Satellite Systems

Total Page:16

File Type:pdf, Size:1020Kb

Satellite Systems Chapter 18 REST-OF-WORLD (ROW) SATELLITE SYSTEMS For the longest time, space exploration was an exclusive club comprised of only two members, the United States and the Former Soviet Union. That has now changed due to a number of factors, among the more dominant being economics, advanced and improved technologies and national imperatives. Today, the number of nations with space programs has risen to over 40 and will continue to grow as the costs of spacelift and technology continue to decrease. RUSSIAN SATELLITE SYSTEMS The satellite section of the Russian In the post-Soviet era, Russia contin- space program continues to be predomi- ues its efforts to improve both its military nantly government in character, with and commercial space capabilities. most satellites dedicated either to civil/ These enhancements encompass both military applications (such as communi- orbital assets and ground-based space cations and meteorology) or exclusive support facilities. Russia has done some military missions (such as reconnaissance restructuring of its operating principles and targeting). A large portion of the regarding space. While these efforts have Russian space program is kept running by attempted not to detract from space-based launch services, boosters and launch support to military missions, economic sites, paid for by foreign commercial issues and costs have lead to a lowering companies. of Russian space-based capabilities in The most obvious change in Russian both orbital assets and ground station space activity in recent years has been the capabilities. decrease in space launches and corre- The influence of Glasnost on Russia's sponding payloads. Many of these space programs has been significant, but launches are for foreign payloads, not public announcements regarding space Russian. This can be attributed not only programs focus primarily on commercial to the recent breakup of the Soviet space promotion and budgetary justifica- Union, but also to the fact that Russian tion of the civil and commercial space satellites are gradually becoming more programs. Admissions of their military sophisticated and longer-lived. This in- use of space remain infrequent, and the creased operational efficiency is the mark economic measures reported by space of a more mature military space program program managers, appear to be designed which can reduce redundancy while ac- largely to avoid calls for further constraints. complishing its missions. Economic Despite restructuring throughout the problems throughout Russia have lead to Russian military, the objectives of the many problems in building and launching military space programs have not these new satellites. While Russia retains changed. Military space strategy still the surge launch and reconstitution capa- requires sufficient capability to provide bilities that are essential for military op- effective space-based support to terres- erations in crisis or conflict, money and trial military forces and the capability to lack of maintenance to ground facilities deny the use of space to other states. cast doubts on the viability of this former Maintaining this capability has, however, Soviet capability. proved extremely difficult in post-Soviet Russia. Space-Based Military Support Missions and Operations AU Space Primer 7/23/2003 18 - 1 An extensive array of spacecraft was from two separate cosmodromes; Ple- developed to support the Soviet, now setsk in Russia and Tyuratam in Kazakh- Russian, armed forces and political lead- stan. Due to the current political consid- ership. These satellite systems conduct erations between Russia and Kazakhstan, missions which include: imagery; elec- it is doubtful that Russia would launch an tronic and radar reconnaissance; launch ASAT system from Tyuratam. No Rus- detection and attack warning; ocean sur- sian ASAT has been launched since veillance and targeting; command, con- 1982. trol, and communications; geodetic, navi- Russia maintains a significant ASAT gational, and meteorological support; capability against low-earth and medium- anti-satellite (ASAT) operations; and earth orbit satellites, but capabilities military R&D. Reports in 1999 indicated against high altitude ones are limited. that Russia's military space forces had Future ASAT developments could in- barely the resources to meet the needs of clude new directed energy weapons or the nation's armed forces. direct-ascent non-nuclear interceptors. These systems, in turn, are supported In addition to the co-orbital intercep- by a tremendous infrastructure on the tor, Russia has additional potential ASAT ground, including the Ministry of De- capabilities. These capabilities include: fense (MOD) main space command, con- exo-atmospheric ABM missiles, located trol and telemetry complex near Moscow. around Moscow, that could be used Improvement, maintenance and refur- against satellites in near-earth orbit; at bishment of this infrastructure has con- least one ground-based laser, that may tinued despite a lower launch rate. Plans have sufficient power to damage some are ongoing to streamline the command unprotected satellites in near-earth orbits; and control systems, both civil and mili- and electronic warfare assets that proba- tary, to optimize the networks. bly would be used against satellites at all Russian sources have stated that more altitudes. Research and development of that 70 percent of the spacecraft and technologies applicable to more advanced ground facilities active in 1999 have out- ASAT systems continue. Areas of inves- lived their guaranteed service lives. tigation that appear to hold promise in- clude high energy laser, particle beam, Anti-satellite Systems radio frequency and kinetic technologies. The Russian military and political Photographic Reconnaissance leadership is fully aware of the value of military space systems. They have de- veloped the capability to disrupt and de- Photographic reconnaissance by satel- stroy the military space systems of poten- lite to gather high resolution images of tial enemies. Russia built a dedicated military installations and activities was so ASAT system that probably became op- clearly of value to both the East and West erational in 1971. In August 1983, Mos- that its development was one of the main cow announced a unilateral moratorium incentives in the early years of the space on the launch of ASAT weapons. How- era. Russia has both the older film return ever, Russia continued the testing of systems and newer digital, near-real-time, ASAT elements and procedures on the imaging systems. As with most of its ground, and the associated booster, the satellite programs, Russian capability SL-11. The SL-11 is also the same here has declined since the break-up of booster used to launch the ELINT Ocean the Soviet Union. During the 1980's the Reconnaissance Satellites (EORSATs) Soviet Union launched over 30 photo- and Radar Ocean Reconnaissance Satel- reconnaissance satellites, always having lites (RORSATs), although the last at least one imagery satellite in orbit. RORSAT launch was in 1988. The co- Russia currently has not been able to orbital interceptor has been launched maintain anything near this rate. In fact, AU Space Primer 7/23/2003 18 - 2 between September 28, 1996 and May 15, 1997, there were no Russian imagery satellites in orbit. Russia’s COSMOS film return “spy” satellites (Fig. 18-1) normally operate in low orbits that pass over geographic ar- eas of interest. These satellites are de- signed to withstand the heat of reentry so that they can be recovered. They are used mainly for military purposes, but do have civilian uses. A current commercial venture is using Fig. 18-2. Molniya 1 Communications Satellite The Ekran (Screen), Gorizont (Hori- zon) and Raduga (Rainbow) series, were the Soviet Union’s first generation of Fig. 18-1. Cosmos geosynchronous satellites. The Ruduga was the first system launched in 1975. older Russian film return satellites to This system is used primarily for military image areas of the earth for commercial and government communications chan- sales. The imagery is processed at a nels in addition to some domestic links. resolution of two meters and then digi- Launched in 1976, the Ekran was the tized and made available for sale via Soviet Union’s first civil geostationary Internet. This project is a joint Russian- communications satellite, providing di- US venture called SPIN-2 (SPace INfor- rect TV broadcast to Siberia. mation - 2 meter). Gorizont was the next geostationary system, first launched in 1978 (Fig. 18- Communication 3). This constellation is mainly used for TV distribution, telecommunications Russia operates several communica- services and maritime/mobile aeronauti- tions satellite systems. These satellites cal receivers in western regions of Russia operate in highly inclined, geostationary via the Moskva system. In design, this and low-earth orbits. system is very similar to the Ruduga. The Molniya (Lightning) satellite se- ries orbits in a highly inclined orbit that places it over the Russian landmass for approximately eight hours of its 12 hour orbit. With satellites placed 90 degrees apart, 24 hour communications are possi- ble. This series was first launched in 1965. The Molniya-1 series are primarily used for military and government com- munications (Fig. 18-2). The Molniya-3 series are for civil and domestic tele- communications as well as TV broad- casts. Fig. 18-3. Gorizont Communications Satellite AU Space Primer 7/23/2003 18 - 3 These systems are being replaced by Navigation newer generations
Recommended publications
  • Detecting, Tracking and Imaging Space Debris
    r bulletin 109 — february 2002 Detecting, Tracking and Imaging Space Debris D. Mehrholz, L. Leushacke FGAN Research Institute for High-Frequency Physics and Radar Techniques, Wachtberg, Germany W. Flury, R. Jehn, H. Klinkrad, M. Landgraf European Space Operations Centre (ESOC), Darmstadt, Germany Earth’s space-debris environment tracked, with estimates for the number of Today’s man-made space-debris environment objects larger than 1 cm ranging from 100 000 has been created by the space activities to 200 000. that have taken place since Sputnik’s launch in 1957. There have been more than 4000 The sources of this debris are normal launch rocket launches since then, as well as many operations (Fig. 2), certain operations in space, other related debris-generating occurrences fragmentations as a result of explosions and such as more than 150 in-orbit fragmentation collisions in space, firings of satellite solid- events. rocket motors, material ageing effects, and leaking thermal-control systems. Solid-rocket Among the more than 8700 objects larger than 10 cm in Earth orbits, motors use aluminium as a catalyst (about 15% only about 6% are operational satellites and the remainder is space by mass) and when burning they emit debris. Europe currently has no operational space surveillance aluminium-oxide particles typically 1 to 10 system, but a powerful radar facility for the detection and tracking of microns in size. In addition, centimetre-sized space debris and the imaging of space objects is available in the form objects are formed by metallic aluminium melts, of the 34 m dish radar at the Research Establishment for Applied called ‘slag’.
    [Show full text]
  • Rafael Space Propulsion
    Rafael Space Propulsion CATALOGUE A B C D E F G Proprietary Notice This document includes data proprietary to Rafael Ltd. and shall not be duplicated, used, or disclosed, in whole or in part, for any purpose without written authorization from Rafael Ltd. Rafael Space Propulsion INTRODUCTION AND OVERVIEW PART A: HERITAGE PART B: SATELLITE PROPULSION SYSTEMS PART C: PROPELLANT TANKS PART D: PROPULSION THRUSTERS Satellites Launchers PART E: PROPULSION SYSTEM VALVES PART F: SPACE PRODUCTION CAPABILITIES PART G: QUALITY MANAGEMENT CATALOGUE – Version 2 | 2019 Heritage PART A Heritage 0 Heritage PART A Rafael Introduction and Overview Rafael Advanced Defense Systems Ltd. designs, develops, manufactures and supplies a wide range of high-tech systems for air, land, sea and space applications. Rafael was established as part of the Ministry of Defense more than 70 years ago and was incorporated in 2002. Currently, 7% of its sales are re-invested in R&D. Rafael’s know-how is embedded in almost every operational Israel Defense Forces (IDF) system; the company has a special relationship with the IDF. Rafael has formed partnerships with companies with leading aerospace and defense companies worldwide to develop applications based on its proprietary technologies. Offset activities and industrial co-operations have been set-up with more than 20 countries world-wide. Over the last decade, international business activities have been steadily expanding across the globe, with Rafael acting as either prime-contractor or subcontractor, capitalizing on its strengths at both system and sub-system levels. Rafael’s highly skilled and dedicated workforce tackles complex projects, from initial development phases, through prototype, production and acceptance tests.
    [Show full text]
  • 1. INTRODUCTION 2. EASY INSTALLATION GUIDE 8. Explain How to Download S/W by USB and How to Upload and Download 9. HOW to DOWNLO
    1. INTRODUCTION Overview…………………………………………………………………………..………………...……... 2 Main Features……………………………………………………………………………... ...………... ....4 2. EASY INSTALLATION GUIDE...…………...…………...…………...…………...……….. .. 3 3. SAFETY Instructions.………………………………………………………………………… …6 4. CHECK POINTS BEFORE USE……………………………………………………………… 7 Accessories Satellite Dish 5. CONTROLS/FUNCTIONS……………………………………………………………………….8 Front/Rear panel Remote controller Front Display 6. EQUIPMENT CONNECTION……………………………………………………………....… 11 CONNECTION WITH ANTENNA / TV SET / A/V SYSTEM 7. OPERATION…………………………………………………………………….………………….. 12 Getting Started System Settings Edit Channels EPG CAM(COMMON INTERFACE MODULE) Only CAS(CONDITIONAL ACCESS SYSTEM) USB Menu PVR Menu 8. Explain how to download S/W by USB and how to upload and download channels by USB……………………….……………………………………….…………………31 9. HOW TO DOWNLOAD SOFTWARE FROM PC TO RECEIVER…………….…32 10. Trouble Shooting……………………….……………………………………….………………34 11. Specifications…………………………………………………………………….……………….35 12. Glossary of Terms……………………………………………………………….……………...37 1 INTRODUCTION OVERVIEW This combo receiver is designed for using both free-to-air and encrypted channel reception. Enjoy the rich choice of more than 20,000 different channels, broadcasting a large range of culture, sports, cinema, news, events, etc. This receiver is a technical masterpiece, assembled with the highest qualified electronic parts. MAIN FEATURES • High Definition Tuners : DVB-S/DVB-S2 Satellite & DVB-T Terrestrial Compliant • DVB-S/DVB-S2 Satellite Compliant(MPEG-II/MPEG-IV/H.264)
    [Show full text]
  • Classification of Geosynchronous Objects Issue 12
    EUROPEAN SPACE AGENCY EUROPEAN SPACE OPERATIONS CENTRE GROUND SYSTEMS ENGINEERING DEPARTMENT Space Debris Office CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS ISSUE 12 by R. Choc and R. Jehn Produced with the DISCOS Database February 2010 ESOC Robert-Bosch-Str. 5, 64293 Darmstadt, Germany 3 Abstract This is a status report on geosynchronous objects as of the end of 2009. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring (here defined as orbits with mean motion between 0.9 and 1.1 revolutions per day, eccentricity smaller than 0.2 and inclination below 30 deg) is analysed. From 1161 objects for which orbital data are available, 391 are controlled inside their longitude slots, 594 are drifting above, below or through GEO, 169 are in a libration orbit and 7 whose status could not be determined. Furthermore, there are 77 uncontrolled objects without orbital data (of which 66 have not been catalogued). Thus the total number of known objects in the geostationary region is 1238. During 2009 twenty-one spacecraft reached end-of-life. Eleven of them were reorbited following the IADC recommendations, one spacecraft was reorbited with a perigee of 225 km - it is not yet clear if it will enter the 200-km protected zone around GEO or not -, six spacecraft were reorbited too low and three spacecraft did not or could not make any reorbiting manouevre at all and are now librating inside the geostationary ring. If you detect any error or if you have any comment or question please contact R¨udiger Jehn European Space Operations Center Robert-Bosch-Str.
    [Show full text]
  • The Space-Based Global Observing System in 2010 (GOS-2010)
    WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available.
    [Show full text]
  • Aeronautical Engineering
    NASA/S P--1999-7037/S U P PL407 September 1999 AERONAUTICAL ENGINEERING A CONTINUING BIBLIOGRAPHY WITH INDEXES National Aeronautics and Space Administration Langley Research Center Scientific and Technical Information Program Office The NASA STI Program Office... in Profile Since its founding, NASA has been dedicated CONFERENCE PUBLICATION. Collected to the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key meetings sponsored or cosponsored by NASA. part in helping NASA maintain this important role. SPECIAL PUBLICATION. Scientific, technical, or historical information from The NASA STI Program Office is operated by NASA programs, projects, and missions, Langley Research Center, the lead center for often concerned with subjects having NASA's scientific and technical information. substantial public interest. The NASA STI Program Office provides access to the NASA STI Database, the largest collection TECHNICAL TRANSLATION. of aeronautical and space science STI in the English-language translations of foreign world. The Program Office is also NASA's scientific and technical material pertinent to institutional mechanism for disseminating the NASA's mission. results of its research and development activities. These results are published by NASA in the Specialized services that complement the STI NASA STI Report Series, which includes the Program Office's diverse offerings include following report types: creating custom thesauri, building customized databases, organizing and publishing research TECHNICAL PUBLICATION. Reports of results.., even providing videos. completed research or a major significant phase of research that present the results of For more information about the NASA STI NASA programs and include extensive data or Program Office, see the following: theoretical analysis.
    [Show full text]
  • 1998 Year in Review
    Associate Administrator for Commercial Space Transportation (AST) January 1999 COMMERCIAL SPACE TRANSPORTATION: 1998 YEAR IN REVIEW Cover Photo Credits (from left): International Launch Services (1998). Image is of the Atlas 2AS launch on June 18, 1998, from Cape Canaveral Air Station. It successfully orbited the Intelsat 805 communications satellite for Intelsat. Boeing Corporation (1998). Image is of the Delta 2 7920 launch on September 8, 1998, from Vandenberg Air Force Base. It successfully orbited five Iridium communications satellites for Iridium LLP. Lockheed Martin Corporation (1998). Image is of the Athena 2 awaiting its maiden launch on January 6, 1998, from Spaceport Florida. It successfully deployed the NASA Lunar Prospector. Orbital Sciences Corporation (1998). Image is of the Taurus 1 launch from Vandenberg Air Force Base on February 10, 1998. It successfully orbited the Geosat Follow-On 1 military remote sensing satellite for the Department of Defense, two Orbcomm satellites and the Celestis 2 funerary payload for Celestis Corporation. Orbital Sciences Corporation (1998). Image is of the Pegasus XL launch on December 5, 1998, from Vandenberg Air Force Base. It successfully orbited the Sub-millimeter Wave Astronomy Satellite for the Smithsonian Astrophysical Observatory. 1998 YEAR IN REVIEW INTRODUCTION INTRODUCTION In 1998, U.S. launch service providers conducted In addition, 1998 saw continuing demand for 22 launches licensed by the Federal Aviation launches to deploy the world’s first low Earth Administration (FAA), an increase of 29 percent orbit (LEO) communication systems. In 1998, over the 17 launches conducted in 1997. Of there were 17 commercial launches to LEO, 14 these 22, 17 were for commercial or international of which were for the Iridium, Globalstar, and customers, resulting in a 47 percent share of the Orbcomm LEO communications constellations.
    [Show full text]
  • 2010 Commercial Space Transportation Forecasts
    2010 Commercial Space Transportation Forecasts May 2010 FAA Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) HQ-101151.INDD 2010 Commercial Space Transportation Forecasts About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Cover: Art by John Sloan (2010) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration / Commercial Space Transportation Table of Contents Executive Summary . 1 Introduction . 4 About the CoMStAC GSo Forecast . .4 About the FAA NGSo Forecast . .4 ChAracteriStics oF the CommerCiAl Space transportAtioN MArket . .5 Demand ForecastS . .5 COMSTAC 2010 Commercial Geosynchronous Orbit (GSO) Launch Demand Forecast . 7 exeCutive Summary . .7 BackGround . .9 Forecast MethoDoloGy . .9 CoMStAC CommerCiAl GSo Launch Demand Forecast reSultS .
    [Show full text]
  • Orbital Debris: a Chronology
    NASA/TP-1999-208856 January 1999 Orbital Debris: A Chronology David S. F. Portree Houston, Texas Joseph P. Loftus, Jr Lwldon B. Johnson Space Center Houston, Texas David S. F. Portree is a freelance writer working in Houston_ Texas Contents List of Figures ................................................................................................................ iv Preface ........................................................................................................................... v Acknowledgments ......................................................................................................... vii Acronyms and Abbreviations ........................................................................................ ix The Chronology ............................................................................................................. 1 1961 ......................................................................................................................... 4 1962 ......................................................................................................................... 5 963 ......................................................................................................................... 5 964 ......................................................................................................................... 6 965 ......................................................................................................................... 6 966 ........................................................................................................................
    [Show full text]
  • 1 Before the Federal Communications Commission Washington, D.C
    Federal Communications Commission DA 06-4 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) AFRISPACE, INC. ) IB File No. SAT-LOA-20050311- ) 00061 Application for Authority to Launch and ) Operate a Replacement Satellite, AfriStar-2, ) Call Sign: S2666 at 21° E.L. and to Co-locate It with AfriStar-1 ) ) ORDER AND AUTHORIZATION Adopted: January 03, 2006 Released: January 03, 2006 By the Chief, International Bureau: I. INTRODUCTION 1. By this Order, we authorize AfriSpace, Inc. (AfriSpace)1 to launch and operate the AfriStar-2 satellite in the geostationary-satellite orbit (GSO) at the 21° East Longitude (E.L.) orbital location. AfriStar-2 is controlled from the United States and is capable of providing Broadcasting-Satellite Service (sound) (BSS (sound)) to Africa and Europe on a non-common carrier basis. We authorize AfriStar-2 to operate downlinks within 2.6 megahertz of spectrum in each polarization with a center frequency of 1479.5 MHz. We also authorize AfriSpace to utilize feeder links and telecommand links for the AfriStar-2 satellite in the 7025-7075 MHz frequency band, to operate its telemetry link for the AfriStar-2 satellite at a center frequency of 1491.7 MHz, and to co-locate the AfriStar-2 satellite at 21° E.L. with the AfriStar-1 satellite currently in orbit. In addition, we grant AfriSpace a waiver of the Commission’s rule regarding transponder saturation flux densities for the AfriStar-2 satellite.2 These authorizations give AfriSpace the capability to continue to provide service to existing customers despite unanticipated technical difficulties experienced by the AfriStar-1 satellite and to serve new customers, conditioned on AfriSpace complying with the applicable laws, regulations, rules, and licensing procedures of any countries it proposes to serve.
    [Show full text]
  • November 23, 2016 VIA ELECTRONIC FILING Marlene H
    November 23, 2016 VIA ELECTRONIC FILING Marlene H. Dortch, Secretary Federal Communications Commission 445 12th Street, S.W. Room TW-A325 Washington, DC 20554 Re: SAT-ASG-20161025-00101 Application for Assignment of Authorizations for AfriStar-1 and AfriStar-2 (call signs S2367 and S2666) from Yazmi USA, LLC (“Yazmi”) to Silkwave Africa, LLC (“Silkwave”). Dear Ms. Dortch: At the request of FCC staff, we are submitting this letter in the docket for the above-named application (the “Application”) to supplement statements made in the Public Interest Statement of that Application. The Public Interest Statement explained that the AfriStar-1 satellite will be initially controlled by Intelsat pursuant to an agreement between Intelsat, Silkwave, and an affiliate of Silkwave. The affiliate of Silkwave referred to is New York Broadband LLC, a U.S. limited liability company (“NYBB”). NYBB is affiliated with Silkwave because Chi Capital, which owns 100% of Silkwave, also has a minority ownership interest in NYBB. NYBB owns an Australian-licensed satellite, AsiaStar, which is operated by Intelsat pursuant to an agreement between NYBB and Intelsat (the “NYBB Agreement”). The AsiaStar satellite was also acquired from Yazmi pursuant to a series of earlier transactions not requiring FCC approval. The AfriStar-1 satellite is currently being operated by Intelsat pursuant to a separate agreement between Yazmi and Intelsat (the “Yazmi Agreement”). The parties intend that, following the transfer of the AfriStar-1 license to Silkwave, Intelsat will continue to operate the AfriStar-1 satellite on Silkwave’s behalf, either through an amended Yazmi Agreement, or more likely through an amended NYBB Agreement that includes the AfriStar-1 satellite and adds Silkwave as a party.
    [Show full text]
  • A Decade of Growth
    A publication of The Orbital Debris Program Office NASA Johnson Space Center Houston, Texas 77058 October 2000 Volume 5, Issue 4. NEWS A Decade of Growth P. Anz-Meador and Globalstar commercial communication of the population. For example, consider the This article will examine changes in the spacecraft constellations, respectively. Given peak between 840-850 km (Figure 1’s peak low Earth orbit (LEO) environment over the the uncertain future of the Iridium constellation, “B”). This volume is populated by the period 1990-2000. Two US Space Surveillance the spike between 770 and 780 km may change Commonwealth of Independent State’s Tselina- Network (SSN) catalogs form the basis of our drastically or even disappear over the next 2 spacecraft constellation, several US Defense comparison. Included are all unclassified several years. Less prominent is the Orbcomm Meteorological Support Program (DMSP) cataloged and uncataloged objects in both data commercial constellation, with a primary spacecraft, and their associated rocket bodies sets, but objects whose epoch times are “older” concentration between 810 and 820 km altitude and debris. While the region is traversed by than 30 days were excluded from further (peak “A” in Figure 1). Smaller series of many other space objects, including debris, consideration. Moreover, the components of satellites may also result in local enhancements these satellites and rocket boosters are in near the Mir orbital station are 3.0E-08 circular orbits. Thus, any “collectivized” into one group of spacecraft whose object so as not to depict a orbits are tightly January 1990 plethora of independently- 2.5E-08 maintained are capable of orbiting objects at Mir’s A January 2000 producing a spike similar altitude; the International B to that observed with the Space Station (ISS) is 2.0E-08 commercial constellations.
    [Show full text]