Contributing Authors

Total Page:16

File Type:pdf, Size:1020Kb

Contributing Authors Contributing Authors FrankAndros-Associate Director of the Integrated Electronics Engineering Center-State University of New York at Binghamton, Binghamton, NY. He received a B.S. degree from Michigan Technological University in Mechanical Engineering, and M.S. and Ph.D. degrees from Arizona State University in Tempe, AZ, in mechanical engineering, and is a member of ASME and the IEEE. Dr. Andros joined the IBM Corporation in Endicott, NY, in 1968 where he held several technical and managerial assignments in electronic packaging, including Packaging Manager, Technical Support (Thermal, Electrical, Reliability) for Semiconductor Packages, Product Development Manager for Ceramic Substrates/Packages, TAB Product Development Manager, and was a Senior Technical Staff Member at IBM Microelectronics, Precision Flex Operations. He retired from IBM in 1997. Eugene R. Atwood-Advisory Engineer/Research Scientist-IBM Microelectronics Divi­ sion, Poughkeepsie, New York. Mr. Atwood currently works as a test engineer in the IBM Microelectronics Bond, Assembly and Test Facility in Poughkeepsie, NY. His assignments in­ clude design for test development and implementation for multi-chip modules, known good die, high-frequency manufacturing test methods, and embedded analog test methodologies. Mr. Atwood received a Bachelor of Fine Arts in 1981 from Nova Scotia College of Art and Design, a Bachelor of Electrical Engineering in 1990 and a Masters of Electrical Engi­ neering in 1991, both from Rensselaer Polytechnic Institute Troy, NY. Prior to accepting a position at IBM, Mr. Atwood worked for the Center for Integrated Electronics at the Jonsson Engineering Center Microwave Laboratory at Rensselaer Polytechnic Institute. Donald Barr-Senior Technical Staff Member-World Wide Packaging Applications, IBM Microelectronics, Interconnect Products at Endicott, NY. Dr. Barr has diversified indus­ trial and technical experience at three major US corporations with emphasis on fundamen­ tal science and technical management. He received a Ph.D. degree from the University of Massachusetts, where he was awarded an EDEA Fellowship. Don has 20 years expe­ rience with the IBM Corporation in electronic packaging, has publications and patents in the area of electronic processes; and is a member of the IBM Academy of Techno­ logy, and the American Chemical Society. Prior to joining IBM, he was the Technical Director of Research and Development at GAF Photo and Repro Division in Binghamton, NY. 1146 Contributing Authors w. Dale Becker-Senior Engineer-IBM Enterprise Systems, Poughkeepsie, NY. Dale leads the MCM design team that integrates and implements multiprocessor designs for IBM's S/390 platforms. Dr. Becker's current interests focus on the electrical design of components utilized in high-frequency CMOS processor systems. He specializes in the application of electromag­ netic numerical methods related to signal integrity and simultaneous switching noise in elec­ tronic packaging, the measurement of these phenomenon, and the model verification. Dale received a B.E.E. degree from the University of Minnesota, a M.S.E.E. degree from Syracuse University, and a Ph.D. degree from the University of Illinois. Steven M. Bedore--EngineerlScientist-IBM Microelectronics Division, Burlington facil­ ity, Essex Junction, VT. Steven is currently the lead engineer for die picking and the unit leader for the Continual Total Operating Performance (CTOP) cost savings program in Wafer Finishing Engineering. Mr. Bedore received his Bachelor of Science degree in Electrical Engineering from Western New England College in 1994. Claude L. Bertin-Consultant-Burlington, VT. Dr. Bertin retired from IBM in 2000, where he held technical and managerial assignments in the areas of semiconductor technology development, logic and memory product design, and package development. Most recently he was a Senior Technical Staff Member and manager of 256 megabit SDRAM memory design as part of an alliance between IBM, Infineon (Siemens subsidiary) and Toshiba. He specialized in electronic fuse/antifuse development for redundancy and on-chip voltage and performance optimization. Previously he was lead engineer in a partnership between IBM and Irvine Sensors Corporation, which developed dense, light-weight, 3-dimensional, memory packaging for computer and aerospace recorder applications. Earlier IBM projects included high-performance CMOS static RAM (SRAM) development providing stand alone cache memory products and embedded SRAM cores in ASIC products. Dr. Bertin held both engi­ neering and management positions in NMOS and CMOS product development for ASIC and PLA logic, ROM, and manufacturing transfer to IBM locations in Manassas, VA, Burlington, VT, and Essones, France. He was elected to the IBM Academy of Technology in 1992. He received his Ph.D. in Electrical Engineering from Rensselaer Polytechnic Institute (1969), and a Masters degree in Electrical Engineering from Columbia University. Dr. Bertin began his career with the Bell Telephone Laboratory. He is a member of IEEE, Sigma Xi, Tau Beta Pi, and Eta Kappa Nu. He has 82 US patents in the area of memory and logic devices, and packaging; and eight publications. Katarina Boustedt-Senior Specialist, Microelectronics Packaging-Ericsson Mobile Com­ munications, Kumla, Sweden. Ms. Boustedt is involved with advanced packaging develop­ ment, such as flip chip for commercial applications at Ericsson's largest manufacturing plant, the mobile phone facility in Kumla, Sweden. Previously she focused on the implementation of flip chips for very high frequency products at the Ericsson Microwave Systems High Speed and Microwave Research Center in Molndal, Sweden. Before joining Ericsson, Ms. Boustedt was a project manager of packaging and interconnection research at the Department of Elec­ tronics Packaging at IVF, the Swedish Institute of Products Engineering Research, Molndal, Sweden. Research topics included advanced packaging, such as flip chip, chip scale packag­ ing, and high-density substrate techniques. Katarina graduated from Chalmers University of Technology in 1989, studied Engineering Physics, majoring in Material Science. Ms. Boustedt is an industrial mentor for doctoral candidates at Swedish and international universities, and Contributing Authors 1147 currently lectures at Linkoping Institute of Technology, Sweden. She has served on the board of IMAPS Nordic since 1997. Peter J. Brofman-Senior Technical Staff Member-IBM Microelectronics Division, East Fishkill, NY. Dr. Brofman joined IBM in 1980, and is considered a leading technical ex­ pert in bond, assembly, and interconnect process technology. He is currently responsible for packaging technology strategy. Dr. Brofman received BS, MS, MBA and Ph.D. degrees from Rensselaer Polytechnic Institute, the latter in physical metallurgy, He is a member of the American Society of Metals International, International Microelectronics and Packaging Society (IMAPS), and is the IBM representative to the Semiconductor Research Center's Packaging thrust. Dr. Brofman has published various papers and articles dealing with mi­ croelectronic packaging particularly physical metallurgy, brazing and solder interconnect technology, and holds various patents in these areas. Mark Brown-Regional Marketing Manager-Kulicke and Soffa Industries, Santa Clara, CA. Mr. Brown is responsible for marketing and applications in North America for the dicing systems group. Prior to K & S Industries, he held several positions at Disco where he was responsible for dicing and grinding marketing and sales efforts in North America. His 23 years of experience give him a wide perspective in die dicing and grinding applications. Stephen 1. Buchwalter-Manager of Packaging Materials and Processing-IBM Thomas J. Watson Research Center, Yorktown Heights, NY; [email protected]. Dr. Buchwalter has done research on polymeric materials for packaging applications since 1985, during which time he has developed several new materials in the area of microelectronic encapsulation. He has also worked closely with the IBM Microelectronics Division on packaging processing to assure the reliability of polymeric interfaces, for which he has received three IBM Technical Achievement Awards. He received a BA in chemistry from the College of Wooster and a Ph.D. in organic chemistry from Harvard University. He is a member of the American Chemical Society and the American Association for the Advancement of Science. He has published twenty-four scientific and technical papers and has received thirty-two patents. Barrie C. Campbell-Advisory Engineer-IBM Microelectronics Division, Poughkeepsie, NY. Dr. Campbell supports the MCM BondiAssemblyrrest facility and has headed the BGA, Encapsulation and Final Inspection sectors. His prior IBM experience included large panel assembly, metallized ceramic substrate fabrication and flexible chip carrier fabrication. He has received seven awards, including a Corporation Outstanding Technical Achievement Award. Prior to joining IBM in 1981, Dr. Campbell served as Vice President of Research for Billings Energy Corporation, investigating the use of hydrogen as a vehicular and pipeline fuel. He holds 4 issued patents and has published 9 technical articles. He received a BS degree in Physics in 1973, and a Ph.D. in Chemistry in 1983, both from Brigham Young University. Tom Chung-Executive Vice President-FICTA Technology San Jose, CA. Prior to his current position, Dr. Chung was Vice President of APTOS Corporation where his respon­ sibilities
Recommended publications
  • Custom and Multichip Packaging Contract Manufacturing
    Custom & Multichip Packaging Contract Manufacturing Micross’ contract assembly offers design and engineering support, BOM procurement, and a wide selection of package, substrate and interposer materials. Micross provides comprehensive semiconductor packaging services for multiple electronic components, including digital, mixed signal, analog, multi-chip and System-in-Package (SiP). We design, build and test hermetic QML and chip scale packaging for various markets including down-hole, aerospace, satellite and military. We combine advanced processes and product development to provide full turnkey support for prototype to volume production of flip chip and wire bond packages including single chip, multichip and SiP applications on organic substrates or ceramic substrates. By ensuring delivery of finished wafers through our relationships with silicon OCMs, and full coordination of customer BOM requirements, we offer complete supply-chain management services for micro- electronic assemblies. Micross Components can support your custom design with: Micross supplies modules and contract assembly services for multiple platforms: industrial, airborne; commercial and government satellites; • Complete turnkey product - including program missile and ordnance; C4ISR and medical. and vendor management of all elements throughout the product lifecycle • Co-development of a statement of work (SOW) Custom Multichip Packaging (MCP) is a die based system or sub-system • Co-design, starting with schematic, netlist or product definition and documentation assembled into a single package which is then mounted to the PCB. • Environmental requirements review In its simplest form factor, two or more of the same die are combined in one industry standard package that is smaller than the equivalent • Package and material selection for optimization of electrical and environmental performance, single die packages combined.
    [Show full text]
  • Introduction to System IC Design Flow
    Introduction to System IC and Design Flow Outline System-on-a-Chip (SoC) Trend SoC Integration & Challenge System-in-a-Package (SIP) IC Industry and Chip Production Flow System IC Design Flow Chip Debugging Tools and Reliability Issues 2 SoC Concept Analog Memory PCB ASIC CPU Chip System on a Board Analog IP Memory IP Chip IP IP CPU System on a Chip 3 Soc Advantages Minimize System Cost PCB, passive components Assembling Testing Compact System Size Board layout vs. chip layout Reduce System Power Consumption I/O, passive components, current levels Increase System Performance Interconnecting delay High speed parallel bus 4 Years 2002 – 2008 Worldwide Communication SoC Market Values Unit: Million U.S. Dollars Product 2002 2003 2004 2005 2006 2007 2008 Digital Cellular 7,480 9,463 12,560 15,210 15,855 17,202 19,013 LAN Wireless 138 333 492 662 777 938 1,134 Mobile Infrastructure 325 344 418 537 511 479 481 Other Mobile Comms. 378 520 673 859 1,077 1,215 1,440 LAN 140 184 248 316 348 392 446 Premises and CO Line Card 167 161 188 201 199 204 219 Broadband Remote Access 918 1,313 1,617 1,793 1,717 1,837 1,978 Public Infrastructure 304 360 481 607 667 810 934 Other Wired Comms. 428 568 811 1,128 1,175 1,365 1,515 Total Communications 10,278 13,246 17,488 21,313 22,326 24,442 27,160 Source: Dataquest (2004/06) 5 Example1: Siemens C35i Phone 13 1. Infineon E-GOLD PMB2851E, GSM Baseband controller and DSP.
    [Show full text]
  • Fpga Hardware
    L2: FPGA HARDWARE 18-545: ADVANCED DIGITAL DESIGN PROJECT FALL 2011 BILL NACE Administrivia Team assignments are done Lab 1 is due Monday Project Proposals happen on Monday Reading Assignment #1 due today 13/14 students got it in to Blackboard on time David's attempt didn't get saved (?) Submit a PDF, don't fill in the web form 18-545: FALL 2011 2 Game Plan Overview Why use FPGAs? FPGA Internals Caveat: I will use Xilinx specific terminology since that’s the FPGA company you will be using. Beware that other companies use different terms 18-545: FALL 2011 3 FPGA Overview Field Programmable Gate Array Array of generic logic gates Gates where logic function can be programmed Programmable interconnection between gates Fielded systems can be programmed i.e. post-fabrication Xilinx Virtex-5 FPGA 18-545: FALL 2011 5 Design Platform Virtex-5 Development System Xilinx XC5VLX110T FPGA 17280 slices of CLB goodness 256MB DDR2 (SODIMM) DVI Video port VGA port is for input 10/100/1000 Ethernet port Audio Codec (AC97) USB2 port 16x2 LCD, RS-232 Compact Flash card slot Expansion connectors 18-545: FALL 2011 6 Game Plan Overview Why use FPGAs? FPGA Internals 18-545: FALL 2011 7 Why use FPGAs? System designers have a Goldilocks problem Off-the-shelf parts are not efficient enough Custom ASICs cost too much Need a “just right” solution ASIC Design Difficult to design Large and complex Issues in advanced processes Interconnect delay Device leakage Power density constraints Expensive to design / fabricate Mask set costs Non-recurring engineering costs Need a high-volume, high-profit market to justify costs! Energy Efficiency (MOPS/mW) Area Efficiency (MOPS/mm2) 10000 1000 Microprocessors 100 10 1 0.1 DSPs ASICs 0.01 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Efficiency View An efficiency gap exists between ASICs and CPUs N.
    [Show full text]
  • Integrated Circuit Package Types
    APPENDIX C Integrated Circuit Package Types Overview With the ever-increasing levels of integration, packing more circuitry into ever smaller packages, electronic systems now rely on semiconductor devices. Anything from a few circuit components (transistors, resistors, and capacitors) to complete computer systems can be placed on a single silicon die. An integrated circuit is a package containing a single silicon (silicon germanium for RF circuits, or gallium arsenide for microwave frequency circuits) that forms either part of a larger electronic circuit or system or is a complete electronic system in its own right. When the IC forms a complete electronic system, it is commonly referred to as a system on a chip (SoC). Modern communications ICs are SoC designs. An extension to the IC is the multichip module (MCM), which contains multiple dies; for example, when sensors and circuits are to be housed in a single package but which cannot be fabricated on a single die. Originally referred to as a hybrid circuit, the MCM consists of two or more ICs and passive components on a common circuit base that are interconnected by conductors fabricated within that base. The MCM helps with size reduction problem and helps alleviate signal degradation. An extension to the MCM is the system in a package (SiP), on which devices are stacked vertically. Wire bonding to the substrate is common. An extension to the SiP is the package on a package (PoP). www.newnespress.com 2 Appendix C IC Package Types The package that the IC uses is either a through-hole package or a surface mount package, made of either plastic or ceramic.
    [Show full text]
  • 3-D Packaging: a Technology Review
    3-D Packaging: A Technology Review R. Wayne Johnson Auburn University 162 Broun Hall/ECE Dept. Auburn, AL 36849 334-844-1880 [email protected] Mark Strickland NASA/MSFC Huntsville, AL David Gerke NASA/JPL Pasadena, CA June 23, 2005 3-D PACKAGING A TECHNOLOGY REVIEW Table of Contents 2 INTRODUCTION 3 Package Stacking 8 Benefits of Package Stacking 14 Limitations of Package Stacking 14 Reliability 15 Technology Readiness Level Assessment 17 Die Stacking 17 Benefits of Die Stacking 33 Limitations of Die Stacking 34 Reliability 35 Technology Readiness Level Assessment 36 3-D Multichip Modules 37 Benefits of 3-D Multichip Modules 54 Limitations of 3-D Multichip Modules 54 Reliability 54 Technology Readiness Level Assessment 55 Wafer Stacking 56 Benefits of Wafer Stacking 60 Limitations of Wafer Stacking 60 Technology Readiness Level Assessment 63 Conclusions and Recommendations 64 References 65 2 3-D Packaging A Technology Review Introduction Traditional electronics are assembled as a planar arrangement of components on a printed circuit board (PCB) or other type of substrate. These planar assemblies may then be ‘plugged’ into a motherboard or card cage creating a ‘volume’ of electronics. This architecture is common in many military and space electronic systems as well as large computer and telecommunications systems and industrial electronics. The individual PCB assemblies can be replaced if defective or for system upgrade. Some applications are constrained by the volume or the shape of the system and are not compatible with the motherboard or card cage architecture. Examples include missiles, camcorders, and digital cameras. In these systems, planar rigid-flex substrates are folded to create complex 3-D shapes.
    [Show full text]
  • For Your System in a Package
    Unify ASICs for your System in a Package with TEKMOS Introducing Unify ASICs Applications for System in a Package are driven by the requirements of space, power, and development time. The total solution needs to be small. It typically runs off of a battery. And it needs a quick time-to-market. The major semiconductor suppliers have developed a number of cost effective blocks that can meet 90% of the requirements of an application. It is the last 10% that is the problem. Developers typically face two approaches for the last 10%. You can build what you need out of discrete components. This is inexpensive, but Picture of Stacked Die. requires a lot of board space. Or you can take a SOC (System on a Chip) approach. This will work, BGA packages, die can be stacked side by side as but can be very expensive, since the presence of well as on top of each other. And in some cases, we wireless interfaces and ARM processors requires can also include components that we cannot put on advanced processing to accommodate the diverse the ASIC such as large capacitors, and crystals. No requirements of diverse technologies as well as matter what package we use, the customer wins by expensive NREs. And such solutions require more having a single, highly integrated device for their development time because of the chip complexity. system. Tekmos has a third approach. We create a cost Technology effective ASIC using an appropriate technology to It is a fact that the NRE costs roughly double for implement the missing 10%.
    [Show full text]
  • Pfesip EP-1 Configurable IC Card Reader/Writer Engine PF
    To our customers, Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. Notice 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples.
    [Show full text]
  • Trends in Assembling of Advanced IC Packages Ryszard Kisiel and Zbigniew Szczepański
    Invited paper Trends in assembling of advanced IC packages Ryszard Kisiel and Zbigniew Szczepa«ski Abstract|In the paper, an overview of the current trends ical area occupancy on the PCB, about three times com- in the development of advanced IC packages will be pre- pared to QFP for this I/O range. Shorter connections of- sented. It will be shown how switching from peripheral fered by CSP reduce parasitic inductance and capacitance. packages (DIP, QFP) to array packages (BGA, CSP) and multichip packages (SiP, MCM) affects the assembly pro- Table 2 cesses of IC and performance of electronic systems. The Comparison of key features of various packages [2] progress in bonding technologies for semiconductor packages will be presented too. The idea of wire bonding, flip chip Feature QFP BGA CSP and TAB assembly will be shown together with the bound- I/O 208 225 313 aries imposed by materials and technology. The construction Pitch [mm] 0.5 1.27 0.5 of SiP packages will be explained in more detail. The paper Footprint [mm2] 785 670 252 addresses also the latest solutions in MCM packages. Height [mm] 3.37 2.3 0.8 Keywords| IC packages, SiP, wire bonding, TAB, flip chip. Package to die ratio 8 7 1 Inductance [nH] 6.7 1.3 { 5.5 0.5 { 2.1 Capacitance [pF] 0.5 { 1 0.4 { 2.4 0.05 { 0.2 1. Introduction Compared to leaded packages such as QFPs, BGA and CSP The development of the electronics industry is dominated packages are expensive. The cost is about twice as high, by communication products, which are characterised by but when cost per I/O is taken into account the prices be- rapid market introduction and fast mass-manufacturing ca- come almost the same.
    [Show full text]
  • 実装WG「先端パッケージ技術 -More Than Mooreを実現するsip技術
    STRJワークショップ2008 (2009.03.06) 実装WG 先端パッケージ技術 More than Mooreを実現するSiP技術 (社)電子情報技術産業協会 半導体部会 半導体技術委員会 半導体技術ロードマップ専門委員会 WG7/春田 亮(ルネサステクノロジ) STRJ WS: March 6, 2009, WG7 A&P 1 用語集 BG : Back Grinding BGA : Ball Grid Array Package COC : Chip on Chip CSP : Chip Size Package/Chip Scale Package FC : Flip Chip ITRS : International Technology Roadmap for Semiconductors KGD : Known Good Die MMC : Multi Media Card SEAJ : Semiconductor Equipment Association of Japan SiP : System in a Package SSD : Solid State Drive TSV : Through Silicon Via WB : Wire Bonding STRJ WS: March 6, 2009, WG7 A&P 2 目次 1.はじめに 2.最新のSiP技術 3.SiP組立技術の動向 4.まとめ STRJ WS: March 6, 2009, WG7 A&P 3 2008年度 WG7 メンバ リーダ : 春田 亮(ルネサス) サブリーダ : 中島 宏文(NECエレ) 国際対応委員 : 宇都宮 久修(ICT)、中島 兼務 委員 : 吉田 英治(富士通)、松浦 雅夫(ソニー)、 木村 通孝(ルネサス)、大内 伸仁(OKI)、 春口 秀哉(シャープ)、上田 茂幸(ローム)、 大塚 雅司(東芝)、杉崎 吉昭(東芝)、 臼井 良輔(三洋)、春日 壽夫(NECエレ)、 高田 隆(松下)、大槻 哲也(エプソン)、 特別委員 : 久保 貴則(京セラ)、 林 智雄(SEAJ;東京精密)、 横田 寛(SEAJ;住友重機械工業)、 喜多村 章司(SEAJ;キヤノンマシナリ) STRJ WS: March 6, 2009, WG7 A&P 4 LSIパッケージの開発動向 第1次革命 第2次革命 第3次革命 第4次革命? (3次元実装) (光実装) (MEMS) (挿入型→表面実装型) (周辺配置→エリアアレイ) (Wafer Level Packaging) (異種接合) IC nce IC (実装面積) (実装面積) rma Perfo Wireless Interconnect T-BGA High Si-Interposer TCP Optical Interconnect FC-BGA POP P-BGA(WB) SiP TSV Die Stacking QFP ost Performance QFJ C Mounted Area Area Mounted Mounted FBGA Stacked SiP 3D-Bare Lo w Cost / Handhe DIP SOJ SOP ld MEMS Devices WL-CSP KGDベアチップ 1980 1990 2000 2010 2020 STRJ WS: March 6, 2009, WG7 A&P 5 Biochips Sensors Actuators HV Power Interactingand environment with people 2005 edition More than Moore:Passives Diversification Non-digital(SiP) content System-in-package More Moore vs.
    [Show full text]
  • Key Words for Sip White Paper
    SiP White Paper V9.0 The next Step in Assembly and Packaging: System Level Integration in the package (SiP) Our intent is that this paper will be a living document that is kept up to date as System in Package progresses and the technology evolves. We would like to ask the readers to send any suggestions and/or corrections to [email protected]. This will assist us in keeping the document up to date and accurate so that it can be a continuing reference to the state of the art in SiP and a guide to developments critical to meeting future market requirements. Page 1 SiP White Paper V9.0 Table of Contents 1. Executive Summary .................................................................................................. 5 Background .................................................................................................................. 6 Definition of SiP ........................................................................................................... 8 Level Structures ........................................................................................................... 8 SiP vs. SoC Comparison ............................................................................................. 11 Market Trends ............................................................................................................ 12 2. System Level Requirements for SiP ....................................................................... 13 2.1 General Requirements ...................................................................................
    [Show full text]
  • Assembly and Packaging
    INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2009 EDITION ASSEMBLY AND PACKAGING THE INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS: 2009 TABLE OF CONTENTS Scope....................................................................................................................................1 Difficult Challenges................................................................................................................2 Single Chip Packaging ..........................................................................................................2 Overall Requirements......................................................................................................................2 Electrical Requirements ...............................................................................................................................3 Cross Talk ....................................................................................................................................................3 Power Integrity .............................................................................................................................................3 Thermal Requirements.................................................................................................................................3 Hot spots ......................................................................................................................................................4 Mechanical Requirements............................................................................................................................4
    [Show full text]
  • Integrated Circuit Test Engineering Iana.Grout Integrated Circuit Test Engineering Modern Techniques
    Integrated Circuit Test Engineering IanA.Grout Integrated Circuit Test Engineering Modern Techniques With 149 Figures 123 Ian A. Grout, PhD Department of Electronic and Computer Engineering University of Limerick Limerick Ireland British Library Cataloguing in Publication Data Grout, Ian Integrated circuit test engineering: modern techniques 1. Integrated circuits - Verification I. Title 621.3’81548 ISBN-10: 1846280230 Library of Congress Control Number: 2005929631 ISBN-10: 1-84628-023-0 e-ISBN: 1-84628-173-3 Printed on acid-free paper ISBN-13: 978-1-84628-023-8 © Springer-Verlag London Limited 2006 HSPICE® is the registered trademark of Synopsys, Inc., 700 East Middlefield Road, Mountain View, CA 94043, U.S.A. http://www.synopsys.com/home.html MATLAB® is the registered trademark of The MathWorks, Inc., 3 Apple Hill Drive Natick, MA 01760- 2098, U.S.A. http://www.mathworks.com Verifault-XL®, Verilog® and PSpice® are registered trademarks of Cadence Design Systems, Inc., 2655 Seely Avenue, San Jose, CA 95134, U.S.A. http://www.cadence.com/index.aspx T-Spice™ is the trademark of Tanner Research, Inc., 2650 East Foothill Blvd. Pasadena, CA 91107, U.S.A. http://www.tanner.com/ Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency.
    [Show full text]