The Annual Compendium of Commercial Space Transportation: 2017

Total Page:16

File Type:pdf, Size:1020Kb

The Annual Compendium of Commercial Space Transportation: 2017 Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY . 1 INTRODUCTION . 5 THE SPACE TRANSPORTATION INDUSTRY . 9 THE SPACE INDUSTRY. .9 LAUNCH VEHICLES. 9 Typical Launch Vehicle Subsystems . 10 Launch Vehicle Integration and Processing . .14 Operational Orbital Launch Vehicles . 15 Operational Suborbital Launch Vehicles . .16 LAUNCH AND REENTRY SITES . 21 U.S. FEDERAL SITES. 23 FAA AST-LICENSED SITES . .25 NON-LICENSED U.S. SITES. 30 NON-U.S. SITES. 31 PAYLOADS . 35 STATE OF THE PAYLOAD INDUSTRY . 35 GLOBAL PAYLOAD INDUSTRY. 35 U.S. PAYLOAD INDUSTRY. 36 COMMERCIAL ON-ORBIT VEHICLES AND PLATFORMS. 36 2016 LAUNCH EVENTS . 39 2017 ANNUAL COMMERCIAL SPACE TRANSPORTATION FORECAST . 45 EXECUTIVE SUMMARY. 45 METHODOLOGY. .49 COMMERCIAL TELECOMMUNICATIONS SATELLITES. .50 COMMERCIAL REMOTE SENSING SATELLITES . 63 COMMERCIAL CREW AND CARGO TRANSPORTATION SERVICES. 72 OTHER COMMERCIALLY LAUNCHED SATELLITES. 77 TECHNOLOGY TEST AND DEMONSTRATION LAUNCHES . 77 FACTORS THAT AFFECT LAUNCH PROJECTIONS. 78 SPACE TRANSPORTATION LAW AND POLICY . 83 CURRENT LAW AND POLICY. .83 International Treaties. .83 U.S. Law and Policy . 84 COMMERCIAL SPACE TRANSPORTATION ADVISORY COMMITTEE (COMSTAC) . 86 Purpose, Scope, and 2016 Membership . 86 APPENDIX 1: DEFINITIONS AND ACRONYMS . 89 APPENDIX 2: 2016 WORLDWIDE ORBITAL LAUNCH EVENTS . 95 ORBITAL LAUNCH VEHICLE FACT SHEETS . 100 iv Annual Compendium of Commercial Space Transportation: 2017 v Executive Summary EXECUTIVE SUMMARY The size of the global space industry, which combines satellite services and ground equipment, government space budgets, and global navigation satellite services (GNSS) equipment, is estimated to be about $335 billion. At $98 billion in revenues, or about 29 percent, satellite television represents the largest segment of activity. Following satellite television are services enabled by global navigation satellite systems (GNSS), which represent about $81 billion in revenues, or 24 percent. Government space budgets represent $77 billion, or 23 percent. Other satellite services (fixed and mobile satellite services, broadband, and remote sensing) generated about $30 billion in revenues, and ground equipment represents $28 billion in revenues. Satellite manufacturing generated nearly $17 billion. All of this activity would not be possible without orbital launch services. Global launch services is estimated to account for $5.4 billion of the $335 billion total, or only about 2 percent. Most of this launch activity is captive; that is, the majority of payload operators have existing agreements with launch service providers or do not otherwise “shop around” for a launch. About a third of the $5.4 billion represents internationally competed, or commercial, transactions. In 2016, service providers conducted a total of 85 orbital launches in seven countries. While this figure is elaborated upon in greater detail later in this report, there are some interesting events worthy of noting here. Since 2014, U.S. providers have begun to cut into the existing share of commercial launches occupied by Russian providers. This U.S. gain is the result of a combination of factors. An Orbital ATK Antares is prepared for the OA 5 cargo mission to the First, the entrance of International Space Station (ISS). (Source: NASA/Bill Ingalls) Space Exploration Technologies (SpaceX), which has been offering its Falcon 9 and Falcon Heavy vehicles to the global market at low prices, is attracting significant business. In addition, launch failures, quality control problems, and supply chain issues have plagued the Russian space industry, leading some customers to seek alternatives like SpaceX. Meanwhile, Europe’s Arianespace remains a steadfast provider, offering reliable services via the Ariane 5 ECA, Soyuz 2, and Vega. Sea Launch, 1 Annual Compendium of Commercial Space Transportation: 2017 for a time a key player but never a dominant one, has essentially ceased operations. Finally, Japan’s Mitsubishi Heavy Industries (MHI) Launch Services and India’s Antrix have become more aggressive at marketing their H-IIA/B and PSLV vehicles, respectively. Since about 2004, the annual number of orbital launches conducted worldwide has steadily increased. This increase has primarily been due to government activity outside the U.S., as U.S. government launches remain relatively steady. For example, retirement of the Space Shuttle in 2011 decreased the number of U.S. launches per year relative to the previous three decades. However, commercial cargo missions to the International Space Station (ISS) have helped to fill the resulting gap, along with anticipated commercial crew missions beginning in 2018. Perhaps the most notable in terms of government launch activity is China. The number of orbital launches conducted by China has steadily increased each year since 2010, with a peak of 22 launches in 2016. The China Great Wall Industry Corporation (CGWIC) has also been aggressively pursuing international clients via package deals that include satellite manufacturing and launch. These launches are not considered commercial since the launch contract is not internationally competed. In 2015, China introduced two new small-class launch vehicles, the Long March 6 and the Long March 11. In 2016, China successfully launched the Long March 5 and Long March 7, both of which were launched from a new launch site on Hainan Island. Finally, China’s human spaceflight program continues in a deliberate fashion, with the 2016 launch of its Tiangong 2 space station. The Chinese National Space Agency (CNSA) is also continuing to develop its robotic investigations of the Moon with plans for venturing further. These signs point to a robust future in Chinese spaceflight, expanding the Chinese slice of the pie. Meanwhile, the commercial launch pie has not grown significantly during the past decade; instead, the slices of the pie have changed size. Yet, there are signs the commercial launch pie may be expanding. Several new launch vehicles are being developed specifically to address what some believe Rocket Lab’s Electron is prepared for launch in 2017. (Source: is latent demand among small Rocket Lab) satellite operators. These vehicles are designed to launch payloads with masses under 500 kg (1,102 lb) to low Earth orbit (LEO). Though the price per kilogram remains high relative to larger vehicles, the value is in scheduling. Previously, these small satellites would routinely “piggyback” as a secondary payload on a launch carrying a much larger payload that would dictate the schedule and the orbital destination. Consequently, these new vehicles will give small satellite operators, especially those with constellations of many satellites, greater control over their business plans. Some of these new vehicles are in advanced stages of development, like the Electron by 2 Executive Summary Rocket Lab and LauncherOne from Virgin Galactic, with some expected to start launching payloads in 2017 and 2018. There are almost 50 proposed small launch vehicles being developed worldwide, though most are in conceptual stages. Two launch failures occurred in 2016. In August, a Long March 4C carrying a government-owned meteorological satellite called Gaofen 10 was destroyed late in the launch trajectory. The second launch failure took place in December, when a Soyuz U failed to deliver Progress MS-4 to the ISS. Only one Soyuz U remains to be launched; all further flights will take place using the upgraded Soyuz 2, which has been commercially available since 2004. There were some notable activities in 2016 relating to suborbital reusable vehicles. Blue Origin’s New Shepard vehicle successfully flew four times, launching from the company’s site in western Texas. The fourth flight, which took place on October 5, 2016, featured a test of a capsule abort and separation, and both
Recommended publications
  • Peace in Vietnam! Beheiren: Transnational Activism and Gi Movement in Postwar Japan 1965-1974
    PEACE IN VIETNAM! BEHEIREN: TRANSNATIONAL ACTIVISM AND GI MOVEMENT IN POSTWAR JAPAN 1965-1974 A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN POLITICAL SCIENCE AUGUST 2018 By Noriko Shiratori Dissertation Committee: Ehito Kimura, Chairperson James Dator Manfred Steger Maya Soetoro-Ng Patricia Steinhoff Keywords: Beheiren, transnational activism, anti-Vietnam War movement, deserter, GI movement, postwar Japan DEDICATION To my late father, Yasuo Shiratori Born and raised in Nihonbashi, the heart of Tokyo, I have unforgettable scenes that are deeply branded in my heart. In every alley of Ueno station, one of the main train stations in Tokyo, there were always groups of former war prisoners held in Siberia, still wearing their tattered uniforms and playing accordion, chanting, and panhandling. Many of them had lost their limbs and eyes and made a horrifying, yet curious, spectacle. As a little child, I could not help but ask my father “Who are they?” That was the beginning of a long dialogue about war between the two of us. That image has remained deep in my heart up to this day with the sorrowful sound of accordions. My father had just started work at an electrical laboratory at the University of Tokyo when he found he had been drafted into the imperial military and would be sent to China to work on electrical communications. He was 21 years old. His most trusted professor held a secret meeting in the basement of the university with the newest crop of drafted young men and told them, “Japan is engaging in an impossible war that we will never win.
    [Show full text]
  • Delta II Icesat-2 Mission Booklet
    A United Launch Alliance (ULA) Delta II 7420-10 photon-counting laser altimeter that advances MISSION rocket will deliver the Ice, Cloud and land Eleva- technology from the first ICESat mission tion Satellite-2 (ICESat-2) spacecraft to a 250 nmi launched on a Delta II in 2003 and operated until (463 km), near-circular polar orbit. Liftoff will 2009. Our planet’s frozen and icy areas, called occur from Space Launch Complex-2 at Vanden- the cryosphere, are a key focus of NASA’s Earth berg Air Force Base, California. science research. ICESat-2 will help scientists MISSION investigate why, and how much, our cryosphere ICESat-2, with its single instrument, the is changing in a warming climate, while also Advanced Topographic Laser Altimeter System measuring heights across Earth’s temperate OVERVIEW (ATLAS), will provide scientists with height and tropical regions and take stock of the vege- measurements to create a global portrait of tation in forests worldwide. The ICESat-2 mission Earth’s third dimension, gathering data that can is implemented by NASA’s Goddard Space Flight precisely track changes of terrain including Center (GSFC). Northrop Grumman built the glaciers, sea ice, forests and more. ATLAS is a spacecraft. NASA’s Launch Services Program at Kennedy Space Center is responsible for launch management. In addition to ICESat-2, this mission includes four CubeSats which will launch from dispens- ers mounted to the Delta II second stage. The CubeSats were designed and built by UCLA, University of Central Florida, and Cal Poly. The miniaturized satellites will conduct research DELTA II For nearly 30 years, the reliable in space weather, changing electric potential Delta II rocket has been an industry and resulting discharge events on spacecraft workhorse, launching critical and damping behavior of tungsten powder in a capabilities for NASA, the Air Force Image Credit NASA’s Goddard Space Flight Center zero-gravity environment.
    [Show full text]
  • Flight Opportunities and Small Spacecraft Technology Program Updates NAC Technology, Innovation and Engineering Committee Meeting | March 19, 2020
    Flight Opportunities and Small Spacecraft Technology Program Updates NAC Technology, Innovation and Engineering Committee Meeting | March 19, 2020 Christopher Baker NASA Space Technology Mission Directorate Flight Opportunities and Small Spacecraft Technology Program Executive National Aeronautics and Space Administration 1 CHANGING THE PACE OF SPACE Through Small Spacecraft Technology and Flight Opportunities, Space Tech is pursuing the rapid identification, development, and testing of capabilities that exploit agile spacecraft platforms and responsive launch capabilities to increase the pace of space exploration, discovery, and the expansion of space commerce. National Aeronautics and Space Administration 2 THROUGH SUBORBITAL FLIGHT The Flight Opportunities program facilitates rapid demonstration of promising technologies for space exploration, discovery, and the expansion of space commerce through suborbital testing with industry flight providers LEARN MORE: WWW.NASA.GOV/TECHNOLOGY Photo Credit: Blue Origin National Aeronautics and Space Administration 3 FLIGHT OPPORTUNITIES BY THE NUMBERS Between 2011 and today… In 2019 alone… Supported 195 successful fights Supported 15 successful fights Enabled 676 tests of payloads Enabled 47 tests of payloads 254 technologies in the portfolio 86 technologies in the portfolio 13 active commercial providers 9 active commercial providers National Aeronautics and Space Administration Numbers current as of March 1, 2020 4 TECHNOLOGY TESTED IN SUBORBITAL Lunar Payloads ISS SPACE IS GOING TO EARTH ORBIT, THE MOON, MARS, AND BEYOND Mars 2020 Commercial Critical Space Lunar Payload Exploration Services Solutions National Aeronautics and Space Administration 5 SUBORBITAL INFUSION HIGHLIGHT Commercial Lunar Payload Services Four companies selected as Commercial Lunar Payload Services (CPLS) providers leveraged Flight Opportunities-supported suborbital flights to test technologies that are incorporated into their landers and/or are testing lunar landing technologies under Flight Opportunities for others.
    [Show full text]
  • Orbital Lifetime Predictions
    Orbital LIFETIME PREDICTIONS An ASSESSMENT OF model-based BALLISTIC COEFfiCIENT ESTIMATIONS AND ADJUSTMENT FOR TEMPORAL DRAG co- EFfiCIENT VARIATIONS M.R. HaneVEER MSc Thesis Aerospace Engineering Orbital lifetime predictions An assessment of model-based ballistic coecient estimations and adjustment for temporal drag coecient variations by M.R. Haneveer to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Thursday June 1, 2017 at 14:00 PM. Student number: 4077334 Project duration: September 1, 2016 – June 1, 2017 Thesis committee: Dr. ir. E. N. Doornbos, TU Delft, supervisor Dr. ir. E. J. O. Schrama, TU Delft ir. K. J. Cowan MBA TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Summary Objects in Low Earth Orbit (LEO) experience low levels of drag due to the interaction with the outer layers of Earth’s atmosphere. The atmospheric drag reduces the velocity of the object, resulting in a gradual decrease in altitude. With each decayed kilometer the object enters denser portions of the atmosphere accelerating the orbit decay until eventually the object cannot sustain a stable orbit anymore and either crashes onto Earth’s surface or burns up in its atmosphere. The capability of predicting the time an object stays in orbit, whether that object is space junk or a satellite, allows for an estimate of its orbital lifetime - an estimate satellite op- erators work with to schedule science missions and commercial services, as well as use to prove compliance with international agreements stating no passively controlled object is to orbit in LEO longer than 25 years.
    [Show full text]
  • Cubesat Data Analysis Revision
    371-XXXXX Revision - CubeSat Data Analysis Revision - November 2015 Prepared by: GSFC/Code 371 National Aeronautics and Goddard Space Flight Center Space Administration Greenbelt, Maryland 20771 371-XXXXX Revision - Signature Page Prepared by: ___________________ _____ Mark Kaminskiy Date Reliability Engineer ARES Corporation Accepted by: _______________________ _____ Nasir Kashem Date Reliability Lead NASA/GSFC Code 371 1 371-XXXXX Revision - DOCUMENT CHANGE RECORD REV DATE DESCRIPTION OF CHANGE LEVEL APPROVED - Baseline Release 2 371-XXXXX Revision - Table of Contents 1 Introduction 4 2 Statement of Work 5 3 Database 5 4 Distributions by Satellite Classes, Users, Mass, and Volume 7 4.1 Distribution by satellite classes 7 4.2 Distribution by satellite users 8 4.3 CubeSat Distribution by mass 8 4.4 CubeSat Distribution by volume 8 5 Annual Number of CubeSats Launched 9 6 Reliability Data Analysis 10 6.1 Introducing “Time to Event” variable 10 6.2 Probability of a Successful Launch 10 6.3 Estimation of Probability of Mission Success after Successful Launch. Kaplan-Meier Nonparametric Estimate and Weibull Distribution. 10 6.3.1 Kaplan-Meier Estimate 10 6.3.2 Weibull Distribution Estimation 11 6.4 Estimation of Probability of mission success after successful launch as a function of time and satellite mass using Weibull Regression 13 6.4.1 Weibull Regression 13 6.4.2 Data used for estimation of the model parameters 13 6.4.3 Comparison of the Kaplan-Meier estimates of the Reliability function and the estimates based on the Weibull regression 16 7 Conclusion 17 8 Acknowledgement 18 9 References 18 10 Appendix 19 Table of Figures Figure 4-1 CubeSats distribution by mass ....................................................................................................
    [Show full text]
  • Federal Register/Vol. 85, No. 103/Thursday, May 28, 2020
    32256 Federal Register / Vol. 85, No. 103 / Thursday, May 28, 2020 / Proposed Rules FEDERAL COMMUNICATIONS closes-headquarters-open-window-and- presentation of data or arguments COMMISSION changes-hand-delivery-policy. already reflected in the presenter’s 7. During the time the Commission’s written comments, memoranda, or other 47 CFR Part 1 building is closed to the general public filings in the proceeding, the presenter [MD Docket Nos. 19–105; MD Docket Nos. and until further notice, if more than may provide citations to such data or 20–105; FCC 20–64; FRS 16780] one docket or rulemaking number arguments in his or her prior comments, appears in the caption of a proceeding, memoranda, or other filings (specifying Assessment and Collection of paper filers need not submit two the relevant page and/or paragraph Regulatory Fees for Fiscal Year 2020. additional copies for each additional numbers where such data or arguments docket or rulemaking number; an can be found) in lieu of summarizing AGENCY: Federal Communications original and one copy are sufficient. them in the memorandum. Documents Commission. For detailed instructions for shown or given to Commission staff ACTION: Notice of proposed rulemaking. submitting comments and additional during ex parte meetings are deemed to be written ex parte presentations and SUMMARY: In this document, the Federal information on the rulemaking process, must be filed consistent with section Communications Commission see the SUPPLEMENTARY INFORMATION 1.1206(b) of the Commission’s rules. In (Commission) seeks comment on several section of this document. proceedings governed by section 1.49(f) proposals that will impact FY 2020 FOR FURTHER INFORMATION CONTACT: of the Commission’s rules or for which regulatory fees.
    [Show full text]
  • Materials for Liquid Propulsion Systems
    https://ntrs.nasa.gov/search.jsp?R=20160008869 2019-08-29T17:47:59+00:00Z CHAPTER 12 Materials for Liquid Propulsion Systems John A. Halchak Consultant, Los Angeles, California James L. Cannon NASA Marshall Space Flight Center, Huntsville, Alabama Corey Brown Aerojet-Rocketdyne, West Palm Beach, Florida 12.1 Introduction Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton’s third law: for every action there is an equal and opposite reaction. [1] Solid rocket motors are cheaper to manufacture and offer good values for their cost.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Human Spaceflight Plans of Russia, China and India
    Presentation to the ASEB Committee on NASA Technology Roadmaps Panel on Human Health and Surface Exploration June 1, 2011 by Marcia S. Smith Space and Technology Policy Group, LLC Russia Extensive experience in human spaceflight First animal in space (1957), first man in space (1961), first woman in space (1963), first spacewalk (1965), first space station (1971) Seven successful space stations (Salyut 1, 3, 4, 5, 6, 7 and Mir) before partnering in International Space Station (ISS) No people beyond low Earth orbit (LEO), however For earth orbit, continues to rely on Soyuz, first launched in 1967, but upgraded many times and is key to ISS operations Designed space shuttle, Buran, but launched only once in automated mode (no crew) in 1988 06-01-2011 2 Russia (2) Existing reliable launch vehicles Proton is largest: 21 tons to LEO; 5.5 tons to geostationary transfer orbit (GTO) Attempts to build Saturn V-equivalent in 1960s and 1970s failed (N1 failed four times in four attempts 1969-1972) Energiya booster in 1980s only flew twice (1987 with Polyus and 1988 with Buran). Abandoned for financial reasons. Was 100 tons to LEO; 18-20 tons to GTO; 32 tons to lunar trajectory. RD-170 engines for Energiya’s strap-ons live on today in other forms for Zenit, Atlas V, and Angara (under development) 06-01-2011 3 Russia (3) Robotic planetary space exploration mixed Excellent success at – Moon (Luna and Lunokhod series, plus Zond circumlunar flights) Venus (Venera series) Halley’s Comet (Vega 1 and 2—also Venus) Jinxed at Mars More than a dozen failures in 1960s - 1970s Partial success with Phobos 2 in 1988 (Phobos 1 failed) Mars 96 failed to leave Earth orbit Phobos-Grunt scheduled for later this year; designed as sample return from Phobos (includes Chinese orbiter) 06-01-2011 4 Russia (4) Grand statements over decades about sending people to the Moon and Mars, but never enough money to proceed.
    [Show full text]
  • Proton Accident with GLONASS Satellites
    3/29/2018 Proton accident with GLONASS satellites Previous Proton mission: SES­6 PICTURE GALLERY A Proton rocket with the Block D 11S861 stage and 813GLN34 payload firing shortly before liftoff on July 2, 2013. Upcoming book on space exploration Read more and watch videos in: Site map Site update log About this site About the author The ill­fated Proton rocket lifts off on July 2, 2013, at 06:38:21.585 Moscow Time (July 1, 10:38 p.m. EDT). The rocket crashed approximately 32.682 seconds later, Roskosmos said on July 18, 2013. Mailbox Russia's Proton crashes with a trio of navigation satellites SUPPORT THIS SITE! Published: July 1; updated: July 2, 3, 4, 5, 9, 11, 15, 18, 19; 23; Aug. 11 Related pages: Russia's Proton rocket crashed less than a minute after its liftoff from Baikonur, Kazakhstan. A Proton­M vehicle No. 53543 with a Block DM­03 (11S­86103) upper stage lifted off as scheduled from Pad No. 24 at Site 81 (launch complex 8P­882K) in Baikonur Cosmodrome on July 2, 2013, at 06:38:21.585 Moscow Time (on July 1, 10:38 p.m. EDT). The rocket started veering off course right after leaving the pad, deviating from the vertical path in various RD­253/275 engines directions and then plunged to the ground seconds later nose first. The payload section and the upper stage were sheered off the vehicle moments before it impacted the ground and exploded. The flight lasted no more than 30 seconds. Searching for details: The Russian space agency's ground processing and launch contractor, TsENKI, was broadcasting the launch live and captured the entire process of the vehicle's disintegration and its crash.
    [Show full text]
  • Igor AFANASYEV, Dmitry VORONTSOV Cosmonautics | Event
    cosmonautics | event Andrey Morgunov Igor AFANASYEV, Dmitry VORONTSOV AANGARA’SNGARA’S FFIRSTIRST BBLASTOFFLASTOFF At 16.04 hrs Moscow time on 9 July 2014, the Plesetsk space launch centre saw the launching facility in February 2014 to the first launch of the Angara-1.2PP launch vehicle of the advanced space rocket practice its fuelling and the nose fairing was family being developed by the Khrunichev state space research and production fitted on the rocket in March. The successful ground tests were followed by the prelaunch centre. The maiden blastoff conducted as part of the Angara flight test programme preparations. was aimed at testing the solutions embodied in the design of the URM-1 and URM-2 The date of the launch was put off for versatile rocket modules and the Angara’s launch and technical facilities as well. 27 June 2014 due to extra checks required. In this connection, orbiting an actual spacecraft had not been considered, with On 9 June, Khrunichev hosted a session of an inseparable full-scale mock-up used as payload. The flight was suborbital to the Chief Designers Council, dedicated to prevent cluttering near-Earth orbit with space junk. the preparation of the Angara to its flight tests. The session pronounced the rocket fit To say the Angara’s first launch had been In spite of the hurdles, the developer, for the trials. anticipated for a long time would be an nevertheless, got in the stretch with the Angara The LV had been taken out of the assembly understatement: it was slated for 2005 under programme.
    [Show full text]
  • 1 the Mass Spectrum Analyzer (MSA) for the Martian Moons Explorat
    In Situ Observations of Ions and Magnetic Field Around Phobos: The Mass Spectrum Analyzer (MSA) for the Martian Moons eXploration (MMX) Mission Shoichiro Yokota ( [email protected] ) Osaka Univ. https://orcid.org/0000-0001-8851-9146 Naoki Terada Tohoku University Ayako Matsuoka Kyoto University: Kyoto Daigaku Naofumi Murata JAXA Yoshifumi Saito ISAS/JAXA Dominique Delcourt LPP-CNRS-Sorbonne Yoshifumi Futaana Swedish Institute of Space Physics Kanako Seki The University of Tokyo: Tokyo Daigaku Micah J Schaible Georgia Institute of Technology Kazushi Asamura ISAS/JAXA Satoshi Kasahara The University of Tokyo: Tokyo Daigaku Hiromu Nakagawa Tohoku University: Tohoku Daigaku Masaki N Nishino ISAS/JAXA Reiko Nomura ISAS/JAXA Kunihiro Keika The University of Tokyo: Tokyo Daigaku Yuki Harada Kyoto University: Kyoto Daigaku Shun Imajo Nagoya University: Nagoya Daigaku Full paper Keywords: Martian Moons eXploration (MMX), Phobos, Mars, mass spectrum analyzer, magnetometer Posted Date: December 21st, 2020 DOI: https://doi.org/10.21203/rs.3.rs-130696/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 In situ observations of ions and magnetic field around Phobos: 2 The Mass Spectrum Analyzer (MSA) for the Martian Moons eXploration (MMX) 3 mission 4 Shoichiro Yokota1, Naoki Terada2, Ayako Matsuoka3, Naofumi Murata4, Yoshifumi 5 Saito5, Dominique Delcourt6, Yoshifumi Futaana7, Kanako Seki8, Micah J. Schaible9, 6 Kazushi Asamura5, Satoshi Kasahara8, Hiromu Nakagawa2, Masaki
    [Show full text]