The Space-Based Global Observing System in 2010 (GOS-2010)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EOOS Posters Abstracts
Posters Submissions – EOOS Conference 21 23 November 2018 1. Sylvie Pouliquen Ifremer [email protected] Authors: "Gille Reverdin CNRS/INSU email: [email protected] , Pierre-Yves Le Traon Ifremer & Mercator-Ocean email: [email protected]) and the Coriolis 2014-2020 steering committee." Theme: From standalone to integrated ocean and coastal observing platforms Title: Coriolis: an integrated in-situ ocean observation infrastructure for operational oceanography and ocean/climate research "The Coriolis (www.coriolis.eu.org) structure gathers efforts of seven French institutes (CNES, CNRS, IFREMER, IPEV, IRD, Météo-France, SHOM, CEREMA) to organize the in-situ component of the French operational oceanography infrastructure. The objective is to organize the data acquisition and real- time/delayed mode data processing of in-situ measurements required for operational oceanography and ocean/climate research. Coriolis is focused on a limited number of physical and biogeochemical parameters that are acquired systematically and in real time or slightly delayed mode. Coriolis follows a fully open data policy. The framework of collaboration for Coriolis was renewed in 2014 and now covers the time period of 2014 up to 2020. By signing this new agreement, the eight directors of French institutes have clearly stated their willingness to sustain and consolidate further the Coriolis in-situ infrastructure. The new framework agreement strengthens the links between research and operational oceanography. The scope is also extended to integrate the main French contributions to the global and regional in-situ observing systems: Argo, gliders, research vessels, ship of opportunities, drifting buoys, marine mammals, tidal networks and high frequency coastal observatories. -
Landsat Collection 2
Landsat Collection 2 Landsat Collection 2 marks the second major reprocessing of the U.S. Geological Top of atmosphere Surface reflectance Surface temperature Survey (USGS) Landsat archive. In 2016, the USGS formally reorganized the Landsat archive into a tiered collection inventory structure in recognition of the need for consis- tent Landsat 1–8 sensor data and in anticipa- tion of future periodic reprocessing of the archive to reflect new sensor calibration and geolocation knowledge. Landsat Collections ensure that all Landsat Level-1 data are con- sistently calibrated and processed and retain traceability of data quality provenance. Bremerton Landsat Collection 2 introduces improvements that harness recent advance- ments in data processing, algorithm develop- ment, data access, and distribution capabili- N ties. Collection 2 includes Landsat Level-1 data for all sensors (including Landsat 9, Figure 1. Landsat 5 Collection 2 Level-1 top of atmosphere (TOA; left). Corresponding when launched) since 1972 and global Collection 2 Level-2 surface reflectance (SR; center) and surface temperature (ST [K]; right) Level-2 surface reflectance and surface images. temperature scene-based products for data acquired since 1982 starting with the Landsat Digital Elevation Models Thematic Mapper (TM) sensor era (fig. 1). The primary improvements of Collection 2 data include Collection 2 uses the 3-arc-second (90-meter) digital eleva- • rebaselining the Landsat 8 Operational Landsat Imager tion modeling sources listed and illustrated below. (OLI) Ground -
Dod Space Technology Guide
Foreword Space-based capabilities are integral to the U.S.’s national security operational doctrines and processes. Such capa- bilities as reliable, real-time high-bandwidth communica- tions can provide an invaluable combat advantage in terms of clarity of command intentions and flexibility in the face of operational changes. Satellite-generated knowledge of enemy dispositions and movements can be and has been exploited by U.S. and allied commanders to achieve deci- sive victories. Precision navigation and weather data from space permit optimal force disposition, maneuver, decision- making, and responsiveness. At the same time, space systems focused on strategic nuclear assets have enabled the National Command Authorities to act with confidence during times of crisis, secure in their understanding of the strategic force postures. Access to space and the advantages deriving from operat- ing in space are being affected by technological progress If our Armed Forces are to be throughout the world. As in other areas of technology, the faster, more lethal, and more precise in 2020 advantages our military derives from its uses of space are than they are today, we must continue to dynamic. Current space capabilities derive from prior invest in and develop new military capabilities. decades of technology development and application. Joint Vision 2020 Future capabilities will depend on space technology programs of today. Thus, continuing investment in space technologies is needed to maintain the “full spectrum dominance” called for by Joint Vision 2010 and 2020, and to protect freedom of access to space by all law-abiding nations. Trends in the availability and directions of technology clearly suggest that the U.S. -
Information Summaries
TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical -
Guía De Instrumentos Y Métodos De Observación : Volumen IV
Guía de Instrumentos y Métodos de Observación Volumen IV – Observaciones desde el espacio Edición de 2018 TIEMPO CLIMA AGUA OMM-N° 8 Guía de Instrumentos y Métodos de Observación Volumen IV – Observaciones desde el espacio Edición de 2018 OMM-N° 8 NOTA DE LA EDICIÓN METEOTERM, base terminológica de la OMM, está disponible en la página web: http://public. wmo.int/es/recursos/meteoterm. Conviene informar al lector de que cuando copie un hipervínculo seleccionándolo del texto podrán aparecer espacios adicionales inmediatamente después de http://, https://, ftp://, mailto:, y después de las barras (/), los guiones (-), los puntos (.) y las secuencias ininterrumpidas de caracteres (letras y números). Es necesario suprimir esos espacios de la dirección URL copiada. La dirección URL correcta aparece cuando se pone el cursor sobre el enlace o cuando se hace clic en el enlace y luego se copia en el navegador. OMM-N° 8 © Organización Meteorológica Mundial, 2018 La OMM se reserva el derecho de publicación en forma impresa, electrónica o de otro tipo y en cualquier idioma. Pueden reproducirse pasajes breves de las publicaciones de la OMM sin autorización siempre que se indique claramente la fuente completa. La correspondencia editorial, así como todas las solicitudes para publicar, reproducir o traducir la presente publicación parcial o totalmente deberán dirigirse al: Presidente de la Junta de Publicaciones Organización Meteorológica Mundial (OMM) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 Case postale No 2300 Fax: +41 (0) 22 730 81 17 CH-1211 Genève 2, Suiza Correo electrónico: [email protected] ISBN 978-92-63-30008-9 NOTA Las denominaciones empleadas en las publicaciones de la OMM y la forma en que aparecen presentados los datos que contienen no entrañan, de parte de la Organización, juicio alguno sobre la condición jurídica de ninguno de los países, territorios, ciudades o zonas citados o de sus autoridades, ni respecto de la delimitación de sus fronteras o límites. -
Rafael Space Propulsion
Rafael Space Propulsion CATALOGUE A B C D E F G Proprietary Notice This document includes data proprietary to Rafael Ltd. and shall not be duplicated, used, or disclosed, in whole or in part, for any purpose without written authorization from Rafael Ltd. Rafael Space Propulsion INTRODUCTION AND OVERVIEW PART A: HERITAGE PART B: SATELLITE PROPULSION SYSTEMS PART C: PROPELLANT TANKS PART D: PROPULSION THRUSTERS Satellites Launchers PART E: PROPULSION SYSTEM VALVES PART F: SPACE PRODUCTION CAPABILITIES PART G: QUALITY MANAGEMENT CATALOGUE – Version 2 | 2019 Heritage PART A Heritage 0 Heritage PART A Rafael Introduction and Overview Rafael Advanced Defense Systems Ltd. designs, develops, manufactures and supplies a wide range of high-tech systems for air, land, sea and space applications. Rafael was established as part of the Ministry of Defense more than 70 years ago and was incorporated in 2002. Currently, 7% of its sales are re-invested in R&D. Rafael’s know-how is embedded in almost every operational Israel Defense Forces (IDF) system; the company has a special relationship with the IDF. Rafael has formed partnerships with companies with leading aerospace and defense companies worldwide to develop applications based on its proprietary technologies. Offset activities and industrial co-operations have been set-up with more than 20 countries world-wide. Over the last decade, international business activities have been steadily expanding across the globe, with Rafael acting as either prime-contractor or subcontractor, capitalizing on its strengths at both system and sub-system levels. Rafael’s highly skilled and dedicated workforce tackles complex projects, from initial development phases, through prototype, production and acceptance tests. -
Course Descriptions
COURSE DESCRIPTIONS Architectural Design Technology COURSE DESCRIPTIONS The following course descriptions are intended to briefly describe the nature of each of the courses. For more complete information, AAD 180 Fundamentals of Design I 3 (2,2,0,0) departments or faculty can provide specific course syllabuses. Introduction to the principles and theories of design and design methodology in the “making” of representations of form and space. The numbers in the right side of each description define the credits and average weekly contact hours the student will spend AAD 182 Fundamentals of Design II 3 (2,2,0,0) in formal classes during a 16 week semester. Classes scheduled Continuation of AAD 180, with emphasis on spatial sequence, for other than a 16 week semester will have the contact hours tectonics, and design precedents. adjusted accordingly. Prerequisite: AAD 180. A – defines the number of semester credits B Architecture – average number of lecture hours per week C – average number of laboratory hours per week AAE 100 Introduction to Architecture 3 (3,0,0,0) D – average number of clinical hours per week Survey of architecture. Includes historical examples and the E – average number of other formal instructional hours per week theoretical, social, technical, and environmental forces that shape this profession. Especially for majors and non-majors who wish to explore this field as a career choice. Automotive Technology, Collision and Repair ABDY 101B Collision Repair Fundamentals and Estimating 4 (1,6,0,0) This lecture/lab course includes an overview of the collision industry, instruction in safe shop procedures, measurement, vehicle disassembly, and estimating software and techniques. -
L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade. -
Satellite Systems
Chapter 18 REST-OF-WORLD (ROW) SATELLITE SYSTEMS For the longest time, space exploration was an exclusive club comprised of only two members, the United States and the Former Soviet Union. That has now changed due to a number of factors, among the more dominant being economics, advanced and improved technologies and national imperatives. Today, the number of nations with space programs has risen to over 40 and will continue to grow as the costs of spacelift and technology continue to decrease. RUSSIAN SATELLITE SYSTEMS The satellite section of the Russian In the post-Soviet era, Russia contin- space program continues to be predomi- ues its efforts to improve both its military nantly government in character, with and commercial space capabilities. most satellites dedicated either to civil/ These enhancements encompass both military applications (such as communi- orbital assets and ground-based space cations and meteorology) or exclusive support facilities. Russia has done some military missions (such as reconnaissance restructuring of its operating principles and targeting). A large portion of the regarding space. While these efforts have Russian space program is kept running by attempted not to detract from space-based launch services, boosters and launch support to military missions, economic sites, paid for by foreign commercial issues and costs have lead to a lowering companies. of Russian space-based capabilities in The most obvious change in Russian both orbital assets and ground station space activity in recent years has been the capabilities. decrease in space launches and corre- The influence of Glasnost on Russia's sponding payloads. Many of these space programs has been significant, but launches are for foreign payloads, not public announcements regarding space Russian. -
Articles Upon the Hox Family by Comparing Averages of Days Impacted by These Events with Averages of Non-Impacted 3945–3977, Doi:10.5194/Acp-13-3945-2013, 2013
Atmos. Chem. Phys., 15, 2889–2902, 2015 www.atmos-chem-phys.net/15/2889/2015/ doi:10.5194/acp-15-2889-2015 © Author(s) 2015. CC Attribution 3.0 License. Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder L. Millán1,2, S. Wang2, N. Livesey2, D. Kinnison3, H. Sagawa4, and Y. Kasai4 1Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, California, USA 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA 3National Center for Atmospheric Research, Boulder, Colorado, USA 4National Institute of Information and Communications Technology, Koganei, Tokyo, Japan Correspondence to: L. Millán ([email protected]) Received: 18 June 2014 – Published in Atmos. Chem. Phys. Discuss.: 8 September 2014 Revised: 17 February 2015 – Accepted: 24 February 2015 – Published: 13 March 2015 Abstract. This study introduces stratospheric and meso- sphere where O3 chemistry is controlled by catalytic cycles spheric hydroperoxyl radical (HO2) estimates from the Aura involving the HOx (HO2, OH and H) family (Brasseur and Microwave Limb Sounder (MLS) using an offline retrieval Solomon, 2005): (i.e. run separately from the standard MLS algorithm). This new data set provides two daily zonal averages, one during X C O3 ! XO C O2 (R1) daytime from 10 to 0.0032 hPa (using day-minus-night dif- O C XO ! O2 C X; (R2) ferences between 10 and 1 hPa to ameliorate systematic bi- ases) and one during nighttime from 1 to 0.0032 hPa. The where the net effect of these two reactions is simply vertical resolution of this new data set varies from about 4 km O C O ! 2O (R3) at 10 hPa to around 14 km at 0.0032 hPa. -
25 Years of Indian Remote Sensing Satellite (IRS)
2525 YearsYears ofof IndianIndian RemoteRemote SensingSensing SatelliteSatellite (IRS)(IRS) SeriesSeries Vinay K Dadhwal Director National Remote Sensing Centre (NRSC), ISRO Hyderabad, INDIA 50 th Session of Scientific & Technical Subcommittee of COPUOS, 11-22 Feb., 2013, Vienna The Beginning • 1962 : Indian National Committee on Space Research (INCOSPAR), at PRL, Ahmedabad • 1963 : First Sounding Rocket launch from Thumba (Nov 21, 1963) • 1967 : Experimental Satellite Communication Earth Station (ESCES) established at Ahmedabad • 1969 : Indian Space Research Organisation (ISRO) established (15 August) PrePre IRSIRS --1A1A SatellitesSatellites • ARYABHATTA, first Indian satellite launched in April 1975 • Ten satellites before IRS-1A (7 for EO; 2 Met) • 5 Procured & 5 SLV / ASLV launch SAMIR : 3 band MW Radiometer SROSS : Stretched Rohini Series Satellite IndianIndian RemoteRemote SensingSensing SatelliteSatellite (IRS)(IRS) –– 1A1A • First Operational EO Application satellite, built in India, launch USSR • Carried 4-band multispectral camera (3 nos), 72m & 36m resolution Satellite Launch: March 17, 1988 Baikanur Cosmodrome Kazakhstan SinceSince IRSIRS --1A1A • Established of operational EO activities for – EO data acquisition, processing & archival – Applications & institutionalization – Public services in resource & disaster management – PSLV Launch Program to support EO missions – International partnership, cooperation & global data sets EarlyEarly IRSIRS MultispectralMultispectral SensorsSensors • 1st Generation : IRS-1A, IRS-1B • -
Space in Central and Eastern Europe
EU 4+ SPACE IN CENTRAL AND EASTERN EUROPE OPPORTUNITIES AND CHALLENGES FOR THE EUROPEAN SPACE ENDEAVOUR Report 5, September 2007 Charlotte Mathieu, ESPI European Space Policy Institute Report 5, September 2007 1 Short Title: ESPI Report 5, September 2007 Editor, Publisher: ESPI European Space Policy Institute A-1030 Vienna, Schwarzenbergplatz 6 Austria http://www.espi.or.at Tel.: +43 1 718 11 18 - 0 Fax - 99 Copyright: ESPI, September 2007 This report was funded, in part, through a contract with the EUROPEAN SPACE AGENCY (ESA). Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “source: ESPI Report 5, September 2007. All rights reserved” and sample transmission to ESPI before publishing. Price: 11,00 EUR Printed by ESA/ESTEC Compilation, Layout and Design: M. A. Jakob/ESPI and Panthera.cc Report 5, September 2007 2 EU 4+ Executive Summary ....................................................................................... 5 Introduction…………………………………………………………………………………………7 Part I - The New EU Member States Introduction................................................................................................... 9 1. What is really at stake for Europe? ....................................................... 10 1.1. The European space community could benefit from a further cooperation with the ECS ................................................................. 10 1.2. However, their economic weight remains small in the European landscape and they still suffer from organisatorial and funding issues .... 11 1.2.1. Economic weight of the ECS in Europe ........................................... 11 1.2.2. Reality of their impact on competition ............................................ 11 1.2.3. Foreign policy issues ................................................................... 12 1.2.4. Internal challenges ..................................................................... 12 1.3.