap r + (∆ . 2 1 and ) φ θ < | (∆ η sin -axis points from the IP | p x p 5 and by a straw-tube . = = 2 T R p < | +jets events collected with η | triggers were not available for µµ 0. The pixel detectors are crucial → . miss T range 2 trigger configuration evolved during E Z 1 -axis. The pseudorapidity is defined in terms trigger efficiency on the < ) coordinates, ∆ z φ | 9) sections. The hadronic calorimeters , 9 with a variety of detector technologies. . miss T . η η | 4 collision data recorded in stable beam con- ] for the 7 and 8 TeV data, respectively. 4 E miss T 20 E < < is calculated relative to the geometric centre of the pp [ | | 7 ranges, respectively. η calculated without the muon contribution. As 1 . η η | – 3 – | 2 − +jets and < < miss µν T 9. The muon spectrometer measures the deflection | . -axis points upward. Cylindrical coordinates ( E 1 4 η y . | → < | η W | 2). The distance in ( 4 and θ/ . 2 < -axis coinciding with the axis of the beam pipe. The | z ] is cylindrically symmetric around the beam axis and is structured ln tan( η | − 19 = being the azimuthal angle around the η φ 2), and forward (3 . as 3 θ < | η | < -tagging, and the TRT also contributes to electron identification. The calorimeters, lo- Events in the 0-lepton channel are selected by triggers based on the magnitude The trigger system is organised in three levels. The first level is based on custom-made ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the b 375 1 . centre of the detector and the towards the centre of thethe LHC transverse ring, plane, and the of the polar angle used to define conerespectively. sizes. Transverse For momentum the anddetector; purpose energy otherwise, of are it defined object is as relative selections, to the reconstructed primary vertex of each event. for the 8 TeVstructed data. offline The is dependencesingle-muon measured of triggers, in with the the offline there was a brief period of data-taking in which the ditions and with all relevantintegrated sub-detectors luminosities providing high-quality are data. 4.7 The and corresponding 20.3 fb the missing transverse momentum vector.data taking The to cope with the increasing luminosity, and the trigger efficiency was improved select events, which are thenover logged an for accelerator offline fill. analysis at a rate of3 up to 400 Data Hz averaged and simulatedThe datasets samples used in this analysis include only hardware and uses coarse-granularity calorimeterthird and levels muon are information. implemented TheAt as the second software second and algorithms level, only and regionsthird use deemed level, interesting the called at the full the event first detector filter, level granularity. makes are use analysed, of while the the full detector read-out to reconstruct and (using scintillator tiles orcalorimeters liquid with argon a coverage as of of active muon materials) tracks surround in thesuperconducting the electromagnetic coils. field It of is three instrumentedchambers large with covering air-core separate the trigger toroidal and magnets, high-precision each tracking containing eight transition-radiation tracker (TRT) in thefor range cated beyond the solenoid, cover theThe range liquid-argon electromagnetic calorimeters are(1 divided into barrel ( The ATLAS detector [ in a barrel and twotector endcaps. is immersed It in consists the ofCharged-particle 2 three position T main axial and magnetic subsystems. momentum fieldlowed The measurements produced by inner are by silicon-strip tracking a made detectors de- superconducting in by solenoid. the pixel pseudorapidity detectors fol- 2 The ATLAS detector JHEP01(2015)069 µµ ZH pro- ] with → ], which +jets at 23 with the and ] is used Z ] is used [ Z 39 30 26 – , photos and WH 28 25 leptons can also ee generator is used pythia8 τ pythia8 → +jets and ]. Signal samples are Z W 11 -initiated [ q generator [ q pythia8 decay mode is considered in production. Version 1.4.1 of production, the simulation is b t t b t t ], and with electroweak correc- production is ], interfaced to hdecay 36 powheg 32 – threshold of the single-electron trig- ZH . Events in the 1-lepton channel are 34 1 T − E production, NLO corrections [ and )+jets and -quarks. For ZH ], except for the response of the calorimeters b WH – 4 – W/Z . ], which includes a full simulation of the ATLAS 22 triggers are also used to compensate for the lim- ]. Additional normalisation-preserving differential 1 21 decays, as leptonic decays of the 37 - and miss T production processes. For c Z E -initiated q ZH and program [ q ] with the CT10 PDFs [ 31 W simulation [ ] is used with the CT10 PDFs to simulate threshold of the single-muon trigger was similarly increased from geant4 40 production cross section by about 5%, are taken into account. The T p ]. (For the analysis of the 7 TeV data, the 33 ] parton distribution functions (PDFs). The AU2 tune [ ZH ]. For gluon-gluon-initiated atlfast-II 24 38 .) The transverse momentum distributions of the Higgs boson show substan- generator [ ZH ] is used for QED final-state radiation. The 27 → production at leading order (LO) in QCD, with results cross-checked by an indepen- The main background processes are ( The MC generator used for Monte Carlo (MC) simulated samples are produced for signal and background pro- sherpa gg be selected in thethe analysis. analysis. For the Higgs boson, only the the leading-order in QCD, with massive electroweak NLO corrections are appliedvector as boson a [ function ofincrease the the transverse total momentum of the Higgs boson decay branchingsimulated ratios for Higgs are boson calculated masses from with flavours 100 are to 150 simulated GeV in in steps the of 5 GeV. All charged-lepton for tial differences between theproduction, two the total productionat cross sections next-to-next-to-leading and order associated (NNLO) uncertaintiestions are at in next-to-leading computed QCD order (NLO) [ [ within the MiNLO approach [ AU2 tune, as atance cross-check and and kinematic to properties. evaluateZH systematic It uncertainties is on also used thedent for computation signal the [ accep- generation of gluon-gluon-initiated background simulations is given in table the CTEQ6L1 [ for the parton shower, hadronisation,gram and [ multiple parton interactions. The thresholds of the dilepton triggers are 12 GeV forcesses electrons using and the 13 GeV fordetector muons. based on the for which a parameterised simulation is used. A list of the generators used for signal and data include isolation criteria,36 GeV triggers for muons) with but higher noefficiencies isolation thresholds requirements are (60 are GeV measured used in using forevents. addition. a electrons In Single-lepton tag-and-probe and the trigger method 1-muon sub-channel, ited applied muon to trigger-chamber coverage in somechannel regions are of selected the by a detector. combination Events of in single-lepton, the dielectron 2-lepton and dimuon triggers. The channel in the 7 TeVprimarily dataset selected is by single-lepton reducedger triggers. to was 4.6 raised The fb from 20the to 8 TeV 22 data. GeV during The 18 the GeV 7 for TeV the data-taking 7 period, TeV data and to to 24 24 GeV GeV at for 8 TeV. As the single-lepton triggers for the 8 TeV the first bunch crossings of two bunch trains, the integrated luminosity for the 0-lepton JHEP01(2015)069 ] ) ], 49 41 pro- [ ZZ ) For ? ]. The ].) W t 47 51 , and – process, and 45 pythia6 generator [ WZ generator with , ZH ], and the cross → ]. 26 ] are used. In this , WW 43 gg , using the CTEQ6L1 [ 25 herwig t 26 pythia8 , t with the AU2 tune, is used 25 -channel exchange process is t pythia6 pythia8 ]. They are overlaid on the simulated -channel exchange process and 26 , s , while the 25 t pythia8 powheg+pythia8 pythia8 Sherpa 1.4.1 Sherpa 1.4.1 Sherpa 1.4.1 powheg+pythia AcerMC+pythia powheg+pythia powheg+pythia powheg+pythia8 powheg+pythia8 powheg+pythia8 powheg+pythia8 t ] and at NNLO, including resummations of ] with the MSTW2008NLO PDFs [ 42 50 ] interfaced with – 5 – [ 44 is used for the simulation of the , as for mcfm )+jets [ `νbb ννbb/``bb ννbb/``bb → → → ) W/Z ? generator [ `` pythia8 ( generator with the CT10 PDFs, interfaced with ] and the A2 tune [ powheg ) ? ( `ν ZH ZH WH 52 νν ∗ → ]. (For the analysis of the 7 TeV data, the → → → → Process Generator → 48 q q -channel ¯ t -channel Signal q gg q Vector boson + jets W Z/γ Z Top-quark t t s W t Diboson WW WZ ZZ powheg AcerMC generator with the CT10 PDFs, interfaced to for the simulation of diboson processes. . The generators used for the simulation of the signal and background processes. ( Events from minimum-bias interactions are simulated with the Additional backgrounds arise from single-top-quark and diboson ( the MSTW2008LO PDFs [ for which theanalysis, CTEQ6L1 the PDFs final and normalisationsdata, the of but Perugia2011C these theoretical cross tune dominantare sections backgrounds [ calculated are are used at constrained to NNLO bynext-to-next-to-leading optimise logarithmic the for the (NNLL) ( selection. soft gluon The terms, cross for sections powheg for diboson processes [ is used instead withsections are the obtained CTEQ6L1 at PDFs NLO from and the AUET2 tune [ Table 1 the analysis of theherwig 7 TeV data, performed with the production. For single-top-quark production, the duction are simulated with simulated with the PDFs and the Perugia2011C tune. The cross sections are taken from refs. [ JHEP01(2015)069 -, 47 u . 2 , are 5 GeV Z < ]. The -hadron b > | or 54 η is denoted | T p W V cc and 20 GeV identified in > stands for V bl T p , V -jet, the event belongs to the V bc b -jet, the event belongs to the 1, where there is limited muon- . , c and is required to have at least threshold of 400 MeV. The pri- 0 2 T T < p V bb category. Further subdivisions are ] are used in the analysis, referred to p ]. Three types of muons are included | -hadron is found, the jet is labelled c η 55 | 56 V l [ ee 5 identified in the muon spectrometer, and +hf because the main production process is . → 2 V +jet events, where Z > – 6 – V | η 4 around the reconstructed jet axis. If a | . ] and muons [ 54 = 0 , -jet. If not and a -hadron is found, the jet is labelled as a light (i.e., R 53 b c . The combination of 7 GeV. Loose electrons are required to have > V cl , T - nor a E b V cc , . V bl 8 , final state is not included in V bc V cl , rather than gluon splitting. . -quark, or gluon) jet. Simulated V bb 10 s -jet. If neither a W c c Three categories of electrons [ Charged-particle tracks are reconstructed with a Simulated jets are labelled according to which generated hadrons with Additional generators are used for the assessment of systematic uncertainties as ex- category. If not and one of the jets is labelled as a category. Otherwise, the event belongs to the → +hf. The -, or in the loose definitionmuon to spectrometer maximise and the the innerthe acceptance: detector calorimeter and (ID); (1) associated (2) muons with muons an reconstructedchamber with ID coverage; in track with and both (3) the muonswhich with do not match full ID tracks due to the limited inner-detector coverage. For muons of and to fulfillikelihood-based the electron “very identification loose combinescriteria, likelihood” shower-shape the identification information, matching criteria track-quality qualitycalorimeter defined between (direction the in and track ref. momentum/energy), andidentify [ TRT electrons its information originating from associated and photon energy a conversions.by making cluster criterion The use electron in of to energies reference the help are processes such calibrated as sum of associated-track squaredthree transverse momenta associated Σ tracks. as loose, medium and tightwith leptons in transverse order energy of increasing purity. Loose leptons are selected In this section,data the is reconstruction presented. of Differencessection physics relevant objects for the used analysis in of the the analysis 7 TeVmary of data vertex is the are selected reported 8 from TeV in amongst all reconstructed vertices as the one with the largest V gs 4 Object reconstruction Higgs boson candidate. IfV b one of those jetsV c is labelled asdefined a according to theorder: flavour of the other jet from the pair, using the same precedence are found within a coneis of found, size the ∆ jetas is a labelled asd a then categorised according to the labels of the two jets that are used to reconstruct the contributions from these “pile-up” interactionscrossing are as simulated the both hard-scattering process withinevents and the are in same then neighbouring bunch processed bunch crossings. through the The same resulting reconstruction programsplained as in the section data. signal and background events according to the luminosity profile of the recorded data. The JHEP01(2015)069 ] - .) b 59 5 -jets c ] with 25 GeV. 64 – > ]. Further 62 -quark frag- T b 61 E , ]). To reduce the 60 of tracks matched 60 T p -jet rejection factor is 1.9 c 2, the muon is kept unless it . 0 4, the jet is discarded. Next, if . events. In this analysis, the 80%, 0 t t R < 5. . R < 4 < | η | 4, the jet is discarded if it has three or fewer . 0 – 7 – ] with a radius parameter of 0.4. Jet energies are 58 R < ]. For both the tight electrons and the tight muons, 54 and in the jet energy corrections described in section 20 GeV and 3 around the lepton, excluding energy associated with the -dependent correction factors determined from simulation, . > η miss -tagging selection criteria (or operating points) are calibrated T algorithm [ T b = 0 t p E 4. Jets without any matched track are retained. The jets kept k . R 2 - and 5. Tight electrons are required to additionally fulfil the “very tight . T < 2 p 2 centred on the lepton-candidate track, excluding the lepton track, . | 20 GeV, as measured in simulated < η | | > -tagging algorithm is used to identify jets originating from = 0 η | b T p R of all tracks matched to the jet. This requirement is only applied to jets with ] using the anti- T -jet rejection. Four 57 c p 50 GeV and -hadron decay vertices. It is an improved version of the MV1 algorithm [ -jets with c The MV1c To avoid double-counting, the following procedure is applied to loose leptons and jets. Jets are reconstructed from noise-suppressed topological clusters of energy in the calori- Medium leptons must meet the loose identification criteria and have b < -axis, respectively. Finally, the scalar sum of the transverse momenta of tracks within a T times larger than obtained with the MV1 algorithm. and used in the analysis,for corresponding to average efficiencies70% of and 80%, 50% 70%, operating 60% pointstight and are (loose) 50% denoted operating loose, point, mediumand the and light rejection tight, jets, factors respectively. respectively. are For the For 26 the (3) tight and operating 1400 point, (30) the against is identified only in the calorimeter, in which casementation. the electron This is kept. algorithmalgorithms combines based in on a trackand neural impact-parameter network significance the orhigher information explicit from reconstruction various of a jet and amatched muon tracks are since separated in by thisthe ∆ case calorimeter; it otherwise is thein likely muon to the is originate computation discarded. from of (SuchFinally, a the if muons muon an are having electron nevertheless showered and in included a muon are separated by ∆ of the p for the analysis must have First, if a jet and an electron are separated by ∆ with residual correctionsadjustments from are made in based on situ jetwithout measurements internal changing properties, the applied which average improve calibration to the (globalcontamination energy sequential data by resolution calibration jets [ [ from pile-up interactions,to the the scalar jet sum and of originating the from the primary vertex must be at least 50% of the scalar sum requirement is tightened from 10% to 4%. meters [ corrected for the contributionand of pile-up calibrated interactions using using a jet-area-based technique [ Medium muons must betector reconstructed and in have both thelikelihood” muon identification spectrometer criteria and [ more the stringent inner isolation de- criteriaposits must in be a satisfied: cone oflepton the candidate, size sum must ∆ of be the less calorimeter than 4% energy of de- the lepton energy, and the track-based isolation vertex must be smallerz than 0.1 mmcone and of 10 size mm ∆ is in required the to transverse be plane less than and 10% along of the the transverse momentum of the lepton. the first and second type, the muon-track impact parameters with respect to the primary JHEP01(2015)069 , R V c , - and c V l 1. No such and, for light T -tagged jets are p R < b . , is calculated as the 4 associated with the . 10 2 miss T < p | -jets, events with identified events to provide a reliable η b -tagging algorithm. It is im- | b ] is measured as the negative V c events with ∆ -tagged jets are required. These 66 -tagged are used for the , b b -tagged jets. and 65 b V cc [ production, these backgrounds remain events for V l t t miss T -jets by the V c b E and – 8 – V l -jets and light jets are measured in both data and c events. A dedicated correction, depending on ∆ leptons, and photons), using the calibrations of these -jets, WW τ b events. -labelled jets with the MV1c algorithm, parameterisations l and of their probabilities to be V cc | V l η , - and | c V cl and T -jets, or multijet events for light jets. The small differences observed are p c , the angular separation from the closest other jet, and a significant difference 9. Corrections are applied to the energies of clusters associated with recon- . The SFs are, however, strictly valid only for the generator used to derive . R | 4 η processes in all analysis samples in which two | -tagging efficiencies for b < | η | WW The analysis is optimised for a Higgs boson mass of 125 GeV. Events are first cate- Additional corrections are applied to the simulation to account for small differences The missing transverse momentum vector Because of the large cross sections of The mesons for ∗ In this section, theDifferences event in selection the applied analysis in of the the analysis 7 TeV of data the aregorised 8 reported TeV according data in to section is the presented. numbers of leptons, jets, and from data for trigger efficiencies,well for as lepton for reconstruction and lepton identification energy efficiencies, and as momentum resolutions. 5 Event selection objects. The transversedeposited momenta by of these reconstructed muons muons inIn addition, the are a calorimeters included, track-based properly missing withnegative removed transverse the vector to momentum sum vector, energy avoid of double-counting. theprimary transverse momenta vertex. of tracks with is therefore applied to the vector sum of the transversewith momenta associated with energystructed clusters objects in (jets, the electrons, calorimeters parameterisations are, however, integrated overlight-jet other tagging variables efficiencies. that In canserved particular, on affect ∆ a the strong dependenceis of seen these between efficiencies direct isdifference and ob- is parameterised seen tagging for for description of these backgroundsrequired. in An the alternative procedure, analysis parameterisedof samples tagging, directly for is therefore tagging which used. the two as Here, instead functions of and them. The differences observed whenare the taken efficiencies are into measured account with by differente.g., additional generators different “MC-to-MC” SFs. production fractions Such of differences can heavy-flavour hadrons be or caused by, modellingsignificant of despite their the decays. powerful rejectionpractical of to non- simulate a sufficiently large number of simulation using dedicated event samplesD such as used to correct thetwo simulation operating by points. so-called These “scale SFsjets, are factors” parameterised also (SFs) as within a function intervals of between the jet JHEP01(2015)069 . . V T p miss T , the -jets. value b E 2 -tagged -tagging b b miss T E 120 GeV to 30 GeV and 20 GeV and > in the 0-lepton > > -tagged jet and = 120 GeV, and b W T T T p p p miss T miss and detailed below. T E E 2 jet is loosely 45 GeV. The following T > mentioned in table p i T p jet T p P . Events with two jets satisfying 1 of the vector sum of the transverse trigger is used for Z T p miss T E -tagging criterion, form the MM (or Medium) – 9 – background. Only selected jets are considered b 160 GeV, 97% efficient for t t -tagged jets must have > b -tagged form the 1-tag category, and those with no -tagging can be applied. There must be exactly two b b miss T E -tagged jet for events in the 1-tag category, and by the two b of the vector sum of the lepton transverse momentum and the intervals, with boundaries at 0, 90, 120, 160, and 200 GeV. In the W T p ) non- V T = 100 GeV, with an efficiency that decreases rapidly for lower p T -tagged jets in any of the 2-tag categories, by the p b miss -tagged, and 3-jet events in which the lowest- T b , to take advantage of the better signal-to-background ratio at high E range within which V T p η -tagging criterion form the TT (or Tight) category; those not classified as TT, -tagging algorithm is applied to all selected jets. There must be no more than two b b -tagged jet form the 0-tag category. In the 3-jet categories, the dijet system is 5 are discarded to reduce the b 5, the . . in the 1-lepton channel, and the magnitude 2 trigger is fully efficient for 2 Further categorisation is performed according to the transverse momentum of the Additional topological and kinematic criteria are applied to reject background events The jets used in this analysis, called “selected jets”, must have The Events containing no loose leptons are assigned to the 0-lepton channel. Events con- > < miss | | T miss T -tagging categories are then defined as shown in figure η η E 80% efficient for Only four intervals are therefore usedof in 100 the GeV. 0-lepton channel, Inrecover with events the a not minimum selected 1-muon by sub-channel, the single-muon the trigger, thus increasing the signal acceptance The transverse momentum of the vectorchannel, boson the is magnitude reconstructed as the E momenta of the two leptonsare in categorised the in 2-lepton five channel.0-lepton In channel the and dijet-mass for analysis, events the fulfilling events the condition on and enhance the sensitivity ofIn the general, search. the They selection areorder criteria outlined to in are maximise table looser the in information the available to MVA than the in finalvector the discriminant. boson, dijet-mass analysis in loosely formed by the two the leading (highest- leading jets in the 0-tag category. category; those not classified ascriterion, TT or form MM, the but with LLwith two jets (or respect satisfying Loose) to the loose category. whatthe would LL This be category categorisation obtained providing improvesEvents using constraints the with on a sensitivity exactly the single one backgrounds category, not jet such containing loosely as two TT+MM, real with such jets loosely are discarded. At least oneb of the two the tight but with two jets satisfying the medium | or three such selected| jets. Eventsfurther, containing e.g., an to additional define the jet jet with multiplicity, or to calculate kinematic variables. taining one tight lepton and no additionalEvents loose containing leptons one are medium assigned to leptonand the and 1-lepton no one channel. additional other loose loosechannels, lepton leptons, for of at are the least same assigned one flavour, that of to the satisfied the lepton the 2-lepton triggers trigger by channel. are which the required In event to was the be selected, 1- the associated objects and with 2-lepton the selected leptons. JHEP01(2015)069 100 GeV; -jet purity ), the az- interval of b ) as defined production, > V T t miss T t interval. The p below or above p 200 GeV. , which depends , miss T V T i V T p > E p jet T p V T miss T p E +jet production, while P ( = 2; -tagging algorithm for the jet)], and the azimuthal MV1c(jet) OP φ V b , jet , ∆ ) is the azimuthal angle be- N miss T 2 E ( jet miss T , dijet). In addition, a minimum φ p 1 , (jet miss T and φ E ( φ ), which depend on the miss T 2 E jet , – 10 – 1 5. Here, ∆ . of the track-based missing transverse momentum 0 (jet ) information is used in the final discriminant, only a R 2 > interval, where the amount of background is smallest. miss T p V T L jet p , to take advantage of the increasing collimation of the dijet 1 and the nearest jet, min[∆ information is used in the final discriminant. V T -tagging efficiencies of 100%, 80%, 70%, 50%, i.e., the p b V T (jet p 7; and R miss T > E and the dijet system, ∆ S 7; . miss T 2 E jets. The bin boundaries denote the operating points ( < , the azimuthal angle between T ) p 2 , corresponding to 4 jet . Event classification as a function of the output of the MV1c miss T , p 1 In the 0-lepton channel, the multijet (MJ) background is suppressed by imposing In the dijet-mass analysis, requirements are applied to the angular separation between (jet φ angle between value is required for theon scalar the sum jet of the multiplicity.the jet Additional 0-lepton transverse momenta, requirements channel, are where∆ applied the in MJ the background lowest is largest: minimum value is required, a requirement which is also removedrequirements for on thevector magnitude imuthal angle between requirement on the minimum valuethe reduces requirement the on background the from maximum value,is which tightened reduces with the increasing background from system for the signal.value To increase is the removed signal in acceptance, theIn the the highest requirement MVA, on where the the minimum ∆ in this channel by 8%.120 GeV, In the but MVA, the only detailed two intervals are defined, with the two jets of the dijet system, ∆ Figure 1 two highest in section increases from left (bottom) toLL right for (top). 2-tag, The as event explained categories in are 0-tag, the 1-tag, text. and TT, MM and JHEP01(2015)069 < V T 2 p is the in the 2. , which 20 30 1.5 120 – – T `` W T > > > 200 GeV) ) In the 0- H > < π/ 120 (150) m m > π/ ∗ – – < background. ) 3 > V T to the square , and azimuthal t 71-121 p t T miss miss T p miss T , E 180 0.7 ( – E NU ); the magnitude of the 0–120 Multivariate analysis , the MJ background 2 > > miss T E jet ( , 120 GeV intervals. 7.1 φ ; and the cosine of the helicity 1 50 i 1.4 200 < jet T > (jet )120 GeV, where < p > V T φ > p ( P 2 < 30 2.8 1.5 – V T dijet); ∆ > 0.7–1.8 p , > > 160–200 < π/ 120 (150) 20 divided by > miss > T E ) for ( miss T φ interval is set at 100 GeV instead of 90 GeV. For H 60 120 ; miss 0.7–2.3 T 120–160 )). V T < – 11 – 83-99 E p < ( miss T ]. For the MJ background, the probability density functions miss H φ T 67 2 2-lepton selection 1-lepton selection 0-lepton selection − H Common selection 30 –120 ` 2.2 Dijet-mass analysis – ) significance, defined as the ratio of φ ∗ ( > > < π/ 120 (NU) 0.7–3.0 90 180 cos( – miss T > − E > (1 is calculated from the transverse momentum and the azimuthal angle of the miss T NU W T is a likelihood ratio constructed to discriminate further against the 0–90 , and from the missing transverse momentum magnitude, is the E ` 0.7–3.4 m ` T and the transverse momenta of the two leading jets and the lepton. φ L p S 2 p ) and miss 2 T jet)] = , ` T E ; and p i [GeV] ) miss T W T 2 i dijet) p jet T m miss T , , p jet T : jet E p , ( . Event topological and kinematic selections. NU stands for ‘Not Used’. ( 1 P φ miss miss miss [GeV] [GeV] T T [GeV] φ [GeV] [GeV] E E [GeV] (jet In the 2-lepton channel, criteria are imposed on the dilepton invariant mass, In the 1-lepton channel, a requirement is imposed on the transverse mass [GeV] =2(3) ( ( =1 The likelihood ratio uses the following inputs: ∆ The transverse mass P i `` W T φ φ R T 3 2 miss miss T T jet miss T V T E m E H m N ∆ min[∆ ∆ p ∆ p Variable vector sum of the two jetangle transverse in momenta, the dijet restused frame as in defined the in likelihood ref. [ ratio are constructed fromcharged data lepton, events selected withangle, ∆ This mainly reduces the MJis background. difficult As to discussed model120 in GeV and section intervals. remains Therefore, only substantial the in 1-muon the sub-channel is 1-electron used sub-channel in in these intervals. the MJ background. dijet-mass analysis. This requirementRequirements reduces are the contamination also from imposedscalar the sum on of lepton channel, the lowerthe edge 1-lepton of channel, the only second the 1-muon sub-channel is used in the tween the two jets, root of Table 2 JHEP01(2015)069 , νν ) used → events. 9 involved Z , H ) `` spectrum of miss T interval, and T E → V T p W/Z p Z simulated events), , `ν ZH → W -tagging information is used events. All 2-tag signal and b events (playing a role similar t t with ZH H -tagged jets is improved as follows. ) b W/Z = 125 GeV in simulated ( mass resolution is improved by 30% in the H -tagged, these selection criteria define a set of b b m b spectrum in boson. In the dijet-mass analysis a requirement – 12 – T p Z process with respect to the 2-lepton channel. `` → Z ). 7 (b)). 2 (a)). In the 2-lepton channel, wherein there is no true 2 ; this variable is used in the final discriminant of the MVA. -tagging categories. In the MVA, where the b miss T process with respect to the 1-lepton channel. Similarly, the 1-lepton channel E `ν , as well as the acceptances in the three channels after full selection are given in b → b → W for the MVA and the dijet-mass analysis. The acceptance for other production and 3 system momentum (with a width of 9 GeV, as determined from -dependent correction is applied to account for biases in the response due to resolution H The cross sections times branching ratios for ( After event selection, the energy calibration of the For events in which two jets are loosely T p and table decay modes of the Higgsfor boson the is negligible. Theadds 0-lepton 10% channel in adds acceptance 7% for in acceptance the values (after the muon-in-jeta correction, prior but built without from theto the resolution expected the correction) true resolution as jet correction). well2-lepton as channel Overall, (figure the except possibly from semileptonicis heavy-flavour further decays, improved the by energy aon calibration kinematic likelihood the of fit, the dilepton which jets mass, includes``bb a Gaussian Breit-Wigner constraints constraint ondedicated each transfer of functions relating the the transverse true jet components transverse of momenta to the their reconstructed a effects (resolution correction). Thisjets latter from correction is the determined decayThe for of dijet the a mass Higgs resolution bosontypically for 11% with the (figure signal is improved by 14% after these corrections and is to extract the results.studies (reported The in 0-tag section control regions are used onlyThe for energy background from modelling muonsremoving the within energy deposited a by the jet muon in is the calorimeter added (muon-in-jet correction), to and the calorimeter-based jet energy after in the final discriminant,TT a and MM similar categories subdivision areand merged is in 0-tag performed the “control 0- with regions” andIn the 2-lepton are the difference channels. used 1-lepton Similarly that in defined channel, the as 1-tag the the control analysis 2-tag regions to signal because constrain1-tag regions they control the with regions are main a are largely backgrounds. third used dominated simultaneously selected in by jet the act global fit in (described practice in section is imposed on “2-tag signal regions”, categorised injet terms multiplicity of (2 channel or (0, 3). 1,TT, In or MM the and 2 LL dijet-mass leptons), analysis, a further division is performed into the must be consistent with the mass of the JHEP01(2015)069 = 200 GSC H σ )/ [GeV] σ - m bb 180 GSC m σ = 125 GeV 160 16.4 GeV -- 11.4 GeV 30% H m 140 Resolutions ( 120 100 (b) , decays to all three lepton 80 Acceptance [%] `` MC 60 b → b → Z 40 Simulation 0-lepton 1-lepton 2-lepton . The acceptance is calculated as the Global Sequential Calib. (GSC) + Muon-in-Jet Correction + Kinematic Likelihood Fit 20 inclusive V T νν = 8TeV p ATLAS Pythia VH, H 2 lep., 2 jets, 2 b-tags s 0 0 → 0.1 √

0.08 0.06 0.02 0.04 Events / 4.0 GeV 4.0 / Events Z BR [fb] × 200 – 13 – GSC σ )/ [GeV] σ 1.3 – 0.9 (0.7) 10.5 (8.1) 3.8 5.5 (5.0) – – - 14.9 – 1.3 (1.1) 13.4 (10.9) 44.2 4.0 (3.8) – – bb 131.7 0.3 (0.3) 4.2 (3.7) – 180 GSC m σ 160 = 125 GeV at 16.4 GeV -- 14.4 GeV 12% 14.1 GeV 14% H 140 Resolutions ( m Cross section -initiated processes are shown separately. The branching ratios are 120 gg ) ) ) ) b ) b b b b b b b 100 b b (a) → - and → → and decays to neutrinos for → → 80 q q H H H H ] and the parameter representing the width of the core of the distribution is `ν H MC )( )( )( 60 b )( )( 68 b → `ν , the → `` νν `` νν 40 Simulation → W → → → → ZH Global Sequential Calib. (GSC) + Muon-in-Jet Correction + Resolution Correction . Dijet-invariant-mass distribution for the decay products of a Higgs boson with 20 Z Z inclusive Z W Z V T . The cross section times branching ratio (BR) and acceptance for the three channels at ( ( ( ( ( ATLAS Pythia VH, H 2 lep., 2 jets, 2 b-tags p 0 0 → → → → → 0.1

0.02 0.08 0.06 q q q 0.04 Events / 4.0 GeV 4.0 / Events Process q gg q q gg for resolution effects specific(dash-dotted); to the (b) kinematics using ofmuons the jets inside decay after jets of global a andBukin Higgs applying sequential function boson the calibration [ with kinematicshown (GSC, in fit solid), the (dash-dotted). figures, and asthe The well after global as distributions sequential adding the are calibration. relative improvement fit in to the resolution the with respect to jets after Figure 2 125 GeV in thesequential 2-lepton calibration (GSC, MVA solid), selection. and after The adding muons distributions inside jets are (dotted) shown and after (a) correcting using jets after global calculated considering only decaysflavours to for muons and electronsfraction of for events remaining inafter the the combined full 2-tag event signal selection. regions of the MVA (dijet-mass analysis) Table 3 8 TeV. For JHEP01(2015)069 , and their -tagged jet 2 b b and 1 b ] is used, which, sim- -tagged jets and their as b 70 120 GeV. For the small , respectively. In the 0- , T and the mass of the 3-jet | p ) 3 ). The angular separation, > 69 2 -tagged jets belonging to the b b V T ( ) signal from the sum of the p V, bb c b ( 1 b η and presented in more detail in ∆ 7 . The | → MV 4 -tagging information is provided by the b ) and ) and 1 )]. The other variables were defined in the VH,H b ( V, bb c `, b ( . The ( 1 | – 14 – φ φ ) 2 , corrections to the simulation as explained in sec- -tagging properties of the selected events in a multi- MV , b b 1 ) are labelled in decreasing b ( 7.1 . bb η 120 GeV. Events in the electron and muon sub-channels 4 m ∆ | > V T p In this figure, as for all figures in this section, the MJ background . 4 . bbj is defined as the scalar sum of the transverse momenta of all jets and 3 m T H 120 GeV and 120 GeV interval, which has reduced sensitivity, no dedicated BDT is trained < < V T . A similarly good agreement is found for the correlations between pairs of input p V T are applied, and background normalisations and shapes are adjusted by the global 9 120 GeV are used, whereas for the 1- and 2-lepton channels individual BDTs are . In the 1-lepton channel, the angle between the lepton and the closest The input variables of the BDTs are compared between data and simulation, and good The BDTs are trained to separate the ( Dedicated BDTs are constructed, trained and evaluated in each of the 0-, 1- and 2- < p 7.2 > In this and all similar figures, all backgrounds are taken into account, but those contributing less than 4 miss T V T fit of the MVAsection as outlined at thevariables, beginning as can of be section seen in figure 1% are omitted from the legend. agreement is found within theare assessed shown uncertainties. in Selected figure input-variableis distributions estimated as describedtion in section pseudorapidity separation are denotedlepton ∆ channel, E in the transverse planeprevious is sections. denoted In min[∆ 3-jetsystem events, the is third denoted jet is labelled as jet of variables for the different channels aredijet listed system in table (with mass denoted separation in pseudorapidity is outputs of the MV1cin neural the network, transverse plane, of the vector boson and the dijet system of expected background processes. The inputin variables used order to to construct maximise the the BDTsperformance are separation, significantly. chosen while Starting avoiding from theat use the a of dijet time variables mass, and not additional the improvinguntil one variables the adding are yielding more the tried variables does best one not separation result gain in is a kept. significant performance This gain. procedure is The repeated final sets are combined since nonechannel, of the the final variables used results100 are are lepton-flavour obtained specific. usingand the In only the MVA the for 0-lepton dijet-mass distribution is used. lepton channels in the 2-tagseparately for regions the (with events the with LL,p two and MM three and jets. TT In categoriesused the combined) for 0-lepton and channel, only events with Although the dijet massbetween signal is and the backgrounds, the kinematicadditional sensitivity variable kinematic, of topological the that search and provides isvariate improved the analysis. by best making The use discrimination Boosted of ilarly Decision Tree to (BDT) other technique multivariate [ methods, properly accounts for correlations between variables. 6 Multivariate analysis JHEP01(2015)069 ) B ( A . At the end, the output B × × ], is used to train the BDTs. 71 are merged for both the simulated B × × × × and A Only in 3-jet events – 15 – × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × 0-Lepton 1-Lepton 2-Lepton )] | . The performance of the BDTs trained on sample | ) in order to avoid using identical events for both training ) ) ) ) ) 2 `, b ) 2 B 2 1 A ( b b ( , b , b ( ( φ 1 1 c c V, bb b b B 1 1 V, bb and ( ( ( ( 3 η η bbj `` W T bb 2 1 φ R T miss T A jet T b T b T V T ∆ ∆ m p MV MV m m min[∆ H | ∆ | ∆ m p p E p Variable . Variables used in the multivariate analysis for the 0-, 1- and 2-lepton channels. , and the other half with the BDTs trained on sample A The values of the BDT outputs do not have a well-defined interpretation. A dedicated The Toolkit for Multivariate Data Analysis, TMVA [ Table 4 ground events in each bin.distribution, Starting the from procedure a merges veryuntil histogram fine-binned a histogram bins, certain of from requirement, the high basedmerged BDT-output on to bin, the low is fractions BDT-output of satisfied.tistical values, signal fluctuations, and a To background further limit events condition in the is the number that of the bins statistical uncertainty and of to the reduce expected the impact of sta- distributions of the BDTs trainedand on data samples events. procedure is applied to transformtribution the for BDT-output the distributions background tosignal processes obtain contribution, and a while a smoother at finer dis- the binning same in time the preserving regions a with sufficiently the large largest number of back- for the BDT training andsamples evaluation of in equal an size, unbiasedis way, the evaluated MC with events sample areand split evaluation into of two the samesample BDT. Half of the data are analysed with the BDTs trained on The values for thethe training best parameters separation between are signaltraining found and parameter background by space, in followed determining a by the more coarselyual finely binned configuration training grained multi-dimensional parameters. with one-dimensional scans In of order individ- to make use of the complete set of simulated MC events

JHEP01(2015)069

akrudi niae ytehthdbn.Tertoo h aat h u ftesga n te akrudi hw ntelwrpanel. lower the in shown is background fitted and signal the of sum the to data the of ratio The band. hatched the by indicated is background

nre noeflwaeicue ntels i.Tesz ftecmie ttsia n ytmtcucranyo h u ftesga n fitted and signal the of sum the on uncertainty systematic and statistical combined the of size The bin. last the in included are overflow in entries

cldb h atridctdi h eed h ahdhsormsostettlbcgon sepce rmtepefi Csmlto.The simulation. MC pre-fit the from expected as background total the shows histogram dashed The legend. the in indicated factor the by scaled

safildhsormo o ftefitdbcgons sepce rmteS idctdas (indicated SM the from expected as backgrounds, fitted the of top on histogram filled a as ) n,usakda nufildhistogram, unfilled an as unstacked and, 0), . 1 = µ

H h akrudcnrbtosatrtegoa to h V r hw sfildhsorm.TeHgsbsnsga ( signal boson Higgs The histograms. filled as shown are MVA the of fit global the after contributions background The m 2 e)i shown is GeV) 125 =

h itiuin o h -etncanli e n f r hw fe aigapidteknmtcfi sdsrbdi section in described as fit kinematic the applied having after shown are (f) and (e) in channel 2-lepton the for distributions The . | ) bb V, ( η ∆ | . 5

T

T T 2 1

;()1lpo channel, 1-lepton (d) ); b , b ( R ∆ channel, 1-lepton (c) ; E channel, 0-lepton (b) mass; dijet f -etnchannel, 2-lepton (f) ; p channel, 2-lepton (e) ; p

miss W

1 b

T

xmlso aibe nu oteBTi h -e -a aeoy(L MadT obnd for combined) TT and MM (LL, category 2-tag 2-jet the in BDT the to input variables of Examples . 3 Figure 2 e:()0lpo channel, 0-lepton (a) GeV: 120 > p

V

(d) (e) (f)

1 T T

η ∆ (V,bb) [GeV] ) [GeV] ) (b p p

V

01010202030304040500 450 400 350 300 250 200 150 100 50 0 0101020203030400 350 300 250 200 150 100 50 . . . . . 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0

Data/Pred Data/Pred Data/Pred 0.5

0.5 0.5

1 1 1

1.5 1.5

1.5

01010202030304040500 450 400 350 300 250 200 150 100 50 0 0101020203030400 350 300 250 200 150 100 50 . . . . . 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0

500

50 50

1000

100 1500

100

2000

150

90 × VH(bb) 150

2500 Pre•fit background Pre•fit

Uncertainty 60 × VH(bb) 60 × VH(bb)

Z+hf Pre•fit background Pre•fit background Pre•fit

200

3000

W+l Uncertainty Uncertainty Events /20GeV Events /20GeV

– 16 – 200 W+cl Z+l Z+l

W+hf Z+cl Z+cl

T T T

3500

p p p >120 GeV >120 GeV >120

>120 GeV >120 Events /0.2

Z+hf Multijet Z+hf

V V V

250

Single top Single top Single Single top Single

2 lep., 2 jets, 2 tags 2 jets, 2 lep., 2 tags 2 jets, 2 lep., 1 2 lep., 2 jets, 2 tags 2 jets, 2 lep., 2

t t t t t t

∫ ∫ ∫

250

fb 20.3 = Ldt TeV 8 = s fb 20.3 = Ldt TeV 8 = s

fb 20.3 = Ldt TeV 8 = s 4000

Diboson Diboson Diboson •1 •1 •1

=1.0) µ ( VH(bb) =1.0) µ ( VH(bb) =1.0) µ ( VH(bb)

ATLAS ATLAS ATLAS

300

Data 2012 Data Data 2012 Data Data 2012 Data 4500

(a) (b) (c)

1 T

2

bb [GeV] E

[GeV] m

∆ ) ,b R(b miss

01010202030304040500 450 400 350 300 250 200 150 100 50 0 01010202030304040500 450 400 350 300 250 200 150 100 50 0 . . . . . 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0

0 Data/Pred Data/Pred Data/Pred

0.5 0.5

0.5

1 1 1

1.5

1.5 1.5

2 01010202030304040500 450 400 350 300 250 200 150 100 50 0 01010202030304040500 450 400 350 300 250 200 150 100 50 0 . . . . . 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0

200 100

200

400 200

600 300

400

800 10 × VH(bb) 50 × VH(bb) 400

Pre•fit background Pre•fit Pre•fit background Pre•fit

Uncertainty Uncertainty 50 × VH(bb)

1000 500 Z+l Z+l Pre•fit background Pre•fit

Z+cl Z+cl Uncertainty 600

Z+hf Z+hf Z+hf

1200

600

W+l W+l W+l Events /25GeV Events /20GeV

W+cl W+cl W+cl

W+hf W+hf W+hf

T T T

1400

700

p p p >120 GeV >120 >120 GeV >120 >120 GeV >120 Events /0.2

Multijet Multijet Multijet 800 V V V

Single top Single Single top Single Single top Single

0 lep., 2 jets, 2 tags 2 jets, 2 lep., 0 0 lep., 2 jets, 2 tags 2 jets, 2 lep., 0 1 lep., 2 jets, 2 tags 2 jets, 2 lep., 1

t t t t t t

1600 ∫ ∫ ∫

800

Ldt = 20.3 fb 20.3 = Ldt TeV 8 = s

Ldt = 20.3 fb 20.3 = Ldt TeV 8 = s

Ldt = 20.3 fb 20.3 = Ldt TeV 8 = s

Diboson Diboson Diboson •1 •1 •1

=1.0) µ ( VH(bb) =1.0) µ ( VH(bb) =1.0) µ ( VH(bb)

ATLAS ATLAS ATLAS

1800 Data 2012 Data Data 2012 Data Data 2012 Data 1000 900

JHEP01(2015)069

2 1 b , b ( R ∆ the onto projections n ie-asae,rsetvl,frtettlepce akrudatrtegoa to h V n h data. the and MVA the of fit global the after background expected total the for respectively, axes, dijet-mass and )

vns n h aa(pnbxswt h o iebigpootoa otenme feet) b n c hwtema ausadRSo the of RMS and values mean the show (c) and (b) events), of number the to proportional being size box the with boxes (open data the and events)

T 2 1

2 e:()djtms ess∆ versus mass dijet (a) GeV: 120 > p for channel 0-lepton the of o h oa xetdbcgon saig niaigtenmesof numbers the indicating (shadings background expected total the for ) b , b ( R

V

2 1 orltosbtentedjtms n ∆ and mass dijet the between Correlations . 4 Figure nu aibe oteBTi h -e -a aeoy(L MadT combined) TT and MM (LL, category 2-tag 2-jet the in BDT the to variables input ) b , b ( R

(a)

1 2

(c)

) ,b R(b ∆

bb

[GeV] m

5 4 3 2 1 0

01010202030304040500 450 400 350 300 250 200 150 100 50 0 0 0

0

1

50

MC

2

10

Data 2012 Data

3 100 4

T

0•lepton, 2 tags, 2 jets, p jets, 2 tags, 2 0•lepton, > 120 GeV 120 > R(b

150

20 V

RMS mean 2012: Data 5

fb 20.3 = Ldt = 8 TeV 8 = s

– 17 – •1 1

RMS C mean MC: ,b

ATLAS

2

) 200

30 (b)

250

1 2

) ,b R(b ∆

. . . . . 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0

300 0 40

100

T

> 120 GeV 120 > 2 tags, 2 jets, p jets, 2 tags, 2

350 200 V

0•lepton 50

300 m

400

400

∫ bb

= 8 TeV TeV 8 = s

Events fb 20.3 = Ldt

m

[GeV] 500

•1

T

bb 0•lepton, 2 tags, 2 jets, p jets, 2 tags, 2 0•lepton, > 120 GeV 120 >

V

[GeV] 450

60

aa21: mean 2012: Data RMS

600 fb 20.3 = Ldt = 8 TeV 8 = s

•1 ATLAS

RMS mean MC:

ATLAS

700 500 JHEP01(2015)069 shows such 6 regions that are far from bb discriminant can provide in- m for the 1-lepton channel and one VH 5 distribution used in the dijet-mass analysis bb – 18 – m discriminants” in the following. An optimisation of the number of bins and VH Correlations between input variables and the BDT initially on the high and the low sides offormation the on distribution, the respectively. impactcorrelations of for individual the variables dijet mass, on which thediscriminating is the classification. power. BDT input Figure that provides the best single-variable separately for the different analysisoutput regions. and dijet-mass The distributions effect can of besignal the seen region. transformation in on figure The the transformationthe BDT- groups signal on into each few ofsignal bins the mass, the low where and the highput signal-to-background mass is ratio sides, similar, is while but it largest. simpler expands to The the visualise effect region because close on the to the signal the BDT and out- the background accumulate parameters of the transformation algorithmsensitivity. are For optimised simplicity, to these maximise transformed thecalled outputs, expected “BDT which signal are usedbin for boundaries the is analysis, are alsoin performed a for similar way, the where the free parameters of the transformation algorithm are optimised total background contribution has to be smaller than 10% in each merged bin. The free JHEP01(2015)069 bb VH BDT =1.0) =1.0) 20 10 µ µ × × t t VH(bb) VH(bb) VH(bb) ( VH(bb) ( Data 2012 Diboson t Single top Multijet W+hf Z+hf Uncertainty Pre•fit background Data 2012 Diboson t Single top Multijet W+hf Z+hf Uncertainty Pre•fit background Transformed m 200 GeV (a) before and ≤

•1 •1 (d) (b) W T < p Ldt = 20.3 fb Ldt = 20.3 fb ∫ ∫ <200 GeV V T >120 GeV = 8 TeV = 8 TeV V T s s ATLAS 1 lep., 2 jets, 2 Tight tags ATLAS 1 lep., 2 jets, 2 Tight tags 160

50 70 60 50 40 30 20 10

1.5 0.5 1.5 0.5

450 400 350 300 250 200 150 100

Data/Pred Data/Pred Events / 0.14 / Events Events / 0.13 / Events – 19 – VH [GeV] bb =1.0) =1.0) m 20 10 µ µ × × t t 0), and, unstacked as an unfilled histogram, scaled by the factor VH(bb) VH(bb) VH(bb) ( VH(bb) ( Data 2012 Diboson t Single top Multijet W+hf Z+hf Uncertainty Pre•fit background Data 2012 Diboson t Single top Multijet W+hf Z+hf Uncertainty Pre•fit background . Untransformed BDT = 1 µ

•1 •1 (c) (a) 120 GeV (c) before and (d) after applying the transformation of the histogram Ldt = 20.3 fb Ldt = 20.3 fb > ∫ ∫ <200 GeV W T V T p >120 GeV = 8 TeV = 8 TeV V T s s ATLAS 1 lep., 2 jets, 2 Tight tags ATLAS 1 lep., 2 jets, 2 Tight tags 160

80 60 40 20 60 50 40 30 20 10

1.5 0.5 1.5 0.5

= 125 GeV) is shown as a filled histogram on top of the fitted backgrounds, as expected 220 200 180 160 140 120 100

Data/Pred Data/Pred Events / 0.08 / Events Events / 25 GeV 25 / Events H m indicated in the legend.pre-fit MC The simulation. dashed The histogram entriesstatistical in shows and overflow the are systematic included total uncertainty in backgroundby the on the last as the hatched bin. expected sum band. The from of The sizein the the of ratio the the of signal lower combined the and panel. data fitted to background the is sum of indicated the signal and fitted background is shown for the expected background and signalcategory contributions for in the 1-lepton channelbins. and the The 2-jet background 2-tag TT contributionsand after (b) the and relevant of( global the fit MVA (of in thefrom (c) dijet-mass the and analysis SM (d)) in (indicated are (a) as shown as filled histograms. The Higgs boson signal Figure 5 in the 1-lepton channel and the(b) 2-jet after 2-tag TT applying category the for transformation 160 of GeV the histogram bins. Bottom: the BDT-output distribution

JHEP01(2015)069

to h V n h data. the and MVA the of fit

H V M ftepoetosot h xso h BDT the of axes the onto projections the of RMS iciiataddjtms,rsetvl,frtettlepce akrudatrteglobal the after background expected total the for respectively, mass, dijet and discriminant

ubr feet)adtedt oe oe ihtebxsz en rprinlt h ubro vns,()ad()so h envle and values mean the show (c) and (b) events), of number the to proportional being size box the with boxes (open data the and events) of numbers

T H V

2 e:()tedjtms essteBDT the versus mass dijet the (a) GeV: 120 > p for channel 0-lepton iciiatfrtettlepce akrud(hdnsidctn the indicating (shadings background expected total the for discriminant

V

H V orltosbtentedjtms n h BDT the and mass dijet the between Correlations . 6 Figure iciiati h -e -a aeoy(L MadT obnd fthe of combined) TT and MM (LL, category 2-tag 2-jet the in discriminant

(a)

VH

(c)

BDT

bb

[GeV] m

1•.•. 04020020406081 0.8 0.6 0.4 0.2 0 •0.4•0.2 •0.8•0.6 •1

01010202030304040500 450 400 350 300 250 200 150 100 50 0

0 0

•1

2

50 •0.5

4

0 100

6

0.5

T

0•lepton, 2 tags, 2 jets, p jets, 2 tags, 2 0•lepton, > 120 GeV 120 >

150

V

BDT

– 20 – ∫

RMS mean 2012: Data

fb 20.3 = Ldt = 8 TeV 8 = s

8

•1

1 C mean MC: RMS

ATLAS VH

200

10

MC

(b)

12 250

Data 2012 Data

VH

BDT

14

1•. 06•. 020020406081 0.8 0.6 0.4 0.2 0 •0.2 •0.4 •0.6 •0.8 •1

300 0

16 T 100

> 120 GeV 120 > 2 tags, 2 jets, p jets, 2 tags, 2

350

V

200

18 0•lepton

m

400

300

∫ bb

20 = 8 TeV TeV 8 = s

Events fb 20.3 = Ldt

m

[GeV]

•1

T

400 bb

0•lepton, 2 tags, 2 jets, p jets, 2 tags, 2 0•lepton, > 120 GeV 120 >

V

[GeV] 450

22

aa21: mean 2012: Data RMS

fb 20.3 = Ldt = 8 TeV 8 = s

•1 ATLAS

C mean MC: RMS

500 ATLAS

24 500 JHEP01(2015)069 t t , it jet)] , miss T 2 shows E miss T π/ E ( +jets and arising from 4 is required, φ . V 0 miss T < . These MJ back- is close to the di- E miss T jet)] E , miss T designed to suppress the E L miss T ) above and below E ( -tagged jet in the 1-tag control φ b miss T p 2. In region C, the requirement on , jet)].) For events with real , miss T < π/ E ) ( miss discriminant in the 2-tag signal regions, as T . φ E 9 value of the ( miss T VH φ p c – 21 – , 1 ) as in regions A and C, respectively. A comparison miss T MV E ( , are similar. In events with fake miss T interval, the likelihood ratio φ p , V T miss T p p miss T E ( 5 and ∆ and . φ 1 jet)] distributions for ∆ ) variables, such that three of the regions are dominated by back- , > miss T miss T miss E T ) is reversed. In regions B and D, min[∆ p jet)] E , , ( φ miss T p miss T miss T , E . E ( ( 8 φ φ miss T The MJ background is estimated in the 0-lepton channel using an “ABCD method”, In all distributions presented in this section, unless otherwise specified, the normalisa- For the multijet (MJ) backgrounds, the normalisations and shapes provided as inputs E ( φ min[∆ ∆ with requirements on ∆ of the min[∆ that these two variables are only weakly correlated, and this observation is confirmed in a ground. (In the 100–120MJ GeV background is usedis expected instead of thatverse min[∆ the momenta, directions ofa the jet calorimeter-based and energyrection track-based fluctuation, missing of it trans- the is poorly expected that measured the jet. direction of The signal region (A) is therefore selected with grounds cannot be determined reliablyof by the simulation, 0-, and 1-, are and 2-lepton estimated channels, from and data in in each each ofwithin the 2- which and 3-jet, the 0-,and 1-, data and ∆ are 2-tag regions. divided into four regions based on the min[∆ fore give rise to potentiallyjets large or backgrounds. photon A conversions firstdecays; misidentified class the as of 1- MJ electrons, and backgroundAnother or 2-lepton arises class, from from channels which semileptonic are affects heavy-flavour jet mostly especially the energy sensitive 0-lepton measurements to channel, in this arises the class from calorimeters, of large which fluctuations background. create in “fake” those distributions within thesection constraints from the systematic uncertainties discussed7.1 in Multijet background Multijet events are produced with a huge cross section via the strong interaction, and there- backgrounds that are left freedescribed to below, float in are the applied fit. prior The to corrections the to fit. thesetions two backgrounds, of the various backgroundsor are multivariate those analysis, extracted as from the appropriate. global fit The for fit the dijet-mass also adjusts the background shapes in appropriate, as well asregions. those More of details the are provided in section to the fit areinputs are estimated taken from from data, the as simulation, explained except for below. the normalisations For of the the other backgrounds the This section describes theare modelling able of to individual constrain backgrounds.likelihood the fit normalisations (also In and called many “global shapes cases, fit”)and better is the constraints used than data on to the simultaneously the a extractthe background both priori the normalisations fit estimates. signal and are yield A shapes. those of The the distributions dijet used mass by or BDT 7 Background composition and modelling JHEP01(2015)069 ) c < 2 1 miss T jet W T E , p MV 1 120 GeV (jet < R value of the , and in the W T c ) in the global W T p t 1 p t MV +jets and V 120 GeV in the 1-electron sub- < W T p 120 GeV, the MJ background is much value drawn from the appropriate > . An MJ template in region A is obtained c 1 W T p – 22 – MV pythia8 4%; and the calorimeter-based isolation is loosened < 120 GeV it ranges from 11% of the total background in the < -tagging requirement is therefore dropped in regions B, C and W T b 1% of the total background. p -tagging normalisation factor is applied to the resulting template, ∼ b 4%. The sample sizes of the MJ-templates are however rather low in the < of the tagged jet and, for the electron sub-channel, according to ∆ c 1 . This procedure is applied in each of the 2- and 3-jet, LL, MM and TT categories. MV W T 7% from p The MJ background in the 1-lepton channel is concentrated at low In the 1-lepton channel, the MJ background is determined separately for the electron < fit. Since thechannel MJ than background in is the twice120 GeV 1-muon as so sub-channel, large as only for to theresulting provide 1-muon loss the sub-channel in most issmaller: reliable sensitivity kept constraints 4% for is on and 0.6%. the 2% in non-MJ the backgrounds. For LL The and TT categories, respectively, for 2-jet events. templates for these othermentioned background above. processes are taken from the2-jet improved 2-tag simulation sample with LL category to 6% inintervals is the to TT provide category. constraints The on main the purpose largest backgrounds of ( including the to the and The normalisations of the MJdistributions templates are in then obtained the from 2-with “multijet fits” and floating to the 3-jet, normalisations 1- for and the 2-tag templates (LL, of MM the and other TT background combined) processes. categories, The signing to the untaggeddistribution jet observed an in emulated theon corresponding 2-tag the MJ rank template. (leadingtagged This or jet. distribution sub-leading) To depends cope of withpseudo-2-tag the residual MJ untagged events differences and jet observed the in and actual some 2-tag on distributions MJ the between events, these a reweighting is applied according and muons respectively, insteadto of 2-tag regions. Sinceevents it in is the MJ-dominated observedMJ regions that are templates. the similar, kinematic 1-tag Events properties events in are of the used the 1-tag to 1-tag category enrich and the are 2-tag 2-tag promoted to the 2-tag category by as- from the other backgrounds. Theby other scale backgrounds factors are taken for fromMJ-dominated the a region various simulation contributions improved is obtained obtainedstead from by of a modifying tight, leptons preliminary the and global loosening nominalThe fit. both selection track-based the to The track isolation and use is calorimeter-based medium, isolation changed criteria. in- to the intervals 5%–12% and 7%–50% for electrons D, and an additional taken as the fraction ofis 2-tag found events to in amount region to D. The MJ background inand the muon signal sub-channels. regions Forobtained each signal in or an control MJ-dominated region, region an MJ-background after template subtracting is the small remaining contribution using events in regionfrom C simulation. The after template subtracting isB normalised the to by contribution that the of in ratio of regionpopulations other the D, of backgrounds, number again events of taken after events in in subtracting2-tag the region other requirement. various backgrounds regions from The suffer those from regions. low The statistical precision after the multijet event sample simulated with JHEP01(2015)069 ) 2 jet back- , distri- distri- 1 Z T W T shown in p p (jet W cl 5 φ and 1% of the total simulations are < W l ]. W cl background events in 72 generator used in this distribution is important. W b ) distribution, and , with the higher intervals ) due to the two jets becoming 2 V T 2 +jet events in the 2-lepton V T p p jet Z jet and W l , , sherpa 1 1 above and below 120 GeV. The (jet (jet ) distribution in data is better reproduced +jets and MJ components are free W cc φ W T 2 (b). This reweighting also improves φ Z p +jets production in the 1-muon sub- ) are taken from the simulation. The jet 7 t , t 1 W (jet φ – 23 – . generator used in this analysis [ 8 spectrum for sherpa W T p )=0.7 comes from the combination of two effects: a rise towards low values are randomly assigned to the jets according to their 2 c jet 1 , 1 ) reweighting is found to improve the modelling of the ) distributions show good agreement between data and simulation 2 2 (jet MV φ jet jet , , +jet backgrounds by the version of the 1 1 V mass peak. Altogether, the MJ background amounts to (jet (jet In order to address this mismodelling, the φ Z φ (a) shows that the 6 7 ) due to gluon splitting, and a drop towards low ∆ ) 120 GeV region. After this reweighting, the modelling of the whole 2 (b)). This reweighting increases (reduces) by 0.7% (5.6%) the normalisation of the > (a). jet ( , 8 1 8 < A similar, but not identical, procedure is used for the Figure A template for the MJ background in the 2-electron sub-channel is obtained in a similar It has indeed been observed that the shape of theThe ∆ peak around ∆ (jet 5 6 φ W T bution in the 0-tag regions. In the signal-depleted 2-tag regionsby NLO obtained generators by than the by exclusion the baseline ∆ unresolved. the 0- and 1-tag regionsreweighting are is too applied small to toassessed these allow instead, conclusive backgrounds, as studies but explained of in an their section associated modelling, systematic so no uncertaintychannel. is A ∆ p bution is greatly improved,the as can modelling be of seen othermodelling in distributions, in figure the most 1-tag notablygrounds control the in regions all dijet and regions mass. is of all therefore It channels. applied also The to numbers improves the of the reweighted based on parameterised fits to thevariable ratio in of data the to simulation 0-tag inare region, the ∆ derived: where these for backgroundsreweighted the dominate. ∆ 2- Four and separate 3-jet(figure functions categories and for providing most of the sensitivity, an accurate modelling of the channel is softer inis the strongly data correlated thanfigure with in a the mismodelling simulation. of It the is ∆ found that this mismodelling 7.2 Corrections to theThe simulation large number ofmodelling events of in the the 0-taganalysis. samples Given allows that for the detailed search investigations is of performed the in intervals of 1-lepton channel is used,and wherein combinations the of pretag MJdistribution sample in is the weighted 2-tagis by MJ found its to template. 2-tag be fraction bands In negligible of from the the a 2-muon comparison sub-channel,background between in the data the MJ and 2-lepton MC background channel. prediction in the side- way, by loosening identification and isolation requirements.by a The normalisation fit is to performed parameters, the dilepton-mass while distribution, the where otherMJ the backgrounds normalisation (mostly factors are found towith be the consistent reduced in size the of 0-, the 1- 2-tag and MJ 2-tag event regions. sample, a To cope procedure similar to that used in the JHEP01(2015)069 ) 2 250 250 3 3 ,jet 1 =1.0) [GeV] µ W T (jet p φ ∆ 2.5 2.5 200 200 t Data 2012 VH(bb) ( Diboson t Single top Multijet W+hf W+cl W+l Z+hf Z+cl Z+l 2 2 150 150 =1.0) µ 1.5 1.5 (b) (b) t VH(bb) ( t Multijet W+cl Z+hf Z+l 100 100 -1 -1 1 1 50 50 = 8 TeV 0.5 0.5 Data 2012 Diboson Single top W+hf W+l Z+cl s = 8 TeV ATLAS s L dt = 20.3 fb ATLAS L dt = 20.3 fb ∫ ∫ 0 0 1 0 0

1

1.1

0.9

1.1 Pred / Data 0.9

Data / Pred Pred / Data 5000

25000 20000 15000 10000 π

x10 / Events

80000 70000 60000 50000 40000 30000 20000 10000 rad -2 Events / 5 GeV 5 / Events – 24 – ) 2 250 250 3 3 ,jet 1 =1.0) [GeV] µ W T (jet p φ ∆ 2.5 2.5 200 200 t Data 2012 VH(bb) ( Diboson t Single top Multijet W+hf W+cl W+l Z+hf Z+cl Z+l intervals are combined. The multijet and simulated-background W T 2 2 p 150 150 ) distribution observed in data (points with error bars) and expected =1.0) 2 µ 1.5 1.5 jet (a) , (a) t 1 VH(bb) ( t Multijet W+cl Z+hf Z+l 100 100 -1 -1 1 1 (jet distribution observed in data (points with error bars) and expected (histograms) φ W T 50 50 = 8 TeV p 0.5 0.5 Data 2012 Diboson Single top W+hf W+l Z+cl s = 8 TeV ATLAS s L dt = 20.3 fb ATLAS L dt = 20.3 fb ∫ ) reweighting. The multijet and simulated-background normalisations are provided by ∫ 2 0 0 1 0 0 1 . The ∆

. The 1.1

0.9

jet 1.1 Pred / Data 0.9

Data / Pred Pred / Data ,

5000

10000 25000 20000 15000 1 π

Events / / Events x10

40000 30000 20000 10000 rad 80000 70000 60000 50000 -2 Events / 5 GeV 5 / Events (jet φ Figure 8 (histograms) for the 2-jet 0-tag controland region (b) of the after 1-muon reweighting. sub-channel (MVAnormalisations selection), All (a) are before provided by theby multijet the fits. shaded band. The size The of data-to-background the ratio statistical is uncertainty shown is in indicated the lower panel. for the 2-jet 0-tag control region∆ of the 1-muon sub-channel (MVA selection),the (a) before multijet and (b) fits. after data-to-background ratio The is size shown in of the the lower statistical panel. uncertainty is indicated by the shaded band. The Figure 7 JHEP01(2015)069 t ) V T t 2 p W t W bb jet , and 1 from a compo- , respec- W (jet Zl φ 11 W bb -quark comes -tagged jet in c b , but the depend on the t and t t predicts too hard t -tagging categories 10 b and . There is also a signif- reweighting is therefore -tagging categories, and b Z T -quark and the Zbb distribution of top quarks pythia Zbb b p T p -tagging category considered. b ) reweighting to the 2 +jets backgrounds, as explained and in figures V distributions of the jet . A non-negligible contribution of 9 , c 1 W T contribution is in general dominant, 1 , when the p t contribution, where the t W T (jet p contribution is largest in the lowest φ bc MV t components leads to good modelling also in t intervals of the 2-jet category. backgrounds are constrained in the global fit W T Zb intervals, and the relative diboson contribution p – 25 – V l generator interfaced to Z T p and production process. t t Zc powheg -tagging categories. and dibosons being largest in the tighter b in the lower t . The flavours of the two selected jets from t , the latter increasing with W bb W T distribution is mismodelled. A dedicated p decay. A significant contribution from single-top-quark production Z T and dijet mass are shown in figure W bb p interval. In particular, at high V T . cs reweighting to the p Z T T W ]. A correction accounting for this discrepancy is therefore applied at the p Z T p and, to a lesser extent, the → p . 73 interval, with the jet multiplicity, and with the -tagging categories, and also by the b V T W 7.2 V cl p The variations in the background composition between categories allow the global fit to In the 0-lepton channel, the main backgrounds arise from In the 2-lepton channel, the dominant background is always For the 1-lepton channel and in the 2-jet samples the combination of It has been observed in an unfolded measurement of the the 1-tag control regions. Thefit, 0-tag but control are regions are mainly not usedin taken to into section improve account the in modelling the of global the background is alsointervals, significant. and larger The in the relative 3-jet than in thedisentangle 2-jet the category. rates offrom the the various background sources.by The the non-negligible LL contributions processes is also seen.but there are In significant the contributionschannel) from 3-jet single-top-quark and category, production from the (mostly inMJ the background can be seen in the lowest relative contribution of and increasing with reconstructed top-quark decay are collimated,from there is the a large icant contribution from increases with accounts for most of the background in the most sensitive MM and TT categories, with the tively, for a selection ofthe 2-tag background signal composition regions in ofwith the the the dijet-mass signal analysis. regions It variesThe can greatly signal-to-background be from ratio seen channel is that tolower larger in channel, in the the 3-jet 2-jet and and loose tighter from pair production thata the spectrum [ level of generated top quarks in the 7.3 Distributions inDistributions the of dijet-mass analysis correction, but the determined in the 2-tag regions.nent and Applying the the ∆ the 1-tag regions. This procedure is therefore used in all regions of all channels. of the 100–150 GeV dijet mass interval, there is no evidence of a need for a ∆

JHEP01(2015)069

te akrudi hw ntelwrpanel. lower the in shown is background fitted

netit ntesmo h inladfitdbcgon sidctdb h ace ad h ai ftedt otesmo h inland signal the of sum the to data the of ratio The band. hatched the by indicated is background fitted and signal the of sum the on uncertainty

sepce rmtepefi Csmlto.Oeflwetisaeicue ntels i.Tesz ftecmie ttsia n systematic and statistical combined the of size The bin. last the in included are entries Overflow simulation. MC pre-fit the from expected as

) n,usakda nufildhsorm cldb h atridctdi h eed h ahdhsormsostettlbackground total the shows histogram dashed The legend. the in indicated factor the by scaled histogram, unfilled an as unstacked and, 0), . 1 = µ

H 2 e)i hw safildhsormo o ftefitdbcgons sepce rmteS idctdas (indicated SM the from expected as backgrounds, fitted the of top on histogram filled a as shown is GeV) 125 = m ( signal boson Higgs The

h MadT aeoiscmie.Tebcgon otiuin fe h lblfi ftedjtms nlssaesona le histograms. filled as shown are analysis dijet-mass the of fit global the after contributions background The combined. categories TT and MM the

-e inlrgoso h -etncanlwt h MadT aeoiscmie,ad()te2jtsga ein fte2lpo hne with channel 2-lepton the of regions signal 2-jet the (e) and combined, categories TT and MM the with channel 1-lepton the of regions signal 3-jet

h -etncanlfrteL aeoy c h -e inlrgoso h -etncanlwt h MadT aeoiscmie,()the (d) combined, categories TT and MM the with channel 1-lepton the of regions signal 2-jet the (c) category, LL the for channel 1-lepton the

tgigctgre as eerdt sM n Ti h et obnd b h -e inlrgosof regions signal 2-jet the (b) combined, text) the in TT and MM as to referred (also categories -tagging b Tight and Medium the with channel

T

itiuinosre ndt pit iherrbr)adepce hsorm)fr()te2jtsga ein fte0-lepton the of regions signal 2-jet the (a) for (histograms) expected and bars) error with (points data in observed distribution p The . 9 Figure

V

(e) (d)

T T

[GeV] [GeV] p p

V V

0101020250 200 150 100 50 0 250 200 150 100 50 0

Data/Pred Data/Pred

0.9

0.8

1 1

1.2

1.1

0101020250 200 150 100 50 0 250 200 150 100 50 0

10

10

2

10

2

10

3

10

3

10

4 – 26 –

70 × VH(bb) 260 × VH(bb)

Pre•fit background Pre•fit background Pre•fit

10

Uncertainty Uncertainty

4

Z+l W+cl

Events /bin 10 Events /bin

Z+cl W+hf

5

Z+hf Multijet

2 lep., 2 jets, 2 Medium+Tight tags Medium+Tight 2 jets, 2 lep., 2 tags Medium+Tight 2 jets, 3 lep., 1

t t top Single

∫ ∫

fb 20.3 = Ldt TeV 8 = s fb 20.3 = Ldt TeV 8 = s

10

Diboson t t •1 •1

5

=1.0) µ ( VH(bb) =1.0) µ ( VH(bb)

ATLAS ATLAS

Data 2012 Data 2012 Data 10

6

(a) (b) (c)

T T T

[GeV] [GeV] [GeV] p p p

V V V

0101020250 200 150 100 50 0 0101020250 200 150 100 50 0 0101020250 200 150 100 50 0

Data/Pred Data/Pred Data/Pred 0.8 0.8 0.8

1 1 1

1.2 1.2 1.2 0101020250 200 150 100 50 0 0101020250 200 150 100 50 0 0101020250 200 150 100 50 0

10

10 2

200

30 × VH(bb) 2

Pre•fit background Pre•fit

Uncertainty

Z+cl

400

Z+hf

10

10

W+l 3

3

W+cl

W+hf

600

Multijet

270 × VH(bb) 80 × VH(bb)

Single top Single

Pre•fit background Pre•fit Pre•fit background Pre•fit

10

t t

10

Uncertainty Uncertainty 4

Diboson 4

800 Z+hf Z+hf

=1.0) µ ( VH(bb)

W+l W+l

Data 2012 Data

W+cl W+cl

W+hf W+hf

1000 Events /bin Events /bin Events /bin 10 Multijet Multijet

10

5

5

Single top Single Single top Single

0 lep., 2 jets, 2 Medium+Tight tags Medium+Tight 2 jets, 2 lep., 0 1 lep., 2 jets, 2 Loose tags Loose 2 jets, 2 lep., 1 1 lep., 2 jets, 2 Medium+Tight tags Medium+Tight 2 jets, 2 lep., 1

t t t t ∫ ∫ ∫

= 8 TeV TeV 8 = s Ldt = 20.3 fb 20.3 = Ldt

= 8 TeV TeV 8 = s Ldt = 20.3 fb 20.3 = Ldt

= 8 TeV TeV 8 = s Ldt = 20.3 fb 20.3 = Ldt

Diboson Diboson •1 •1 •1

1200 =1.0) µ ( VH(bb) =1.0) µ ( VH(bb)

ATLAS ATLAS ATLAS

Data 2012 Data Data 2012 Data

10 10

6 6

JHEP01(2015)069

ssoni h oe panel. lower the in shown is

h u ftesga n te akrudi niae ytehthdbn.Tertoo h aat h u ftesga n te background fitted and signal the of sum the to data the of ratio The band. hatched the by indicated is background fitted and signal the of sum the

h r-tM iuain h nre noeflwaeicue ntels i.Tesz ftecmie ttsia n ytmtcucranyon uncertainty systematic and statistical combined the of size The bin. last the in included are overflow in entries The simulation. MC pre-fit the

ntce sa nle itga,sae ytefco niae ntelgn.Tedse itga hw h oa akruda xetdfrom expected as background total the shows histogram dashed The legend. the in indicated factor the by scaled histogram, unfilled an as unstacked

H 2 e)i hw safildhsormo o ftefitdbcgons sepce rmteS idctdas (indicated SM the from expected as backgrounds, fitted the of top on histogram filled a as shown is GeV) 125 = m ( signal boson ) and, 0), . 1 = µ

T

p 2 e obnd h akrudcnrbtosatrtegoa to h ie-asaayi r hw sfildhsorm.TeHiggs The histograms. filled as shown are analysis dijet-mass the of fit global the after contributions background The combined. GeV 120 >

V

T

nevl b h -e inlrgosi h he nevl with intervals three the in regions signal 2-jet the (b) interval, 2 e obnd n c h -e inlrgosi h he nevl with intervals three the in regions signal 3-jet the (c) and combined, GeV 120 > p

V

T tgigctgre as eerdt sM n Ti h et obndfr()te2jtsga eini h 100 the in region signal 2-jet the (a) for combined text) the in TT and MM as to referred (also categories -tagging b Tight and 2 GeV 120 < p <

V

h ie-asdsrbto bevdi aa(onswt ro as n xetd(itgas nte0lpo hne ihteMedium the with channel 0-lepton the in (histograms) expected and bars) error with (points data in observed distribution dijet-mass The . 10 Figure

(a) (b) (c)

bb bb bb [GeV] m [GeV] m [GeV] m

04 08 0 2 4 6 8 0 220 200 180 160 140 120 100 80 60 40 20 04 08 0 2 4 6 8 0 220 200 180 160 140 120 100 80 60 40 20 04 08 0 2 4 6 8 0 220 200 180 160 140 120 100 80 60 40 20

0.5 Data/Pred Data/Pred Data/Pred 0.5 0.5

1 1 1

– 27 – 1.5 1.5

1.5 04 08 0 2 4 6 8 0 220 200 180 160 140 120 100 80 60 40 20 220 200 180 160 140 120 100 80 60 40 20 04 08 0 2 4 6 8 0 220 200 180 160 140 120 100 80 60 40 20

20

50

100 40

60

100

200

80

150

20 × VH(bb)

100

Pre•fit background Pre•fit 10 × VH(bb)

300

Uncertainty Pre•fit background Pre•fit 20 × VH(bb)

120

Z+cl Uncertainty Pre•fit background Pre•fit

200

Z+hf Z+cl Uncertainty

W+l Z+hf Z+cl

140 Events /25GeV Events /25GeV Events /25GeV

W+cl W+cl Z+hf 400

W+hf W+hf W+cl

T T T

250 160

<120 GeV <120 >120 GeV >120 >120 GeV >120 100

Multijet Multijet W+hf

V V V

Single top Single Single top Single Single top Single

0 lep., 2 jets, 2 Medium+Tight tags Medium+Tight 2 jets, 2 lep., 0 0 lep., 2 jets, 2 Medium+Tight tags Medium+Tight 2 jets, 2 lep., 0 0 lep., 3 jets, 2 Medium+Tight tags Medium+Tight 2 jets, 3 lep., 0

t t t t t t 180

∫ ∫ ∫

fb 20.3 = Ldt TeV 8 = s fb 20.3 = Ldt TeV 8 = s fb 20.3 = Ldt TeV 8 = s

500

Diboson Diboson Diboson •1 •1 •1

300

=1.0) µ ( VH(bb) =1.0) µ ( VH(bb) =1.0) µ ( VH(bb) ATLAS ATLAS ATLAS

200

Data 2012 Data Data 2012 Data Data 2012 Data JHEP01(2015)069 [GeV] [GeV] bb bb =1.0) =1.0) m m 10 40 µ µ × × t t VH(bb) VH(bb) VH(bb) ( VH(bb) ( Data 2012 Diboson t Single top W+hf W+cl Uncertainty Pre•fit background Data 2012 Diboson t Z+hf Z+cl Z+l Uncertainty Pre•fit background

•1 •1 (d) (b) 0), and, unstacked as an unfilled . Ldt = 20.3 fb Ldt = 20.3 fb ∫ ∫ >120 GeV >120 GeV V T V T = 1 µ = 8 TeV = 8 TeV s s ATLAS 2 lep., 3 jets, 2 Medium+Tight tags ATLAS Medium+Tight tags 1 lep., 3 jets, 2 incl. p incl. p 20 40 60 80 100 12020 140 160 180 40 200 220 60 80 100 120 140 160 180 200 220 20 40 60 80 100 12020 140 160 180 40 200 220 60 80 100 120 140 160 180 200 220 120 GeV combined for (a) the 2-jet signal 1 1

50 40 30 20 10

1.5 0.5 1.5 0.5 >

700 600 500 400 300 200 100

Data/Pred Data/Pred Events / 25 GeV 25 / Events Events / 25 GeV 25 / Events V T p – 28 – -tagging categories (also referred to as MM and TT in b = 125 GeV) is shown as a filled histogram on top of the [GeV] [GeV] H bb bb =1.0) =1.0) m m m 10 20 µ µ × × t t VH(bb) VH(bb) VH(bb) ( VH(bb) ( Data 2012 Diboson t Z+hf Z+cl Z+l Uncertainty Pre•fit background Data 2012 Diboson t Single top Multijet W+hf W+cl W+l Z+hf Uncertainty Pre•fit background

•1 •1 (c) (a) Ldt = 20.3 fb Ldt = 20.3 fb ∫ ∫ >120 GeV >120 GeV V T V T . The dijet-mass distribution observed in data (points with error bars) and expected = 8 TeV = 8 TeV s s 2 lep., 2 jets, 2 Medium+Tight tags ATLAS ATLAS Medium+Tight tags 1 lep., 2 jets, 2 incl. p incl. p 20 40 60 80 100 120 140 160 180 200 220 20 40 60 80 100 120 140 160 180 200 220 20 40 60 80 100 12020 140 160 180 40 200 220 60 80 100 120 140 160 180 200 220 1 1 0 2

80 60 40 20

1.5 0.5 1.5 0.5

700 600 500 400 300 200 100 100

Data/Pred Data/Pred Events / 25 GeV 25 / Events Events / 25 GeV 25 / Events fitted backgrounds, as expectedhistogram, from the scaled SM by (indicated thebackground as as factor expected indicated from the inlast pre-fit bin. MC the simulation. legend. The The sizeand entries of The in fitted the overflow dashed background are combined is included histogram statisticalsignal in indicated shows and and the by fitted systematic the the background uncertainty total hatched is on band. shown the in sum The the of ratio lower the of panel. signal the data to the sum of the (histograms) with the Mediumthe and text) Tight combined andregions the of three the intervals 1-leptonsignal with channel, regions (b) of theThe the 3-jet background 2-lepton signal contributions regions channel, afterhistograms. of and the the The (d) 1-lepton Higgs global the boson channel, fit 3-jet signal (c) of ( signal the the regions 2-jet dijet-mass of analysis the are 2-lepton shown channel. as filled Figure 11 JHEP01(2015)069 - c 15 ) in for 2 14 jet -tagging , b 1 , however to t t (jet 12 R and V bb -jet purity. It can be seen b discriminants, due to the inclusion of the -tagging algorithm are shown in figure b discriminant is similar to what was already VH VH – 29 – discriminants of the MVA are shown in figures VH backgrounds. As in the dijet-mass analysis, the 0-tag control regions are not 120 GeV. In these distributions, the four bins correspond to the four -tagged jet in the 1-tag control regions of the MVA, in the 2-jet category and V l b > V T Distributions of the output of the MV1c and p used in the global fit. for the for operating points and are orderedthat from these left distributions, to which right are inV increasing used c in the global fit, provide strong constraints on the accumulating at higher values ofobserved in the the BDT 2-tag signalwith regions a of larger the dijet-mass contribution analysis,the of namely MVA the selection. latter due to the looser requirement on ∆ Distributions of the BDT 2-tag signal regionsIt in can the be 2- seenjets and accumulate that 3-jet at the lower categories backgroundsMV1c values of dominated information of as by the the inputs light BDT 0-, to jets the 1- and, BDTs. and to The 2-lepton composition a of channels. lesser the extent, dominant backgrounds 7.4 Distributions in the multivariate analysis JHEP01(2015)069 VH -tagging BDT b =1.0) 20 µ × t VH(bb) VH(bb) ( Data 2012 Diboson t Single top W+hf W+cl Z+hf Z+cl Uncertainty Pre•fit background

0), and, unstacked as an •1 . (b) = 1 120 GeV for (a) 2-jet events and µ Ldt = 20.3 fb ∫ > V T p >120 GeV = 8 TeV V T s ATLAS tags 0 lep., 3 jets, 2 Medium+Tight p •1 •0.8 •0.6 •0.4 •0.2 0•1 •0.8 0.2 •0.6 0.4 •0.4 •0.2 0.6 0.8 0 1 0.2 0.4 0.6 0.8 1 1 4 3 2 1

10

1.5 0.5

10 10 10

Data/Pred Events / 0.22 / Events – 30 – = 125 GeV) is shown as a filled histogram on top of VH H BDT m =1.0) 10 µ × t VH(bb) VH(bb) ( Data 2012 Diboson t Single top Multijet W+hf W+cl Z+hf Z+cl Z+l Uncertainty Pre•fit background -discriminant distribution observed in data (points with error bars) and

•1 VH (a) Ldt = 20.3 fb ∫ . The BDT >120 GeV = 8 TeV V T s ATLAS tags 0 lep., 2 jets, 2 Medium+Tight p •1 •0.8 •0.6 •0.4 •0.2 0•1 •0.8 0.2 •0.6 0.4 •0.4 •0.2 0.6 0.8 0 1 0.2 0.4 0.6 0.8 1 1 5 4 3 2 •1 2 0 1

10

1.5 0.5

10 10 10 10 10

Data/Pred Events / 0.1 / Events hatched band. The ratio oflower panel. the data to the sum of the signal and fitted background is shown in the (b) 3-jet events. Thehistograms. background contributions The after the Higgsthe global boson fitted fit signal of backgrounds, the ( unfilled as MVA histogram, expected are scaled shown from by astotal the the filled background SM factor as indicated (indicated expected inand from as the the systematic legend. pre-fit uncertainty MC The on simulation. dashed the The histogram size sum shows of the of the combined the statistical signal and fitted background is indicated by the Figure 12 expected (histograms) for thecategories 0-lepton (also channel referred combining to the as 2-tag MM Medium and and TT Tight in the text) for JHEP01(2015)069 VH VH BDT BDT =1.0) =1.0) 80 40 µ µ × × t t VH(bb) VH(bb) VH(bb) ( VH(bb) ( Data 2012 Diboson t Single top Multijet W+hf W+cl W+l Z+hf Uncertainty Pre•fit background Data 2012 t Single top Multijet W+hf W+cl Uncertainty Pre•fit background

•1 •1 (d) (b) 120 GeV. The background > W T p Ldt = 20.3 fb Ldt = 20.3 fb ∫ ∫ 120 GeV, (c) TT 2-jet events with > >120 GeV >120 GeV = 8 TeV = 8 TeV V T V T s s ATLAS 1 lep., 3 jets, 2 Medium+Tight tags ATLAS 1 lep., 2 jets, 2 Medium tags p p W T p •1 •0.8 •0.6 •0.4 •0.2 0•1 •0.8 0.2 •0.6 0.4 •0.4 •0.2 0.6 0.8 0 1 0.2 0.4 0.6 0.8 1 •1 •0.8 •0.6 •0.4 •0.2 0•1 •0.8 0.2 •0.6 0.4 •0.4 •0.2 0.6 0.8 0 1 0.2 0.4 0.6 0.8 1 1 1 5 4 3 2 5 4 3 2 •1 2 0 1 1

10 10

1.5 0.5 1.5 0.5

10 10 10 10 10 10 10 10 10

Data/Pred Data/Pred Events / 0.25 / Events Events / 0.2 / Events – 31 – VH VH BDT BDT =1.0) =1.0) 20 60 µ µ × × 0), and, unstacked as an unfilled histogram, scaled by the factor t t VH(bb) VH(bb) VH(bb) ( VH(bb) ( Data 2012 Diboson t Single top Multijet W+hf Z+hf Uncertainty Pre•fit background Data 2012 Diboson t Single top Multijet W+hf W+cl W+l Z+hf Uncertainty Pre•fit background . = 1 µ -discriminant distribution observed in data (points with error bars) and -tagging categories (also referred to as MM and TT in the text) combined

b •1 •1 (c) VH (a) 120 GeV, (b) MM 2-jet events with Ldt = 20.3 fb Ldt = 20.3 fb ∫ ∫ ≤ = 125 GeV) is shown as a filled histogram on top of the fitted backgrounds, as expected T W . The BDT p >120 GeV <120 GeV = 8 TeV = 8 TeV H V T V T s s 1 lep., 2 jets, 2 Tight tags ATLAS ATLAS tags 1 lep., 2 jets, 2 Medium+Tight p p m 120 GeV, and (d) MM and TT combined 3-jet events with •1 •0.8 •0.6 •0.4 •0.2 0 0.2 0.4 0.6 0.8 1 •1 •0.8 •0.6 •0.4 •0.2 0 0.2 0.4 0.6 0.8 1 •1 •0.8 •0.6 •0.4 •0.2 0•1 •0.8 0.2 •0.6 0.4 •0.4 •0.2 0.6 0.8 0 1 0.2 0.4 0.6 0.8 1 1 1 4 3 2 2 5 4 3 •1 0 2 1

10

1.5 0.5 1.2 0.8 >

10 10 10 10 10 10 10 10

Data/Pred Data/Pred Events / 0.14 / Events Events / 0.2 / Events W T signal ( from the SM (indicatedindicated as in the legend.pre-fit MC The simulation. dashed The histogramof size shows the of the signal the total and combined backgroundsum statistical fitted and of as background systematic is the expected uncertainty indicated signal from on by and the the the fitted sum hatched background band. is shown The in ratio the of lower the panel. data to the expected (histograms) for thethe 2-tag Medium signal and regions Tight ofand the with 1-lepton channel forp (a) 2-jet events with contributions after the global fit of the MVA are shown as filled histograms. The Higgs boson Figure 13

JHEP01(2015)069

hw ntelwrpanel. lower the in shown

u ftesga n te akrudi niae ytehthdbn.Tertoo h aat h u ftesga n te akrudis background fitted and signal the of sum the to data the of ratio The band. hatched the by indicated is background fitted and signal the of sum

hw h oa akruda xetdfo h r-tM iuain h ieo h obndsaitcladsseai netit nthe on uncertainty systematic and statistical combined the of size The simulation. MC pre-fit the from expected as background total the shows

1 = µ as (indicated SM the from ) n,usakda nufildhsorm cldb h atridctdi h eed h ahdhistogram dashed The legend. the in indicated factor the by scaled histogram, unfilled an as unstacked and, 0), .

H 2 e)i hw safildhsormo o ftefitdbcgons sexpected as backgrounds, fitted the of top on histogram filled a as shown is GeV) 125 = m ( signal boson Higgs The histograms. filled as shown

T T

2 e,ad()3jteet with events 3-jet (c) and GeV, 120 > p with events 2-jet (b) 2 e.Tebcgon otiuin fe h lblfi fteMAare MVA the of fit global the after contributions background The GeV. 120 > p

Z Z

T

tgigctgre as eerdt sM n Ti h et o a -e vnswith events 2-jet (a) for text) the in TT and MM as to referred (also categories -tagging b Tight and Medium 2-tag the combining 2 GeV, 120 ≤ p

Z

H V dsrmnn itiuinosre ndt pit iherrbr)adepce hsorm)frte2lpo channel 2-lepton the for (histograms) expected and bars) error with (points data in observed distribution -discriminant BDT The . 14 Figure

(a) (c) (b)

VH VH VH BDT BDT BDT

1•. 06•. 020020406081 0.8 0.6 0.4 0.2 0 •0.2 •0.4 •0.6 •0.8 •1 1•. 06•. 020020406081 0.8 0.6 0.4 0.2 0 •0.2 •0.4 •0.6 •0.8 •1 1•. 06•. 020020406081 0.8 0.6 0.4 0.2 0 •0.2 •0.4 •0.6 •0.8 •1

0 0 Data/Pred Data/Pred Data/Pred

0.8 0.5 0.5

1 1 1

1.5 1.5 1.2

2 2 1•. 06•. 020020406081 0.8 0.6 0.4 0.2 0 •0.2 •0.4 •0.6 •0.8 •1 1•. 06•. 020020406081 0.8 0.6 0.4 0.2 0 •0.2 •0.4 •0.6 •0.8 •1 1•. 06•. 020020406081 0.8 0.6 0.4 0.2 0 •0.2 •0.4 •0.6 •0.8 •1 – 32 –

10 10

•1 •1

10

1 1

10

2

10

10

10

3

10

80 × VH(bb) 20 × VH(bb)

2

10

Pre•fit background Pre•fit Pre•fit background Pre•fit 20 × VH(bb)

2

Uncertainty Uncertainty Pre•fit background Pre•fit

Z+cl Z+l Uncertainty 10

4

10

Z+hf Z+cl

Z+cl Events /0.22 Events /0.18 Events /0.25

T T T

3

p p p <120 GeV <120 >120 GeV >120 >120 GeV >120

Multijet Z+hf Z+hf 10 V V V

3

Single top Single Single top Single Single top Single

2 lep., 2 jets, 2 Medium+Tight tags Medium+Tight 2 jets, 2 lep., 2 2 lep., 2 jets, 2 Medium+Tight tags Medium+Tight 2 jets, 2 lep., 2 2 lep., 3 jets, 2 Medium+Tight tags Medium+Tight 2 jets, 3 lep., 2

t t t t t t

∫ ∫ ∫

fb 20.3 = Ldt TeV 8 = s fb 20.3 = Ldt TeV 8 = s fb 20.3 = Ldt TeV 8 = s

Diboson Diboson Diboson 10 •1 •1 •1

10

5 4 =1.0) µ ( VH(bb) =1.0) µ ( VH(bb) =1.0) µ ( VH(bb)

ATLAS ATLAS ATLAS

10

Data 2012 Data Data 2012 Data Data 2012 Data 4

JHEP01(2015)069

h oe panel. lower the

inladfitdbcgon sidctdb h ace ad h ai ftedt otesmo h inladfitdbcgon ssonin shown is background fitted and signal the of sum the to data the of ratio The band. hatched the by indicated is background fitted and signal

oa akruda xetdfo h r-tM iuain h ieo h obndsaitcladsseai netit ntesmo the of sum the on uncertainty systematic and statistical combined the of size The simulation. MC pre-fit the from expected as background total

. 1 = µ as (indicated SM ) n,usakda nufildhsorm cldb h atridctdi h eed h ahdhsormsosthe shows histogram dashed The legend. the in indicated factor the by scaled histogram, unfilled an as unstacked and, 0),

H 2 e)i hw safildhsormo o ftefitdbcgons sepce rmthe from expected as backgrounds, fitted the of top on histogram filled a as shown is GeV) 125 = m ( signal boson Higgs The histograms. filled as

f8% 0,6% 0,ie,the i.e., 50%, 60%, 70%, 80%, of jtprt nrae rmlf orgt h akrudcnrbtosatrtegoa to h V r shown are MVA the of fit global the after contributions background The right. to left from increases purity -jet b

-etncanl h etbnbudre eoeteoeaigpit ( points operating the denote boundaries bin left The channel. 2-lepton sdfie nsection in defined as ) OP MV1c(b) tgigefficiencies -tagging b to corresponding , 4

T h -a oto ein fteMAi h -e aeoywith category 2-jet the in MVA the of regions control 1-tag the 2 e a nte0lpo hne,()i h -etncanl n c nthe in (c) and channel, 1-lepton the in (b) channel, 0-lepton the in (a) GeV 120 > p

V

tgigagrtmosre ndt pit iherrbr)adepce hsorm)for (histograms) expected and bars) error with (points data in observed algorithm -tagging b MV1c the of output the of Distribution . 15 Figure

(a) (b) (c)

MV1c(b) OP MV1c(b) MV1c(b) OP MV1c(b) MV1c(b) OP MV1c(b)

07 05 0 50 60 70 80 07 05 0 50 60 70 80 07 05 0 50 60 70 80

Data/Pred Data/Pred Data/Pred

0.95 0.95 0.95

1 1 1

– 33 – 1.05 1.05 1.05

1000

5

10

2000

10

20

3000

15 420 × VH(bb)

4000 Pre•fit background Pre•fit

30

Uncertainty 620 × VH(bb)

Z+l Pre•fit background Pre•fit

20

Z+cl Uncertainty 5000

Z+hf Z+l 320 × VH(bb)

40

W+l W+l Pre•fit background Pre•fit

W+cl W+cl Uncertainty 6000 25

W+hf W+hf Z+l

T T T

p p p >120 GeV >120 >120 GeV >120 >120 GeV >120

Multijet Multijet Z+cl

V V V

50

Single top Single Single top Single Z+hf

7000

0 lep., 2 jets, 1 tag 1 jets, 2 lep., 0 1 lep., 2 jets, 1 tag 1 jets, 2 lep., 1 2 lep., 2 jets, 1 tag 1 jets, 2 lep., 2

30

t t t t t t

∫ ∫ ∫

fb 20.3 = Ldt TeV 8 = s fb 20.3 = Ldt TeV 8 = s Ldt = 20.3 fb 20.3 = Ldt TeV 8 = s

Events Events Events

Diboson Diboson Diboson •1 •1 •1

=1.0) µ ( VH(bb) =1.0) µ ( VH(bb) =1.0) µ ( VH(bb)

ATLAS ATLAS ATLAS 8000

60 Data 2012 Data Data 2012 Data Data 2012 Data

35

× × 10 10

3 3 JHEP01(2015)069 t t → ]. Z 66 ] related (and thus 61 of 100 GeV, miss T +jets and miss T E E µν → W 120 GeV. The associated > ], with a separate contribution miss T interval of the 0-lepton channel E 74 -tagging efficiencies for simulated , as are the much smaller uncer- b miss T miss T E E = 20 GeV to less than 5% for jets with ]. The T p 64 , 63 – 34 – -jets. Small uncertainties on the corrections ap- b -jets, the precision is driven by an analysis of b range, for jets with η trigger, an efficiency correction is derived from miss T E of 20 GeV and 1 TeV, respectively. An additional specific uncertainty of about -tagging efficiencies for the different jet flavours are measured in both data and also comes from the uncertainties on the energy calibration (8%) and resolution b T ) intervals, and reach about 3% for the low p V T miss +jets events. This correction amounts to 4.5% for events with an T 200 GeV. p -jets. The total relative systematic uncertainty on the JER ranges from about 10% to The The JES uncertainties are propagated to the Several sources contribute to the uncertainty of the jet energy scale (JES) [ For electrons and muons, uncertainties associated with the corrections for the trigger, For the − E b > µ + T simulation using dedicated event samplesjets [ are corrected withindepend intervals on between the operatingevents jet points in kinematics. by final MC-to-data states For SFs, containing which two leptons. The MC-to-data SFs are close to unity, 20%, depending on the p tainties related to thethe energy and momentum(2.5%) calibration of of calorimeter leptons. energy clusters An not associated uncertainty with on any reconstructed object [ with a 1%–2% affects the energyplied calibration to of improve the dijet-massare resolution also are considered also included. forfor the Corrections and jet uncertainties energy resolution (JER) [ e.g. to uncertainties fromthe in flavour composition situ of calibration jetscorrelated analyses, in components, pile-up-dependent different these event are corrections classes. treated and relative as After systematic independent being uncertainties sources decomposed in on into the the un- analysis. JES The range total from about 3% to 1% for central jets (100–120 GeV). reconstruction, identification and isolation efficiencies areon taken energy into and account. resolution Uncertainties corrections ofuncertainties the is leptons very are small, also considered. typically less The than impact of 1%. these µ the threshold required in the analysis,uncertainties and arise is from below the 1% statistical for uncertaintiesin of this the method two and differences eventhigh observed classes. They are very small (below 1%) for the high All relevant experimental systematicthe uncertainties are trigger considered, selection, such theand as object momentum those reconstruction affecting calibrations andthe and identification, following. resolutions. and the object The energy most relevant ones are discussed in The systematic uncertainties discussedthose in related this to section theelling multijet are: of background the those estimation; simulated of and backgrounds those experimental and associated Higgs origin; boson with8.1 signal. the mod- Experimental uncertainties 8 Systematic uncertainties JHEP01(2015)069 -jets c and on T p -jets in the - and c b to the closest R . Half of the correction range, reaching 5% for 1%) background, uncor- ranges. For 4 T ∼ η p -jets are decomposed into 15 , a correction to c and 4 T p – 35 – ], from a preliminary calibration of the luminosity -tag categories. The MJ background in the 2-lepton 20 b jet)] values defining the B and D regions of the ABCD method, , miss T -tagging fractions measured in region D by those measured in region b E ( φ samples, for which parameterised tagging is used, is applied at low ∆ In the 1-lepton channel, shape uncertainties are assessed in the various regions by In the 1-lepton channel, normalisation uncertainties arise from the statistical uncer- The uncertainty on the integrated luminosity is 2.8%. It is derived, following the same A 4% uncertainty on the average number of interactions per bunch crossing is taken = 20 GeV and 8% above 200 GeV. The uncertainties, which depend on T an alternative template isterval, constructed and with a another track-based alternative4% isolation template interval. in with In the the a 12% muonare calorimeter-based to sub-channel, 50% isolation compared the in- results in with obtained the thoseby with 0% the obtained track-based nominal to isolation with MJ intervals tighter template of or 7%–9.5% looser and isolation 9.5%–50%, requirements, respectively. defined Furthermore, and 22% in thecorresponding LL, uncertainties MM are about and threeMJ-enriched TT times samples. categories, larger respectively. because of In the the smaller muon size sub-channel, ofcomparison the the of evaluations obtained using MJ-enrichedments samples different defined by from isolation those require- applied in the nominal selections. In the electron sub-channel, tainties of the multijet fitsperformed and from to uncertainties construct on the thein non-MJ MJ the background templates. subtractions LL, Normalisationinclusively MM in uncertainties and the are TT 2-tag alsoof categories regions assessed the and to electron in cover sub-channel, the differences the individual between categories. overall multijet normalisation In fits uncertainties the amount performed 2-jet to 2-tag 11%, region 14% and by replacing the B. A systematic uncertainty ofrelated 100% between 2- is and assessed 3-jet, forchannel 1- this and is small 2- also ( at the per-cent level, and an uncertainty of 100% is assigned. into account. 8.2 Uncertainties onIn the the multijet backgrounds 0-lepton channel,varying the the min[∆ robustness of the MJ background estimation is assessed by methodology as that described inscale ref. derived [ from beam-separationthe scans signal performed and backgrounds in estimates November that 2012. are taken It from is simulation. applied to are decomposed into tenfurther components, accounted uncertainties for are in addedobtain generator for specific the MC-to-data applicationis SFs as of used explained as the in systematic additional section V uncertainty. cc MC-to-MC As SFs discussed to jet. in section Half of this correction is assigned as a systematic uncertainty. p the interval between operating points,the are ten decomposed most into significant uncorrelatedcomponents ones components have are a and kept negligible in impact.components, and the The the analysis. uncertainties uncertainties on on It light jets, was to checked which the that analysis the is neglected much less sensitive, with uncertainties at the level of 2–3% over most of the jet JHEP01(2015)069 distribution ]. A system- ). It is found T 73 p for the electron ]), by the parton ), by the amount distributions, the , or by the imple- 75 V T ) are compared, fo- 7.1 p pythia . ]+ pythia herwig 77 9.2 [ , which is therefore used to + ]+ pythia + 76 [ , the top-quark 7 ), by the implementation of the alpgen alpgen AcerMC with HERAPDF [ powheg background in the 2-jet category is left herwig mc@nlo t + t pythia + – 36 – generator ( powheg t t reweightings mentioned in section distributions. For the MVA, systematic uncertainties As explained in section +light jets. In other cases, uncertainties are assessed by powheg W T bb W p m discriminant are covered by the assigned uncertainties. ) and 2 . VH 5 +jets and jet , Z 1 (jet R discriminant, this uncertainty is sufficient to cover all variations observed with the VH In the global fit, the normalisation of the The predictions of the nominal A summary of the systematic uncertainties affecting the modelling of the backgrounds A given source of systematic uncertainty can affect different analysis regions. Whether Details of the assessment of systematic uncertainties are provided below in the con- that, in general, the largestassess deviations further are systematic observed uncertainties for as explained below. floating freely, independently inthe each 3-to-2-jet of ratio the is lepton estimated channels. from the An generator uncertainty comparisons of explained 20% above. on In the tors differing by the PDFshowering choice and ( hadronisation schemeNLO ( matrix element andof the initial- matching and scheme final-state ( mentation radiation of (ISR/FSR) using higher-order tree-level matrix elements ( Top-quark-pair background. is reweighted at generator level to bringatic it uncertainty into amounting agreement to with half measurement [ of this correction is assigned, correlatedcussing across channels. on the 1-lepton channel selection, with those obtained using a variety of genera- such an uncertainty should beresulting treated from as correlated the or global notthe fit depends procedures should on leading be whether to constraints propagated such from decisions one are region provided to incan section another. be Details found in of table BDT different generators, it isin considered addition to on be the sufficient.variations of next If the most BDT not, discrepant an variable uncertainty and is the considered procedure is iterated until all text of the MVA.generators, When all systematic relevant uncertainties variables arelargest are derived discrepancy considered from in independently. a some generator comparison Theuncertainty with between variable covering respect showing this to the the discrepancy, nominal which generator is is symmetrised. assigned an If, once propagated to the flavour composition andaffecting the the other variablespossible, used dedicated as control inputs regions areThis to used is the the to BDTs case extract are for informationcomparison also directly of from considered. MC the predictions data. Whenever based on a variety of generators with the nominal ones. sub-channel are taken as systematic uncertainties. 8.3 Uncertainties on theThe modelling physics-modelling of systematic the uncertainties simulated evaluatedused focus backgrounds in on the the global quantities fit, that are i.e., those affecting the jet multiplicities, the half of the ∆ JHEP01(2015)069 , . bb m pro- frame- W t 120 GeV herwig -channel, s acerMC ]+ < , of the order -channel and V T . For 82 s V T , p p 81 interval: for 2-jet [ madgraph-5 7 V T p for the acerMC production with mc@nlo 120 GeV, and for 2- and 3-jet : 15%), and typically 20% for pythia -channel at low W t V T > t + = 50 GeV, it decreases it by 1% ]. p distribution of the leading jet in 120 GeV. This uncertainty is not V T formalism and the 78 bb T > p p ; for distribution in the 1-lepton channel, m V T p miss T powheg E -channel) are compared, after the 1-lepton production, which need to be considered. mc@nlo t -channel with a t t t mc@nlo 120 GeV interval. Finally, the same approach distribution, from which a 7.5% uncertainty is – 37 – V T = 50 GeV, it decreases it by 40% at 200 GeV. A 120 GeV and > p and for the bb V T < 120 GeV and p m V T The theoretical uncertainties on the cross sections of < p V T shape for 3-jet events, where the corresponding shifts are ; and for the is based on the p pythia bb production. The first uncertainty is on the shape of the acerMC production, respectively [ + m interval for 2-jet events where, when a shift from the nominal distribution is also studied with the same set of generators, W t W t V T bb mc@nlo p mc@nlo m ]. The former is used in the nominal generation, and the second for acerMC 83 , and production (except for 3-jet events at high -channel, and interval for 2-jet events. t 120 GeV. The associated variation is larger in the higher herwig ]. W t V T + p > 80 production; , V T 79 -channel. p In addition to the acceptance uncertainties, the effects of the model variations described Uncertainties on the acceptance for each of the three processes are taken as the largest The predictions of the nominal generators ( The same procedure is used for the The shape of the s W t Event generation with a 7 -channel, second uncertainty is on the 25% and 20%. Finally,the a low third uncertainty is on the work [ above on variables input to the BDTare are found evaluated to and three be shape neededdistribution systematic in uncertainties in the high model increases the rate by 20% for deviations observed, separately for events. They can be asof large 5% as for 52% for 2-jetthe events in the For all three processes, theduction, impact there of are ISR/FSR isTwo interference methods evaluated effects are using available with for this:tion (DS) the Diagram schemes Removal [ (DR)comparison. and the Diagram Subtrac- for channel selection, with thosethe obtained comparison is using made apowheg with variety of generators. For the applied in the 0- and 2-lepton channels. Single-top-quark background. the three processess contributing to single-top production are 4%, 4%, and 7% for the at 200 GeV; the effect is similar, but of oppositeassessed sign, on for the 3-jet normalisation events. calls of for the a shapedifferent systematic but uncertainty correlated on between the and uncorrelated with the 2-lepton channel. leading to correlated shapeand uncertainties for 2-events, and when 3-jet it events, increases and the distribution for by 3% for global fit, this uncertainty is treated as correlated between the 0- and 1-lepton channels, JHEP01(2015)069 ) F Zb Zb Zc µ and , of W bb com- + + back- Zl Zc Zl Zc and . 2 W cl / 1 pythia8 2] ) reweighting, W cl / + 2 ) 2 reweightings are ) jet b ( , Z T 1 T are covered by this p p + (jet powheg ) reweighting is applied 2 ) and factorisation ( φ ) 2 R b components, uncorrelated ) and ( µ 2 jet T , sherpa p 1 jet background are taken directly , W cl + ( 1 2 b (jet and background are determined from m φ +hf events, yielding 12% for each W l (jet and . Comparisons are also made be- components. The notation Z + +hf. The same procedure is used to Zl φ generator in the 2-tag region of the 2 Z ) +hf components are assessed through Zb W l , a ∆ , ∆ W Z ( 7 + background, for which dedicated control 7 alpgen T p herwig Zc + + and sherpa W bb 2 W – 38 – and m with renormalisation ( Zcl and 20% for = [ Zl F alpgen reweighting, uncorrelated systematic uncertainties of uncorrelated between 2- and 3-jet samples. µ Zcl backgrounds are left free in the global fit. The uncer- Z T = bb p / R mc@nlo µ Zbb bl components, respectively. For the ∆ generator are compared to those of ] and of distribution is compared between data and simulation in the Zb and with the nominal As explained in section 84 As explained in section bb [ + , with m bb Zcl Zc / component, no reweighting is applied but a systematic uncertainty is sherpa bc components. Uncorrelated systematic uncertainties amounting to half of and alpgen W b and Zl W cl + herwig++ bb / + and components. The differences between cc W cc components. independently modified by factors of 2 or 0.5 and also with different PDF sets , W l Zc 8 bb Zb / To assign further uncertainties on the The normalisation and the 3-to-2-jet ratio for the The shape of the The normalisation and the 3-to-2-jet ratio for the The nominal scales are taken as + +jets background. 8 bl +jets background. mc@nlo predictions of the a tween samples generated with a scales ground is also assignedbackgrounds an are uncertainty left of free 10%. in the The global normalisations fit. ofregions the are nottor available level, in with the kinematic data, selections extensive mimicking comparisons those are applied performed after at reconstruction. genera- The assigned, equal to the fullbetween correction 2- applied and to 3-jet the events. from simulation, both withbetween a data 10% and uncertainty. prediction This in is the based 0-tag on sample. the The agreement 3-to-2-jet observed ratio for the uncertainty. W to the the correction are assigned toFor these the two components, for each of the 2- and 3-jet categories. 2-tag region of the 2-leptonuncertainty channel, is excluding derived the that, 100–150 GeV when range,it it from decreases increases which the it a dijet-mass shape by distributionZb 5% by at 3% 200 at GeV. 50 GeV, This uncertainty is applied uncorrelated to the tainties on the 3-to-2-jeta ratios comparison for of the 2-lepton channel; these are 26%estimate for uncertainties on theof flavour fractions within half the correction are assignedis to meant the to indicate thatand a systematic uncertainty is treated as correlated betweendata the in the 0-tagnormalisations region of the of the 2-lepton channel, both with an uncertainty of 5%. The applied to the a systematic uncertainty amountingponent, to while half an of uncertaintycomponents. the amounting to This correction is the is done full assigned separatelytreated correction for to as is 2- uncorrelated. the and assigned 3-jet to For events, the the and all these uncertainties are Z JHEP01(2015)069 ; > are V T pairs p WW . The gener- b b by factors cc/bb . For F alpgen µ V T , it is further- p distribution by and pythia8 and + and W T W cc p R + µ bc/bb sherpa W bb production is affected by powheg interval, to two uncorrelated at NLO in QCD. The sources VZ V T . For p +hf processes. Shape uncertain- W channel and intermediate for mcfm W bc + intervals and in exclusive 2- and 3-jet ZZ V T intervals (with the three highest intervals p , the production of light flavours and heavy and 12% for each of W bl lineshape in W T p ]). As a result, a 10% uncertainty is assigned b b distributions. When the former increases the 85 and – 39 – bl/bb W T → p alpgen Z W cc + and -partons, is used to remove the overlap between bb b intervals (with the three highest intervals correlated for the m W bb , W T The uncertainties on the cross sections for diboson production p ]. This procedure leads, in each W cl 86 , is uncorrelated between ) are assessed at parton level using W l +hf samples: 35% for ], i.e., using the envelope of predictions from the CT10, MSTW2008NLO, ZZ W bl/bb 87 channel, roughly half this size in the and dependence observed. separation between = 50 GeV, it decreases it by 23% at 200 GeV. It is taken as correlated for all V T R W T p p WZ WZ , The shape of the reconstructed The uncertainties due to the PDF choice are evaluated according to the PDF4LHC rec- The scale uncertainties are evaluated by varying simultaneously Predictions using the inclusive production of all flavours by +hf processes, and uncorrelated between the 2- and 3-jet samples. WW and NNPDF2.3 PDF setswith and no their associated uncertainties. They range from 2%the to parton-shower 4%, and hadronisationsessed model. by comparing A the shape-only lineshapes obtained systematic with uncertainty the is nominal as- 200 GeV, the two uncertainties affectingin the the 2-jet category can beand as the large uncertainty as affecting 29% the and 3-jet 22% category is aboutommendation 17% [ in all channels. categories, the uncertainties are evaluated forcategories each channel (2 separately and in those 3 intervalsthe and final-state prescription partons of within ref. the [ uncertainties nominal in selection the acceptance) following 2-jetthe category, removal of one 3-jet for events,uncertainty and 2+3 in to jets one the inclusively in 2-jet the and category. 3-jet one category These associated anti-correlated uncertainties with with the are latter largest at high of uncertainty considered are thePDFs. renormalisation and The factorisation nominal scales scales and aresystem the dynamically and choice set the of to nominal half PDFs of are the the invariant mass CT10 of set. of the 2 diboson or 0.5. Since the analysis is performed in uncertainty on correlated for the dijet-mass analysis). Diboson background. ( element and parton-shower levels. (For flavours are performed separately at theon matrix-element the level; a ∆ dedicated procedure,produced based at the matrix-element andassigned parton-shower levels.) in The the following uncertainties are dijet-mass analysis). When the9% latter for shape uncertainty increasesW the compared after full reconstruction and eventfractions selection that to assign take uncertainties on properly the flavour into account heavy-flavour production at both the matrix- to the 3-to-2-jet ratio,ties taken as are correlated also between assesseddijet-mass all for distribution by the 23%as at uncorrelated 50 GeV, for it decreasesmore uncorrelated it among by 28% at 200 GeV. It is taken (CT10, MSTW2008NLO and NNPDF2.3 [ JHEP01(2015)069 shape samples to reach V T p V T production, p ZH → ZH gg and of PDFs. F µ . Acceptance variations varied independently by F , a conservative uncertainty and µ R µ ZH herwig and samples, when they increase the → R ] is used, after kinematic selections spectrum is seen to be affected, and . The uncertainties on these cross spectrum associated with the NLO q H µ ) q V T 86 3 ]. The contribution of decays to final V T p p 120 GeV interval, where the variation is 11 and with and W/Z > ( , with samples. V T p → signal samples are normalised respectively to WH . The relative uncertainty on the Higgs boson ZH q – 40 – q production. It is larger (3%) for → → pythia8 ZH q ZH pythia8 q = 125 GeV [ gg → → WH , respectively, for the 2- and 3-jet categories combined, H m gg gg samples. There is no evidence of a need for ZH . The same procedure leads to PDF uncertainties of 2.4% → ZH ZH , and ] are typically at the level of 2%, increasing with = 50 GeV, they decrease it by 3% at 200 GeV. These variations gg interfaced to → 38 interfaced with . V T → interval. ZH p 5 . The relative difference between the shapes is 20% for a dijet mass gg and is 3.3% for q V T is verified to amount to less than 1% after selection. q → p b and 17% for b b q b ZH q H powheg ) , powheg → herwig q q ] include those arising from the choice of scales WH W/Z , ( 88 tunes. The effect of the parton-shower modelling is examined by comparison of → → q WH q q The effect of the underlying-event modelling is found to be negligible, using various A summary of the systematic uncertainties affecting the modelling of the Higgs boson The applied uncertainties on the shape of the Acceptance uncertainties due to the PDF choice are determined in a similar way, Acceptance uncertainties due to the choice of scales are determined from signal samples The scale uncertainty is 1% for q → q signal is given in table pythia simulations by of 8% are seen, exceptat for the 3-jet level events of in 13%. the These variations are taken as systematic uncertainties. to 5% inuncertainties the related 3-jet to the PDFs. electroweak corrections [ 2.5% in the highest shape uncertainties are derived.distribution For by the 1% for are 2% and 8%, respectively, for the following the PDF4LHC prescription. They range from 2% in the 2-jet applied at generator level, leadingq to acceptance uncertainties ofand 3.0%, of 4.2%, 3.4% 3.6% and and 1.5%with 3.3% for an for acceptance the uncertainty 3-jet associated category. withcategory the The to removal latter form of uncertainty the 3-jet is 2-jet events anti-correlated from category. the In 2+3-jet addition, the branching ratio to states other than generated with factors of 2 or 0.5. The procedure advocated in ref. [ sections [ due to the contribution of thescale gluon-gluon uncertainties initiated are process. similar (1%) Under for theof assumption 50% that is the inferredfor for around 125 GeV. 8.4 Uncertainties onThe the signal modelling their inclusive cross sections as explained in section ator and with JHEP01(2015)069 ) W t ) ) gg gg S S S S S S S S ), 17% ( 5% 26% 20% 12% 10% 10% 35% 12% 20% ), 50% ( 7.5% q 100% 3.3 % q q 2%–5% 2%–4% 8%–13% 3%–52% 3%–29% 2%–60% q 1.5%–3.3% 3.3%–4.2% -channel), 7% ( t -, s 1% ( 2.4% ( 4% ( t t +jets +jets Signal – 41 – Z W Multijet Diboson Single top ratio miss T bb bb E m m , , , bb W bb / V T V T m p p , ratio ), ), T W cc 2 2 V T p ratio ratio p , jet jet +hf 3/2-jet ratio , , 1 1 1 Zbb b T W W bb W bb p / 3/2-jet ratio , / normalisation, 3/2-jet ratio , shape (scale) shape (NLO EW correction) (jet (jet normalisation, 3/2-jet ratio bb bb φ φ +hf 3/2-jet ratio +hf/ V T V T Cross section (scale) Cross section (PDF) Branching ratio Acceptance (scale) 3-jet acceptance (scale) p Acceptance (PDF) p Acceptance (parton shower) Zl Zcl Z Z ∆ W l W cl W bl W bc ∆ 3/2-jet ratio High/low- Top-quark Cross section Acceptance (generator) m Cross section and acceptance (scale) Cross section and acceptance (PDF) m 0-, 2-lepton channels normalisation 1-lepton channel normalisation Template variations, reweighting . Summary of the systematic uncertainties on the signal and background modelling. An Table 5 “S” symbol is used when only a shape uncertainty is assessed. JHEP01(2015)069 . A binned b . In the dijet- b interval of the 6 , that multiplies V T µ p -tagging categories ] is used to extract b is shifted away from θ 90 , intervals, two number- 89 V T intervals, the two number- p . The parameterisation of -discriminant distributions θ discriminants in the 24 2-tag V T p VH VH distributions in the 81 2-tag signal distributions are combined in each c bb 1 . For each NP, the prior is added as a bins in the 38 regions of the MVA, to m θ bins in the 92 regions of the dijet-mass c c 1 MV interval of the 2-jet 1-tag category of the These BDT 1 9 V T p MV , which are constrained by Gaussian or log- -tagged jet in the 11 1-tag control regions of MV b θ – 42 – and ), which decreases it as soon as distributions in the 100–120 GeV bb -tagging categories (LL, MM and TT). Here and in the θ b m bb µ, 120 GeV intervals, which also results in 11 1-tag control ( m L > V T p -discriminant and distributions are to be understood as transformed distributions, as VH distributions of the -tagging categories. In the 1-lepton channel, the bb b . In the MVA, the inputs are the BDT c 1 m 6 MV 120 GeV and < V T p The impact of systematic uncertainties on the signal and background expectations is The different regions entering the likelihood fit are summarised in table While keeping distinct MM and TT categories in the 1-lepton channel improves the sensitivity, this is 9 its nominal value. Theare statistical included uncertainties of through background bin-by-bin predictions nuisance parameters. from simulation not observed for the 0-the and sensitivity 2-lepton in channels. all Keeping lepton the LL channels. category separated from the others improves to prevent normalisation factors fromof becoming signal negative in and the background fit.each events NP The in expected is each numbers chosen binlog-normally such are distributed that for functions a the of normallypenalty predicted distributed term signal to and the likelihood, background yields in each bin are analysis, and 251 BDT be used in the global fits. described by nuisance parametersnormal probability (NPs), density functions, the latter being used for normalisation uncertainties 2-jet 2-tag categories (LL, MM,inputs and TT) are of the the 0-leptonthe channel. MVA For selection the and MVA, additional 0-lepton in channel. the In 100–120 GeV the dijet-massof analysis, the the regions. Altogether, there are 584 signal regions defined by the threeof-jet lepton categories, channels, and up to two are LL, MM andcombined TT. MM In and the TTare 0- category supplemented and by (MM+TT). 2-lepton the channels, three they are the LL category and a mass analysis, the inputs toregions the defined “global by fit” three are the channelsof-jet categories (0, (2 1 or or 3), 2 andrest three leptons), of this up section, to five explained in section likelihood function is constructed asof the the product input of distributions Poisson-probability involving terms thebackground over numbers yields, the of taking bins into data account events the andand effects the of the expected the systematic signal floating and uncertainties. background normalisations 9.1 General aspects A statistical fitting procedure basedthe on signal the strength Roostats from frameworkthe the [ SM data. Higgs The boson signal strength production is cross a section parameter, times branching ratio into 9 Statistical procedure JHEP01(2015)069 , ≤ by 91 µ of the 0 p method [ BDT is an input to s 2-lepton bb distribution in the CL c m with its associated BDT 1 c ]. 1 µ discriminant”. For each 92 . Expected results are MV µ , BDT BDT ) MVA MV VH ˆ θ ≤ 1-lepton ˆ µ µ, (ˆ ) ) ≤ ∗ ∗ L ( ( / ) µ distribution, which is reoptimised. θ ˆ ˆ BDT BDT bb 0-lepton µ, ( m L = is obtained from the variation of 2 ln Λ intervals: five in the dijet-mass analysis and two µ . The results are presented in terms of: the µ 0 V T σ p 2-lepton interval of the 0-lepton channel, the MVA uses the – 43 – interval (100–120 GeV) of the 0-lepton channel where V T p 2 ln Λ c V T with Λ 1 p − bb bb bb µ m m m = MV 0 1-lepton q . These distributions are input to the fit for the 2-jet and 3-jet 2 ln Λ value is obtained by maximising the likelihood function with 2 − ) In the low µ Dijet-mass analysis ∗ = is then constructed from the profile likelihood ratio 10 µ µ q q 0-lepton is now defined without the constraint 0 µ are the parameters that maximise the likelihood with the constraint 0 are the nuisance parameter values that maximise the likelihood for a given . The fitted ˆ 1-tag 2-tag ˆ θ µ µ σ θ ˆ ˆ and Channel . The distributions used in each region by the likelihood fit in the dijet-mass analysis and LL MM TT µ , and µ While the analysis is optimised for a Higgs boson of mass 125 GeV, results are also The test statistic distributions in the LL, MM and TT 2-tag categories as well as the This type of pseudo-data sample is referred to as an Asimov dataset in ref. [ ]. To measure the compatibility of the background-only hypothesis with the observed ≤ 10 bb . This test statistic is used for exclusion intervals derived with the ˆ the BDTs. The MVA resultsfor for other each masses of are the thereforeprovided obtained masses in using the tested BDTs rest retrained at ofof 5 this GeV 125 GeV. section intervals refer between to 100 the and analysis 150 performed GeV. for a The Higgs details boson mass extracted for otheranalysis, masses. except for These the binningFor are the of MVA, obtained the it transformed is without observedfor that any which the change performance the degrades to BDTs for the are masses away trained. dijet-mass from 125 GeV, This is largely due to the fact that respect to all parameters.one The unit, uncertainty where Λ obtained in the sameby way as the the expectation observed fromfrom results simulation the by with fit replacing all to the the NPs data data. set in each to input their bin best-fit values, as obtained µ 92 data, the test statistic95% used confidence is level (CL)background-only upper hypothesis; limit and on theuncertainty the best-fit signal signal-strength strength; value the ˆ probability where ˆ µ are combined in them MVA. ( 1-tag category. Table 6 in the MVA applied toentry the listed, 8 there TeV are data. additionalin Here, divisions the “BDT” into stands MVA, for ascategories “BDT shown separately, in except table inonly the the low 2-jet category is used. In the 0- and 2-lepton channels, the MM and TT 2-tag categories JHEP01(2015)069 t t Zcl . As back- 7 lepton) and Zcl τ Zbb range probed , , and (fully leptonic V T b p ) Zbb W cl , `ν , background is almost t W cl → background is normalised t W bb , t , t t W t W bb background contributes quite , t t t t 12 05 10 15 04 09 14 ...... 0 0 0 0 0 0 0 ± ± ± ± ± ± ± 88 09 14 83 99 12 36 ...... leptons. Futhermore, the 0 1 1 0 0 1 1 Scale factor τ 100 GeV in contrast to being inclusive in the 1- – 44 – > , a large number of sources of systematic uncertainty V T p 8 2-lepton 1-lepton 0-lepton t t t Zcl Zbb W cl W bb t t t Process background is normalised in the 2-jet category independently in t t ) decay is missed, while in the 2-lepton channel it is likely that an q q , the (semileptonic decays) with a missed light-quark jet. Finally, in the 0- → 8 b ) 0 W q ( q b → → . Factors applied to the nominal normalisations of the t W As described in detail in section differently in the 2-tagthe 3-jet 2-lepton regions channel of onfrom the the a other. 0- and In 1-leptonISR the or channels 0- FSR on and jet one 1-leptonof is side, channels, lepton selected. it and channels, is This of the likely is systematic that the uncertainty a reason attached for jet to not correlating, the between 3-to-2 these jet two ratio sets for the and 2-lepton channels. are considered. The number ofappropriately nuisance uncorrelate parameters the is impact evenbackground of larger processes because the or care same across is source regionsavoids taken of unduly accessing to systematic very propagating uncertainty different constraints. across parts For of instance, phase the space. This into ( lepton channel, the main contributionsundetected are and from fully from leptonic semileptonicjet; decays decays with here with the again, two a the leptons is missed missed different lepton leptons in and are the often a 0-lepton missed channel: light-quark different between the three channels.entirely In due the to 2-lepton channel, eventsdecays) the with in all which final-state bothchannel, objects it top is detected quarks in (apart part decayundetected, due from and into to in the fully ( part neutrinos). leptonic to decays cases with where In one one the of of 1-lepton the the top leptons quarks (often decays a as above and the other processes. The correspondingas factors resulting applied from to thestated the global in nominal fit section background of normalisations theeach of MVA to the the leptonlepton 8 channels. TeV channels data, The is reason are that for shown uncorrelating the in the table regions normalisations of in phase the space three probed in the 2-jet category are very and systematic uncertainties. 9.2 Technical details The data have sufficient statistical power toNPs, constrain which the are largest background-normalisation left free to float in the fit. This applies to the Table 7 grounds, as obtained fromin the the global 2-jet MVA category fit independently to in the each 8 of TeV the data. lepton The channels. The errors include the statistical JHEP01(2015)069 VH W l and -tagging b W cl distributions of the φ backgrounds but, in the +jets processes, which is backgrounds. As explained W W b W l and and W cc W cl reweighting in the – 45 – φ ) is close to twenty thousand, which renders the fits highly σ 1 − ) variation. The limited size of the MC samples for some simu- σ 1 and ± σ backgrounds, uncorrelated with the uncertainty applied to the , this reweighting is not applied to the W b 7 and The behaviour of the global fit is evaluated by a number of checks, including how much Altogether, given the number of regions and NPs, the number of systematic-variation The fit uses templates constructed from the predicted yields for the signal and the related systematic uncertainties.the To expectations assess from these simulation and effects,their the comparisons observations source in are is the made investigated, data.systematic and between When uncertainties differences this by arise, means leads ofbeing in additional propagated a NPs. from number This one of kinematic is cases region to to prevent to a another uncorrelating constraint if further from this is not considered well moti- shape. This is onlyare done expected. for those This systematic procedurefactor uncertainties of reduces where two. the opposite-sign variations number of systematic-variation templates byeach a NP is pulled awayrespect from to its its nominal nominal uncertainty, value, and how which much correlations its develop uncertainty between is initially reduced uncor- with uncertainty is dropped ifall the bins). associated Additional template pruning variation criterialess are is than applied below 2% to of 0.5% regions the where (belowbackground the total 0.5% prediction signal background contribution in and by is where less theif than systematic the 0.5%. variations impact up- Furthermore, the and total shape down-varied uncertainties shapes are dropped are more similar to each other than to the nominal discriminant, and with at most one local extremum fortemplate a pairs dijet (+1 mass. time consuming. Toimpact address on this the issue, final results systematic are uncertainties pruned that away, have region a by negligible region. A normalisation (shape) the JES uncertainties, additionalthe statistical templates fluctuations of may systematic beto variations. introduced, each which systematic-variation In template affect suchstraints in cases, that each region. the a statistical smoothing Binsshapes uncertainty procedure are of in merged is the each based applied systematic-variation bin on templates should the remain be con- physical: less monotonous than for 5% a and BDT that the of systematic variations.reweighting of When the nominal the template,already impact no present statistical of in fluctuations a the areuncertainties. expected nominal systematic For beyond template. variation those, those no translates This specificvariation is into action may the is a taken. introduce case, On for changes the instance, in other for hand, the the when events a selected, systematic as is the case for instance with being of experimental origin. various backgrounds in theuncertainties bins are of encoded the in inputeach distribution templates up-and-down in of ( each variations region. relativelated to background The processes the systematic in nominal some template regions for can cause large local fluctuations in templates derived in the 0-tagin sample section and applied toabsence of the further information,W an cc uncertainty is assessedbackgrounds. for Altogether, the the ∆ fit has to handle almost 170 NPs, with roughly half of those background. Another example is the ∆ JHEP01(2015)069 W T p W bl/W bb . The five µ distribution is , shifted up or ˆ θ bb m distribution peaking at bb 120 GeV; on the m -quarks and produced in as- > b are dropped: those associated W T p µ set to unity, the SM value. Each of µ background normalisation; on the W bb is a measure of the observed impact of the µ – 46 – backgrounds for spectrum and with a and of its uncertainty are determined for both the +hf background; and on the signal acceptance due to bb T µ p W cc W boson has a signature very similar to the one considered boson decaying to a pair of and Z 120 GeV; on the ]. A large number of event samples are randomly extracted Z > or 93 W bb W T W p boson mass. For the MVA, the BDTs are retrained to discriminate with the NPs ordered by decreasing post-fit impact on ˆ Z 16 Since the same data sample is used for both the dijet-mass analysis and the MVA, the It is particularly useful to understand which systematic uncertainties have the largest values to be compared and their statistical correlation to be extracted. At the same ˆ in this analysis, butlower values. with The a cross section softer a is about mass five of times 125 larger GeV.procedure. than for For Diboson the the SM production dijet-mass Higgsreoptimised analysis, is boson for the therefore with the binning used of as the a transformed validation of the analysis time, the expected distributionsdijet-mass of analysis and ˆ the MVA. 9.3 Cross checksDiboson using diboson production production with a sociation with either a from the simulated samples, withthem the is signal representative strength ofexpected the yields integrated as luminosity well usedis as for of subjected the associated data to Poisson analysis bothµ fluctuations. in the terms Each dijet-mass of of these analysis event and samples the MVA, thus allowing the two fitted shape in the 3-jet categorythe for parton-shower the modelling. consistency of the twothe final “bootstrap” results, method i.e., the [ two fitted signal strengths, is assessed using ranking of the systematic uncertaintiesis obtained shown with in the figure MVAsystematic applied uncertainties to the with 8 the TeVdijet-mass data largest shape impact for are, the normalisation in ratio descending for order, those: on the negligible effect onwith the the expected muon fitted momentumone uncertainty scale of on and those ˆ resolution associatedgluon and with composition with the the of electron jet theassociated energy energy backgrounds, with resolution; which scale; the turn and difference out those to in associated be energy with fully the response correlated quark- between with quark those and gluon jets. The down by its fitted uncertainty,properly with into all the account other theof parameters correlations allowed the between to shift systematic vary so uncertainties.considered in as NP. the The to The take magnitude fitted sameof procedure signal its is strength associated repeated, ˆ using uncertaintytime to the and provide nominal its values therefore of expected to the impact. enable NP To and more reduce detailed the fit computation studies, some of the NPs which have a independently, which can also help to identify from which region eachimpact constraint originates. on the final results,purpose, and a so-called therefore ranking should of befit the considered NPs is is with performed established. greater again care. For with each the For systematic this uncertainty, corresponding the NP fixed to its fitted value, vated. The stability of the results is also tested by performing fits for each lepton channel JHEP01(2015)069 from ˆ θ for the µ -axis, when x modified upwards or µ µ µ 6 ∆ ˆ θ 0.2 2 θ ∆ )/ 0 0.15 4 θ 1.5 - θ Postfit Impact on Postfit Impact on 0.1 1 σ σ Normalisation +1 -1 Pull: ( , referring to the top 2 µ 0.5 0.05 to its post-fit value -1 0 0 0 θ -0.5 -0.05 -2 Ldt = 20.3 fb -1 – 47 – ∫ -0.1 -tagging uncertainties are decomposed into uncorrelated -4 -1.5 b =125 GeV -0.15 = 8 TeV, H s -2 m shape shape jj jj -axis, show the deviations of the fitted nuisance parameters m m x c c shape (2-jet) normalisation normalisation shape (3-jet) normalisation normalisation normalisation t V T V T V T b b b , Z+c , W+c > 120 GeV) b Jet energy scale 1 b V T Z+b W+b normalisation (2-jet) Jet energy resolution , expressed in terms of standard deviations with respect to their nominal Z+b b b-jet energy resolution > 120 GeV) 0 (p W+b W+HF p W+HF p V T Dilepton t b-jet tagging efficiency 4 -axis. The boxes show the variations of ˆ θ ttbar high p y ATLAS W+bl to W+b (p Z+bl to Z+b . The associated error bars show the post-fit uncertainties of the nuisance param- Signal acceptance (parton shower) -axis, show the fitted values and uncertainties of the normalisation parameters that θ x , the jet energy scale and on the . Impact of systematic uncertainties on the fitted signal-strength parameter ˆ µ 8.1 eters, relative to theirto nominal the uncertainties. bottom The openare circles freely floating with in their thein error fit. bars, section The also normalisation referring parameterscomponents; have a the pre-fit labels value 1 of one. and 4 As refer explained to such components. downwards by its post-fit uncertainty,and and open repeating areas the correspond fitcles, to as referring the explained to upwards in the and thetheir bottom downwards text. nominal variations, values The respectively. hatched Theuncertainties ∆ filled cir- Figure 16 MVA applied to the 8 TeVimpact data. on The systematic ˆ uncertaintiesfixing are the listed corresponding in individual decreasing nuisance order parameter of their JHEP01(2015)069 fits” VZ distributions bb m for 2-tag signal regions 17 = 125 GeV is included as a background, H m – 48 – with respect to the SM expectation, except for the left freely floating, to study the correlation between µ VZ µ and production, which is treated as a background and constrained VZ µ WW discriminants of the MVA are shown in figure VZ 120 GeV in the 2-jet category of the 0-, 1- and 2-lepton channels. > V T p As an additional check, fits are also performed with both the diboson and Higgs boson trained for that same mass, as well as the associated optimised binnings. of the BDT with signal-strength parameters the two strength parameters.with The binning fits optimised in for the a Higgs dijet-mass boson analysis mass use of the 125 GeV. The fits in the MVA use BDTs are performed, wherewith the a normalisation multiplicative of scale the factor small contribution diboson from contributions iswithin its allowed uncertainty. to A SM vary Higgswith boson a with production cross section at the SM value with an uncertainty of 50%. Distributions the diboson signal from all backgrounds (including the Higgs boson). So-called “

JHEP01(2015)069

n akrudi hw ntelwrpanel. lower the in shown is background and

inladbcgon sidctdb h ace ad h ai ftedt otesmo h fitted the of sum the to data the of ratio The band. hatched the by indicated is background and signal Z V fitted the on uncertainty Z V signal

h u ftetotal the of sum the inladbcgon sepce rmtepefi Csmlto.Tesz ftecmie ttsia n systematic and statistical combined the of size The simulation. MC pre-fit the from expected as background and signal Z V

niae ntelgn.Teexpected The legend. the in indicated otiuini hw nasmlrwya nufilddte itga.Tedse itga shows histogram dashed The histogram. dotted unfilled an as way similar a in shown is contribution Z V

inladohrbcgons n ntce sa nle itga cldb h factor the by scaled histogram unfilled an as unstacked and backgrounds, other and signal Z V fitted the of sum the of top on histogram filled a

H h V,ecp o h ig oo otiuin( contribution boson Higgs the for except MVA, the 2 e) h atri hw sepce rmteS idctdas (indicated SM the from expected as shown is latter The GeV). 125 = m )bt as both 0) . 1 = µ

-etncanl c h -etncanl The channel. 2-lepton the (c) channel, 1-lepton inladbcgon otiuin r hw sfildhsorm fe h global the after histograms filled as shown are contributions background and signal Z V tof fit Z V

T

h -e -a inlrgoswith regions signal 2-tag 2-jet the 2 e nteMdu M)adTgt(T aeoiscmie f()te0lpo hne,()the (b) channel, 0-lepton the (a) of combined categories (TT) Tight and (MM) Medium the in GeV 120 > p

V

Z V iciiatue nthe in used discriminant BDT the of Distribution . 17 Figure tosre ndt pit iherrbr)adepce hsorm)for (histograms) expected and bars) error with (points data in observed fit Z V

(a) (b) (c)

BDT discriminant, VZ discriminant, BDT BDT discriminant, VZ discriminant, BDT BDT discriminant, VZ discriminant, BDT

1-. 06-. 020020406081 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 1-. 06-. 020020406081 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 1-. 06-. 020020406081 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1

Data/Pred Data/Pred Data/Pred

0.8 0.5 0.5

1 1 1

1.5 1.5 1.2 – 49 –

1-. 06-. 020020406081 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 1-. 06-. 020020406081 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 1-. 06-. 020020406081 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1

1

10

10 -1

10

1

10

2

10 10

2

10

3

× × 10 VZ 30 VZ

10

× × 40 VH(bb) 40 VH(bb)

2 10

× Pre-fit background Pre-fit Pre-fit background Pre-fit 20 VZ 3

× Uncertainty Uncertainty 40 VH(bb)

Z+l Z+hf Pre-fit background Pre-fit

Z+cl W+l Uncertainty 10

10 Events /0.15 Events /0.25 Events /0.25

4

T T T

Z+hf W+cl Z+l

3

p p p >120 GeV >120 >120 GeV >120 >120 GeV >120

W+cl W+hf Z+cl V V V

10

W+hf Multijet Z+hf 4 0 lep., 2 jets, 2 Medium+Tight tags Medium+Tight 2 jets, 2 lep., 0 1 lep., 2 jets, 2 Medium+Tight tags Medium+Tight 2 jets, 2 lep., 1 2 lep., 2 jets, 2 Medium+Tight tags Medium+Tight 2 jets, 2 lep., 2

Single top Single Single top Single Single top Single

∫ ∫ ∫

Ldt = 20.3 fb 20.3 = Ldt TeV 8 = s

Ldt = 20.3 fb 20.3 = Ldt TeV 8 = s

Ldt = 20.3 fb 20.3 = Ldt TeV 8 = s

t t t t t t

10

-1 -1 -1

VZ VZ VZ

4

10

ATLAS ATLAS ATLAS

µ µ µ

=1.0) ( VH(bb) =1.0) ( VH(bb) =1.0) ( VH(bb) 5

Data 2012 Data Data 2012 Data Data 2012 Data 10 5 JHEP01(2015)069 carried -tagging T b 40 GeV is p 4 from any . . > 0 trigger is used W T 18 m 25 GeV is imposed R < miss T E > ) reweightings to the 2 2). jet miss T , ≥ 1 E interval is not used, and the control region in the 2-lepton (jet φ , but µ V T – T p e H -tagging operating points, are not available b 160 GeV, and the events selected only by the -dominated +jet backgrounds are determined in the 1- and t – 50 – t -tagging operating point, a single 2-tag category V > b , and applied as ∆ V T W T p p ] instead of MV1c, with a single operating point to define 97 – ]. The transverse energy threshold for loose electrons is set 94 53 is not applied. In the 1-muon sub-channel, the distributions in the electron and muon sub-channels, respectively. i 160 GeV; there is no requirement on jet T < p miss T +jet components in all channels. Selected dijet-mass distributions showing W T E P Z p 200 GeV. In the 2-lepton channel, no kinematic fit is performed. Different lepton- and < trigger constitute distinct signal regions. In the 1-lepton channel, W T W T Corrections to the simulation of the m p +jet and miss T -tagged jets corresponding to an efficiency of 70%. the 2-lepton 0-tag samples inclusively in W the background composition in various analysis regions are shown in figure channel; the region is defined to be inclusive in jet10.3 multiplicity ( Background composition andThe modelling templates used to modelinversion of the MJ the background track-based in isolation the criterion, 1-lepton and channel are the obtained normalisations by are performed on only in the 2-jetE 2-tag category for required for for flavour events are used to define a 2-tag The selection criteria arethe following those differences. used With inis only one the defined. dijet-mass analysis Incriterion of for the the 0-lepton 8 channel, TeV data, the with 100–120 GeV by tracks originating fromalgorithm the used primary is vertex is MV1b raised [ from 50% to 75%. The 10.2 Event selection at 10 GeV, insteadrequirement of is 7 GeV. loosened fromof For reconstructed 4% tight muon to and electrons 7%.jet, jet and irrespective objects The muons, of removes procedure the thesequential muons multiplicity used calibration calorimeter separated of is to by isolation tracks not avoid ∆ associated used double-counting with and the the requirement jet. on For the jets, fraction the of track global summarised. 10.1 Object reconstruction The three categories ofcriteria electrons defined are in selected ref. according to [ the loose, medium, and tight For the 7 TeV dataset, only ato dijet-mass analysis the is corresponding performed. analysis Ittools, for is such similar the as but the 8 not TeV simultaneous identical data,for use of since the multiple some 7 of TeV the data. object reconstruction In this section, the main differences between the two analyses are 10 Analysis of the 7 TeV data JHEP01(2015)069 V T V T p p ; systematic ; for all processes, pythia8 at NLO. For the signal, powheg mcfm instead of . -tagging. The uncertainty on the b intervals of the 1-tag control regions. ]. backgrounds are merged into a single instead of V T 20 herwig distributions are estimated at generator p herwig V bb V T p distributions (not transformed) in the 28 and and pythia8 bb – 51 – m trigger efficiencies or JES. Others refer to different V bc miss T pythia6 E +jets, the V control region and the 26 µ – e samples are generated with background, a single floating normalisation is determined by the global fit, ZH t t → Due to these differences, and because the phase space within which the systematic The uncertainties affecting the signal and background simulation are estimated in gg also left freely floating in allwhere regions the of the statistical 1-lepton power channel, of exceptthese in the regions, the an data 2-tag uncertainty is 3-jet of regions not 30%a is sufficient method assigned to similar to provide the to a MJ what reliable background is normalisation, constraint. using done In for the analysis of the 8 TeV data. intervals of the 2-tag signalintervals of regions. the 2-tag Additional inputsFor are the the event yieldsinstead in of one the in five eachnormalisations of mentioned the for 0-, the 1-, 8 and TeV data 2-lepton analysis, channels. the In MJ addition background to normalisation the is other floating data, all systematic uncertainties, excepttreated for the as theoretical uncorrelated uncertainties between on theto the analyses signal, the of are combined the dataset, 7 in TeV and which 8 the TeV MVA data10.5 is in used the for global the Statistical fit 8 procedure TeVThe data. inputs to the likelihood fits are the level for the different dibosonthe processes by comparison with the alternative generators used are uncertainties are evaluated is more restricted than for the MVA applied to the 8 TeV a similar wayalternative as generators. for For thecomponent. 8 TeV For dibosons, data, the baseline i.e.,uncertainties generator on is from the 3-to-2-jet comparisons ratios and between on the the baseline and The differences with respectsystematic to uncertainties. the Many 8(7 TeV TeV of data data vs. them analysis 8 are TeV ariseidentification data), evaluated algorithms, mainly e.g., e.g., using from electron independent experimental identificationintegrated data or luminosity is samples 1.8% for the 2011 dataset [ 10.4 Systematic uncertainties

JHEP01(2015)069

akrudi niae ytehthdbn.Tertoo h aat h u ftesga n te akrudi hw ntelwrpanel. lower the in shown is background fitted and signal the of sum the to data the of ratio The band. hatched the by indicated is background

nre noeflwaeicue ntels i.Tesz ftecmie ttsia n ytmtcucranyo h u ftesga n fitted and signal the of sum the on uncertainty systematic and statistical combined the of size The bin. last the in included are overflow in entries

cldb h atridctdi h eed h ahdhsormsostettlbcgon sepce rmtepefi Csmlto.The simulation. MC pre-fit the from expected as background total the shows histogram dashed The legend. the in indicated factor the by scaled

le itga ntpo h te akrud,a xetdfo h M(niae as (indicated SM the from expected as backgrounds, fitted the of top on histogram filled a ) n,usakda nufildhistogram, unfilled an as unstacked and, 0), . 1 = µ

H otiuin fe h lblfi ftedjtms nlssaesona le itgas h ig oo inl( signal boson Higgs The histograms. filled as shown are analysis dijet-mass the of fit global the after contributions 2 e)i hw as shown is GeV) 125 = m

T inlrgoswt the with regions signal 2 e nevl obnd a -etncanl b -etncanl n c -etncanl h background The channel. 2-lepton (c) and channel, 1-lepton (b) channel, 0-lepton (a) combined: intervals GeV 120 > p

V

h ie-asdsrbtososre nte7TVdt pit iherrbr)adepce hsorm)frte2jt2-tag 2-jet the for (histograms) expected and bars) error with (points data TeV 7 the in observed distributions dijet-mass The . 18 Figure

(a) (b) (c)

bb bb bb [GeV] m [GeV] m [GeV] m

0101020250 200 150 100 50 0101020250 200 150 100 50 0101020250 200 150 100 50

0

0 Data/Pred Data/Pred Data/Pred

0.5 0.5 0.5

1 1 1

1.5 1.5 1.5

2 2

0

– 52 –

2

10 10

4

20 20

6

30

30

8

40

40

10

× 10 VH(bb)

50 Pre-fit background Pre-fit

50

× Uncertainty 10 VH(bb) 12

Z+cl Pre-fit background Pre-fit

Events /20GeV Events /20GeV Events /20GeV

60

× Z+hf Uncertainty 10 VH(bb)

14 60 W+cl W+cl Pre-fit background Pre-fit

T T T

W+hf W+hf Uncertainty

p p p >120 GeV >120 >120 GeV >120 >120 GeV >120

V V V

70 Multijet Multijet Z+cl

16

0 lep., 2 jets, 2 tags 2 jets, 2 lep., 0 1 lep., 2 jets, 2 tags 2 jets, 2 lep., 1 2 lep., 2 jets, 2 tags 2 jets, 2 lep., 2 Single top Single Single top Single Z+hf

70

∫ ∫ ∫

t t t t t t

Ldt = 4.7 fb 4.7 = Ldt TeV 7 = s

Ldt = 4.7 fb 4.7 = Ldt TeV 7 = s

Ldt = 4.7 fb 4.7 = Ldt TeV 7 = s

-1 -1 -1

80 Diboson Diboson Diboson

18

ATLAS ATLAS ATLAS µ µ µ =1.0) ( VH(bb) =1.0) ( VH(bb) =1.0) ( VH(bb)

80

Data 2011 Data Data 2011 Data Data 2011 Data JHEP01(2015)069 , VZ µ value is and 0 p ). For the µ ). For the 8 TeV 11.2 . , to be compared σ 4 . 24(syst . for the 7 TeV, 8 TeV and 0 discriminants for the MVA. ± 21 ) . , with background normalisa- VH c 1 31(stat MV . 0 ± 51 . = 0 -tagged jet in the 1-tag control regions, with b – 53 – µ 11 values in the mass range 110–140 GeV, as obtained for 0 discriminant and of , respectively. For the 7 TeV data alone, the expected p σ = 125 GeV are shown in figure 5 . VH H m . For the 8 TeV data alone, the observed and expected levels , the results are obtained from maximum-likelihood fits to the σ and 2 of obtaining from background alone a result at least as signal- ) in the Higgs boson mass range 110–140 GeV. The observed limit . Dijet-mass distributions in the 7 TeV data analysis were shown 9 6 b . . b 0 distributions of the σ shows the p 7 for the dijet-mass analysis and the BDT . c VZ 7.4 → and there is a deficit rather than an excess in the data, as can be seen 20 1 µ bb σ values for H m 7 . )( µ MV and ˆ shows the 95% CL upper limits on the cross section times branching ratio . Agreement between data and estimated background is observed within the µ . Figure 19 W/Z 10 ( 18 = 125 GeV is 1.2 times the SM value, to be compared to an expected limit, in the → H The fitted The probability Figure Distributions of the BDT In the following, the fitted signal-strength parameters are simply denoted m The uncertainties of the normalisations of the floating backgrounds are included in the systematic pp 11 combined datasets. With all leptonvalue of channels the and signal-strength parameter data-taking is periods combined, the fitted uncertainties; their contribution is 0.07. to an expectation ofof 2 significance are 1 significance is 0 in figure the 7 TeV and 8 TeV combined dataset. are 1.4 (2.3) and 0.8 (3.2), respectively. like as the observationof is a 8% Higgs for boson0.5%. a tested with This corresponds Higgs that to boson mass an mass and excess of observed the 125 with GeV; SM a in signal significance the of strength, presence 1 the expected uncertainties shown by the hatched bands. for for absence of signal, of 0.8. For the 8 TeV (7 TeV) data only, the observed and expected limits The nominal results arethe obtained dijet-mass from analysis global of fits the using 7 TeV the data. MVA fortions the and 8 TeV nuisance data parameters and presented adjusted in by section the globalin fit section to the 8 TeV data were already rather than ˆ 11.1 Nominal results Results are extracted independently for theMVA dijet-mass has and better multivariate analyses. expectedresults, Since sensitivity the while to the a7 Higgs dijet-mass TeV boson data, analysis however, signal, provides only itall a a results is dijet-mass cross-check refer used analysis (cf. to for is a section the performed. Higgs nominal boson Unless mass otherwise of specified, 125 GeV. As explained in section data, where the inputsgions are and the the distributionsnuisance of parameters final either discriminants floating inthe or the transformed constrained 2-tag by signal priors. re- The final discriminants are 11 Results JHEP01(2015)069 values are given for for all channels and 0 p H m 140 -1 ranges of the expectation in [GeV] 140 -1 H [GeV] σ σ -1 m σ H σ -1 3 1 2 m 135 135 and 2 Ldt = 4.7 fb Ldt = 20.3 fb ∫ ∫ Ldt = 4.7 fb Ldt = 20.3 fb σ ∫ ∫ for all channels and data-taking periods H 130 130 =7 TeV =8 TeV m s s = 7 TeV, = 7 TeV, = 8 TeV, s s values as a function of 125 125 0 – 54 – p = 125 GeV) 120 H 120 σ σ 1 2 115 Observed (CLs) Expected (no Higgs) Expected (m ± ± Observed Expected Injected 125 GeV 115 ATLAS ATLAS 110 2 1 0 4 3 110

1 -1

-2 -3 -4

10 SM 3.5 2.5 1.5 0.5

σ σ

95% C.L. limit on on limit C.L. 95% / 0 10 10 10 10 Local p Local . Observed (solid) and expected . Observed (solid) and expected 95% CL cross-section upper limits, normalised to the SM BDTs trained at eachthe individual mass background-only for hypothesis the inHiggs 8 TeV the boson dataset. presence mass The of corresponds expected boson a to mass is SM each 125 tested GeV. Higgsinterpolated. mass For boson: all point curves for in shown, the the turn; results dashed for obtained curve the at the the dotted tested curve masses the are Higgs linearly Figure 20 data-taking periods combined, as obtained using the dijet-mass analysis for the 7 TeV dataset and interpolated. Higgs boson production cross section,combined, as as a obtained function of usingeach individual the mass dijet-mass for analysis theonly 8 for hypothesis TeV (dashed) dataset. the and The 7(dotted). TeV with expected dataset the upper The injection and limit dark of is BDTsthe and a given trained absence light SM for of at shaded the Higgs a bands background- boson signal. represent signal For the at all 1 a curves shown, mass the of results 125 GeV obtained at the tested masses are linearly Figure 19 JHEP01(2015)069 ). . 26(syst . = 125 GeV 0 H ], the signal- ± ) m 98 . for -1 µ ) ) ) 8 32(stat . 0 0.22 0.86 0.92 0.28 0.24 0.25 − + − + − + ± =125 GeV Ldt=20.3 fb H ∫ 65 6 . 0.31 0.30 1.22 1.13 0.33 0.32 + − + − + − ( ( stat syst ) ( ( ), separately for the 7 and 8 TeV = 0 for m ). . =8 TeV, ).

µ . s SM 4 σ ; S/B tot / -1 0.40 0.37 1.50 1.46 0.43 0.40 is the fitted background yield. Details σ + − + − + −

= 9(syst . B µ 0 24(syst . 0.65 0.51 2 -1.61 0 ± Ldt=4.7 fb ) ∫ . ± ) discriminant in the 0-lepton channel, shown in best fit . – 55 – respectively. The consistency of the fitted signal 0 2(stat VH =7 TeV, . s 23 1 tot. stat. 32(stat . ± 0 6 and -2 . processes is at the level of 20%. For the lepton channels, ± 1 22 − 52 . = ZH ATLAS in the dijet-mass analysis, with background normalisations and -4 µ = 0 bb and µ m 7 TeV 8 TeV production processes, or (ii) the three lepton channels. The results of is the expected signal yield and WH Combination S ZH shows the data, background and signal yields, where the final-discriminant . Agreement between data and estimated background is observed within the 24 . The fitted values of the Higgs boson signal-strength parameter 7.3 . and (a). process and in the 0-lepton channel are associated with the data deficit observed 8 12 Figure Fits are also performed where the signal strengths are floated independently for (i) For a Higgs boson with a mass of 125.36 GeV, as measured by ATLAS [ WH ZH 11.2 Cross-check with theThe dijet-mass distributions analysis of nuisance parameters adjusted byin the section global fit touncertainties the shown by 8 TeV the data hatched were bands. already presented bins in all signal regionsdatasets. are combined Here, into bins of log( of the fitted valuesin of table the signal and of the various background components are provided 7 TeV data, and of 8%the for the 8 TeV data.in The the low most values sensitive offigure bins the fitted of signal the strengths BDT for the these fits are shownstrengths in figures in the the consistency between the three fitted signal strengths is at the level of 72% for the data, the fitted value of theFor signal-strength the parameter 7 is TeV data, it is strength parameter is Figure 21 for the 7 TeV and 8 TeV datasets and the combination of the 7 TeV and 8 TeV datasets. JHEP01(2015)069 = 125 GeV = 125 GeV H H m m processes floating for for -1 -1 µ µ processes, with the 7 ) ) ) ) ) ) ) 7 7 ZH processes are obtained H 0.22 0.50 0.41 0.43 0.37 0.26 0.27 0.22 0.27 0.25 0.42 0.38 ZH 0.25 0.25 ) and + − + − − + − + − + − − + 6 + 6 =125 GeV =125 GeV Ldt=20.3 fb Ldt=20.3 fb H H ∫ ∫ and W/Z 0.44 0.42 0.50 0.48 0.31 0.30 0.72 0.68 0.50 0.48 0.49 0.44 0.31 0.30 WH 5 5 + − + − + − + − + − + − + − ( stat syst ) ( ( ( ( stat syst ) ( ( ( ( for m for m WH =8 TeV, =8 TeV,

s s SM SM 4 4 σ σ ; ; tot tot / / -1 -1 0.52 0.49 0.65 0.61 0.40 0.37 0.88 0.79 0.66 0.60 0.55 0.52 0.40 0.37 σ σ − + − + − + − + − + + − + −

= = µ µ 3 3 0.51 0.05 1.11 0.51 0.94 1.17 -0.35 values for the ( Ldt=4.7 fb Ldt=4.7 fb ∫ ∫ µ 2 2 best fit best fit – 56 – 1 1 =7 TeV, =7 TeV, s s tot. stat. tot. stat. 0 0 values for the lepton channels are obtained from a simultaneous µ -1 -1 ATLAS ATLAS ZH WH processes and the combination of the 0 lepton 2 lepton 1 lepton ZH Combination Combination and . The fitted values of the Higgs boson signal-strength parameter . The fitted values of the Higgs boson signal-strength parameter WH for the 0-, 1- anddatasets 2-lepton combined.The channels individual and the combinationfit of the with three the channels, signal with strength the 7 for and each 8 of TeV the lepton channels floating independently. Figure 23 Figure 22 for the and 8 TeV datasetsfrom combined. a The simultaneous fit individual independently. with the signal strength for each of the JHEP01(2015)069 (S/B) 10 . 1 =1.0) log µ − t Data 2011 Diboson t Single top Multijet W+hf W+cl W+l Z+hf Z+cl Z+l VH(bb) ( yields are expected B

-1 (b) Ldt = 4.7 fb ∫

and background = 7 TeV s ATLAS S -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 4 3 2 6 5 -1 2 0 1 -2 10

10 10 10 10 10 10

(a). These numbers are for both the 1-tag and

Pull (stat.) Pull Events / 0.5 / Events ) for data, background and Higgs boson signal 24 S/B – 57 – ). The signal (S/B) 10 =1.0) S/B log µ t Data 2012 Diboson t Single top Multijet W+hf W+cl W+l Z+hf Z+cl Z+l VH(bb) ( 0.0003 0.0009 0.003 0.01 0.03 0.09 0.3 0.7 0). The pull of the data with respect to the background-only prediction . 5

•1 − = 1 (a) 10 µ 29 43 96 57 58 62 32 10.7 2.3 4378 1831 1247 474 186 62 9.7 1 0.2 × Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 Bin 9 14584 10626 15297 1948 618 250 45 8.2 0.7 96282 30184 15227 1286 239 47 4.2 0.2 0.005 10758 14167 21684 7458 1178 577 130 14.8 2.2 13876 11048 4419 941 61 22 2.1 0.1 0.008 49750 18061 3044 537 48 15 1 0.05 0.004 30539 24824 26729 5595 2238 922 137 10 0.3 10356 9492 14279 1494 688 252 31 2.7 0.1 12603 5650 6184 400 103 26 3 0.9 0 368550 141166 111865 20740 5538 2245 382 41 4 368802 140846 111831 20722 5467 2189 364 37.9 3.4 125676 14961 3722 588 107 16 1.3 0.03 0.001 8 0) and background with respect to the background-only prediction. Ldt = 20.3 fb . ∫

= 1 . Event yields as a function of log( µ = 8 TeV = 125 GeV for the (a) 8 TeV data and (b) 7 TeV data. Final-discriminant bins in all signal s . The numbers of expected signal and fitted background events and the observed numbers ATLAS •4 •3.5 •3 •2.5•4 •2 •3.5 •1.5 •3 •1 •2.5 •0.5 •2 0 •1.5 0.5 •1 •0.5 0 0.5 H 2 7 6 5 4 3 2 0 1 m +hf •2 10

+hf 10 10 10 10 10 10

t

Pull (stat.) Pull Events / 0.5 / Events Process Data Signal Background S/B W W cl W l Z Zcl Zl t Single top Diboson Multijet for signal ( with regions are combined intoand bins fitted, of respectively. log( The Higgssection boson (indicated signal as contribution isis shown also as expected shown for with the statistical SM uncertainties cross only. The full line indicates the pull of the prediction Figure 24 Table 8 of events after MVA selection2-tag in the events in bins of the figure 8 TeV dataset, corresponding to an integrated luminosity of 20.3 fb JHEP01(2015)069 , σ 9 . =1.0) [GeV] µ 0). The size bb . m VH(bb) ( Data 2011 Diboson Uncertainty = 1 ) is obtained for µ . -tagging categories b 41(syst mass. The Higgs boson

(b) . -1 0 , the results for the 8 TeV Z ± ) 9.2 . production of a SM Higgs boson Ldt = 4.7 fb ∫

50 100 150 200 250 ZH . The expected significance is 1 = 7 TeV s σ 44(stat ATLAS jets, 2 tags 0+1+2 lep., 2+3 Weighted by Higgs S/B . 2 . 0 and 1 0

±

0.2 1.2 0.8 0.6 0.4 Weighted events after subtraction / 20.0 GeV 20.0 / subtraction after -0.2 -0.4 events -0.6 Weighted 23 WH . – 58 – fits are performed, the technical details of which intervals, number-of-jets and 2-tag V T VZ p value of 1 =1.0) [GeV] in data after subtraction of all backgrounds except for the µ bb µ bb m m VH(bb) ( Data 2012 Diboson Uncertainty . distribution in data after subtraction of all backgrounds except bb for the MVA, which is the reason for choosing the MVA for the 9.3 m σ 5

•1 . (a) Ldt = 20.3 fb ∫ shows the

25 50 100 150 200 250 . The distribution of contribution is clearly seen, located at the expected = 8 TeV = 125 GeV is shown as expected for the SM cross section (indicated as s 0+1+2 lep., 2+3 jets, 2 tags 0+1+2 lep., 2+3 Weighted by Higgs S/B ATLAS H VZ

m 2 0 8 6 4 Figure In the dijet-mass analysis, a

10 Weighted events after subtraction / 20.0 GeV 20.0 / subtraction after events Weighted signal contribution is shown as expected for the SM cross11.3 section. Cross-check with theTo diboson validate the analysis analysis procedures, were discussed in section for diboson production for theIn 7 this and 8 figure, TeV data,weighted the as by obtained contributions their with of respective theThe all dijet-mass ratios analysis. of 2-tag expected signal Higgs regions boson in signal all to channels fitted are background. summed data with the dijet-massand analysis the and observed with results theobserved are significance MVA found are in expected to the dijet-massto be to analysis be be statistically is compared 67% consistent 2 to correlated, atnominal 2 the results. level of 8%. The hatched band. the 8 TeV dataset. The consistencyof of 8%. the results Using of the the three “bootstrap” lepton method channels is mentioned at in the section level diboson processes, as obtained with thecontributions dijet-mass analysis from for all the (a) lepton 8are TeV channels, and summed (b) weighted 7 by TeV data. theirbackground. respective The values of The the contribution ratiowith of of expected the Higgs boson associated signalof to the fitted combined statistical and systematic uncertainty on the fitted background is indicated by the Figure 25 JHEP01(2015)069 ) . V T V T ± ± p p ) . 77 . 16(syst = 0 . 0 09(stat . ± 0 VZ ) is 35% in the production in . µ for the 7 TeV, ± µ 74 26 VZ . and 11(stat . 0 and Higgs boson signal- , to be compared to an VZ ± σ µ 79 VZ . variable being used by both V T . p 8 ) is obtained for the 7 TeV dataset. . 3% in the MVA and 9% in the dijet- value of 0 − VZ -tagged jets was recently reported by the µ b values are shown in figure 38(syst . 0 VZ – 59 – ± µ ) . left freely floating. The result for the Higgs boson signal 30(stat . 0 µ . The fitted ± σ and 50 . ]. ). This result is consistent with the observations already made on VZ . and for the Higgs boson signal, the µ = 0 99 signal is observed with a significance of 4.9 discriminant, as can be seen in table = 8 TeV in final states with s VZ VZ VH VZ µ √ 15(syst . 0 ± ) The ) . . . The signal strengths obtained for the three lepton channels are consistent at the 25 A value of Fits are performed with the same final discriminants as used to obtain the results for The measured signal strength for the 8 TeV dataset with the MVA is collisions at 14(syst 10(stat . . 8 TeV and combined datasets, and fordataset, the all three lepton with channels the separatelypp for MVA the used combined for the 8CMS TeV Collaboration data. [ A measurement of bins of the BDT The signal strength obtained for0 the combined 7 andexpected 8 significance TeV dataset of is 6.3 0 distributions for the MVA and the dijet-mass analysis.of the The yield diboson tables contribution ininterval to the than that appendix in show of the that the lower theseparation Higgs one. ratio in boson the The MVA, is additional leading indeed variables to input a smaller very to in small the the diboson BDT contribution higher provide in the further most significant the Higgs boson based on thestrength 8 parameters TeV dataset, but withstrength both the is unchangedthe from two the signal-strength nominal parametersmass is result, analysis. found and to The the be main reason statistical for correlation these between low correlations is the different shape of the 0 figure 85% level. In the dijet-massis analysis at obtained. 8 TeV, a The correlationMVA and of 67% the in systematic the uncertainties dijet-mass on analysis. JHEP01(2015)069 Z 3 -1 ). or . ) ) ) ) 0.21 0.20 0.33 0.29 0.16 0.14 0.15 0.13 W − + − + − + − + 2.5 =125 GeV Ldt=20.3 fb H ∫ 14(syst 0.14 0.14 0.20 0.20 0.15 0.15 0.09 0.09 . + − + − + − + − ( ( ( stat syst ) ( ( 0 for m 2 =8 TeV,

s SM ± σ ; tot / -1 0.25 0.24 0.39 0.35 0.22 0.21 0.17 0.16 ) σ + − + − + − + − .

= VZ 1.5 µ VZ fit 0.67 0.80 0.77 0.74 Ldt=4.7 fb ∫ (b) 09(stat 1 . best fit 0 for (a) the 7 TeV, 8 TeV and values for the lepton channels =7 TeV, s ± stat. tot. VZ VZ ) decay channels considered are 0.5 µ 74 µ . ATLAS W/Z 0 2 lepton 1 lepton 0 lepton Combination , from which the ratio of the observed signal b b → – 60 – 3 -1 ) ) ) Z 0.39 0.37 0.16 0.14 0.15 0.13 + − + − + − 2.5 =125 GeV Ldt=20.3 fb H ∫ ). The analysis procedure is validated by a measurement -quark fragmentation, and on the transverse momentum 0.10 0.09 0.09 0.09 0.30 0.29 . The dataset corresponds to integrated luminosities of . + − + − + − b ( stat syst ) ( ( ( collisions at 7 TeV and 8 TeV, respectively, recorded by the for m 2 νν =8 TeV,

s SM σ ; pp tot / -1 has been presented. The ( 0.19 0.17 0.17 0.16 0.49 0.47 σ → + − + − + −

= b 24(syst . VZ b 1.5 Z µ 0 0.50 0.77 0.74 VZ fit production with from Ldt=4.7 fb ∫ ± 1 Z (a) ) . ) − 1 and best fit =7 TeV, s `` stat. tot. W/Z → 0.5 32(stat . 0 Z . The fitted values of the diboson signal strength , ATLAS ± and 20.3 fb 0 1 `ν 52 − . 7 TeV 8 TeV We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Aus- For a Higgs boson mass of 125.36 GeV, the observed (expected) deviation from the The analysis is carried out in event categories based on the numbers of leptons, jets, and → = 0 Combination We thank CERN for thefrom very our successful institutions operation without of whom the ATLAS LHC, could as not well be astralia; the operated support efficiently. BMWFW staff andFAPESP, Brazil; FWF, NSERC, NRC and Austria; CFI, Canada; ANAS, CERN; CONICYT, Azerbaijan; Chile; CAS, SSTC, MOST Belarus; CNPq and µ of the yield of ( yield to the Standard Model expectation is found toAcknowledgments be 0 alternative analysis using invariant-mass distributionsto of consistent the results. Higgs boson candidates leads background-only hypothesis corresponds toand a the significance ratio of of the 1.4 measured (2.6) signal standard yield to deviations the Standard Model expectation is found to be 4.7 fb ATLAS experiment during Run 1 of the LHC. jets tagged as originatingof from the vector-boson candidate. A multivariate analysis provides the nominal results. An 12 Summary A search for theboson and Standard decaying Model into HiggsW boson produced in association with a Figure 26 combined datasets, and (b) for thedataset. three lepton The channels MVA separately is andare used combined, obtained for for from the the combined a 8 simultaneous TeV fit data. with The the individual signal strength for each floating independently. JHEP01(2015)069 . 11 – 9 – 61 – ˇ S, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wal- The crucial computing support from all WLCG partners is acknowledged gratefully, A Tables of event yields The event yields in each category for the multivariate analysis are shown in tables in particular from CERN(Denmark, and , Sweden), the CC-IN2P3 ATLAS (France), Tier-1 KIT/GridKA(Italy), (Germany), facilities INFN-CNAF at NL-T1 TRIUMF (Canada), (Netherlands),(U.S.A.) NDGF and PIC in the (Spain), Tier-2 facilities ASGC worldwide. (Taiwan), RAL (U.K.) and BNL way; MNiSW and NCN, Poland;of GRICES and Russia FCT, and Portugal; MNE/IFA, ROSATOM,ARRS Romania; Russian MES and Federation; MIZ JINR;lenberg MSTD, Foundation, Sweden; Serbia; SER, MSSR, SNSFNSC, Slovakia; and Taiwan; Cantons TAEK, of Turkey;Kingdom; Bern STFC, DOE and the and Geneva, Royal NSF, Switzerland; United Society States and of Leverhulme America. Trust, United Czech Republic; DNRF, DNSRCand and Lundbeck NSRF, Foundation, European Denmark; Union; EPLANET,BMBF, ERC IN2P3-CNRS, DFG, CEA-DSM/IRFU, HGF, France; MPGISF, GNSF, and MINERVA, Georgia; GIF, AvH I-CORE Foundation,JSPS, Germany; and Japan; GSRT Benoziyo CNRST, and Center, Morocco; NSRF, Israel; Greece; FOM INFN, and Italy; NWO, MEXT Netherlands; and BRF and RCN, Nor- and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR,

JHEP01(2015)069

ieiodfi.Alsseai netite r nlddi h niae uncertainties. indicated the in included are uncertainties systematic All fit. likelihood

T bb itiuini sdi h 100 the in used is distribution m The analysis. 2 e nevl h akrudyed r omlsdb h eut fteglobal the of results the by normalised are yields background The interval. GeV 120 < p <

V

h xetdsga n te akrudyed o ahctgr fte0lpo hne fe h ulslcino h multivariate the of selection full the after channel 0-lepton the of category each for yields background fitted and signal expected The . 9 Table

34 5 1 – 710 – 657 – 13344 – Data

± 719 – 12 ± 718 – 100 ± 13310 – Total 7– 17

80–10–29– 259 – 170 – 1890 – +hf Z

60–6 . – 9.8 – 65 – 1620 – Zcl

10–7 . – 4.5 – 79 – 3190 – Zl

5 0–6 – 62 – 60 – 750 – +hf W

20–5 . – 8.9 – 53 – 1240 – cl W

20–5 . – 4.3 – 59 – 2280 – l W

1 5–3 – 30 – 25 – 318 – top Single

60–16–35– 315 – 186 – 1670 – t t ¯

6 7–2 – 20 – 17 – 260 – W W ZZ, Z, W

– 7 – 2 – 8 – H V

3-jet

84 60 8 804719 306 1592 477 1860 887 36903 18343 Data – 62 –

0 886 200 ± 36890 150 ± 18340 Total ± 333.2 28 ± 1599 9.8 ± 458.5 25 ± 1841 17 ± 8.9

5061 2 0 8 7 151 876 186 607 225 6510 2550 +hf Z

5039 912942 0.3 24 9.4 162 59 3990 1590 Zcl

801709 7 . 70.1 17 6.1 272 96 10750 3890 Zl

6 505 2 361821.8 128 33.6 124 54 1520 762 +hf W

2031 0 5 342 1.1 27 23.4 159 106 3710 2230 cl W

4070 5 0 441 0.2 16 14.4 206 159 7100 5470 l W

3 0 05 266 22.8 66 32.6 56 40 704 531 top Single

4 5014131932116 332 129 183 114 1520 840 t t ¯

3 3 84 478 13.3 81 14.7 49 18 635 235 W W ZZ, Z, W

. 32269352 4.0 23 3.5 6.9 2.2 23 7.9 H V

2-jet

T − 100 GeV 120 > GeV 120 − 100 GeV 120 > GeV 120 − 100 p 2 GeV 120 − 100 GeV 120 > GeV 120

V

-a LtgM-a MT-a TT-tag MM+TT-tag MM-tag LL-tag 1-tag Sample

JHEP01(2015)069

uncertainties.

nlss h akrudyed r omlsdb h eut ftegoa ieiodfi.Alsseai netite r nlddi h indicated the in included are uncertainties systematic All fit. likelihood global the of results the by normalised are yields background The analysis.

h xetdsga n te akrudyed o ahctgr fte1lpo hne fe h ulslcino h multivariate the of selection full the after channel 1-lepton the of category each for yields background fitted and signal expected The . 10 Table

35 25 3637 5125 971838 4977 2356 5551 3472 6336 42557 93359 Data

± 5501 43 ± 3376 57 ± 6447 200 ± 42570 320 ± 93350 Total ± 1796 55 ± 4995 33 ± 2405 50 30

J( MJ 309 2 . 1 . 80.8 58 3.2 117 4.9 227 91 5300 ) µ

J( MJ 20–6. 6–15 – 36 – 68.6 – 1290 – ) e

+hf Z 04227 595 884 14 40 18.8 54 25.9 77 272 1024

+cl Z 9 9 7984516020.1 0.2 1.6 4.5 9.8 27 193 690

70524 812814000.0 0.0 1.4 2.8 18.1 43 572 1780 +l Z

+hf W 5044 7 9 5 9 8 168 187 297 353 490 576 4740 6530

+cl W 50 08 5 5 6 2773.2 7.7 72 164 454 952 10080 25900

48 12 8 2 22 . 0.4 1.1 20 42 322 588 11320 24980 +l W

igetop Single 3021 638692153188 503 261 619 318 66 2815 7390

86 09 2012 1917 111388 4181 1670 4119 1622 3240 10490 18660 t t ¯

10695 962. 81 14 14 18 22.6 39.6 50 689 1100 WZ,ZZ,WW

51 . . . . . 6.5 5.4 5.8 4.8 3.8 3.2 14 15 VH

3-jet

95466394 0259 1932 1405 3923 2199 5499 4072 9941 67603 198544 Data – 63 –

14106 91 ± 9953 290 ± 67600 500 ± 198540 Total 27 ± 1448 55 ± 3889 33 ± 2161 66 ± 5492 50 ±

03 6 2 603948181.3 178 4.8 329 16.0 721 164 10230 ) µ ( MJ

68–12–8 40 – 89 – 162 – 2618 – ) e ( MJ

0045114 2 08 24 85 30 126 45 161 475 2080 +hf Z

30335 81 . . 0.2 0.5 3.1 10 18 53 333 1350 Zcl

9012 0 77428010.0 0.1 2.8 7.4 37 101 1223 3940 Zl

63 1217 4 5 0 0 227 506 402 954 648 1470 6112 16030 +hf W

13 15 609645132 6.5 23 153 465 966 2630 21650 71930 cl W

58 30 6367144 . 0.9 3.1 48 124 697 1603 23702 65980 l W

38 7015 9 7 0 3 219 739 307 975 398 1150 3730 13680 top Single

18 6115 0122 0029 890 2290 1080 2426 1051 1954 6641 11380 t t ¯

90971366 43 229.5 52 36 64 62 103.6 927 1950 W W ZZ, Z, W

92 1931 41 16 19 14 17 9.3 11 28 39 H V

2-jet

T > GeV 120 < 120 > GeV 120 < p 2 GeV 120 > GeV 120 < GeV 120 > GeV 120 < GeV 120

V

-a LtgM-a TT-tag MM-tag LL-tag 1-tag Sample

JHEP01(2015)069

uncertainties.

nlss h akrudyed r omlsdb h eut ftegoa ieiodfi.Alsseai netite r nlddi h indicated the in included are uncertainties systematic All fit. likelihood global the of results the by normalised are yields background The analysis.

h xetdsga n te akrudyed o ahctgr fte2lpo hne fe h ulslcino h multivariate the of selection full the after channel 2-lepton the of category each for yields background fitted and signal expected The . 11 Table

26 4612 5 34283 2394 253 1428 4436 22662 Data

22720 Total 8.4 ± 280.9 43 ± 2365 5.2 ± 245.2 20 ± 1403 56 ± 4430 150 ±

7012 9 2 6 180 766 121 497 1223 5790 +hf Z

+cl Z 6099143 55.7 25 38 164 949 4650

8011 9 61 2.7 12 46 190 1913 8870 +l Z

0643108080.4 0.8 0.8 3.1 6.4 40 +hf W

+cl W 7892304040.1 0.4 0.4 2.3 8.9 57

6711402010.0 0.1 0.2 1.4 7.1 76 +l W

4 21 . 16.5 41 3.0 18 22 144 top Single

1012462 4674 1476 29 486 182 2170 t t ¯

4 0 2692 8.7 29 6.9 22 100 347 WZ,ZZ,WW

. . . . . 2.8 4.9 0.9 1.5 3.9 7.4 VH

3-jet

91 1041 1 51570 6501 517 4313 9150 69313

Data – 64 –

8 9123 280 ± 69360 Total 13 ± 607 76 ± 6473 7.9 ± 524.6 50 ± 4271 86 ±

19 8311 8. 88414 2858 287.7 1916 2853 21090 +hf Z

23 62416 19.7 71 64 421 1622 12130 +cl Z

91 1068114 6.2 41 101 648 4180 29410 +l Z

01 . . . 0.6 4.9 0.7 7.5 13 90 +hf W

6 85806100.1 1.0 0.6 5.8 18 166 +cl W

4 23704030.0 0.3 0.4 3.7 12 245 +l W

8 44 . 612 96 5.8 40 44 385 top Single

402312 938 137 3180 49 1023 213 3490 t t ¯

0 3 31. 2 22 129 12.2 73 135 800 WZ,ZZ,WW

07455201 7.0 19 2.0 5.5 7.4 20 VH

2-jet

T 2 GeV 120 > GeV 120 < GeV 120 > GeV 120 < p 2 GeV 120 > GeV 120 <

V

-a LtgMM+TT-tag LL-tag 1-tag Sample JHEP01(2015)069 , ]. , ] , Phys. , Phys. SPIRE 13 (1964) , leptons IN ]. (1998) 56 τ ][ 12 108 SPIRE IN hep-ph/9404247 ][ [ (2012) 1 ]. (2013) 88 Phys. Lett. , Phys. Rev. Lett. , SPIRE B 716 arXiv:1207.6436 IN Measuring the Higgs Sector B 726 [ ][ (1994) 4491 ]. arXiv:1207.7235 D 50 SPIRE [ ]. Phys. Lett. IN ]. ]. Comput. Phys. Commun. ]. Phys. Lett. , , ]. ][ Evidence for a particle produced in , Global Conservation Laws and Massless Higgs bosons at the Fermilab Tevatron Associated production of Higgs and weak Associated Production of Higgs Bosons and Z (2012) 071804 SPIRE SPIRE SPIRE SPIRE (2012) 30 IN SPIRE 109 IN IN IN Phys. Rev. arXiv:1303.4571 ][ HDECAY: A program for Higgs boson decays in the IN [ – 65 – , [ ][ ][ [ B 716 ]. arXiv:1307.1432 (1964) 585 (2013) 081 ), which permits any use, distribution and reproduction in [ ]. ]. (1978) 1724 SPIRE ]. 13 06 IN Broken Symmetry and the Mass of Gauge Vector Mesons Phys. Rev. Lett. hep-ph/9309294 [ Phys. Lett. , Measurements of Higgs boson production and couplings in diboson Evidence for the spin-0 nature of the Higgs boson using ATLAS data Observation of a new particle in the search for the Standard Model [ , SPIRE SPIRE arXiv:1401.5041 arXiv:0904.3866 D 18 SPIRE [ [ IN IN Evidence for the 125 GeV Higgs boson decaying to a pair of Observation of a new boson at a mass of 125 GeV with the CMS Observation of a new boson with mass near 125 GeV in pp collisions at , at hadron colliders ]. JHEP b IN (2013) 120 ][ ][ b , CC-BY 4.0 ][ → This article is distributed under the terms of the Creative Commons (1964) 321 SPIRE ]. H Broken Symmetries and the Masses of Gauge Bosons Broken symmetries, massless particles and gauge fields IN B 726 (1994) 1354 [ 13 (2014) 104 (2009) 009 Phys. Rev. Phys. Rev. Lett. collaboration, collaboration, collaboration, ]. , , and 8 TeV 05 08 SPIRE collaboration, collaboration, collaboration, and D0 collaborations, T. Aaltonen et al., D 49 IN = 7 [ SPIRE s IN hep-ph/9704448 arXiv:1307.1427 arXiv:1207.7214 ATLAS Phys. Lett. CMS √ CMS experiment at the LHC ATLAS final states with the[ ATLAS detector at the LHC Particles ATLAS Higgs boson with the[ ATLAS detector at the LHC 132 bosons, with [ CDF association with weak bosons andsearches at decaying to the a Tevatron bottom-antibottom quark pair in Higgs boson Particles Rev. JHEP standard model and its[ supersymmetric extension JHEP CMS Rev. Lett. (1964) 508 G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, P.W. Higgs, P.W. Higgs, F. Englert and R. Brout, A. Stange, W.J. Marciano and S. Willenbrock, S.L. Glashow, D.V. Nanopoulos and A. Yildiz, A. Stange, W.J. Marciano and S. Willenbrock, A. Djouadi, J. Kalinowski and M. Spira, R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. D¨uhrssen, [8] [9] [6] [7] [4] [5] [2] [3] [1] [15] [16] [13] [14] [11] [12] [10] Attribution License ( any medium, provided the original author(s) and source areReferences credited. Open Access. JHEP01(2015)069 ] Z B , ]. (2013) 2008 TeV , (2010) 10 = 7 Comput. SPIRE s , (2010) 074024 IN (2010) 043 Nucl. Instrum. √ Phys. Lett. C 70 , ][ , ]. JHEP , ]. 06 , ]. D 82 arXiv:1302.4393 , [ SPIRE SPIRE and 1 jet at NLO with IN JHEP (2014) 012003 IN [ SPIRE , ][ IN collisions at + 0 ][ Eur. Phys. J. pp , Phys. Rev. ]. D 89 , (2013) 2518 /HZ arXiv:0709.2092 ]. [ ± (1993) 2722 SPIRE C 73 IN HW SPIRE ][ IN Phys. Rev. Gluon-initiated associated production boosts ]. D 47 , ][ arXiv:1310.4828 (2007) 070 hep-ph/0506026 [ GEANT4: A simulation toolkit [ ]. 11 SPIRE A Brief Introduction to PYTHIA 8.1 corrections to the differential cross-section for the A general framework for implementing NLO IN – 66 – Eur. Phys. J. s -quark pair with the ATLAS detector ][ SPIRE b , α Phys. Rev. Matching NLO QCD computations with Parton Shower JHEP IN , (2006) 97 , ][ ]. arXiv:0710.3820 ]. ]. (2014) 013013 [ hep-ph/0201195 Order [ C 45 ]. ]. ]. SPIRE (2011). (2011). SPIRE SPIRE ]. D 89 IN IN IN [ PHOTOS Monte Carlo: A Precision tool for QED corrections in ATLAS tunes of PYTHIA6 and PYTHIA8 for MC11 New ATLAS event generator tunes to 2010 data The ATLAS Experiment at the CERN Large Hadron Collider Improved luminosity determination in The ATLAS Simulation Infrastructure Search for the Standard Model Higgs boson produced in association ][ ][ SPIRE SPIRE SPIRE hep-ph/0409146 (2008) 852 [ IN IN IN Search for the standard model Higgs boson produced in association with SPIRE (2002) 012 ][ ][ ][ New generation of parton distributions with uncertainties from global QCD IN [ 178 arXiv:1207.0210 07 New parton distributions for collider physics Eur. Phys. J. [ Phys. Rev. (2003) 250 , , collaboration, S. Agostinelli et al., (2004) 040 A new method for combining NLO QCD with shower Monte Carlo algorithms S08003 JHEP collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, ]. , 3 decays 11 A 506 collaboration, arXiv:1306.2542 arXiv:1005.4568 (2012) 369 W [ [ SPIRE arXiv:1007.2241 arXiv:1002.2581 IN arXiv:1310.3687 [ Higgs physics W H intermediate mass Higgs signal [ the POWHEG BOX interfaced to083 GoSam and their merging within MiNLO JHEP simulations: the POWHEG method calculations in shower Monte Carlo programs: the POWHEG BOX ATLAS ATL-PHYS-PUB-2011-008 and Phys. Commun. analysis ATLAS ATL-PHYS-PUB-2011-009 ATLAS 823 GEANT4 Meth. using the ATLAS detector at[ the LHC ATLAS JINST ATLAS a W or a[ Z boson and decaying to bottomATLAS quarks with a vector boson718 and decaying to a CMS C. Englert, M. McCullough and M. Spannowsky, J. Ohnemus and W.J. Stirling, G. Luisoni, P. Nason, C. Oleari and F. Tramontano, H.-L. Lai et al., S. Frixione, P. Nason and C. Oleari, S. Alioli, P. Nason, C. Oleari and E. Re, P. Golonka and Z. Was, P. Nason, J. Pumplin et al., T. Sj¨ostrand,S. Mrenna and P.Z. Skands, [33] [34] [31] [32] [29] [30] [26] [27] [28] [24] [25] [21] [22] [23] [19] [20] [18] [17] JHEP01(2015)069 , ]. ] ]. D , ]. C 55 ] 05 SPIRE SPIRE IN SPIRE IN ]. IN ][ ][ JHEP Phys. Rev. ][ , , ]. Gluon-induced Comput. Phys. SPIRE Eur. Phys. J. , IN , arXiv:1303.6254 Nucl. Phys. Proc. ][ [ , arXiv:1211.5015 SPIRE [ ]. (2009) 007 (2001) 010 IN [ 02 01 (2003) 073003 ]. arXiv:1103.2792 SPIRE arXiv:1112.5258 hep-ph/0307206 [ ]. [ IN [ ][ (2013) 078 JHEP JHEP (2013) 252004 D 68 , ]. , SPIRE Parton distributions for the LHC ]. SPIRE (1993) 2730 02 IN production in the POWHEG-BOX-V2 IN arXiv:1005.4451 EW corrections to Higgs strahlung at the 110 ][ [ ][ ZZ SPIRE (2004) 149 SPIRE D 47 IN ]. JHEP (2011) 091503 IN Electroweak radiative corrections to associated , ][ and Phys. Rev. ][ , PYTHIA 6.4 Physics and Manual ) Monte Carlo approach to W+ Higgs associated B 579 NNLO QCD corrections to the Higgs-strahlung – 67 – SPIRE hep-ph/0609070 s ]. D 83 WZ [ α ]. IN , Total Top-Quark Pair-Production Cross section at PoS(EPS-HEP2011)235 (2010) 054018 ][ Phys. Rev. O( The Monte Carlo event generator AcerMC versions 2.0 − , , Phys. Rev. Lett. SPIRE arXiv:1311.1365 W SPIRE ), arXiv:0901.0002 [ IN + Parton Distributions for LO Generators MCFM for the Tevatron and the LHC 4 S [ IN D 82 Electroweak gauge boson production at hadron colliders through ][ Phys. Lett. α W ]. ( ][ Phys. Rev. , ]. ]. arXiv:1007.3492 hep-ph/0405247 , O [ [ (2006) 114017 SPIRE SPIRE SPIRE IN (2014) 2702 (2009) 189 Event generation with SHERPA 1.1 IN IN Phys. Rev. D 74 arXiv:1001.5034 ][ HERWIG 6: An Event generator for hadron emission reactions with , ][ ][ [ (2010) 10 − (2013) 919 Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel NNLL resummation for s-channel single top quark production Two-loop soft anomalous dimensions for single top quark associated production C 63 C 74 hep-ph/0603175 arXiv:0711.2473 or H [ [ 184 − ]. ]. Phys. Rev. 205-206 , ) 2 s (2010) 054028 α SPIRE SPIRE hep-ph/0011363 IN IN arXiv:0811.4622 hep-ph/0306234 (2006) 026 Suppl. Eur. Phys. J. (2008) 553 Eur. Phys. J. interfering gluons (including supersymmetric[ processes) 81 with a W to 3.8 with interfacesCommun. to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1 single top quark production O( Hadron Colliders Through [ [ [ [ Tevatron and the LHC with HAWK Higgs-strahlung at next-to-leading order QCD production at hadron supercolliders processes at hadron colliders WH and ZH production at hadron colliders A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, A. Sherstnev and R.S. Thorne, G. Corcella et al., J.M. Campbell and R.K. Ellis, N. Kidonakis, N. Kidonakis, P. Nason and G. Zanderighi, B.P. Kersevan and E. Richter-Was, N. Kidonakis, K. Melnikov and F. Petriello, M. Czakon, P. Fiedler and A. Mitov, T. Gleisberg et al., T. Sj¨ostrand,S. Mrenna and P.Z. Skands, A. Denner, S. Dittmaier, S. Kallweit and A. M¨uck, L. Altenkamp, S. Dittmaier, R.V. Harlander, H. Rzehak and T.J.E. Zirke, O. Brein, A. Djouadi and R. Harlander, M.L. Ciccolini, S. Dittmaier and M. Kr¨amer, H. Baer, B. Bailey and J.F. Owens, [51] [52] [49] [50] [46] [47] [48] [44] [45] [42] [43] [40] [41] [38] [39] [36] [37] [35] JHEP01(2015)069 C ]. (2008) , ]. C 74 04 04 (2008) 119 , SPIRE SPIRE IN JHEP IN ][ , JHEP Eur. Phys. J. ][ B 659 , Machine Learning, , Eur. Phys. J. , in , , (2012) 1844 . arXiv:1406.0076 , (2014). Phys. Lett. , M. Kaufmann, (1996). C 72 ATLAS-CONF-2014-004 , , arXiv:1112.6426 [ arXiv:1407.5063 TeV in 2010 [ = 7 (2011). jet clustering algorithm s Classification and Regression Trees (2014). t √ arXiv:0711.4449 k Eur. Phys. J. , , (2013) 2304 ]. (2014) 3071 ]. – 68 – ]. C 73 ATLAS-CONF-2014-032 The Anti- , C 74 SPIRE IN SPIRE TeV with the ATLAS detector ][ SPIRE IN ]. IN ][ = 7 ][ Pileup subtraction using jet areas s ]. ]. Experiments with a new boosting algorithm √ (2008). ATLAS-CONF-2011-102 SPIRE , Eur. Phys. J. ATLAS-CONF-2014-046 IN , (2013). , Eur. Phys. J. Performance of Missing Transverse Momentum Reconstruction in Jet energy measurement with the ATLAS detector in proton-proton Jet energy measurement and its systematic uncertainty in Muon reconstruction efficiency and momentum resolution of the Electron and photon energy calibration with the ATLAS detector Electron reconstruction and identification efficiency measurements ][ , Calibration of b-tagging using dileptonic top pair events in a Calibration of the performance of b-tagging for c and light-flavour jets Performance of Missing Transverse Momentum Reconstruction in Commissioning of the ATLAS high-performance b-tagging algorithms Electron efficiency measurements with the ATLAS detector using the SPIRE SPIRE IN IN TeV Multivariate discrimination and the Higgs + W/Z search ][ ][ Calorimeter clustering algorithms: Description and performance arXiv:1404.2240 = 7 [ s arXiv:1404.4562 √ arXiv:1010.3698 [ [ Fitting function for asymmetric peaks collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, ]. arXiv:0802.1189 [ (2014) 2941 SPIRE arXiv:1108.5602 IN arXiv:0707.1378 Wadsworth and Brooks, Monterey, CA U.S.A. (1984). Proceedings of the Thirteenth International Conference (ICML) ATLAS studied in Proton-Proton CollisionsATLAS-CONF-2013-082 recorded in 2012 at 8 TeV (2011) 069 in the 2012 ATLAS data ATLAS Proton-Proton Collisions at 7 TeV[ with ATLAS in the 7 TeV collision data combinatorial likelihood approach with the(2014). ATLAS experiment ATLAS collisions at ATLAS proton-proton collisions at [ ATL-LARG-PUB-2008-002 063 [ ATLAS experiment in proton-proton collisions(2014) at 3034 ATLAS using LHC Run 1 data with the ATLAS detector using74 the 2011 LHC proton-proton collision data 2012 LHC proton-proton collision data ATLAS ATLAS A. Bukin, L. Breiman, J. Friedman, R. Olshen and C. Stone, Y. Freund and R. Schapire, ATLAS collaboration, J. Gallicchio et al., ATLAS collaboration, ATLAS collaboration, ATLAS collaboration, M. Cacciari, G.P. Salam and G. Soyez, M. Cacciari and G.P. Salam, W. Lampl et al., ATLAS collaboration, [68] [69] [70] [66] [67] [64] [65] [62] [63] [60] [61] [58] [59] [56] [57] [54] [55] [53] JHEP01(2015)069 , ] ] , (2014) ]. Handbook ]. ¯ t 07 TeV t D 90 = 7 SPIRE ]. SPIRE s IN JHEP hep-ph/0206293 IN √ , , [ [ ][ (2013) 244 ]. arXiv:0805.3067 SPIRE (2011) 044 Phys. Rev. Single-top ALPGEN, a generator [ IN , [ (2010) 109 05 ]. B 867 PoS(ACAT)040 SPIRE MadGraph 5: Going Beyond 01 (2013) 2306 (2003) 001 , IN ]. ][ 07 SPIRE JHEP (2008) 029 , IN C 73 JHEP ][ arXiv:1009.1003 ]. SPIRE , arXiv:1101.0593 [ 07 , IN Nucl. Phys. JHEP , , ][ QCD matrix elements + parton showers: ]. Combined Measurement and QCD Analysis collaboration, S. Dittmaier et al., SPIRE arXiv:1205.4902 JHEP , IN , ][ SPIRE ]. Eur. Phys. J. arXiv:1107.2117 IN , [ – 69 – ][ PoS(ACAT)057 , arXiv:1207.5030 TeV using the ATLAS detector SPIRE [ IN hep-ph/0204244 Theory Uncertainties for Higgs and Other Searches Using [ = 7 ][ ]. boson production in association with a bottom-antibottom s Matching NLO QCD computations and parton shower ∗ √ ]. ]. ]. ]. ]. arXiv:1106.6019 ]. ]. (2012) 034011 SPIRE (2013) 027 [ Z/γ IN Measurements of normalized differential cross sections for Jet energy resolution in proton-proton collisions at (2002) 029 04 ][ SPIRE SPIRE SPIRE SPIRE SPIRE arXiv:1106.0522 SPIRE SPIRE D 85 [ IN IN IN IN IN 06 IN IN [ [ p Scattering Cross sections at HERA ][ ][ ][ ][ ][ W and The RooStats Project Automation of one-loop QCD corrections HERWIG++ 2.6 Release Note TMVA: Toolkit for Multivariate Data Analysis ± Parton distributions with LHC data collaborations, F.D. Aaron et al., The automated computation of tree-level and next-to-leading order The PDF4LHC Working Group Interim Recommendations JHEP (2011) 061 arXiv:1407.0371 Differential and total cross sections for top pair and single top production , [ JHEP 09 , (2011) 128 Phys. Rev. collaboration, collaboration, ]. ]. , 06 JHEP arXiv:1405.0301 , [ SPIRE SPIRE arXiv:1207.1303 IN arXiv:1103.0621 IN arXiv:0911.0884 arXiv:1210.6210 physics/0703039 arXiv:1101.0538 LHC Higgs Cross sectionof Working LHC Group Higgs Cross sections: 1. Inclusive Observables [ Jet Bins pair hadroproduction in association with a[ W boson differential cross sections and their079 matching to parton shower simulations [ arXiv:1205.3453 JHEP The NLO case ATLAS production in pp collisions at [ [ simulations for hard multiparton processes in hadronic collisions ATLAS recorded in 2010 with the[ ATLAS detector H1 and ZEUS of the Inclusive e [ (2014) 072004 M. Botje et al., L. Moneta et al., K. Arnold et al., R.D. Ball et al., I.W. Stewart and F.J. Tackmann, R. Frederix et al., S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, J. Alwall et al., V. Hirschi et al., N. Kidonakis, J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, S. Frixione and B.R. Webber, M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, S. F. H¨oche, Krauss, M. Sch¨onherrand F. Siegert, A. et H¨ocker al., [87] [88] [89] [84] [85] [86] [82] [83] [80] [81] [73] [78] [79] [76] [77] [74] [75] [72] [71] JHEP01(2015)069 of TeV 1 Phys. − , ] = 8 s and , √ (2012). , Verlag (2002) 2693 γγ C 0303241 (2013) 2501] → mesons G 28 H collision data + ∗ eConf C 73 pp of Data Collected by the D , arXiv:1403.3047 1 of [ − 1 J. Phys. − , (2012). ]. Erratum ibid. ATLAS-CONF-2012-043 (2014) 2973 , [ technique s Asymptotic formulae for likelihood-based SPIRE CL C 74 ]. IN ][ (2012). (2011) 1554 – 70 – SPIRE IN ][ C 71 Eur. Phys. J. , ATLAS-CONF-2012-097 The RooFit toolkit for data modeling , ]. arXiv:1406.3827 [ (2012). Introduction to statistics and data analysis for physicts Measurement of the Higgs boson mass from the Measurement of the Mistag Rate with 5 fb Measuring the b-tag efficiency in a top-pair sample with 4.7Measurement fb of the b-tag Efficiency in a Sample of Jetsb-jet Containing tagging calibration on c-jets containing SPIRE Eur. Phys. J. IN Measurement of WZ and ZZ production in pp collisions at , of Data from the ATLAS Detector physics/0306116 ][ ATLAS-CONF-2012-040 1 , channels with the ATLAS detector using 25 fb − ` 4 Presentation of search results: The (2014) 052004 → ∗ collaboration, ]. ]. collaboration, ZZ D 90 → SPIRE SPIRE IN IN arXiv:1007.1727 [ ATLAS Detector ATLAS H Rev. CMS in final states with b-tagged jets Muons with 5 fb ATLAS-CONF-2012-039 Deutsches Elektronen-Synchrotron, Hamburg Germany (2010). data from the ATLAS detector (2003) MOLT007 [ [ tests of new physics [ ATLAS collaboration, ATLAS collaboration, ATLAS collaboration, G. Bohm and G. Zech, ATLAS collaboration, A.L. Read, G. Cowan, K. Cranmer, E. Gross and O. Vitells, W. Verkerke and D.P. Kirkby, [98] [99] [95] [96] [97] [93] [94] [91] [92] [90] JHEP01(2015)069 , , , , , , , , , 46 44 , , , 126c , , 117 26a , , 150 , 36 , , , 9 30 , 171 85 30 85 , , , 177 145a 156 167 131 , 177 126a 54 82 139 , , , 149 , , , , , , 30 , 30 , 87 104b , 45 18 170 31 , 107 , , , , , ∗ 140 147b , S. Binet , P. Anger , , , L. Alio 135b 86 , , W. Bhimji , , 26a 54 , S. Asai 170 147b , A. Alonso 83 106 104a , , , G. Avolio 107 , V. Bartsch 79 , E. Badescu 91a , O. Arnaez 23 147a 101 , R. Astalos 126f 135a , M. Barbero , A. Antonaki , , C.P. Bee , 30 , O.K. Baker 104b 144 147a , , 160b 146b 145a 25 , J. Adelman , F. Barreiro 47 65 , R. Abreu 50b , R. Aben , 131 , B.M. Barnett , M. Beckingham 25 126a 147b 162 , K. Bierwagen , V. Bansal , D. Blackburn , 104a 120 11 153 , M. Battistin 84 50a 78 22 , C. Alexa 100 , A.T.H. Arce , M. Bindi , J. Albert 176 , W. Blum 138 147a 65 , M. Bellomo 47 , K.J. Anderson 23 , G.J. Besjes , G. Artoni , C. Bacci , C. Bernius , L. Aperio Bella , S. Bethke 20b 126a , K. Bendtz , 29 , I. Angelozzi 30 , G. Alimonti , M.G. Alviggi 97 78 66 9 48 , P. Bartos 91a , C. Anastopoulos 58a , S.P. Amor Dos Santos 20a , E. Bergeaas Kuutmann 90 , A. Annovi 72 136a 113 23 89 , H. Akerstedt 12 , A.J. Barr , H. Abreu , A. Aloisio 107 , J.T. Baines , K. Assamagan , S. Becker , D.L. Adams , C. Belanger-Champagne , M. Aurousseau 49 74 35 , O. Abdinov 6 , A.J. Armbruster , S.L. Barnes , J. Backus Mayes 154 , D. Barberis 134b , K.M. Black , S.P. Bieniek , , G. Bertoli , V.A. Bednyakov 176 38a 28 120 128 30 , H. Bilokon 88 117 19a , M. Aoki , C. Blocker 85 144 , M. Battaglia 100 , J.A. Benitez Garcia , P. Bernat , P.H. Beauchemin 177 , G. Anders 49 134a 42 , J.P. Araque , A. Bellerive , A.E. Baas 28 49 22 80 133a 66 58b , M.I. Besana , N. Anjos 30 , A.A.E. Bannoura , D. Amidei , D. Berge 20a , I.N. Aleksandrov , T. Bain , M. Alhroob , A. Artamonov ,c , S. Angelidakis , J.A. Aguilar-Saavedra , C. Betancourt , A.E. Barton 23 , G.L. Alberghi 30 113 174 10 107 21 71 , G. Barone , G. Amundsen , K. Behr 33a 109 13a 137 , L. Asquith 144 , M. Arik 96 , K. Becker , P.P. Allport , D. Benchekroun 25 , N. Barlow 154 42 , I. Bloch – 71 – , G. Aielli 135a , O. Biebel , K. Augsten 17 72 , J.E. Black , C. Bertella , T. Beau 147b 6 , Y. Arai 154 ,b , 144 , L. Adamczyk , M. Backhaus , B. Alvarez Gonzalez 30 , F. Anulli , S. Bedikian , H. Abramowicz , E.L. Barberio 72 145a 65 151 ,a 129 30 35 , J.R. Batley , C. Bernard 144 , Y. Bai 96 19c , M.A. Baak 159 147a , S. Abdel Khalek 53 15 145b , C.F. Anders , M. Aleksa , O. Arslan 165b , 156 35 , C. Amelung , D. Bertsche , N. Besson 152 133b 71 , M. Begel 28 , , L. Bellagamba , Sw. Banerjee 42 , S. Bentvelsen , N. Amram 24a 113 , H.P. Beck , X.S. Anduaga , E. Benhar Noccioli 165a , R. Bartoldus 176 , A.V. Akimov 39 154 ˚ Asman , T. Alexopoulos 23 133a , O. Benary , L.J. Allison 48 , P. Berta 21 57 , M. Bianco , A.V. Anisenkov , T. Blazek , T. Barklow 58a 154 , A. Baroncelli 49 156 30 , B. Auerbach 18 77 5 , M. Backes 23 , J. Bilbao De Mendizabal , J. Antos , I. Aracena 30 , C.W. Black , B. , S. Argyropoulos 137 , F. Ahmadov 176 , A. Beddall , M.D. Beattie 98 90 142 , R.L. Bates 155 , J. Beringer , A. Altheimer 95 , T. Agatonovic-Jovin ,f 22 , S.P. Baranov 154 , Y. Azuma 135a 19c , T. Andeen 133b 76 , 166 ,e 170 , M. Arratia , O.S. AbouZeid , J. Abdallah , G. Bella 131 144 173 30 , E. Banas , M. Bessner 95 48 90 49 , C. Bertsche 133a 113 , P. Bechtle , P. Bagnaia 137 , T. Berry , V. Andrei , S. Amoroso , B.S. Acharya 147b , , G. Akimoto 170 124b 91b , T.A. Beermann 124b , , J.R. Bensinger 133b , , G. Alexandre , L. Bianchini , , , K. Bachas 126b 147b 81 , Z. Barnovska , N.B. Atlay , , , F. Anghinolfi 45 , A. Antonov 147a , S.P. Ahlen , O. Beltramello , A. Basye , M. Barisonzi , T. Adye , Y. Benhammou , G. Arabidze 107 , J-F. Arguin 91a 15 154 125 , L. Barak 124a , M. Biglietti 35 , M.J. Alconada Verzini 137 47 124a 166 17 , C. Bini 98 ,d 133a , Y. Amaral Coutinho , N. Andari , H.S. Bawa 71 , C. Alpigiani , A.J. Beddall 117 , A. Ashkenazi 126a 147a 101 100 , F. Balli , J.-B. Blanchard 166 18 15 55 , B.M.M. Allbrooke , F. Berghaus , H. Arnold , W.H. Bell 66 6 , G. Azuelos 49 71 5 19c 120 , M. Abolins 42 , B. Abbott 31 137 82 117 49 129 15 ˚ Akesson 85 114 F. Bertolucci O. Bessidskaia R.M. Bianchi J. Biesiada A. Bingul R.E. Blair P.J. Bell K. Belotskiy N. Benekos D.P. Benjamin N. Berger F.U. Bernlochner J. Barreiro Guimar˜aesda Costa A. Bassalat F. Bauer R. Beccherle C. Becot L.J. Beemster H. Bachacou P. Bagiacchi P. Balek H.S. Bansil T. Barillari R.M. Barnett R. Apolle F.A. Arduh V. Arnal N. Asbah M. Atkinson B. Axen A. Amorim L.S. Ancu A. Andreazza A. Angerami M. Antonelli T.P.A. S. Albrand G. Alexander J. Alison F. Alonso K. Amako G. Aad B. Abi Y. Abulaiti S. Adomeit M. Agustoni The ATLAS collaboration JHEP01(2015)069 , , , , , , , , , 15 80 12 , , 9 , 122 35 109 26a , , 72 10 , 91b , , , , 157 , , , , , , 107 , 39 ∗ , 89 , 87 , , 72 , , 53 136a 30 26a 49 , 91a 30 , , 20a 72 30 , 25 , 45 , , , 20a 119 15 76 , , 48 126c , 35 48 24b , A. Ciocio 91a , Y. Chen , , 107 , 20a , 75 , , 67 65 126a 28 , G. Calderini 3 , M. Caprini 49 , J. Boyd 165c , S. Chouridou 26a , , U. Bratzler 137 26a 31 , A.P. Colijn 65 , A. Chafaq , K. Brendlinger , D. Britton , M. Byszewski , A. Bocci , G. Borissov , A. Chilingarov , A. Bruni , M. Cavalli-Sforza 58a 165a , , M. Corradi 46 6 53 , S. Cheatham 108 81 19b 159 61 , L. Carminati , S. Campana 78 , H. Burckhart 130 , G. Costa 91a , R.N. Clarke 176 150 , A.G. Bogdanchikov 12 , D. B¨uscher , Y. Chen , V. Chernyatin 74 , J.J. Chwastowski , J.R. Catmore , E. Coniavitis , A. Castelli 46 , V. Cindro , M. Cano Bret 101 104a , F. Bucci 30 , A.I. Butt , M.A. Chelstowska 34 , R. Camacho Toro , S. Constantinescu 30 33f , 53 , G. Brooijmans ,g 127 , J. Carvalho 22 136e , A.S. Cerqueira , D. Boscherini , V. Boldea 34 48 143 126b 146b 55 160a , , I.A. Budagov , I. Caprini , A. Boveia 65 28 , S. Cole 101 129 , J.D. Chapman 107 , A. Calandri 38a 30 , M. Cobal 35 , O. Brandt 26a , E.V. Bouhova-Thacker , A. Buzatu , B. Brelier 126a , S. Brunet 87 15 85 136d 2 , S.A. Cetin 15 , M.V. Chizhov , D. Cavalli 28 , A. Borisov 48 , J.T. Childers 17 , T.M. Bristow , X. Chen 165c , B.D. Cooper , P.J. Clark 26a , 166 , E. Busato , S.S. Bocchetta , D. Cinca 137 , G. Carlino , Q. Buat 15 49 ,c , S. Calvet , G. Cortiana 33c , K. Bos 43 104b 4a 146c , T. Cornelissen 30 , J. Brown , 14 , A.C. Bundock , T. Bold , J. Chudoba , B. Cole 165a 34 , J.M. Butler , J.A. Bogaerts 12 , A. Canepa , K. Cerny 15 , V. Consorti 109 , A. Catinaccio 60a 98 77 , J. Bronner 116 , J.R. Carter 57 , S.I. Buda 152 45 104a 144 57 176 90 , G.A. Chelkov 91b 53 104b , , Y. Coadou , , G. Brandt , S. Boutouil 146c , J. Bouffard , C.A. Chavez Barajas , P. Calafiura 8 , B. Chapleau , A. Cervelli 91a , R. Caminal Armadans , A. Chitan 160a 4a , S. Chen , A. Clark 114 , T. Carli 125 159 104a , R. Ciftci 147b , W. Buttinger , R. Bruneliere 166 30 , M. Cooke 15 , 78 ,h , P. Conde Mui˜no , V. Cavaliere ,i 4a – 72 – 26a , T. Buanes , K. Bristow , K. Copic , D. Calvet 107 , E. Brost 134a , E. Castaneda-Miranda 83 33d 101 145b 147a 81 , B. Butler 77 , R. Cherkaoui El Moursli , I. Burmeister , M. Boonekamp 15 , M.L. Chu 173 , O. Bulekov 104a 24a 12 , V. Boisvert , S.F. Brazzale , B.C. Cerio , T.T. Boek 65 , G. Chiefari 76 , J.G. Cogan 30 167 ∗ 131 , , V. Bortolotto , P. Catastini 48 119 127 47 23 , A. Brandt , M.D.M. Capeans Garrido , O. Cakir , C. Bromberg 135b , M. Cerv , , A.G. Buckley 176 100 18 , P. Chang 40 , V. Canale 90 , V.S. Bobrovnikov 126a , C.C. Chau 15 20b , N. Bousson , P. Butti , A. Cortes-Gonzalez , , L. Chen 120 , J. Boudreau 129 18 149 135a 107 , A.K. Ciftci 78 , S.M. Consonni 117 164 20a , R.T. Chislett , S.V. Chekulaev , J. Caudron 149 107 77 6 , M. Bona , D. Bruncko , C. Clement , S. Bressler 18 , S. Burke , L.M. Caminada , R. Cardarelli , M. Ciubancan 133b , J. Brosamer , J. Bohm , F. Conventi , , L.P. Caloba 80 , M. Casolino 39 85 , T. Cao , L. Coffey 83 167 134b 108 119 , 57 91a , M. Boehler , L. Bryngemark 12 , G.D. Carrillo-Montoya , G. Compostella 32b , A. Cheplakov 64 108 , R. Brock , M.K. Bugge , C.P. Buszello , V. Chiarella 147a 133a 126a , J. Bracinik 31 , F. Cerutti , J. Bortfeldt 120 21 20a 53 32a 58c , H.M. Braun 134a 119 , N.J. Cooper-Smith , N.F. Castro 137 76 42 , K. Chen 13a 116 , F. Ceradini , D. Caforio 120 168 25 , G.J. Bobbink , I. Chalupkova , D.G. Charlton 168 , S. Chekanov , C. Bourdarios , G. Conti 124b 54 , A. Campoverde , I.A. Connelly , , R. Caputo , D. Chromek-Burckhart , A. Corso-Radu , M. Bomben 108 , R. Brenner 34 90 117 , C. Bohm 78 , R.M. Buckingham , I. Brock ,j , A.S. Chisholm , M. Citterio , J.M. Butterworth , R. Calkins , J.C. Clemens ∗ , J. Cochran 99 , D. Cameron , Y. Cheng , , H. Boterenbrood 88 100 121b 37b , P. Bussey , M.P. Casado , L. Bugge , G. Ciapetti 124a 28 , , 87 , I. Bozic 146b 53 , R. Cantrill , W.K. Brooks 142 42 73a 89 , M. Bruschi 92 173 , E. Carquin , B. Burghgrave 100 12 , G. Cattani 125 139 , L. Cerrito 83 78 , C.R. Boddy 48 65 , S. Borroni , T. Colombo 82 , H. Chen 77 37a 115 , J.E. Brau 74 30 , L. Chevalier 121a 20a 106 84 55 64 150 7 100 86 J. Collot S.H. Connell C. Conta A.M. Cooper-Sarkar F. Corriveau G. Chiodini B.K.B. Chow L. Chytka Z.H. Citron W. Cleland A. Coccaro D. Chakraborty D. Charfeddine A. Chegwidden C. Chen H.C. Cheng E. Cheu S. Caron D. Casadei V. Castillo Gimenez A. Cattai V. Cavasinni A. Cerri S. Cabrera Urb´an P. Calfayan S. Camarda M. Campanelli J. Cantero M. Capua G. Bruni P. Buchholz F. Buehrer S. Burdin V. B¨uscher C.M. Buttar I.R. Boyko B. Brau A.J. Brennan F.M. Brochu T. Brooks P.A. Bruckman de Renstrom C. Bock A. Bogouch A.S. Boldyrev M. Borri M. Bosman D. Boumediene U. Blumenschein JHEP01(2015)069 , , , , , , , , , , , , , , , , , , 72 106 , 12 5 81 61 82 133a , 18 80 , 30 140 , 85 , 110 51b 173 , , , 9 , 84 ∗ 104a , 147a 5 , 133a , , , 107 120 121b , 53 38a , , 98 , 5 , 58a , , 20b 130 , , 30 21 , , 156 83 , , S. Elles 20b 121a , , 40 , 20a 80 , 42 154 167 30 , D. Dobos 20a , F. Filthaut , A. Forti 117 , , F. Djama , J. Del Peso , A. Floderus 142 , A. Doria , T. Farooque , D. De Pedis 42 89 30 , S. De Cecco , 137 , K. Cranmer , , P. Ferrari , E. Duchovni 126g , A.C. Daniells , S. Falciano 107 176 131 , A. Dattagupta , , D. Eriksson 89 , W.J. Dearnaley 107 84 , S. D’Auria 135a 20b 34 36 , E. Ertel , A. Durglishvili 169 , 42 167 3 17 , Y. Enari , D. Fassouliotis , M. Delmastro 130 , A. Firan 117 52 126a 30 49 , L. Di Ciaccio 166 20a , S.P. Denisov , W. Dabrowski 131 , , T.A. Dietzsch , E. Etzion , M. Ellert , I. Fleck 168 , C. Deterre , L. Duflot 80 , W. Ehrenfeld 84 , B.A. Dolgoshein 42 , H. Feng , A. Dell’Acqua , M. Fraternali 48 140 , M. Franchini , O. Davignon 21 134b 6 , R. Di Sipio 64 137 46 , F. Dittus , , T. Flick 75 136c , M. Crispin Ortuzar 62 129 80 , J. Dopke 48 154 76 , M. Dam , M. Filipuzzi , A. Formica , B.E. Cox 26a , A. Farilla 34 , T. Cuhadar Donszelmann , I. Deigaard , B. Di Girolamo , C. Ferretti 134a 8 86 75 , A. Ferrari 77 147b , L. De Nooij , 101 65 30 49 , E. Dubreuil , M. D¨uren , W. Fedorko 26a , S. Errede 53 64 , A. Ereditato 15 ,k 4a , L. Fiorini 147a , P. Czodrowski , J.A. Dassoulas 166 , P. Fassnacht , C. Da Via , K. Desch , M. Flechl , S. De Castro 177 , A. Demilly 8 , E.J. Feng , J. Dietrich , S. Franz 123 , I. Dawson , D. della Volpe , S. Dita 74 142 23 126c 65 , D. Emeliyanov 89 , F. Dudziak ,i 57 , , Z. Dolezal 136e 33d 143 126b , M. Davies 104a , J. Donini , 26a , A.I. Etienvre 30 30 , R.M. Fakhrutdinov , G. Fletcher ,d , A. Farbin , N.C. Edwards 129 , M. El Kacimi , G. Cowan 126a 47 104a , A. Filipˇciˇc 31 , P. Francavilla 2 , A. Di Simone , S. Dube , D. Ferrere , A. Do Valle Wemans , M. Deliyergiyev 126a 28 121b 140 120 83 91b 12 47 , 167 , A. Di Ciaccio , 89 , J.B. De Vivie De Regie , J. Ferrando 49 24c 168 , D. Errede , C. Dallapiccola , C.-M. Cuciuc 53 107 , H. Czirr 91a , D.V. Dedovich , F. De Lorenzi 121a 150 , F. Fassi , A. Di Girolamo , C. Feng , O.L. Fedin , P. Dita , M.J. Flowerdew 95 , W.A. Cribbs , P. Dervan , S. Darmora , E. Dawe 137 , J. Erdmann 55 – 73 – 82 37b 30 , E.B. Diehl 151 85 , 21 80 80 , M. Elsing , H. Duran Yildiz , M. Franklin 50a 58a , J. Dolejsi 149 104b 145a 160b , M. Demichev , , G. Facini 32a 37a , A. Dudarev , W. Edson 100 58a 119 , E.A. Fitzgerald , G. Cottin , E. Davies 156 , B. Esposito , T. Ekelof , F. Fiedler 177 20b 8 176 , 100 104a , A. Ferrer 90 , S. Fracchia , R. de Asmundis 15 31 , J. Dubbert , M. Fanti , S. Ferrag 129 125 8 , R. Di Nardo 53 72 , G.T. Fletcher 20a , M. Della Pietra 10 , M.C.N. Fiolhais 30 , S. Dhaliwal 33a , P. Dondero , F. Dallaire , F. Derue , J. Ernwein , C.M. Delitzsch 176 , A. De Santo 135b 151 , , G. Darbo , M.A.B. do Vale 14 124b , L. Feligioni 131 25 , , F. Crescioli , P. Federic , C. Cuthbert , P. Farthouat 124b 137 150 , B. Dechenaux 48 , M.A. Diaz , J. Dingfelder 30 , 136d , D. Cˆot´e , J. Ebke , K. De , H. De la Torre 55 47 58a , G. Crosetti , Y. Davygora , D. Duda 135a 117 , H. Fox 46 171 , S. Demers 124a 86 , M. Dunford , L. Franconi 138 , T. Dohmae 13a , R. Engelmann 140 78 38a , M. Dris 107 124a 106 26a 30 30 , J. Elmsheuser 117 53 , Y. Fang , L. Fabbri 107 , W.C. Fisher , C. Escobar 53 , T. Davidek 118 , M. Fiascaris , C. Di Donato 30 , K. Einsweiler , O. Dale 43 129 123 , A.C. Florez Bustos 176 170 , V. Dao , M. Ernst 14 50b , S. Feigl 89 , 2 , F. Deliot 133b , K.D. Finelli 48 , 60a 137 50a , A. Dewhurst , L. Fayard , F.A. Dias , S. Fleischmann 170 , V. Croft 124b , 133a , M. Curatolo , S. Donati , B. Di Micco 29 , U. De Sanctis 107 , S. Fernandez Perez , M.J. Da Cunha Sargedas De Sousa , J.E. Derkaoui , P. Davison , P. de Jong , N. Ellis 89 , M. Dyndal 21 50b , M. Endo , D. Francis , , O.A. Ducu , C. Deluca , J.I. Djuvsland , H. Esch , M. Dell’Orso , D. Costanzo , D.E. Ferreira de Lima , T. Dai 74 39 78 83 , T. Doherty 177 153 , D. Fournier 24d , A.T. Doyle 83 124a 130 30 106 55 38a 22 , M. D¨uhrssen 133a , C. David , J. Faltova 50a , G. Eigen 100 49 , C. Debenedetti , J. Fischer , J. Ernst 117 51b , S.M. Farrington 168 , A. Ezhilov 71 120 , A. Dimitrievska 2 77 21 121a 78 , S. Cr´ep´e-Renaudin 25 160a 15 61 144 85 176 29 A. Fischer P. Fleischmann L.R. Flores Castillo D. Fortin S. Franchino A. Favareto M. Fehling-Kaschek A.B. Fenyuk R. Ferrari A. Ferretto Parodi M. Fincke-Keeler O.C. Endner G. Ernis M. Escalier H. Evans R.J. Falla S. Farrell M.T. Dova G. Duckeck L. Duguid M. Dwuznik T. Eifert F. Ellinghaus A. Di Mattia D. Di Valentino S. Diglio T. Djobava C. Doglioni M. Donadelli T. Del Prete L. Dell’Asta P.A. Delsart D. Derendarz P.O. Deviveiros A. Di Domenico W. Davey A.R. Davison R.K. Daya-Ishmukhametova N. De Groot A. De Salvo R. Debbe G. Cree M. Cristinziani J. Cummings M. D’Onofrio A. Dafinca M. Dano Hoffmann M.J. Costa JHEP01(2015)069 , , , , , , , 67 38a , , 127 161 118 , , 138 154 31 25 , , , ,e , , 3 , , , 155 44 , 77 , , 157 , 50b , , 42 168 , , 173 8 , , 42 16 , , 46 131 , 44 , 147b , , 6 , 30 , , 50a 92 54 , , 78 30 83 76 , 25 33d , J. Hejbal 36 16 176 , , , 147a 154 , T. Hayashi , , 49 95 , 110 , , M. Hasegawa , A.A. Grillo 20a , K. Hanagaki 81 8 , N. Guttman 30 , S. George , J.P. Grohs 177 , H.A. Gordon 168 123 107 , 78 , P. Ge , R.W. Gardner 33b 54 , K.H. Hiller , S. Gkaitatzis 97 117 , T. Heck , M. Haleem , I. Grabowska-Bold , C. Fukunaga 10 , D.M. Gingrich 15 130 , B.J. Gallop 28 , F.M. Giorgi , M. Hamer 18 , C. Gumpert 119 , C. Helsens 54 28 34 17 178 , S. Harkusha , G. Gagliardi , A.T. Goshaw , M. Hauschild 53 21 20a , B. Gibbard 170 , H.K. Hadavand , O. Gueta , J. Groth-Jensen , G.G. Hesketh , O. Gabizon , J.D. Hansen 49 39 17 30 , J.R. Goddard 117 15 30 , L. Han , L. Heinrich 55 36 , F.M. Garay Walls 177 , L. Gauthier , J. Glatzer , K. Gellerstedt , J. Griffiths , S. Grancagnolo 134b 101 , F. Hartjes 42 ,f 15 , , B. Giacobbe 82 , M.P. Goulette 21 , A. Henrichs 142 , Y. Jim´enez Hern´andez , M. George , J.C. Hill 144 34 119 , A.D. Hawkins 171 144 , U. Gul 42 , C. Gutschow , G. Gilles , E.N. Gazis 16 , V. Gallo 134a , S.J. Head , 2 30 , J.-F. Grivaz , L. Graber , J.A. Frost 136c 170 53 30 21 , D. Golubkov 133b , S. Haug , 99 , O.G. Grebenyuk 120 30 131 138 , F. Hariri 126a , P.A. Gorbounov , C. Haber , B.K. Gjelsten , K. Hamano , D. Hellmich , F.M. Giorgi 177 , H. Hakobyan , L. Hervas 137 , D. Guest , E. Gornicki , F. Gianotti 133a 30 135a 176 39 , S. Gadomski 110 115 49 58b , B. Gaur 75 , M. Garcia-Sciveres 100 , S. Gonz´alezde la Hoz , J.B. Hansen 147b 104b , C. Gabaldon , , E. Hill , 107 , Y.S. Gao 124b 21 , P. Grenier , C. Glasman , 168 121a 137 ,h 168 , C. Hengler , P.G. Hamnett 168 42 , B. Heinemann 99 147a 104a , E. Gramstad , S. Guindon , N. Ghodbane , G.C. Grossi 124a , P.F. Harrison , D. Gillberg 33b 174 , G.H. Herbert , G. Gaycken 49 176 54 , E.J. Gallas , D. Goujdami 146c 117 , M. Goblirsch-Kolb 28 , T. Golling , R.J. Hawkings – 74 – , A. Haas , R. Gon¸calo , Ch. Geich-Gimbel 139 , S. Hassani 136b , S. Gentile 117 169 , P. Hamal 65 , S.J. Haywood , Z. Hajduk 89 , D. Froidevaux 18 74 42 126c , M. Giulini 136a 55 , E. Graziani , , L. Goossens 107 , A. Goriˇsek 113 , F. Guescini 74 21 , H.M.X. Grabas 44 176 48 , Y.V. Grishkevich 30 , T. Harenberg 49 , L. Gonella , J. Fuster , R. Hanna 23 , J. Gao 73b , G. Gaudio 128 , S. Gadatsch 126a 34 , , N.G. Gutierrez Ortiz 174 , Y. Heng 137 144 , T. Heim 47 58a , S. Hellman , I.M. Gregor 111 , R. Hertenberger 73a 72 , C. Gay , R. Giordano 113 , L.K. Gladilin 30 133b 78 48 122 , , P. Giannetti 96 , J. Gramling 117 12 , G.N. Hamity , A. Hasib 165c 42 , T. Guillemin , O.M. Harris , , H. Ghazlane , G.L. Glonti 133a , S. Goldfarb , T.P.S. Gillam , J.E. Garc´ıaNavarro 46 162 , M. Gouighri 141 , Ph. Gris , E. Hig´on-Rodriguez 42 , C.M. Hawkes 50b 83 15 , M.H. Genest , C. Giuliani , F. Friedrich , H.M. Gray , 154 , S. Hageb¨ock , C.B. Gwilliam 165a , J. Grosse-Knetter , C. Gatti 65 ,n 76 168 , P. Hanke 53 , S. Gozpinar , K. Hamacher 42 , D.A.A. Geerts , H.S. Hayward , A.S. Hard 21 127 , J. Guenther 91a 5 123 50a , S. Henrot-Versille , K.K. Gan 30 12 , E. Gorini , B. Galhardo , S. Heim 120 173 15 90 , M. Heller 8 131 120 30 36 161 , B.G. Fulsom 30 , G. Herten 33b 106 , L.S. Gomez Fajardo , P. Gutierrez 83 100 16 , K. Gregersen , S. Gonzalez-Sevilla , K-J. Grahn 120 12 126d ,m , A. Gabrielli , A. Glazov , , I.L. Gavrilenko , C. Goy , V. Giangiobbe 79 20b , S. Hamilton , C. Garc´ıa 46 , R.C.W. Henderson , A. Gershon , , E. Guido , Y. Hasegawa , E. Gross 20b , C. Goeringer , D. Giugni , R. Hickling , P. Haefner 139 , , K. Hara , M. Gilchriese 126b , M. Hance 133b , E.L. Gkougkousis , C. Friedrich , A. Gemmell , 34 , L. Guan , L. Heelan , M.I. Gostkin 177 , 42 120 20a 164 30 , B. Gorini 133b , V. Garonne , C.P. Hays ,l , C. Galea 146a 36 77 103 , M.P. Giordani , , S. Grinstein , V. Gratchev , C. Gwenlan , R.D. Harrington , G. Galster , M. Havranek 137 107 20a 28 81 43 , C.N.P. Gee , C. Heller 9 156 136e 90 50a 150 61 72 89 , G. Halladjian 90 105 126a 144 155 133a 22 149 137 128 , S. Gupta 133a 169 120 35 L. Helary J. Henderson A.M. Henriques Correia R. Herrberg-Schubert N.P. Hessey P.H. Hansen D. Harper S. Hasegawa R. Hauser D. Hayden V. Hedberg J. Guo C. Guyot N. Haddad D. Hall A. Hamilton K. Hanawa V. Grassi Z.D. Greenwood K. Grimm A. Grohsjean Z.J. Grout C. Guicheney J. Goncalves Pinto Firmino DaG. Costa Gonzalez Parra I. Gorelov C. G¨ossling A.G. Goussiou P. Grafstr¨om N. Giokaris P.F. Giraud I. Gkialas P.C.F. Glaysher J. Godlewski A. Gomes P. Gauzzi Z. Gecse C. Gemme D. Gerbaudo S. Giagu S.M. Gibson E. Fullana Torregrosa A. Gabrielli P. Gagnon P. Gallus F. Garberson N. Garelli S.T. French JHEP01(2015)069 , , , , , , , , , 9 , , 30 74 120 , , 148 , , , 105 81 128 74 8 , 39 , 120 , 98 104a 9 130 , 117 , 80 30 , ,s , , 11 , , , , , 137 , , , 110 , 122 , 48 147b , 53 , , ,o 171 , 29 49 88 152 144 , , , , 10 65 31 , 5 , , , 134b 176 36 28 , P. Iengo , , Z. Hubacek , H.Y. Kim , 147a 106 , J. Jakubek , J. Jovicevic 66 , K. Korcyl , G. Jarlskog , , R.S.B. King , M. Jackson 70 111 33b 42 84 , J. Hrivnac 48 168 51b 136e 134a 127 171 , J. Kretzschmar 110 168 122 , F. Kiss , C. Kourkoumelis 16 , S. Hou , T. Koi , K. Iordanidou , , M. Huhtinen , A. Knue , C.W. Kalderon 45 58c , G. Jones , M.W. Krasny , V.A. Korotkov , V.A. Kantserov 55 66 , M.R. Hoeferkamp 38a , T. Koffas , T.M. Hong 72 85 45 98 158 28 , F. Khalil-zada 30 135a , D. Jennens 140 , R. Konoplich 15 , W. Kozanecki 129 147b , G. Iacobucci , , T.J. Khoo , Y. Ilchenko ,r , Y. Jiang , P.F. Klok , P. Klimek , T. Kondo 159 151 , M. Kaci , Y. Huang 38a 57 , R.D. Kass 66 66 , Z. Idrissi 30 , M. King 83 , R. Iuppa 58a , N. Karastathis ,n 149 , M. Janus , K. Kawagoe 147a 156 89 , K.D. Joshi , J. Khubua , A.K. Kopp , H. Keoshkerian 74 84 , D. Hirschbuehl 7 , M.Y. Kazarinov 58b 10 , B. Jackson 12 , K. Karthik 21 177 , I. Hristova 65 , M. Kretz 83 77 , T. Jakoubek , M.D. Joergensen , A. Kotwal 65 158 109 126b , , T. Kohriki 30 115 , S. Kaneti , G. Hughes 110 104a 65 , M. Iodice 158 , P. Kodys , J. Jia 9 30 35 , A. Hoecker , J. Huth 128 , X. Hu , J. Keung , M. Ishitsuka , J-Y. Hostachy 126a , T. Kono , D. Kisielewska , M. Ikeno 144 , T.R. Holmes 90 35 174 , E. Kajomovitz 68 140 , G.-Y. Jeng 83 156 67 , E. Ideal 103 83 ,p 142 , E.V. Korolkova , E.B.F.G. Knoops , Y. Komori , B.T. King 144 , A. Khomich , L. K¨opke ∗ , D. Krasnopevtsev , K. Jon-And , J. Janssen , T.Z. Kowalski 12 , , V. Kaushik 117 , V. Izzo 62 7 16 51a 98 , M. Hirose 75 30 , K. Kleinknecht , S. Kreiss , G. Kasieczka 96 42 41 , H. Ji , E. Khramov 38a 170 5 , D. Hu , K. Karakostas 74 25 97 122 , S. Jakobsen , A. Juste Rozas , J.J. Kempster , T. Klioutchnikova 174 , V.M. Kotov , V.F. Kazanin , Z.M. Karpova , P. Ioannou 53 , Z. Kohout , M. Kaneda 48 139 62 , O. Jinnouchi 42 84 , S. K¨onig , J. Huston , M. Hrabovsky , P.M. Jorge , Y. Horii , J.M. Iturbe Ponce , M. Ishino 21 65 , M. Kocian , E.W. Hughes 156 101 ,b – 75 – 176 156 42 , P. Hodgson 26a 44 106 58a , K. Kessoku 116 19a 167 , M. Kagan 65 , O. Kind , M. Hohlfeld 120 , K. Ikematsu , T. Kishimoto 140 , J. Katzy 176 , J. Jejelava , I. Korolkov 85 , H. Jansen , J.M. Izen 111 172 , K.A. Johns , U. Klein 66 , D. Kar 49 , E. Hines ,c 101 15 , E. Kneringer 78 66 , S. Koperny , A. Khodinov , L. Kashif 74 , S. J´ez´equel , A.A. Komar 31 15 140 , P. Jussel , T. Ince 109 , S.-C. Hsu 101 , K. Jakobs 90 153 , G. Kramberger 114 130 , J.S. Keller 30 , S. Istin 171 2 67 , R. Kowalewski 83 , A. Kravchenko 99 , A. Jinaru , M. Kobel 54 , J.A. Klinger , V. Khovanskiy , S. Kazama , N. Kanaya , S.N. Karpov 120 , J. Howarth 21 43 , A.C. K¨onig 54 , C. Isaksson 160a , S. Kohlmann 33a 156 83 176 130 , L. Iconomidou-Fayard , H. Kagan 120 48 , A. Katre , N. Huseynov , S. Kersten , J. Jongmanns , N. Kimura , L. Jeanty , W.H. Hopkins , V.V. Kostyukhin 168 , M. Klein 120 , J. Koll , Y. Ikegami , E. Jansen , T.B. Huffman 15 75 142 74 , H. Iwasaki 5 117 , A. Kapliy , D. Hoffmann 156 , V. Jain 48 , S. Kluth 79 161 21 , C. Jeske 110 101 172 39 40 , P.J. Hsu , I. Hinchliffe , M. Keil 30 , A.A. Korol 145b 110 , S. Jin 43 107 , A.E. Kiryunin , A. Khanov , P. Johansson , M.C. Hodgkinson 18 40 78 , Y. Inamaru 42 , R.M. Jungst , C. Issever 146c 131 107 43 147b , J.K. Kraus 147b 159 , R. Kopeliansky , , 111 , A.N. Karyukhin , J. Howard , K. K¨oneke 30 78 , M. Kado , A. Koutsman , G. Kawamura 72 , T. Kobayashi 42 147a 147a , T.J. Jones , S.H. Kim , R. Klingenberg , L.A. Kogan 39 , M. Karnevskiy , V.A. Kramarenko , I. Koletsou , M. Hurwitz , T. Iizawa 136a , P. Kluit , T. Jav˚urek , A. Khoroshilov , D.K. Jana , Y. Kataoka , I. Ibragimov , S. Kortner 155 156 72 158 25 , A. Korn , C. Hsu ,b 54 16 83 , A. Irles Quiles , J. Hoffman , B. Kaplan , W. Iwanski 21 , J. Kirk , E. Kladiva 107 , F. Huegging , B.P. Kerˇsevan , R. Kehoe 14 130 5 , N. Ilic 10 107 58a , N. Hod 152 , J. Jentzsch 147b , M.R. Jaekel 65 , 101 , S.J. Hillier 57 66 81 , A. Kamenshchikov 1 85 155 ,q 100 169 161 127 170 155 21 149 40 , C.A. Jung 48 147a 174 K. Kordas O. Kortner V. Kouskoura A.S. Kozhin A. Krasznahorkay E.-E. Kluge D. Kobayashi E. Koffeman H. Kolanoski N. Kondrashova N. Konstantinidis H. Khandanyan G. Khoriauli H. Kim S.B. King K. Kiuchi A. Klimentov M.J. Kareem V. Kartvelishvili A. Kastanas T. Kawamoto R. Keeler O. Kepka K.E. Johansson R.W.L. Jones X. Ju A. Kaczmarska S. Kama J. Kanzaki J. Ivarsson P. Jackson D.O. Jamin N. Javadov P. Jenni M. Jimenez Belenguer T.A. H¨ulsing G. Iakovidis O. Igonkina D. Iliadis V. Ippolito R. Ishmukhametov J. Hobbs F. Hoenig L. Hooft van Huysduynen A. Hoummada T. Hryn’ova F. Hubaut S. Hillert JHEP01(2015)069 , , , , , , , , , 15 67 , 101 21 10 , 80 83 , , 123 , , , , , 80 , 6 , , 124b 61 , , 75 , , 65 48 45 62 152 78 80 , , , , ,f 156 , , , 173 , 25 24a , 90 124a 76 21 72 , , , , 144 , , ,n , 37b 168 , , ,u , 7 , 24b 42 , 9 76 149 12 54 , 14 126a 21 , 25 33c 37a , , M. Liu , , L. Masetti , A.A. Maier 21 20b , S. Maltezos , A.M. Leyko , W. Lavrijsen 89 , , G. Lefebvre , S. Kuehn , I. Mandi´c , R. Kurumida 32b 30 , W. Lukas 1 , R. Mazini 101 , B. Malaescu 47 24a 4c 144 110 92 ,c , M. Levchenko , X. Lei 61 20a , S. Leone , T. LeCompte 91a ,x 7 , B. Martin , Y. Li , G. Marchiori 30 12 , D. Lellouch , D. Lissauer , A.J. Lowe 109 122 , L. Lambourne 30 45 137 29 , T. Masubuchi , D. Lynn , L. Lopes , J. Kroseberg 72 , L. Liu , S.L. Lloyd , W. Liebig 129 166 , F. Marroquim 58a , Z.V. Krumshteyn , L. Lee 83 72 , C. Lapoire , M.P.J. Landon 37b , H.J. Maddocks ,w 82 21 , 122 , M. Martinez , K. Lohwasser , V.R. Lacuesta , E. Magradze 64 , N. Lorenzo Martinez 80 48 48 152 126a 16 80 , B.E. Lindquist , A. Marzin 99 , S. Li 33b , I. Massa 37a , S. Kuday 137 , P. Laurelli , L. La Rotonda 100 , S. Kuleshov ,c , C. Malone , R. Leone , P. Mal 78 , G.H. Lewis 107 33e 6 30 49 , A. Macchiolo 92 , F. Luehring 133a 30 , L. Mandelli 109 , B. Martin 117 47 120 55 , T. Loddenkoetter 30 , H. Laier , P.A. Love , C. Maidantchik , C.M. Lester , J. Kroll , T.M. Liss , R. Leitner 6 , Y.A. Kurochkin , J. Liebal 168 48 , K. Liu , R.E. Long 28 138 42 , L. Li , S.C. Lee , E. Le Menedeu 137 , D.A. Maximov 67 101 , T. Lohse , R. Madar , J.F. Marchand 24d 89 166 , S. Laplace , A. Manousakis-Katsikakis , M. Lungwitz 45 33b 85 74 , D. Lacour 118 85 , J. Lorenz , U. Landgraf 30 , F. Linde 177 , N. Krumnack 16 , H. Kucuk , D. Malon 138 , B. Lenzi , G. Lehmann Miotto 148 146c , A. Maevskiy , H. Martinez 12 , L. Manhaes de Andrade Filho 83 , C.N. Marques 17 , S. Lai 137 88 63 , M. Lassnig , A. Lewis 74 25 , J. Love 14 , A. La Rosa 176 , F. Marzano 101 , L. Li , J. Llorente Merino 18 13a , A. Lucotte 177 , N. Makovec , K. Lie 20b , Y. Kulchitsky 117 , B. Mandelli 115 , 31 55 139 66 30 , H. Kroha , J.B. Liu , C. Maiani , M. Lisovyi 65 , C.G. Lester , A. Mastroberardino 133b , G. Maccarrone , J.D. Long 20a 13b , 54 74 14 – 76 – 95 152 , A.L. Maslennikov 22 , J.S.H. Lee , H. Kurashige , H. Lacker 149 , L. March , M.A.L. Leite 33d , T.H. Lin , W.S. Lockman , S. Marti-Garcia , A. Loginov 84 133a , S.J. Maxfield , K. Lantzsch 7 29 , D. Madaffari , A. Lehan ,v , U. Mallik 30 , T. Kruker 107 17 127 , E. Le Guirriec , E. Lan¸con , T. Maeno 36 , M. Levy 177 , T. Kubota 25 , H.L. Li 7 8 , G. Lenzen , I. Lopez Paz 30 15 55 21 , J. Kvita 26a 80 152 , P.M. Manning 22 , A. Lleres , M. Marx , A. Lounis 21 , T. Lagouri 173 149 , B. Lund-Jensen 140 , D. Liu 158 78 , P. Lichard 41 80 , Y. Makida 100 , A. Manfredini , V. Kukhtin , C. Leroy 121b , M. Marjanovic , L.L. Ma 152 , , H. Lee , C. Luci 147b , P. Loch 116 , J. Mamuzic , , B.A. Long , J. Masik 42 10 134a 25 , J. Lacey 5 126b 170 , A. Lipniacka , S. Mahmoud 42 30 , , H. Li 96 139 , F. Lanni 121a , A. Kupco , K. Kroeninger , L. Mapelli 146b , B. Martin dit Latour , F. Malek , L.F. Marti 147a , S.C. Lin , T. Lenz 85 , W. Lampl 122 107 , M. Maeno 133b , J. Maurer , H. Kr¨uger 87 , D. Macina , C. Leggett , X. Lou 46 7 , 164 126a 122 15 159 , A.G. Leister 78 , P. Mastrandrea , M. Kuze 123 151 83 65 , B. Liu , M. Kruskal , F. Lasagni Manghi 15 , O. Le Dortz 5 167 , A. Mann 100 , H. Ma , B. Laforge 155 126b 45 133a 74 148 , 138 , T. Kuhl 5 91a , L.J. Levinson , B. Li 81 160b , B. Liberti 89 ,t 138 126a , M. Livan , S. Majewski , C.A. Lee 34 , A.C. Martyniuk , S. Leontsinis , B. Lopez Paredes 33b , C.P. Marino 55 , S. Malyukov , E. Lipeles 33b , H.J. Lubatti 46 , A.E. Loevschall-Jensen 57 , J. Kunkle 131 126d , P. Krieger 90 , , J. Maneira , R. Mantifel , V.P. Lombardo 127 , O. Lundberg 89 , T. Lari 109 , E. Lobodzinska , N. Massol , J. Mahlstedt , Z. Marshall 84 , V.J. Martin , R. Mashinistov , F. Legger 52 , A. Leisos , A. Madsen 63 , C.L. Lampen , V.P. Maleev , F. Lacava , A. Limosani , P. Loscutoff 48 84 133b 137 , K.J.C. Leney , R. Lafaye 127 , A.J. Lankford , 137 152 29 , J. Mattmann , P. Laycock , B. Li 171 126b 44 20b 156 133a 170 61 , M.C. Kruse , E. Lytken , , D. Levin , , A.M. Litke 39 , A. Kuhl 21 , U. Kruchonak , H. Liao 54 65 5 168 163 41 58a , E.S. Kuwertz , Y. Liu 138 176 20a 174 127 58c 133a 169 13a , N. Lu 138 126a 127 33b 33a T.A. Martin S. Martin-Haugh T. Mashimo L. Massa P. M¨attig V.M. Malyshev R. Mandrysch J.A. Manjarres Ramos B. Mansoulie M. Marcisovsky S.P. Marsden R. Lysak J. Machado Miguens W.F. Mader K. Mahboubi A. Maio Pa. Malecki F.K. Loebinger M. Lokajicek D. Lopez Mateos M. Losada F. Lu L. Luminari Z. Liang C. Limbach J.T. Linnemann A. Lister M. Liu F. Lo Sterzo M. Lefebvre W.A. Leight B. Lemmer C. Leonidopoulos J. Levˆeque M. Leyton E. Ladygin S. Lammers V.S. Lang J.F. Laporte A.T. Law F. Ledroit-Guillon J. Krstic A. Kruse A. Kugel M. Kuna V. Kus C. Lacasta K. Kreutzfeldt JHEP01(2015)069 , , , , , , 84 , 6 , , , ,z , 66 91a 31 , 120 , 10 54 , 140 , 130 30 , , 25 , 125 , , , , , 25 , 101 27 , 85 , 88 8 149 , 30 66 , , A. Oh 103 63 , , ,o 15 , , , 31 , 61 , 31 , 163 , 46 , , 144 118 , 12 , 83 166 31 121b 25 , , 25 162 21 , C. Meroni 156 , , K. Nagano , , , F. Nuti 73b 57 85 , , J. Mueller , A. Paramonov , Y. Okumura , 121a 48 , 21 , S. Palestini ,l 104b 78 , 25 , N. Ozturk , , G. Mchedlidze 16 , R.B. Nickerson 137 58a 73a , M. Nozaki , E. Monnier , L. Morvaj , H. Oberlack 6 , P.S. Miyagawa , C. Mills , H. Ogren , A.G. Myagkov 155 78 160b 36 ,e 19a , N. Morange 154 76 104a , E. Mountricha 49 31 101 66 , L.M. Mir 3 , Y. Nakahama , C. Meyer , G. Navarro 153 29 , E. Meoni , E. Panagiotopoulou , R.L. McCarthy , S. Meehan 30 , T.K. Nelson , S. Pagan Griso , M. Nomachi , P. Nilsson 144 174 42 , P.U.E. Onyisi , L. Mijovi´c , S. Panitkin 164 , C. Melachrinos 6 89 , Y. Minami 42 , M. Morii , Y. Nagai , A. Negri , D. Oliveira Damazio 48 , G. Otero y Garzon 18 101 174 74 , W. Mohr 89 164 81 , E. Nurse 44 46 , M.S. Neubauer 130 126e , G. Nanava 158 35 , H. Okawa 144 , 122 100 41 , J. Monk , F. Mueller , A. Ouraou ,aa , N. Orlando 118 , S. Odaka , A. Nikiforov 55 18 , S. Nowak , L. Merola 30 126a , A. Miucci , E. Musto 119 , G. Palacino , Y. Munwes , V.E. Ozcan , D.H. Nguyen , J.D. Morris 70 35 , Y. Ming 44 49 , D.W. Miller 54 135b , R. Mount 49 168 84 , R.W. Moore , 18 30 65 , J.A. Mcfayden 119 , A.S. Mete , A.M. Nairz , S. Migas 30 , S. Menke , Y.B. Pan ∗ , , K. Papageorgiou , F.G. Oakham , A. McCarn , A. Nelson 158 25 , T. Naumann , P.D. Nef , R. Nagai 18 , B. Meirose 135a 101 , M. Medinnis 131 133b 56 10 53 , L. Nodulman 20b 89 , , M. Pag´aˇcov´a , 21 84 117 120 , R. Ospanov 100 , S. Oda 12 107 , M. Nessi 158 20a , N. Panikashvili , K. Nikolopoulos , S. Mohapatra 133a , C. Monini , A. Onofre 78 , A.A. Minaenko 50b , R.D. Mudd , M. Morgenstern 24a 49 , 85 42 39 , W. Okamura 107 , M. Owen , A. Milic , T. Nunnemann , P. Mermod 85 173 , N. Nikiforou , S.A. Olivares Pino 50a 30 15 , M. Mineev , K. Pajchel 50a 75 88 , H. Namasivayam , V.A. Mitsou , F. Ould-Saada – 77 – 137 65 , M. Nagel 86 138 , J. Metcalfe , G. Mornacchi , P.R. Newman 38a , V. O’Shea 112 , O. Novgorodova , C. Nellist , T.J. Neep , K. Nagai , H. Musheghyan 100 170 ,y , T. Nobe , J.D. Palmer 161 25 , D. Orestano , K. Motohashi 148 , S.P. Mc Kee 30 49 96 54 143 30 , C. Meineck , P. Pani , D. Muenstermann 131 101 , , J. Mechnich 154 111 , R.P. Middleton 126b , S. Monzani 159 , K. M¨onig , M.I. Ochoa 77 , 83 , T. Nattermann , H. Oide ,j 58a , K.W. McFarlane , K. Nikolics , A. Mengarelli 30 171 71 , P. Pais 67 , S. Muanza 168 , M. Mikuˇz 80 , N. Meric 167 , J. Olszowska 58b 17 170 , D. Milstein 25 126a , K. Mochizuki 131 86 , B. Osculati , P. Morettini , J. Nielsen 21 , C. Padilla Aranda 39 , Th.D. Papadopoulou 127 , I. Nakano , B. Mindur , A. Ovcharova 54 , P. Nevski 30 12 159 , J. Nadal 147b 147b , K. Nagata , , , A.A. Nepomuceno , J. Moss , Y. Oren 156 , J. Mitrevski 110 , R. Nisius 54 33a 134b , A.G. Olchevski 59 , 110 , A. Messina 31 , D.C. O’Neil , A.K. Morley , A. Ochi , K. Meier , E.A. Ouellette 110 , M. Nordberg 51b , J. Meyer 147a 172 7 147a , T. Mueller 26a 83 133a 80 111 74 , S. Nektarijevic , F. Paige 134a , G. Nunes Hanninger 28 , P.Yu. Nechaeva 113 137 , F. Meloni , A. Palma 136d , H. Ohman 10 , F. Monticelli , W.J. Murray 20a 89 , R. Narayan 101 34 , G. Mc Goldrick 15 , R.S. Orr 12 18 146c 42 , R. Moles-Valls 53 , A. Olszewski , E.J.W. Moyse , I. Nikolic-Audit , T. Moa 134b ∗ , , N.A. McCubbin , , R.A. McPherson , Q. Ouyang ,z , A.I. Mincer , S. Mergelmeyer , B. Nicquevert , M. Mikestikova 168 147b 81 , T. Mitani , R.M. Neves , 29 96 , J. Ocariz , A. Nisati , A. Olariu , T. Nakamura , S. Moritz , Y. Nagasaka 65 , J.G. Panduro Vazquez 57 , A. Mehta , F. O’grady 131 , M. Mosidze , P. Nemethy 107 , M.J. Oreglia 130 , H. Merritt 134a 137 173 21 , C. Pahl 66 176 80 , L. Paolozzi , O. Nackenhorst 156 46 , T. Mueller , A. Pacheco Pages , M. Moreno Ll´acer 156 119 , S. Norberg 111 133a 147a 31 , J-P. Meyer 100 , D. Pallin , K. Ntekas , D.A. Milstead 101 127 , H.A. Neal , M. Ouchrif 21 83 140 160a , M. Negrini 29 7 26a , C.C. Ohm 128 120 70 122 38b 115 173 30 45 K. Pachal E. Paganis M. Palka C.E. Pandini D. Pantea T. Okuyama E. Oliver Garcia C.J. Oram C. Oropeza Barrera H. Otono K.P. Oussoren Y. Ninomiya I. Nomidis L. Nozka B.J. O’Brien T. Obermann S.H. Oh R. Nayyar G. Negri S. Nemecek M. Neumann R. Nicolaidou V. Nikolaenko K. Mueller J.A. Murillo Quijada M. Myska A. Nagarkar K. Nakamura R.F. Naranjo Garcia S. Molander J. Montejo Berlingen D. Moreno V. Morisbak H.G. Moser S.V. Mouraviev C. Meyer G. Mikenberg A. Milov I.A. Minashvili G. Mirabelli J.U. Mj¨ornmark T.G. McCarthy S.J. McMahon S. Mehlhase B.R. Mellado Garcia K.M. Mercurio F.S. Merritt L. Mazzaferro JHEP01(2015)069 , , , , , , , , , 12 , 28 53 , 150 , ,ab 155 44 , 121a 117 , , 25 168 , 64 116 , 28 165c , , , 106 , 27 , , , , , , I. Riu 91b 80 15 , , 30 172 , 139 , 119 48 , , G. Qin 165a 62 154 , , , , , , , 91a , 138 , 89 137 65 27 , 50a 77 , , 84 121b , , 139 , 125 , 131 , C.J. Potter , 137 65 , T. Sandoval 126b , D. Pluth , , G. Rybkin 25 , C. Petridou , 48 , C. Rudolph 116 13a 133a , , P. Radloff 65 , G. Polesello 30 30 121a 99 , 176 129 34 , R. Piegaia 49 , M. Ridel 147b , T. Pauly 126a 147b , A. Salvucci 149 , D. Robinson , 30 , , I. Sadeh , A. Pranko , O. Røhne , P. Rose , J. Qian , E. Ritsch 3 , C. Pizio , Y. Sakurai 20b 87 101 , D.V. Perepelitsa , 150 85 30 77 , U. Parzefall 104b , H. Reisin 147a 147a 117 , 20a 61 173 156 , L.P. Rossi 20a , D. Prieur 35 , C.R. Royon 16 , Fr. Pastore , M. Pinamonti 6 , A. Sapronov ∗ , V. Sanchez Martinez , E. Ptacek , 104a , T.C. Rave , N. Rompotis , V.I. Rud 5 117 , K. Peters , M. Pohl 104b , 125 126d 168 , P.W. Phillips , M. Rybar , I.N. Potrap , R. Pedro 42 , 65 21 , M. Rescigno 100 , C. Santoni , S. Roe 168 , D.S. Popovic , P.H. Sales De Bruin 135b , H. Pernegger 15 , , M. Sandhoff 123 47 32b , M. Rose 30 104a 168 , D.M. Rebuzzi , P. Puzo , M. Pitt 117 , N.A. Rusakovich , R. Richter 107 126b 26b , E. Protopapadaki 91b , 49 , V. Polychronakos 100 , 74 , A. Saddique 80 48 135a , L. Rinaldi 95 ,ac , J. Penwell , F. Salvatore , A. Petridis 45 , M. Rammensee , P. Plucinski 27 , M. Queitsch-Maitland 32b , P. Pralavorio , L.E. Price 25 31 91a 42 126a , M. Piccinini , H. Sakamoto , L. Rehnisch 25 65 37b , K. Sapp 65 121b , J.A. Parsons , D. Pohl 74 , , 76 41 , S. Patricelli 165b , S.K. Radhakrishnan , , J. S´anchez 150 , D. Rousseau 37a 117 50b , E. Rossi 133a 84 , , R. Pezoa 42 121a , D. Salek , I. Rubinskiy , F. Rauscher , S. Pires , A. Sansoni 165a 139 , H. Przysiezniak 104b , A. Renaud 50a 158 12 , 147b 113 , J. Pina , , Y.F. Ryabov 164 , L. Rodrigues , F. Pastore , E. Petit , K. Rosbach 131 , L. Perini , K. Potamianos , R. Rezvani 126a 38a , A. Robichaud-Veronneau 152 , Z. Rurikova , J. Price 78 48 36 , M.P. Sanders 104a ,j , N.P. Readioff , E. Romero Adam , V.D. Peshekhonov , M. Purohit , B. Penning , C.S. Pollard , S. Sacerdoti 147a 30 84 168 128 129 124b 135a , G.A. Popeneciu 133a 83 , , F. Prokoshin , S. Pedraza Lopez – 78 – 87 42 , K. Reeves , E. Piccaro 119 20b 149 20a 90 33b 107 47 , , E. Plotnikova 49 119 , J.R. Pater , L. Poggioli 138 124a , K. Rao , S. Rajagopalan , V. Pozdnyakov , A. Rimoldi , D. Salvatore , V. Radescu 20a 83 , F. Parodi 129 , F. Rubbo 151 61 , B. Pinto 25 167 179 , J. Rothberg , M. Saleem 28 , Z.L. Ren 149 168 , W.B. Quayle 36 , F. Safai Tehrani , D. Price 146c 173 15 33a , I. Santoyo Castillo , S. Rosati 65 , A. Sanchez 64 134a , A. Passeri , S. Pospisil , H. Peng , N.E. Pettersson , V. Rossetti , A. Polini , D.P.C. Sankey , P. Reznicek , N. Ruthmann , M. Przybycien , R. Peschke , A.L. Read 12 , T.C. Petersen , G. Sabato 168 , D. Puldon , C. Roda , B.G. Pope 155 7 , R. Reece 6 , H.G. Sander 50a ,c 167 126a 142 , A. Picazio , A.D. Pilkington 159 30 101 30 86 53 135b , J. Salt 25 76 73a , K. Prokofiev , 151 31 109 , M. Pedersen , S.H. Robertson , V. Pleskot , J. Poveda 133a 171 , G. Rahal 46 , A. Ruiz-Martinez , M. Romano , N.D. Patel 144 , I. Roth , R. Poettgen , V. Radeka , H. Ren 36 76 , X. Ruan 25 30 , A. Pingel , S. Prell 135a 48 98 3 91b 34 30 8 176 , , M.A. Parker 26a , E. Ros 153 160b 80 , R. Sadykov 91a , M. Rijssenbeek 155 , A. Salamon , D.R. Quarrie , C. Rangel-Smith , H. Santos 54 , D. Pelikan , M.T. P´erezGarc´ıa-Esta˜n , R. Polifka 138 54 40 , A. Robson , R. Perrino , S. Passaggio 135b , J. Proudfoot , E. Pueschel , , E. Rizvi 109 , O. Rosenthal , E. Pianori 134b 37b 84 , F. R¨uhr , M. Raymond , M. Proissl , , J.E. Pilcher , 160a 25 , G. Redlinger , B.A. Petersen , D. Sampsonidis , X. Portell Bueso 14 , A. Salnikov , R. Sandstroem 53 114 133a 104b , G. Poulard , A.F. Saavedra 144 , R.L. Sandbach , J.P. Rutherfoord 135a , 135b 159 , F. Petrucci 84 73a 37a 30 , L. Roos 111 , Y. Rozen , L. Pontecorvo , 175 , M.-A. Pleier 30 , O.L. Rezanova , M. Rotaru 134a , F. Podlyski , S. Pataraia , J.L. Pinfold , C. Rembser 14 101 , L.E. Pedersen 163 116 48 85 30 , R. Pravahan 120 , A. Qureshi 100 , F. Ragusa 29 104a 91a , A. Romaniouk 133a , J. Rieger 139 58a 135a 120 164 30 145a 53 170 88 , A. Quadt 16 162 84 D. Salihagic A. Salzburger H. Sandaker C. Sandoval R. Santonico A. Rozanov M.S. Rudolph A. Ruschke N.C. Ryder H.F-W. Sadrozinski G. Salamanna F. Rizatdinova J.E.M. Robinson S. Rolli M. Ronzani P.L. Rosendahl R. Rosten A.S. Randle-Conde T. Ravenscroft A. Redelbach M. Relich S. Resconi P. Rieck M. Primavera S. Protopopescu D. Puddu Y. Qin D. Quilty P. Rados S. Poddar A. Policicchio K. Pomm`es A. Poppleton C.T. Potter S. Prasad R.F.Y. Peters E. Petrolo G. Piacquadio D.T. Pignotti A. Pinder L. Plazak E. Pasqualucci G. P´asztor J. Pearce S.V. Peleganchuk E. Perez Codina S. Perrella D. Paredes Hernandez JHEP01(2015)069 , , , , , , , , , , , 98 90 , 21 , , 122 40 , , 21 137 , 21 58a , 154 117 68 18 123 , , , ∗ , 79 , , 5 143 , , , 5 137 30 , , , , , , 119 ,ad , , 44 40 , 101 42 , , D. Ta 14 , , , 128 , 30 ,j 30 159 150 8 152 135a , 137 160a 42 129 , 123 , , J. Saxon 13a 170 , , E. Scifo 50b 55 , S. Schaepe 22 53 , , V. Scharf 85 , M. Slater 17 , , , , E. Sedykh , T. Sumida 42 , , N. Taiblum , B. Stelzer 53 96 50a 149 , O. Simard 42 113 , L. Shi 4d , J.A. Stillings , E.Yu. Soldatov 151 , S. Staerz 99 , D. South , F. Sforza 25 , G. Sauvage ∗ , L. Schoeffel , R. Stroynowski , M.J. Schultens 78 , V. Sopko , 53 , G. Spigo ,c 128 160a , S.J. Sekula , C. Serfon 75 , Ph. Schwemling 128 , A. Strandlie 44 83 , P. Sinervo , L. Smestad , K. Schmieden 53 156 116 , R. Sobie 128 20a 109 , T. Sykora , R. Subramaniam , J. Stark 20b 46 , Ph. Schune 48 101 , , M.R. Sutton , C. Stanescu 104a , Dj. Sijacki 25 91b , D. Schouten 147b , 6 , M. Talby , V. Solovyev , 44 125 130 , A.R. Stradling 138 83 , J.T. Shank 145a 20a 37b 66 , D.H. Saxon , S. Shushkevich , 91a , G. Sedov 130 7 , P. Skubic , C. Schiavi , R. Schaefer , J. Solc , F.G. Sciacca 147a 101 166 ,m 89 5 , K.M. Smith 37a 35 30 , V. Simak , A. Shmeleva 109 79 , S. Sultansoy 128 , N. Schuh , M. Scarcella , T. Sfiligoj 81 , P. Steinberg , Y. Sasaki , J. Su 65 , R. Tafirout , B. Sopko ∗ , R. Spighi 96 , P. Sherwood 83 , U. Schnoor , , G.A. Stewart 66 147a 164 113 , S. Snyder , D.M. Strom 144 74 164 128 , E. Schmidt , B.H. Smart 101 , S.Yu. Sivoklokov 150 , R.D. Schamberger , I. Sykora 76 , F. Siegert 101 ∗ 145a , R.D. St. Denis , M. Schott , 30 175 8 , Ph. Schwegler , Y. Takubo 173 , R.W. Stanek 100 54 144 65 , R. Shang , J. Searcy , A.M. Soukharev , G. Sekhniaidze , S. Stonjek 89 133a 39 , B.A. Schumm , M.A. Shupe , M. Solar 141 21 95 , R. Simoniello , G. Susinno 54 , D. Su , L. Sawyer 33a 24a , D. Schaefer 48 98 30 , E.A. Starchenko , S. Strandberg 78 42 , M. Schwoerer , M.I. Scherzer , O. Sasaki 140 , V.V. Sulin 120 , O. Smirnova , O.V. Solovyanov 101 119 , S. Stern 21 , H. Severini 148 , N. Semprini-Cesari , A. Taffard , K.Yu. Skovpen , M. Shiyakova , F. Spettel , C. Schroeder 164 65 176 128 ,ae , A. Sopczak 52 74 , C.Y. Shehu , G. Snidero , P. Stavina 57 57 159 99 102 15 175 160a , D. Schaile , S.B. Silverstein 96 39 – 79 – , A. Sidoti , S. Schlenker , B. Spurlock , R. Str¨ohmer , F. Scutti , P. Stolte , D.A. Scannicchio , P. Soueid 165b , V. Smakhtin , Y.J. Schnellbach , 117 144 114 , E. Stanecka , L.Y. Shan 37b , E. Shulga 159 , 78 26a , A.N. Sisakyan 17 , T.A. Schwarz 145b , T. Takeshita 162 , J.M. Seixas 16 124b , M. Swiatlowski 64 , C.A. Solans 165c , K. Suruliz , , M. Suk , C. Sawyer 116 , N.A. Styles 165a , 79 37a , B. Simmons 67 , P. Schacht 144 , S. Stapnes 48 30 128 14 169 ,ad 83 108 , A. Sood , G. Sellers , H. Stenzel , M. Schumacher , T. Schwindt 42 124a 1 173 165a ∗ , A.L.S. Schorlemmer , , M. Schernau , J. Taenzer , J. Strandberg 152 16 , G. Sartisohn , R. Seuster 90 137 , A. Soloshenko 42 160a , M. Schreyer 17 21 123 85 129 , H.P. Skottowe , K. Sliwa , M. Shimojima , L.N. Smirnova , D. Sidorov , R. Staszewski 130 , A.A. Snesarev 159 14 , W.R. Spearman , G. Stoicea , K. Shaw , T. Scanlon , S. Stamm , A. Sircar , T. Spreitzer 98 42 107 , A.C. Schaffer 164 , D. Silverstein 77 , C. Suhr 87 97 155 , P. Strizenec , S. Shrestha , B. Stugu , B. Schneider , H. Takeda 128 , F. Seifert , N. Soni , F. Scuri 20b , M. Shamim 58a 175 83 , , D.O. Savu 129 , S. Swedish 17 69 , M. Schioppa , E. Simioni 154 118 113 120 54 ,e 58b 138 33b , D.A. Soh 131 , H. Schulz , R. Soualah 20a 48 , T. Serre 127 8 117 159 154 54 58a , A. Schwartzman , B. Sarrazin , M.M. Stanitzki , J.E. Sundermann 84 , D. Scheirich , K. Tackmann 42 , J. Schwindling , F. Span`o , J. Schaarschmidt , S. Schramm 33a , M. Stoebe 126d , Y. Smirnov , T.B. Sjursen 90 , B.D. Schoenrock 123 , , K. Smolek , Y. Silver , M.E. Stramaglia , D. Short 73b 25 , R. Stamen , A.A. Solodkov , D.M. Seliverstov 37b , U. Sch¨afer 87 , 135b 98 , , M. Slawinska , 72 , Y. Sugaya , A. Seiden , G. Siragusa , O. Stelzer-Chilton , M. Spousta , P. Starovoitov , S.A. Stucci 44 31 58b , M. Strauss , P.B. Shatalov 46 , H.Y. Song , S. Schmitt , C. Schillo , C.O. Shimmin , A. Sbrizzi 147b 126a 122 168 12 58b , , S. Simion , M. Svatos 73a 30 , W.G. Scott 37a 88 126d , A. Soffer , P. Savard 15 128 , 48 , E. Shabalina , O. Sidiropoulou 83 105 116 , L. Serkin 67 127 , R. Takashima 106 , M. Sosebee 135a 144 5 100 66 23 20a 44 13a 30 25 , X. Sun 12 147a 127 117 126a 57 A. Succurro S. Sun Y. Suzuki C. Taccini H. Takai P. Staroba H.J. Stelzer M.C. Stockton A. Straessner E. Strauss A. Strubig P. Sommer V. Sorin S. Spagnolo L.A. Spiller J. Stahlman M. Stanescu-Bellu J. Sj¨olin T. Slavicek S.Yu. Smirnov M. Smizanska F. Socher U. Soldevila S. Shimizu M.J. Shochet P. Sicho J. Silva Lj. Simic N.B. Sinev G. Sciolla S.C. Seidel K.E. Selbach L. Serin A. Sfyrla M. Shapiro C. Schmitt A. Schoening J. Schovancova H.-C. Schultz-Coulon C. Schwanenberger R. Schwienhorst E. Sauvan C. Sbarra V. Scarfone S. Schaetzel V.A. Schegelsky J. Schieck J.G. Saraiva JHEP01(2015)069 , , , , , , 8 6 , , , 30 21 , , 120 142 , , 34 151 , , 80 35 48 , 159 133b , 65 , , , , 20b , , , , 140 , , , 90 , 107 , 166 34 30 88 , , , G. Usai 73b , , 133a , 132 , , , 20a 15 107 , , , , , , 133a 21 88 15 65 , A. Vogel 156 29 30 83 25 20b 176 28 85 73a , 68 77 , 128 , , W. Vandelli , , , , C. Weiser 20a 17 , P.M. Tuts , I.J. Watson , J.C-L. Tseng 12 66 , 78 54 40 , R. Voss ,af , W. Walkowiak 18 30 133b , 49 , , I. Vichou , P. van Gemmeren , R. Vari , D.R. Tovey 96 , H. Wang 168 , F. Vazeille 100 , S. Tanaka , K. Tollefson 81 , T. Wang , R. Ueno 30 101 85 , P.D. Thompson , R. Vigne , G.N. Taylor 178 133a , M. Verducci , P. Urquijo 66 174 , S. Trincaz-Duvoid , K. Terashi 151 117 , V.B. Vinogradov 18 , A. Undrus 152 156 94 , M. Vreeswijk , T. Tashiro 35 , W. Wagner 169 , A. Ventura , N.D. Topilin 66 , S. Tisserant , R. van der Geer 29 , S. Valentinetti 30 , M. Vlasak , T. Theveneaux-Pelzer , M. Thomson , S. Tapprogge 121a 21 160a , S. Tsuno 127 127 105 21 21 177 107 107 , M.S. Weber 133a 100 , M. Vos 15 122 , S.A. Tupputi , P. Teixeira-Dias 84 , A.J. Turvey 98 , S. Tsiskaridze , O. Viazlo 76 , R. Walker , A.T. Watson , J. Weingarten 9 122 , I. Ueda , S. Viel , F. Wang , S. Vallecorsa 91b ,e , C. Tsarouchas , D.R. Wardrope , 72 18 61 21 45 , M. Trottier-McDonald , G. Unal , R. Tanaka , F. Touchard , N. van Eldik 39 28 , M. Vanadia 120 168 , S. Terada 143 , V. Vrba , S.M. Wang 91a , F.E. Taylor , K.E. Varvell 30 30 91a , G. Vardanyan , K. Toms ,ag 161 , V. Vercesi 156 8 , D. Urbaniec , K. Tokushuku , V.O. Tikhomirov , P. Wagner 118 13a , P. Tipton 105 80 31 85 23 , S. Webb 15 , M.G. Vincter , I.M. Trigger , P.D. Thompson , V. Tsulaia 136d 100 , D. Vladoiu , N. Valencic 85 , M. Tasevsky 128 , J. Therhaag 145a 78 , H. von der Schmitt 47 30 , N. Tannoury 35 , S. Veneziano 97 , E. Thomson ,j 10 87 , K. Vorobev 88 129 , A.N. Tuna 36 , C. Wang , J. Walder 111 159 , K. Uchida 126c 129 , B. Weinert , R. Turra , ,ai 26a , C.P. Ward , N. Tsirintanis 103 , A. Trzupek , J. Toth , P.C. Van Der Deijl 4c 131 , J. Tanaka , P.M. Watkins 87 120 , R. Wang 10 , J.J. Teoh 152 39 , C. Troncon 126a – 80 – , F. Ukegawa , M.C. Vetterli 88 42 168 107 87 , P. Tas , S. Tok´ar 55 152 21 44 , F. Vannucci , A. Tricoli , Y. Tayalati , A. Venturini , L. Tompkins 70 , Z. Vykydal , D. van der Ster , M. Volpi , A. Vartapetian 91a , E. Vilucchi , S. Vlachos , B. Vachon 42 30 , M.J. Tibbetts 3 31 , G.H.A. Viehhauser , B.M. Waugh 80 159 103 107 126b 35 91b 128 , M.C. van Woerden , 124b 84 , , E. Tiouchichine , C. Unverdorben , E. Valladolid Gallego , , V. Vorobel , I.I. Tsukerman 146c , E.N. Thompson 98 , C. Wang 66 , L.A. Thomsen 21 107 , R.J. Teuscher 91a , M. Tyndel , F. Veloso 129 126a , K. Wang , A. Vest 51a 77 , K.G. Tan 124a 7 , V. Tudorache 53 , J. Tojo 47 , M. Teixeira Dias Castanheira 177 , C. Wasicki , I. Turk Cakir , G. Tsipolitis , B.B. Tannenwald , P.K. Teng , B. Trocm´e 33a 107 30 147b , A. Warburton , J. Wakabayashi 175 , M. Trzebinski 26a 129 , M. Vranjes Milosavljevic 46 , , A.R. Weidberg 30 128 , F. Tian 137 , P. Vankov 143 44 159 , I. Vukotic 90 ∗ 6 116 31 , , V. Vacek 137 , S. Watts , L. Tremblet , N. Venturi , E. Torr´oPastor 30 147a , M. Tomoto , M. Uhlenbrock 89 85 , Y. Unno , G.F. Tartarelli 139 84 14 , D. Varouchas 175 170 143 , S. Valkar , G. Volpi 48 , F. Vives Vaque 29 , J. Veatch , M. Testa 86 , B. Walsh 34 , J. Wang 128 54 150 74 , I. van Vulpen , P. True 101 , E. von Toerne 42 , S. Timoshenko , R. Van Der Leeuw , W. Van Den Wollenberg ,c , J.Y.C. Tam 48 143 , D. Turecek , D. Tsionou , A.S. Thompson ,c 135b 107 , H. Ten Kate , A. Tudorache , N. Vranjes 168 , , E.G. Tskhadadze , O.E. Vickey Boeriu , W. Trischuk 109 , A. Washbrook 92 ,ae 84 , J.C. Vermeulen , G. Watts , M. Tylmad 48 , J.S. Webster , R.P. Thun 74 , S. Wahrmund , J. Thomas-Wilsker , H. Torres , M. Villaplana Perez 109 48 , A. Tavares Delgado 12 , F.A. Teischinger 48 , A. Vaniachine 149 , T. Varol 99 , M. Ugland , L. Vacavant ,ah 18 49 , M. Venturi 88 135a , R. Vuillermet , T. Trefzger 71 7 18 107 , S. Todorova-Nova , L. Valery 175 , F. Tarrade , A.J. Tanasijczuk , P. Vokac , C. Wanotayaroj 116 85 20b 62 5 37b , S. Terzo 86 , , L. Tomlinson 122 48 , J. Wang , , F.C. Ungaro , P. Waller 160b 117 66 146c 168 , I. Vivarelli 82 153 57 32a 40 177 20a 37a 164 177 15 H. Wang X. Wang M. Warsinsky M.F. Watson S.W. Weber M. Vogel H. von Radziewski J.H. Vossebeld T. Vu Anh H. Wahlberg R. Wall T. Vazquez Schroeder D. Ventura W. Verkerke T. Vickey M. Villa J. Virzi A. Valero J.A. Valls Ferrer H. van der Graaf J. Van Nieuwkoop R. Vanguri E.W. Varnes D. Tsybychev S. Turchikhin A. Tykhonov M. Ughetto G. Unel A. Usanova E. Torrence H.L. Tran M.F. Tripiana M. Trovatelli P.V. Tsiareshka V. Tsiskaridze J.P. Thomas R.J. Thompson W.M. Thong Yu.A. Tikhonov T. Todorov E. Tolley S. Tanaka S. Tarem E. Tassi W. Taylor K.K. Temming J. Terron A.A. Talyshev JHEP01(2015)069 , , , , 30 83 , 33d 172 , 8 , , 21 , , , , 8 , , 111 63 176 131 35 40 151 , 5 , , , , , , S. Wenig , J. Yu . , X. Zhang , , K. Yorita 84 156 96 , A. White 122 30 174 15 , J. Ye , 30 35 29 , 152 125 , Y. Yang 21 21 , , S.J. Wollstadt , L. Zhou 84 118 , R. Zaidan 89 , C. Zeitnitz 117 100 , B. Yabsley 39 88 , F.J. Wickens ,ak , D.R. Yu , E. Wulf , K. Zhukov 176 , L.A.M. Wiik-Fuchs 33b 22 89 , L. Zhang , T. Wengler 6 36 , G. Zobernig , K. Whalen , T. Yamanaka 33a , L. Zwalinski , B. Zhou ,ad , I. Wingerter-Seez , H.H. Williams , M.J. Woudstra , U.K. Yang 142 162 156 , D. Zerwas 18 30 108 30 , D. Zanzi 120 152 174 , R. Yoosoofmiya , L. Xu , B. Zabinski , K.H. Yau Wong , Y. Yamaguchi , Y. Wu , R. Zimmermann 145a 4b , J. Wittkowski 133b Vinca Institute of Nuclear Sciences, 42 , D. Wicke , 49 33a 83 ) ,am 156 43 b , J. Zhang , S. Youssef Department of Physics, Gazi , ( ) 28 164 b 90 30 133a ( ˇ , X. Zhuang Zeniˇs , J. Wetter , Z. Weng , J. Zhong , V. Zutshi , H. Yang 33b 16 , D. Xu 65 , X. Wu , C. Wiglesworth 58a Division of Physics, TOBB University of , J.A. Wilson , T. ) 33e , M. Ziolkowski d 104b , H.G. Wilkens , J. Wotschack 21 , T. Yamamura 89 137 , ( 174 , M. Yilmaz 130 54 39 , T. Wittig , I. Yusuff ,aj 156 42 , E. Yatsenko , H. Zhang 104a 42 144 , L. Zanello 66 – 81 – , Y. Zhu 108 , H. Yamaguchi , D. Whiteson 174 23 89 , C.J.S. Young , C. Zimmermann 66 , H. Yang , M. Xiao 65 , S.L. Wu 124b , M. Wessels 22 144 , , O. Zenin , A. Wilson 36 , D. Wendland 55 30 23 86 , Z. Zinonos 25 , Y. Yasu , A. Zhemchugov 124a , J. Zhu 48 , E. Yildirim , B.K. Wosiek , P. Wienemann , G. Zurzolo 15 , F. Zhang , M.A. Wildt 33b 57 , S. Yamamoto 33a , M. Wittgen 16 131 , Z. Yan 89 , S. Zambito 126c 64 , A. Yurkewicz 21 , 101 , M. Wu 67 , S. Xella , M. Yamada , C. Young 67 149 53 , N.I. Zimine 46 67 126a , P. Werner , K. Zengel 156 61 , S. White , S. Willocq 48 , T. Wenaus , H. Zhu , Z. Zhao 90 38a 32b , A.L. Yen 30 , W-M. Yao 33d 33d , D. Zhang 65 33a , M. Wielers , L. Yuan 57 , S. Zimmermann , A. Zaman , B.T. Winter , A. Wildauer 174 114 , M. Wright Istanbul Aydin University, Istanbul; , M. zur Nedden , R. Yakabe 21 ,z , Y. Yamazaki , K. Yamamoto ) , H. Wolters 78 c 39 116 ( 66 ,al , B.M. Wynne , C. Willis 20b 39 , A. Zemla 130 103 , M. Werner , , R. White , K. Yoshihara , L. Yao , Y. Zhao 84 , D. Zieminska , P.S. Wells 28 1 , C.G. Zhu 21 6 128 20a , J. Yu 93 146b 117 175 107 Institute of Physics, University of Belgrade, Belgrade; Department of Physics, Ankara University, Ankara; 164 89 ) ) , I. Yeletskikh a a University of Belgrade, Belgrade,Department Serbia for Physics andPhysics Technology, University Division, of Lawrence Berkeley , Bergen, NationalCA, Norway Laboratory United and States University of ofDepartment America California, of Berkeley Physics, HumboldtAlbert University, Einstein Berlin, Center Germany forUniversity Fundamental Physics of and Bern, Laboratory Bern, for Switzerland High Energy Physics, Physics Department, University ofPhysics Athens, Department, Athens, National Greece Technical UniversityInstitute of of Athens, Physics, Zografou, Azerbaijan Greece Institut Academy of de d’Altes Sciences, F´ısica Energies Baku, andBarcelona, Azerbaijan Departament Barcelona, de Spain de F´ısica la Universitat Aut`onomade Economics and Technology, Ankara, Turkey LAPP, CNRS/IN2P3 and Universit´ede Savoie,High Annecy-le-Vieux, Energy France Physics Division,Department Argonne National of Laboratory, Physics, Argonne University IL,Department of United of Arizona, States Physics, Tucson of The AZ, America America University United States of of Texas at America Arlington, Arlington TX, United States of Department of Physics, UniversityPhysics of Department, Adelaide, SUNY Adelaide, Albany, Australia AlbanyDepartment NY, of United Physics, States University of of America Alberta, Edmonton AB,Ankara; Canada 25 ( ( 9 5 6 7 8 1 2 3 4 14 15 16 17 10 11 12 13 G. Zevi della Porta Z. Zhang N. Zhou A. Zibell S. Zimmermann A. Zoccoli S. Yanush S. Ye R. Yoshida J.M. Yu A.M. Zaitsev M. Zeman M.W. Wolter K.W. Wozniak T.R. Wyatt S. Yacoob A. Yamamoto K. Yamauchi N. Wermes M.J. White W. Wiedenmann P.A. Wijeratne S. Williams F. Winklmeier H. Weits JHEP01(2015)069 High ) b ( Physics ) e ( Departamento de ) b ( Federal University ) Department of b ) ( b ( Department of Physics, Dipartimento di Fisica, ) ) c b ( ( National Institute for ) b ( Department of Physics, Dogus West University in Timisoara, Physics Department, Tsinghua ) ) ) b d ( f ( ( – 82 – Federal University of Sao Joao del Rei (UFSJ), Sao Joao ) c ( School of Physics, Shandong University, Shandong; Dipartimento di Fisica e Astronomia, Universit`adi Bologna, Dipartimento di Fisica, Universit`adi Genova, Genova, Italy ) ) ) d b b ( ( ( Department of Physics Engineering, Gaziantep University, Gaziantep, ) c ( Marian Smoluchowski Institute of Physics, , Krakow, Poland University Politehnica Bucharest, Bucharest; Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil ) ) ) b c d ( ( ( INFN Sezione di Genova; E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Departamento de Pontificia F´ısica, Universidad de Cat´olica Chile, Santiago; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; National Institute of Physics and Nuclear Engineering, Bucharest; Department of Physics, Bogazici University, Istanbul; INFN Sezione di Bologna; ) ) ) ) ) ) ) ) ) ) a a a a a a a a a a INFN Laboratori Nazionali di Frascati, undFakult¨atf¨urMathematik Frascati, Italy Physik, Germany Albert-Ludwigs-Universit¨at,Freiburg, Section de Physique, Universit´ede Gen`eve,Geneva, Switzerland Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia Physics Department, University ofDESY, Texas at Hamburg and Dallas, Zeuthen, RichardsonInstitut Germany TX, f¨urExperimentelle United Physik States IV, of TechnischeInstitut America Universit¨atDortmund, f¨urKern- Dortmund, und Germany Teilchenphysik, TechnischeDepartment Universit¨atDresden, Dresden, of Germany Physics, DukeSUPA University, - Durham School NC, of United Physics States and of Astronomy, America , Edinburgh, United Kingdom Universit`adella Calabria, Rende, Italy Krakow; The Henryk Niewodniczanski InstitutePoland of Nuclear Physics, PolishPhysics Academy Department, of Southern Sciences, Methodist Krakow, University, Dallas TX, United States of America Department, Shanghai Jiao Tong University,University, Shanghai; Beijing 100084, China Laboratoire de Physique Corpusculaire, ClermontCNRS/IN2P3, Universit´eand Clermont-Ferrand, Universit´eBlaise France Pascal and Nevis Laboratory, Columbia University, IrvingtonNiels NY, Bohr United Institute, States University of of America Copenhagen, Kobenhavn, Denmark Enrico Fermi Institute, University of Chicago, Chicago IL, Universidad FedericoF´ısica, United Santa T´ecnica States Mar´ıa,Valpara´ıso,Chile of America Modern Physics, University ofNanjing Science University, and Jiangsu; Technology of China, Anhui; Research and Development of IsotopicNapoca; and Molecular Technologies, PhysicsTimisoara, Department, Romania Cluj Departamento de Universidad F´ısica, de BuenosCavendish Aires, Laboratory, Buenos University Aires, of Argentina Cambridge,Department of Cambridge, Physics, United Kingdom CarletonCERN, University, Geneva, Ottawa Switzerland ON, Canada Department of Physics, Brandeis University, Waltham MA, Unitedof States Juiz of de America Fora (UFJF),del Juiz Rei; de Fora; Physics Department, Brookhaven National Laboratory, Upton NY, United States of America University, Istanbul; Turkey Bologna, Italy Physikalisches Institut, University ofDepartment Bonn, of Bonn, Physics, Germany Boston University, Boston MA, United States of America School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom ( ( ( ( ( ( ( ( ( ( 48 49 50 51 41 42 43 44 45 46 47 38 39 40 34 35 36 37 31 32 33 27 28 29 30 23 24 25 26 20 21 22 18 19 JHEP01(2015)069 ZITI Institut f¨ur ) c ( Department of Physics, ) c ( – 83 – Dipartimento di Fisica, Universit`adi Milano, Milano, Italy ) b Dipartimento di Matematica e Fisica, Universit`adel Salento, Lecce, ( ) b ( INFN Sezione di Milano; INFN Sezione di Lecce; Kirchhoff-Institut f¨urPhysik, Heidelberg; Ruprecht-Karls-Universit¨atHeidelberg, Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Physikalisches Institut, Heidelberg; Ruprecht-Karls-Universit¨atHeidelberg, Department of Physics, The University of Hong Kong, Hong Kong; ) ) ) ) ) ) a a a b a b Department of Physics, TheDepartment University of of Physics Michigan, and Annof Astronomy, Arbor America Michigan MI, State United University, States East of Lansing America MI, UnitedB.I. States Stepanov Institute ofBelarus Physics, National Academy of Sciences of Belarus, Minsk, Republic of Institut f¨urPhysik, Universit¨atMainz, Mainz, Germany School of Physics andCPPM, Astronomy, Aix-Marseille University of Universit´eand CNRS/IN2P3, Manchester, Marseille,Department Manchester, of France United Physics, Kingdom UniversityDepartment of of Massachusetts, Physics, Amherst McGill MA,School University, United of States Montreal Physics, QC, of University Canada America of Melbourne, Victoria, Australia Department of Physics andLouisiana Astronomy, Tech University University, College Ruston London, LA,Laboratoire London, de United United Physique States et Kingdom Nucl´eaire of de America CNRS/IN2P3, Hautes Paris, Energies, France UPMC andFysiska Universit´eParis-Diderot and institutionen, Lunds universitet,Departamento Lund, de Sweden Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain Physics Department, Lancaster University, Lancaster, United Kingdom Italy Oliver Lodge Laboratory, University ofDepartment Liverpool, of Liverpool, Physics, United JoˇzefStefan Kingdom InstituteSchool and of University Physics of andDepartment Ljubljana, Astronomy, of Queen Ljubljana, Physics, Mary Slovenia Royal University Holloway of University London, London, of United London, Kingdom Surrey, United Kingdom KEK, High Energy Accelerator ResearchGraduate Organization, School Tsukuba, of Japan Science, KobeFaculty University, of Kobe, Science, Japan Kyoto University,Kyoto Kyoto, University Japan of Education,Department Kyoto, of Japan Physics, KyushuInstituto University, de Fukuoka, La F´ısica Japan Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina The Hong Kong UniversityChina of Science and Technology,Department Clear of Water Physics, Bay, Indiana Kowloon,Institut University, Hong f¨urAstro- Bloomington Kong, und IN, Teilchenphysik, Austria United Leopold-Franzens-Universit¨at,Innsbruck, University States of of Iowa, America IowaDepartment City of IA, Physics United and StatesJoint Astronomy, of Institute Iowa America for State Nuclear University, Research, Ames JINR IA, Dubna, United Dubna, States Russia of America ( technische Informatik, Mannheim, Ruprecht-Karls-Universit¨atHeidelberg, Germany Faculty of Applied Information Science, Hiroshima Institute( of Technology, Hiroshima, Japan SUPA - School of PhysicsII and Physikalisches Astronomy, Institut, University Georg-August-Universit¨at,G¨ottingen,Germany Laboratoire of de Glasgow, Physique Glasgow, Subatomique United etGrenoble, Kingdom de France Cosmologie, Universit´eGrenoble-Alpes, CNRS/IN2P3, Department of Physics, HamptonLaboratory University, for Hampton Particle VA, Physics United andof States Cosmology, America of Harvard America University, Cambridge MA, United States II Physikalisches Institut, Justus-Liebig-Universit¨atGiessen, Giessen, Germany ( ( ( ( 90 91 92 83 84 85 86 87 88 89 78 79 80 81 82 72 73 74 75 76 77 66 67 68 69 70 71 61 62 63 64 65 58 59 60 54 55 56 57 52 53 JHEP01(2015)069 Faculdade ) b ( Departamento de ) e ( Dep Fisica and CEFITEC of Faculdade de ) g ( Department of Physics, , ) c ( – 84 – Departamento de Fisica Teorica y del Cosmos and ) f ( Dipartimento di Fisica, Universit`adi Napoli, Napoli, Italy Dipartimento di Fisica, Universit`adi Pavia, Pavia, Italy ) ) b Dipartimento di Fisica E. Fermi, Universit`adi Pisa, Pisa, Italy ( b ) ( b ( Centro de Nuclear F´ısica da Universidade de Lisboa, Lisboa; ) d ( Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa; INFN Sezione di Pavia; INFN Sezione di Pisa; INFN Sezione di Napoli; ) ) ) ) a a a a Ciencias e Tecnologia, Universidade NovaInstitute de of Lisboa, Physics, Caparica, Academy Portugal Czech of Technical Sciences University of in the Prague,Faculty Czech Praha, of Republic, Czech Mathematics Praha, Republic and CzechState Republic Physics, Research Charles Center University Institute in forParticle Prague, High Physics Praha, Energy Department, Czech Physics, Rutherford Republic Appleton Protvino, Russia Laboratory, Didcot, United Kingdom America de Ciˆencias,Universidade de Lisboa, Lisboa; Coimbra; Fisica, Universidade do Minho,CAFPE, Braga; Universidad de Granada, Granada (Spain); Department of Physics, Oxford University, Oxford, United Kingdom Department of Physics, UniversityPetersburg of Nuclear Pennsylvania, Physics Philadelphia Institute, PA, Gatchina, United Russia States of America Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of United States of America Department of Physics, OklahomaPalack´yUniversity, State RCPTM, University, Olomouc, Stillwater Czech OK, Republic Center United for States High of Energy America LAL, Physics, Universit´eParis-Sud University and of CNRS/IN2P3, Oregon, Orsay,Graduate Eugene School France OR, of United Science, States OsakaDepartment of of University, America Physics, Osaka, University Japan of Oslo, Oslo, Norway Department of Physics, NorthernBudker Illinois Institute University, of DeKalb Nuclear IL,Department Physics, United of SB States Physics, RAS, of New Novosibirsk, America Ohio York Russia University, State New University, York ColumbusFaculty NY, OH, of United United Science, States States Okayama of of University,Homer America America Okayama, L. Japan Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, Department of Physics andof Astronomy, America University of NewInstitute Mexico, for Albuquerque Mathematics, NM, Astrophysics UnitedNijmegen/Nikhef, and States Nijmegen, Particle Netherlands Physics, RadboudNikhef University National Institute forNetherlands Subatomic Physics and University of Amsterdam, Amsterdam, D.V.Skobeltsyn Institute of NuclearRussia Physics, M.V.Lomonosov Moscow State Ludwig-Maximilians-Universit¨atM¨unchen,M¨unchen,Germany Fakult¨atf¨urPhysik, University, Moscow, Max-Planck-Institut f¨urPhysik (Werner-Heisenberg-Institut), M¨unchen,Germany Nagasaki Institute of AppliedGraduate Science, School Nagasaki, of Japan Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan of Belarus Department of Physics, MassachusettsAmerica Institute of Technology, CambridgeGroup MA, of United Particle States Physics, of P.N. University Lebedev of Institute Montreal, of Montreal Physics, QC,Institute Academy Canada for of Theoretical and Sciences, Moscow, ExperimentalNational Russia Physics Research Nuclear (ITEP), University Moscow, MEPhI, Russia Moscow, Russia National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic ( ( ( ( 99 94 95 96 97 98 93 127 128 129 130 131 126 120 121 122 123 124 125 114 115 116 117 118 119 108 109 110 111 112 113 105 106 107 100 101 102 103 104 JHEP01(2015)069 Department ) b ( Dipartimento ) c ( Facult´edes sciences, ) e ( Department of Physics, ) ICTP, Trieste; b ( ) b ( The Oskar Klein Centre, Stockholm, Sweden ) b ( School of Physics, University of the Witwatersrand, ) c ( – 85 – Dipartimento di Fisica, Universit`adi Roma Tor Vergata, ) b ( Centre National de l’Energie des Sciences Techniques ) b ( Dipartimento di Matematica e Fisica, Universit`aRoma Tre, ) b Department of Physics and Astronomy, York University, Toronto ( ) b Dipartimento di Fisica, Sapienza Universit`adi Roma, Roma, Italy ( ) b ( Facult´edes Sciences Semlalia, Universit´eCadi Ayyad, LPHEA-Marrakech; ) c ( INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; TRIUMF, Vancouver BC; Department of Physics, Stockholm University; Faculty of Mathematics, Physics & Informatics, , Bratislava; Department of Physics, , Cape Town; INFN Sezione di Roma; INFN Sezione di Roma Tor Vergata; INFN Sezione di Roma Tre; Facult´edes Sciences Ain Chock, Universitaire R´eseau de Physique des Hautes Energies - Facult´edes Sciences, Universit´eMohamed Premier and LPTPM, Oujda; ) ) ) ) ) ) ) ) ) ) a a a a a d a a a a Department of Physics andCentro Astronomy, de Tufts University, Investigaciones, Medford Universidad MA,Department Antonio of United Narino, States Physics Bogota, of and Colombia America Astronomy, America University of California Irvine, Irvine CA, Uniteddi States Chimica, of Fisica e Ambiente, Universit`adi Udine, Udine, Italy Graduate School of Science andDepartment of Technology, Tokyo Physics, Metropolitan Tokyo University, InstituteDepartment Tokyo, of of Japan Physics, Technology, Tokyo, University Japan of Toronto, Toronto ON, Canada ON, Canada Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan Department of Physics, Technion:Raymond Israel and Institute Beverly of Sackler Technology, Haifa,Israel School Israel of Physics andDepartment Astronomy, of Tel Physics, Aviv Aristotle University,International University Tel Center Aviv, of for Thessaloniki, Elementary Thessaloniki,of Particle Greece Tokyo, Physics Tokyo, and Japan Department of Physics, The University Physics Department, Royal InstituteDepartments of of Technology, Stockholm, Physics Sweden &United Astronomy States and of Chemistry, America StonyDepartment Brook of University, Physics Stony and BrookSchool NY, Astronomy, of University Physics, of University Sussex,Institute of Brighton, of Sydney, United Physics, Sydney, Kingdom Academia Australia Sinica, Taipei, Taiwan of Subnuclear Physics, InstituteKosice, of Slovak Experimental Republic Physics of the Slovak Academy ofUniversity Sciences, of Johannesburg, Johannesburg; Johannesburg, South Africa United States of America Department of Physics, UniversityDepartment of of Washington, Physics Seattle and WA,Department United Astronomy, of States University Physics, of of Shinshu America Sheffield,Fachbereich University, Sheffield, Physik, Nagano, United Universit¨atSiegen, Siegen, Japan Kingdom Germany Department of Physics, SimonSLAC Fraser University, National Burnaby Accelerator Laboratory, BC, Stanford CA, Canada United States of America Nucleaires, Rabat; ( Universit´eMohammed V-Agdal, Rabat, Morocco DSM/IRFU (Institut de Recherches sur(Commissariat les `al’Energie Atomique Lois et Fondamentales aux deSanta Energies l’Univers), Cruz Alternatives), CEA Institute Gif-sur-Yvette, Saclay for France Particle Physics, University of California Santa Cruz, Santa Cruz CA, Roma, Italy Roma, Italy Universit´eHassan II, Casablanca; Ritsumeikan University, Kusatsu, Shiga, Japan ( ( ( ( ( ( ( ( ( 163 164 165 157 158 159 160 161 162 153 154 155 156 147 148 149 150 151 152 145 146 139 140 141 142 143 144 137 138 134 135 136 132 133 JHEP01(2015)069 – 86 – Also at Dipartimento diAlso Fisica, at Sapienza Moscow Universit`adi Roma, Institute Roma,Also of Italy at Physics section and de Technology StateAlso Physique, at University, Universit´ede Gen`eve,Geneva, International Dolgoprudny, Switzerland School Russia Also for at Advanced Studies Department (SISSA), ofStates Trieste, Physics Italy of and America Astronomy, University of South Carolina, Columbia SC, United Also at LAL, Universit´eParis-Sud andAlso CNRS/IN2P3, at Orsay, France GridAlso Computing, at Institute Laboratoire de of PhysiqueParis-Diderot et Physics, Nucl´eaire and de Academia CNRS/IN2P3, Sinica, Hautes Taipei, Paris, Energies, Taiwan Also France UPMC at and School Universit´e ofBhubaneswar, Physical India Sciences, National Institute of Science Education and Research, America Also at Institute ofAlso Theoretical Physics, at Ilia CERN, State Geneva,Also University, Switzerland at Tbilisi, Ochadai Georgia Academic Production,Also Ochanomizu at University, Manhattan Tokyo, College, Japan Also New at York Institute NY, of United States Physics, of Academia Sinica, America Taipei, Taiwan Also at Department ofRussia Physics, St. Petersburg StateAlso Polytechnical at University, Department St. of Petersburg, Greece Financial and Management Engineering,Also University at of Louisiana the Tech Aegean, University,Also Chios, Ruston at LA, Institucio United Catalana StatesAlso de of at Recerca i America Department Estudis of Avancats, Physics, ICREA, The Barcelona, University Spain of Texas at Austin, Austin TX, United States of Also at TRIUMF, Vancouver BC,Also Canada at Department ofAlso Physics, at California Tomsk State State University,Also University, Fresno at Tomsk, CA, Russia CPPM, United Aix-Marseille StatesAlso of Universit´eand CNRS/IN2P3, at America Marseille, Universit`adi Napoli France Parthenope,Also Napoli, at Italy Institute of Particle Physics (IPP), Canada Yerevan Physics Institute, Yerevan, Armenia Centre de Calcul de(IN2P3), l’Institut Villeurbanne, National France de Physique etAlso Nucl´eaire at de Department Physique of desAlso Physics, Particules at King’s Institute College of London,Also Physics, London, at United Azerbaijan Novosibirsk Kingdom Academy of StateAlso Sciences, University, at Baku, Novosibirsk, Particle Azerbaijan Russia Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom Waseda University, Tokyo, Japan Department of Particle Physics,Department The of Weizmann Physics, Institute University of undFakult¨atf¨urPhysik of Science, Germany Astronomie, Wisconsin, Rehovot, Julius-Maximilians-Universit¨at,W¨urzburg, Madison Israel WI,Fachbereich United C States Physik, of Bergische America Universit¨atWuppertal,Department Wuppertal, of Germany Physics, Yale University, New Haven CT, United States of America Department of Physics andInstituto Astronomy, de University Corpuscular F´ısica of (IFIC) Uppsala, andand Uppsala, Departamento Departamento Sweden Molecular de and de At´omica, y F´ısica Instituto Ingenier´ıaElectr´onica Nuclear (IMB-CNM), de de University Microelectr´onica Barcelona of ValenciaDepartment and of CSIC, Physics, Valencia, University Spain Department of of British Physics Columbia, and VancouverDepartment BC, Astronomy, of University Canada Physics, of University Victoria, of Victoria Warwick, BC, Coventry, Canada United Kingdom Department of Physics, University of Illinois, Urbana IL, United States of America l i t b c j s e q r o z p d g v y a k x f h u n w m ab ac aa 179 172 173 174 175 176 177 178 168 169 170 171 166 167 JHEP01(2015)069 Deceased ∗ – 87 – Also at Department ofAmerica Physics, The University ofAlso Michigan, at Ann Discipline Arbor of MI,Also Physics, United at University States University of of of KwaZulu-Natal, Malaya, Durban, Department South of Africa Physics, Kuala Lumpur, Malaysia Also at Faculty ofAlso Physics, at M.V.Lomonosov Moscow National State Research NuclearAlso University, University at Moscow, MEPhI, Institute Russia Moscow, for Russia Hungary Particle and Nuclear Physics,Also Wigner at Research Department Centre of forAlso Physics, Physics, at Oxford Budapest, Department University, of Oxford,Also Physics, United at Kingdom Nanjing Institut University, f¨urExperimentalphysik, Jiangsu, Universit¨atHamburg, Hamburg, China Germany Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China al ai aj ae ad ag ak af ah am