Highlights in Space 2006
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NASA Johnson Space Center Houston, Texas 77058 October 1999 Volume 4, Issue 4
A publication of The Orbital Debris Program Office NASA Johnson Space Center Houston, Texas 77058 October 1999 Volume 4, Issue 4. NEWS Marshall Researchers Developing Patch Kit to Mitigate ISS Impact Damage Stephen B. Hall, FD23A procedure and developmental status. external patching for several reasons: time KERMIt Lead Engineer constraints, accessibility, work envelope, Marshall Space Flight Center External Repair Rationale collateral damage and EVA suit compatibility. KERMIt, a Kit for External Repair of The decision was made to develop a kit for A primary risk factor in repairing Module Impacts, is now punctured modules is the being developed at the time constraint involved. Marshall Space Flight Even given the relatively Center in Huntsville, Ala. large volume of air within Its purpose: to seal the Space Station upon punctures in the assembly completion, International Space Station analyses have shown that a caused by collisions with 1-inch-diameter hole can meteoroids or space cause pressure to drop to debris. The kit will enable unacceptable levels in just crewmembers to seal one hour. In that timeframe, punctures from outside the crew must conclude a damaged modules that module has been punctured, have lost atmospheric determine its location, pressure. Delivery of the remove obstructions kit for operational use is restricting access, obtain a scheduled for next year. repair kit and seal the leak. This article -- which This action would be a expands on material challenge even if the crew appearing in the July 1999 was not injured and no issue of “Orbital Debris significant subsystem Quarterly” -- discusses the damage had occurred. rationale for an externally applied patch, Astronaut installing toggle bolt in simulated puncture sample plate on Laboratory requirements influencing Module in Neutral Buoyancy Laboratory. -
Austrian Space Law Newsletter
Austrian Space Law Newsletter Number 16 , June 2017 Editorial 2 Interview with Simonetta Di Pippo 3 The International Astronautical Congress (IAC) 6 Interview with Andreas Geisler 8 ”Big Data” at the Global Conference on Space and the Information Society (GLIS) 11 GLIS 11 Interview with David Kendall 13 NPOC Symposium ”Looking to the Future: Changing International Relations and Legal Issues Facing Space Activities” 17 Interview with Jean-Jacques Tortora 18 “Born to Explore”: the 29th Planetary Congress of the Association of Space Explorers 20 Interview with Franz Viehböck 23 Space Law at the Vienna Humanities Festival 26 “Born to Explore” 20 Women in Aerospace Europe: Vienna Local Group Launch Event 27 Manfred Lachs Space Law Moot Court Competition 2016 28 25th ECSL Summer Course on Space Law and Policy 2016 29 NPOC Space Law Austria Subpoint Graz Outreach Activities 2016 30 Seminar on Space Law and Space Policy at the University of Graz 2016 30 Humanities Festival 26 Upcoming Events 31 EDITORIAL Irmgard Marboe The year 2017 marks the 50th Viehböck, the first and only Austrian astronaut, at the margins anniversary of the legal foun- of the 29th Planetary Congress of the Association of Space dation of international space Explorers which took place in Austria in autumn 2016, shares law, the Outer Space Treaty. experiences and perspectives 25 years after the Austromir Opened for signature on 27 mission with Cordula Steinkogler who did not only conduct January 1967, it entered into all the interviews but was also in the ÖWF (Österreichisches force on 10 October in the Weltraum Forum) organising team of the Planetary Congress. -
Satellite Situation Report
NASA Office of Public Affairs Satellite Situation Report VOLUME 17 NUMBER 6 DECEMBER 31, 1977 (NASA-TM-793t5) SATELLITE SITUATION~ BEPORT, N8-17131 VOLUME 17, NO. 6 (NASA) 114 F HC A06/mF A01 CSCL 05B Unclas G3/15 05059 Goddard Space Flight Center Greenbelt, Maryland NOTICE .THIS DOCUMENT HAS'BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS' ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE. OFFICE OF PUBLIC AFFAIRS GCDDARD SPACE FLIGHT CENTER NATIONAL AERONAUTICS AND SPACE ADMINISTRATION VOLUME 17 NO. 6 DECEMBER 31, 1977 SATELLITE SITUATION REPORT THIS REPORT IS PUBLIShED AND DISTRIBUTED BY THE OFFICE OF PUBLIC AFFAIRS, GSFC. GODPH DRgP2 FE I T ERETAO5MUJS E SMITHSONIAN ASTRCPHYSICAL OBSERVATORY. SPACEFLIGHT TRACKING AND DATA NETWORK. NOTE: The Satellite Situation Report dated October 31, 1977, contained an entry in the "Objects Decayed Within the Reporting Period" that 1977 042P, object number 10349, decayed on September 21, 1977. That entry was in error. The object is still in orbit. SPACE OBJECTS BOX SCORE OBJECTS IN ORBIT DECAYED OBJECTS AUSTRALIA I I CANACA 8 0 ESA 4 0 ESRO 1 9 FRANCE 54 26 FRANCE/FRG 2 0 FRG 9 3 INCIA 1 0 INDONESIA 2 0 INTERNATIONAL TELECOM- MUNICATIONS SATELLITE ORGANIZATION (ITSO) 22 0 ITALY 1 4 JAPAN 27 0 NATC 4 0 NETHERLANDS 0 4 PRC 6 14 SPAIN 1 0 UK 11 4 US 2928 1523 USSR 1439 4456 TOTAL 4E21 6044 INTER- CBJECTS IN ORIT NATIONAL CATALOG PERIOD INCLI- APOGEE PERIGEE TQANSMITTTNG DESIGNATION NAME NUMBER SOURCE LAUNCH MINUTES NATION KM. -
Istanbul Technical University Institute of Science And
İSTANBUL TECHNICAL UNIVERSITY « INSTITUTE OF SCIENCE AND TECHNOLOGY DESIGN STUDY OF A COMMUNICATION SUBSYSTEM AND GROUND STATION FOR ITU-pSAT II M.Sc. Thesis by Melih FİDANOĞLU Department : Institue of Science and Technology Programme : Defence Technologies JANUARY 2011 İSTANBUL TECHNICAL UNIVERSITY « INSTITUTE OF SCIENCE AND TECHNOLOGY DESIGN STUDY OF A COMMUNICATION SUBSYSTEM AND GROUND STATION FOR ITU-pSAT II M.Sc. Thesis by Melih FİDANOĞLU (514071013) Date of submission : 20 December 2010 Date of defence examination: 24 January 2011 Supervisor (Chairman) : Assoc. Prof. Dr. Gökhan İNALHAN (ITU) Members of the Examining Committee : Prof. Dr. İbrahim ÖZKOL (ITU) Prof. Dr. Metin Orhan KAYA (ITU) JANUARY 2011 İSTANBUL TEKNİK ÜNİVERSİTESİ « FEN BİLİMLERİ ENSTİTÜSÜ ITU-pSAT II İÇİN İLETİŞİM ALTSİSTEMİ VE YER İSTASYONU TASARIM ÇALIŞMASI YÜKSEK LİSANS TEZİ Melih FİDANOĞLU (514071013) Tezin Enstitüye Verildiği Tarih : 20 Aralık 2010 Tezin Savunulduğu Tarih : 24 Ocak 2011 Tez Danışmanı : Doç. Dr. Gökhan İnalhan (İTÜ) Diğer Jüri Üyeleri : Prof. Dr. İbrahim Özkol (İTÜ) Prof. Dr. Metin Orhan Kaya (İTÜ) OCAK 2011 FOREWORD First of all, I would like to thank my advisor, Gökhan İnalhan for the opportunity to work in the fantastic setup of Control and Avionics Laboratory and to work with the research team here. I would like to thank ITU-pSAT II project team including Emre Koyuncu, Melahat Cihan, Elgiz Başkaya and Soner Işıksal for being my project teammates. Also, my sincere thanks goes to Control and Avionics Lab's fellow labmates, including, but not limited to, Serdar Ateş, Oktay Arslan and Nazım Kemal Üre. A special thanks goes to TÜBİTAK. Without their contributions, this project would not be possible. -
L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade. -
Satellite Systems
Chapter 18 REST-OF-WORLD (ROW) SATELLITE SYSTEMS For the longest time, space exploration was an exclusive club comprised of only two members, the United States and the Former Soviet Union. That has now changed due to a number of factors, among the more dominant being economics, advanced and improved technologies and national imperatives. Today, the number of nations with space programs has risen to over 40 and will continue to grow as the costs of spacelift and technology continue to decrease. RUSSIAN SATELLITE SYSTEMS The satellite section of the Russian In the post-Soviet era, Russia contin- space program continues to be predomi- ues its efforts to improve both its military nantly government in character, with and commercial space capabilities. most satellites dedicated either to civil/ These enhancements encompass both military applications (such as communi- orbital assets and ground-based space cations and meteorology) or exclusive support facilities. Russia has done some military missions (such as reconnaissance restructuring of its operating principles and targeting). A large portion of the regarding space. While these efforts have Russian space program is kept running by attempted not to detract from space-based launch services, boosters and launch support to military missions, economic sites, paid for by foreign commercial issues and costs have lead to a lowering companies. of Russian space-based capabilities in The most obvious change in Russian both orbital assets and ground station space activity in recent years has been the capabilities. decrease in space launches and corre- The influence of Glasnost on Russia's sponding payloads. Many of these space programs has been significant, but launches are for foreign payloads, not public announcements regarding space Russian. -
Human Behavior During Spaceflight - Videncee from an Analog Environment
Journal of Aviation/Aerospace Education & Research Volume 25 Number 1 JAAER Fall 2015 Article 2 Fall 2015 Human Behavior During Spaceflight - videnceE From an Analog Environment Kenny M. Arnaldi Embry-Riddle Aeronautical University, [email protected] Guy Smith Embry-Riddle Aeronautical University, [email protected] Jennifer E. Thropp Embry-Riddle Aeronautical University - Daytona Beach, [email protected] Follow this and additional works at: https://commons.erau.edu/jaaer Part of the Applied Behavior Analysis Commons, Experimental Analysis of Behavior Commons, and the Other Astrophysics and Astronomy Commons Scholarly Commons Citation Arnaldi, K. M., Smith, G., & Thropp, J. E. (2015). Human Behavior During Spaceflight - videnceE From an Analog Environment. Journal of Aviation/Aerospace Education & Research, 25(1). https://doi.org/ 10.15394/jaaer.2015.1676 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in Journal of Aviation/Aerospace Education & Research by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Arnaldi et al.: Human Behavior During Spaceflight - Evidence From an Analog Environment Introduction Four years after the launch of Sputnik, the world’s first artificial satellite, Yuri Gagarin became the first human to reach space (National Aeronautics and Space Administration [NASA], 2011a). The United States soon followed on the path of manned space exploration with Project Mercury. Although this program began with suborbital flights, manned spacecraft were subsequently launched into orbit around the Earth (NASA, 2012). With President Kennedy setting the goal of landing a man on the moon, NASA focused on short-duration orbital flights as a stepping-stone to lunar missions. -
Advances in Satellite Technologies- ISRO Initiatives
Advances in Satellite Technologies- ISRO Initiatives Sumitesh Sarkar Space Applications Centre (ISRO) March 27, 2019 National Workshop on Advances in Satellite Technologies National Workshop on Advances in Satellite Technologies - Mach 27, 2019 Advance Technology : Key Areas Migration from Broadcast/VSAT centric to Data-centric Payload design - HTS . Multi-beam coverage in Ku and Ka-band ensuring Frequency Reuse and enhanced Payload performance . Increased Payload Hardware – need for miniaturization . Addressing new applications like Mobile backhauling, In-Flight Connectivity etc. Special focus on unserved/underserved regions within India Use of Higher frequency bands – Ku to Ka to Q/V band . Migration to higher frequency bands – ‘User ‘ as well as ‘Feeder’ links . More interference free Spectrum . Constraints of available technologies Redefining MSS with enhanced capabilities . Multi-beam High power transponders in S-band - enabling SDMB services National Workshop on Advances in Satellite Technologies - Mach 27, 2019 2 Evolution in On-board Antenna Technology Single Circular beam Shaped Beam Multibeam(HTS) (Dual Gridded Reflector) National Workshop on Advances in Satellite Technologies - Mach 27, 2019 Technology Trends – Active Low power RF Circuits MMIC SOC 9mm X 6mm Ka-band (In test) 100mmx40mm 70mmx60mm x25mm x22mm based based MMIC die in pac. pac. MMIC Chip MMIC LTCC pac. Qualified (In BB test) 100mmx100mm x25mm Gen In production by industry nd MIC based MIC 2 RF Technologies RF 170mmx100mmx35mm MIC MIC based 200mmx180mmx100mm (2RF sec.) 1stgen. INSAT-2A to INSAT-2D INSAT-3 and 4 Series GSAT-5 GSAT-7/11 Future technologies Payload Generation National Workshop on Advances in Satellite Technologies - Mach 27, 2019 High Throughput Satellite : GSAT-11 Features: . -
Space Commercialization
Space commercialization August 23, 2019 Source : The Hindu Manifest pedagogy: Space commercialisation is one aspect which was left untapped until the last few years. After successful stint of ISRO as a scientific body it is now accelerating its activities as a commercial body. This is a very important topic for Mains. In news: ISRO arm NSIL has begun search for PSLV makers Placing it in syllabus: Space commercialisation by India (explicitly mentioned) Static dimensions: Role of Antrix Corporation Current dimensions: Establishment of NSIL Outsourcing of PSLV ISRO’s space commercialisation plan and its impact Content: NewSpace India Ltd (NSIL), the new public sector space business company have launched a formal search for industry consortia which can regularly manufacture and deliver entire PSLV satellite launch vehicles for the Indian Space Research Organisation (ISRO). Role of Antrix Corporation: Antrix Corporation Limited (ACL), Bengaluru is a wholly owned Government of India Companyunder the administrative control of the Department of Space. Was incorporated as a private limited company owned by the Government of India in September 1992 as a Marketing arm of ISRO for promotion and commercial exploitation of space products, technical consultancy services and transfer of technologies developed by ISRO. Another major objective is to facilitate development of space related industrial capabilities in India. Antrix markets space products and services to global customers. It is committed to configuring a cost-effective, advanced and reliable solution for every space programme related need. Antrix optimizes the space systems keeping in view the specific customer objectives. It plays a pivotal role in delivering space systems and services that meet the expectations of leading global organizations. -
High Altitude Nuclear Detonations (HAND) Against Low Earth Orbit Satellites ("HALEOS")
High Altitude Nuclear Detonations (HAND) Against Low Earth Orbit Satellites ("HALEOS") DTRA Advanced Systems and Concepts Office April 2001 1 3/23/01 SPONSOR: Defense Threat Reduction Agency - Dr. Jay Davis, Director Advanced Systems and Concepts Office - Dr. Randall S. Murch, Director BACKGROUND: The Defense Threat Reduction Agency (DTRA) was founded in 1998 to integrate and focus the capabilities of the Department of Defense (DoD) that address the weapons of mass destruction (WMD) threat. To assist the Agency in its primary mission, the Advanced Systems and Concepts Office (ASCO) develops and maintains and evolving analytical vision of necessary and sufficient capabilities to protect United States and Allied forces and citizens from WMD attack. ASCO is also charged by DoD and by the U.S. Government generally to identify gaps in these capabilities and initiate programs to fill them. It also provides support to the Threat Reduction Advisory Committee (TRAC), and its Panels, with timely, high quality research. SUPERVISING PROJECT OFFICER: Dr. John Parmentola, Chief, Advanced Operations and Systems Division, ASCO, DTRA, (703)-767-5705. The publication of this document does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official position of the sponsoring agency. 1 Study Participants • DTRA/AS • RAND – John Parmentola – Peter Wilson – Thomas Killion – Roger Molander – William Durch – David Mussington – Terry Heuring – Richard Mesic – James Bonomo • DTRA/TD – Lewis Cohn • Logicon RDA – Les Palkuti – Glenn Kweder – Thomas Kennedy – Rob Mahoney – Kenneth Schwartz – Al Costantine – Balram Prasad • Mission Research Corp. – William White 2 3/23/01 2 Focus of This Briefing • Vulnerability of commercial and government-owned, unclassified satellite constellations in low earth orbit (LEO) to the effects of a high-altitude nuclear explosion. -
India and China Space Programs: from Genesis of Space Technologies to Major Space Programs and What That Means for the Internati
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati Gaurav Bhola University of Central Florida Part of the Political Science Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Bhola, Gaurav, "India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati" (2009). Electronic Theses and Dissertations, 2004-2019. 4109. https://stars.library.ucf.edu/etd/4109 INDIA AND CHINA SPACE PROGRAMS: FROM GENESIS OF SPACE TECHNOLOGIES TO MAJOR SPACE PROGRAMS AND WHAT THAT MEANS FOR THE INTERNATIONAL COMMUNITY by GAURAV BHOLA B.S. University of Central Florida, 1998 A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Arts in the Department of Political Science in the College of Arts and Humanities at the University of Central Florida Orlando, Florida Summer Term 2009 Major Professor: Roger Handberg © 2009 Gaurav Bhola ii ABSTRACT The Indian and Chinese space programs have evolved into technologically advanced vehicles of national prestige and international competition for developed nations. The programs continue to evolve with impetus that India and China will have the same space capabilities as the United States with in the coming years. -
1998 Year in Review
Associate Administrator for Commercial Space Transportation (AST) January 1999 COMMERCIAL SPACE TRANSPORTATION: 1998 YEAR IN REVIEW Cover Photo Credits (from left): International Launch Services (1998). Image is of the Atlas 2AS launch on June 18, 1998, from Cape Canaveral Air Station. It successfully orbited the Intelsat 805 communications satellite for Intelsat. Boeing Corporation (1998). Image is of the Delta 2 7920 launch on September 8, 1998, from Vandenberg Air Force Base. It successfully orbited five Iridium communications satellites for Iridium LLP. Lockheed Martin Corporation (1998). Image is of the Athena 2 awaiting its maiden launch on January 6, 1998, from Spaceport Florida. It successfully deployed the NASA Lunar Prospector. Orbital Sciences Corporation (1998). Image is of the Taurus 1 launch from Vandenberg Air Force Base on February 10, 1998. It successfully orbited the Geosat Follow-On 1 military remote sensing satellite for the Department of Defense, two Orbcomm satellites and the Celestis 2 funerary payload for Celestis Corporation. Orbital Sciences Corporation (1998). Image is of the Pegasus XL launch on December 5, 1998, from Vandenberg Air Force Base. It successfully orbited the Sub-millimeter Wave Astronomy Satellite for the Smithsonian Astrophysical Observatory. 1998 YEAR IN REVIEW INTRODUCTION INTRODUCTION In 1998, U.S. launch service providers conducted In addition, 1998 saw continuing demand for 22 launches licensed by the Federal Aviation launches to deploy the world’s first low Earth Administration (FAA), an increase of 29 percent orbit (LEO) communication systems. In 1998, over the 17 launches conducted in 1997. Of there were 17 commercial launches to LEO, 14 these 22, 17 were for commercial or international of which were for the Iridium, Globalstar, and customers, resulting in a 47 percent share of the Orbcomm LEO communications constellations.