<<

ARL Fall 2017 Meetings

Miguel Nunes Assistant Specialist, Hawaii Institute of Geophysics and Planetology (HIGP) and Hawaii Space Flight Laboratory (HSFL)

“Autonomous Docking with Small ” 2. MARS-ADCS 3. MARS-ARD MotivationOverview

“autonomous systems ... smarter and more space robots will be better equipped to sense and react to anomalies onboard, making them less dependent on the ground crew.”

— NASA Technology Roadmap 4, 2015-2035

Miguel A. Nunes MARS for Space Missions and a Method for Constellations Optimization 2 / 22 2. MARS-ADCS 3. MARS-ARD MotivationOverview

Space telescope assembly concept. Image Credit AAReST project. Video

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 3 / 22 2. MARS-ADCS 3. MARS-ARD OperationsOverview Concept

Initiate maneuvers for constellation formation maintenance

Self Situational Awareness Acquisition

Initiate docking phase

Final docking phase

Deployment

Launch

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 4 / 22 2. MARS-ADCS 3. MARS-ARD RelatedOverview Missions

Mission Year Chaser Sat Mass (kg) Target Sat Mass (kg) Status Country Cosmos 1967 Cosmos-186 6 530 Cosmos-188 6 530 Success Russia ETS-VII 1998 Hikoboshi 2 500 Orihime 400 Success Japan 2007 ASTRO 1 089 NEXTSat 227 Success USA ATV 2008 ATV 20 750 ISS 419 455 Success ESA CPOD 2016 CPOD-A 5 CPOD-B 5 Pending USA few autonomous docking missions in past 60 years docking missions with small satellites has never been done emerging embedded technologies are enabling ARD

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 5 / 22 2. MARS-ADCS 3. MARS-ARD Software

Comprehensive Open-architecture Solution for Mission Operations Systems (COSMOS)

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 6 / 22 2. MARS-ADCS 3. MARS-ARD Software

COSMOS & LSTS Toolchain Bridging Water, Ground, Air with Space vehicles

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 7 / 22 2. MARS-ADCS 3. MARS-ARD Monolithic vs Multi-Agent

Function Monolithic System Multi-Agent System software development monolithic, centralized modular, distributed, scalable add/remove components dynamically fixed, not possible flexible data processing centralized centralized or distributed geographic distribution centralized centralized or distributed robustness to failures whole system fails partial system failure plug-n-play fixed, not possible flexible to implement scalability limited to single units scalable, limit is data bus bandwidth

Monolithic Multi-Agent Sensor 1

Sensor 1 Estimation Sensor 2 Sensor 2 Estimation

Sensor N Sensor N

Actuator 1 Actuator 1

Actuator 2 Control

Control Actuator 2 Actuator N

Actuator N

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 8 / 22 2. MARS-ADCS 3. MARS-ARD Agent Definition

“an agent is a computer system that is situated in some environment, and that is capable of autonomous action in this environment in order to achieve its delegated objectives”

— Weiss, Multiagent Systems, 2013

An agent is: social (interact with other agents) proactive (autonomous decision making) reactive (sense and act)

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 9 / 22 2. MARS-ADCS 3. MARS-ARD Agent Definition

“an agent is a computer system that is situated in some environment, and that is capable of autonomous action in this environment in order to achieve its delegated objectives”

— Weiss, Multiagent Systems, 2013

An agent is: social (interact with other agents) proactive (autonomous decision making) reactive (sense and act)

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 9 / 22 2. MARS-ADCS 3. MARS-ARD Multi-Agent Robotic System

Multi-Agent Robotics System Bracket Spacecraft Hardware Space Physics

GNC Architecture

Agent Agent Agent Guidance Control Actuator1 Actuators Forces + Thrusters Torques Control Wheels - Agent Magnetorquers ActuatorN 6DoF Spacecraft E-Guidance Dynamics & Agent Agent Kinematics Navigation Sensor1 Navigation Sensors GPS Navigation Attitude Spacecraft Agent Rendezvous State Estimate EKF State (Position, Attitude) Sensor data SensorN

External Exec Disturbances Agent

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 10 / 22 2. MARS-ADCS 3. MARS-ARD Multi-Agent Robotic System

COSMOS Agent #1 External COSMOS Agent #2 External Disturbances Disturbances

Guidance Control Guidance Control ug(k),ug(k+1) u=u(x) ug(k),ug(k+1) u=u(x)

Actuators Actuators

Agent driver Dynamics Agent driver Dynamics

Navigation Sensors Navigation Sensors Sensor Fusion Sensor Fusion State Estimation State Estimation X(x,v,a,q) – state vector X(x,v,a,q) – state vector

GNC On Board Computer Software Vehicle Dynamics GNC On Board Computer Software Vehicle Dynamics

COSMOS COSMOS COSMOS Space network Space network Space network COSMOS Data Packets

COSMOS Agent #4 COSMOS Agent #3 External External Disturbances Disturbances

Guidance Control Guidance Control u (k),u (k+1) u=u(x) ug(k),ug(k+1) u=u(x) g g

Actuators Actuators

Agent driver Agent driver Dynamics Dynamics

Navigation Sensors Navigation Sensors Sensor Fusion Sensor Fusion State Estimation State Estimation X(x,v,a,q) – state vector X(x,v,a,q) – state vector

GNC On Board Computer Software Vehicle Dynamics GNC On Board Computer Software Vehicle Dynamics

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 11 / 22 2. MARS-ADCS 3. MARS-ARD HiakaSat ADCS MARS

Position Sensor Attitude Sensors Actuators

GPS ST MAG GYRO MTR1 MTR2 MTR3

GPS Agent ST Agent IMU Agent TCU Agent

Navigation Agent Control Agent (orbit and attitude (control input) estimation)

Sensor Data Exec Agent Actuator Data (mode management, Agent Data (UDP) FDIR) Hardware Drivers ADCS Agents Sensors Actuators Other agents

Radios/Ground

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 12 / 22 2. MARS-ADCS 3. MARS-ARD COSMOS CEO

UTC 2012-01-23 19:43:07 MOC 08:43:07 CONTROL ALLOCATIONS PERSONNEL LocalT 14:43:07 MET 1234:09:32:27 Orbit 17126 001 002 003 004 005 006 007 008 009 010 • Sat # Satellite Name MOST GSC Controller Status MPST MOST GSCT DMT TBCT CEO Actual Actual Actual Actual Actual Actual Actual Actual Actual Actual Flight Director On 1 1 LOG C S P C S P C S P C S P C S P C S P C S P C S P C S P C S P 001 TinySat-1 Autonomous 002 TinySat-2 Autonomous SpaceCadet 1 On 1 1 LOG 011 012 • 013 014 • 015 016 017 018 019 020 Actual Actual Actual Actual Actual Actual Actual Actual Actual Actual 003 TinySat-3 Autonomous SpaceCadet 2 On 1 LOG CEO C S P C S P C S P C S P C S P C S P C S P C S P C S P C S P 004 TinySat-4 Autonomous SpaceCadet 3 On 2 1 LOG 021 022 • 023 024 • 025 026 027 028 029 030 005 TinySat-5 Autonomous SpaceCadet 4 Off LOG COSMOS Actual Actual Actual Actual Sim Sim 006 TinySat-6 Autonomous SpaceCadet 5 Off LOG Executive C S P C S P C S P C S P 007 TinySat-7 Autonomous SpaceCadet 6 Off LOG 031 032 033 034 035 036 037 038 039 040 008 TinySat-8 Autonomous SpaceCadet 7 Off LOG Operator 009 TikiSat-1 Autonomous SpaceCadet 8 Sim 1 LOG SpaceCadet 9 Off LOG 041 042 043 044 045 046 047 048 049 050 010 TikiSat-2 Autonomous Autonomous 011 HawaiiSat-1 Autonomous SpaceCadet 10 Off LOG 012 HawaiiSat-2 SpaceCadet 1 SpaceCadet 1 Trainee 1 Sim 1 LOG 051 052 053 054 055 056 057 058 059 060 013 MightySat Manual Trainee 2 On 1 LOG 014 ClearSat SpaceCadet 2 SpaceCadet 2 Trainee 3 On 1 LOG 015 KUD0Sat-1 Autonomous Trainee 4 Off LOG 061 062 063 064 065 066 067 068 069 070 016 KUD0Sat-2 Autonomous 017 BoxSat-1 Autonomous 071 072 073 074 075 076 077 078 079 080 018 BoxSat-2 Autonomous 019 BoxSat-3 Autonomous 020 BoxSat-4 Autonomous 081 082 083 084 085 086 087 088 089 090 021 BoxSat-6 Autonomous 022 BoxSat-9 SpaceCadet 3 Autonomous 091 092 093 094 095 096 097 098 099 100 023 BoxSat-10 Autonomous 024 BoxSat-11 SpaceCadet 3 SpaceCadet 3 025 SimSat-A SpaceCadet 4 Manual SORT SELECT

11 HawaiiSat-1 MOST 12 HawaiiSat-2 MOST 13 MightySat MOST 14 ClearSat MOST 15 KUDOSat-1 MOST 16 KUDOSat-2 MOST 17 BoxSat-1 MOST 18 BoxSat-2 MOST 19 BoxSat-3 MOST 20 BoxSat-4 MOST Orbit View Actual Sub-Sat View Actual Orbit View Actual Sub-Sat View Actual Orbit View Actual Orbit View Actual Orbit View Actual Sub-Sat View Actual Sub-Sat View Actual Sub-Sat View Actual

Lat 043.4 N Long 090.6 E Alt 0123 k Lat 033.6 N Long 007.4 E Alt 0489 k Lat 073.6 S Long 187.4 E Alt 0557 k Lat 033.6 S Long 096.4 E Alt 0623 k Lat 013.6 N Long 196.4 E Alt 7623 k Lat 088.6 N Long 196.4 E Alt 5523 k Lat 043.4 N Long 090.6 E Alt 0123 k Lat 033.6 N Long 007.4 E Alt 0489 k Lat 073.6 S Long 187.4 E Alt 0557 k Lat 033.6 S Long 096.4 E Alt 0623 k

Daylight 45:03 → Umbra Daylight 26:58 → Daylight Daylight 07:53 → Umbra Daylight 27:53 → Daylight Daylight 82:53 → Umbra Daylight 82:53 → Umbra Daylight 45:03 → Umbra Daylight 26:58 → Daylight Daylight 07:53 → Umbra Daylight 27:53 → Daylight Local Time 245:19:07:58 Local Time 245:02:07:58 Local Time 245:07:07:58 Local Time 245:09:07:58 Local Time 245:21:07:58 Local Time 245:21:07:58 Local Time 245:19:07:58 Local Time 245:02:07:58 Local Time 245:07:07:58 Local Time 245:09:07:58 S/C State Nominal S/C State Nominal S/C State Nominal S/C State SAFE Ground St SCC 17:20 → LOS Ground St SCC 17:20 → LOS S/C State Nominal S/C State Nominal S/C State Nominal S/C State SAFE ADCS Mode ADCS Mode LVLH ADCS Mode IH2 ADCS Mode LVLH SAFE VHF, SBand VHF, SBand ADCS Mode LVLH ADCS Mode IH2 ADCS Mode LVLH ADCS Mode SAFE Ground St ASF-1 22:10 → AOS Ground St SSC 08:15 → LOS Ground St KCC 17:20 → AOS Ground St KCC 37:20 → AOS B C L B C L Ground St ASF-1 22:10 → AOS Ground St SSC 08:15 → LOS Ground St KCC 17:20 → AOS Ground St KCC 37:20 → AOS UHF, SBand UHF, SBand B C L B C L CONTACT CAR LCK RCS SM GNC CM1 CM2 RCS SM GNC CM1 CM2 B C L B C L CONTACT CAR LCK EPS OBC ADC RF TCS + EPS OBC ADC RF RCS + EPS OBC ADC RF TCS + EPS OBC ADC RF TCS + EPS OBC ADC COM TCS EPS OBC ADC COM TCS EPS OBC ADC RF TCS + EPS OBC ADC RF RCS + EPS OBC ADC RF TCS + EPS OBC ADC RF TCS +

21 BoxSat-6 MOST 22 BoxSat-9 MOST 23 BoxSat-10 MOST 24 BoxSat-11 MOST 25 SimSat-1 MOST 26 SimSat-2 MOST Sub-Sat View Actual Orbit View Actual Sub-Sat View Actual Sub-Sat View Actual Orbit View Simulation Orbit View Simulation

Lat 023.4 S Long 090.6 E Alt 0123 k Lat 043.4 N Long 090.6 E Alt 0123 k Lat 043.4 S Long 090.6 E Alt 0123 k Lat 043.4 S Long 090.6 E Alt 0123 k Lat 043.4 S Long 090.6 E Alt 1123 k Lat 043.4 S Long 090.6 E Alt 0723 k

Daylight 45:03 → Umbra Daylight 26:58 → Daylight Daylight 07:53 → Umbra Daylight 27:53 → Daylight Daylight 07:53 → Umbra Daylight 07:53 → Umbra Local Time 245:19:07:58 Local Time 245:02:07:58 Local Time 245:07:07:58 Local Time 245:09:07:58 Local Time 245:07:07:58 Local Time 245:07:07:58 S/C State Nominal S/C State Nominal S/C State Nominal S/C State SAFE S/C State Nominal S/C State Nominal ADCS Mode LVLH ADCS Mode IH2 ADCS Mode LVLH ADCS Mode SAFE ADCS Mode LVLH ADCS Mode LVLH Ground St ASF-1 22:10 → AOS Ground St SSC 08:15 → LOS Ground St KCC 17:20 → AOS Ground St KCC 37:20 → AOS Ground St KCC 17:20 → AOS Ground St KCC 17:20 → AOS B C L B C L UHF, SBand CONTACT CAR LCK CONTACT CONTACT EPS OBC ADC RF TCS + EPS OBC ADC RF RCS + EPS OBC ADC RF TCS + EPS OBC ADC RF TCS + EPS OBC ADC RF TCS + EPS OBC ADC RF TCS +

KCC ASF-1 ASF-2 SCC-1 SCC-2 KCC UHF CONTACT UHF S-B S-B UHF S-B #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 OPER STBY OPER DOWN STBY NODE #1 (MC1) STATUS Ground St Band Local Tm 245:07:07:58 ABC DEF-1 DEF-2 DEF-3 GHI-2 009 Azimuth 281.3 C-B S-B S-B X-B Ku-B MC1 MC2 MC3 OTB1 OTB2 MC5 MC6 MC7 MC8 MC9 Sat # Elevation 67.5 - LNK STBY OPER OPER OFF Max Elev 82.4 HMC3-1 HMC3-2 NMC3-1 NMC3-2 SMC3-1 AUTO AOS 19:38:37 [+05:30] UHF S-B UHF S-B UHF CPU 10% Mode LOS 19:47:27 [-04:20] STBY OPER STBY STBY OFF SMC3-2 BMC3-1 BMC3-2 WPGS ARC-1 MEM S-B UHF S-B VHF UHF OFF OPER OPER LNK DOWN ARC-2 ARC-3 ARC-4 ARC-5 DISK UHF UHF S-B S-B OPER OPER STBY OPER MSG

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 13 / 22 2. MARS-ADCS 3. MARS-ARD COSMOS 3D Docking Engine

Video

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 14 / 22 2. MARS-ADCS 3. MARS-ARD Hardware

CubeSat Representative Hardware. Image credit Tyvak.

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 15 / 22 2. MARS-ADCS 3. MARS-ARD On Board Computing

Evolution of computing throughput. Image credit RHESE Project.

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 16 / 22 2. MARS-ADCS 3. MARS-ARD Heterogeneous Computing

Unibap iX30 Heterogeneous Computer (CPU, GPU, FPGA). <20W operational. Image Credit Unibap

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 17 / 22 2. MARS-ADCS 3. MARS-ARD Hardware: Attitude Control

CubeADCS hardware. Image credit CubeSpace.

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 18 / 22 2. MARS-ADCS 3. MARS-ARD Hardware in the Loop Testing

Helmholtz Cage Motion tracking system

Sun simulator

ADCS hardware Satellite testbed

Air bearing platform

Testbed control software GPS simulator

Video

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 19 / 22 2. MARS-ADCS 3. MARS-ARD CubeADCS Testing

Video

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 20 / 22

2. MARS-ADCS 3. MARS-ARD Questions?

Thank You

Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 22 / 22 Figure: